1
|
De Bhowmick G, Plouviez M, Reis MG, Guieysse B, Everett DW, Agnew MP, Maclean P, Thum C. Evaluation of Extraction Techniques for Recovery of Microalgal Lipids under Different Growth Conditions. ACS OMEGA 2024; 9:27976-27986. [PMID: 38973871 PMCID: PMC11223222 DOI: 10.1021/acsomega.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from Chlamydomonas reinhardtii, Arthrospira platensis (Spirulina), and Chlorella vulgaris grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl tert-butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from C. reinhardtii, C. vulgaris, and A. platensis, respectively). Similarly, the highest total lipid and triacylglycerols (TAGs) recovery from biomass cultivated under nitrogen depletion conditions was found at 100 °C using methanol:chloroform, for C. reinhardtii (total, 550 ± 21; TAG, 205 ± 2 mg/g biomass) and for C. vulgaris (total, 612 ± 29 mg/g; TAG, 253 ± 7 mg/g biomass). ASE with MTBE:methanol:water at 100 °C yielded similar TAG recovery for C. reinhardtii (159 ± 6 mg/g) and C. vulgaris (200 ± 4 mg/g). Thus, MTBE:methanol:water is suggested as an alternative substitute to replace hazardous solvent mixtures for TAGs extraction with a much lower environmental impact. The extracted microalgal TAGs were rich in palmitic (C16:0), stearic (C18:0), oleic (C18:1,9), linoleic (C18:2n6), and α-linolenic (C18:3n3) acids. Under nitrogen depletion conditions, increased palmitic acid (C16:0) recovery up to 2-fold was recorded from the biomasses of C. reinhardtii and C. vulgaris. This study demonstrates a clear linkage between the extraction conditions applied and total lipid and TAG recovery.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Maxence Plouviez
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - Mariza Gomes Reis
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Benoit Guieysse
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - David W. Everett
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
- Riddet
Institute, Private Bag
11 222, Palmerston North 4442, New Zealand
| | - Michael P. Agnew
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Paul Maclean
- AgResearch
Ltd., Grasslands Campus, Palmerston North 4442, New Zealand
| | - Caroline Thum
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| |
Collapse
|
2
|
Peng Y, Lou H, Tan Z, Ouyang Z, Zhang Y, Lu S, Guo L, Yang B. Lipidomic and Metabolomic Analyses Reveal Changes of Lipid and Metabolite Profiles in Rapeseed during Nitrogen Deficiency. PLANT & CELL PHYSIOLOGY 2024; 65:904-915. [PMID: 37847101 DOI: 10.1093/pcp/pcad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Nitrogen is one of the most essential macronutrients for plant growth and its availability in soil is vital for agricultural sustainability and productivity. However, excessive nitrogen application could reduce the nitrogen use efficiency and produce environmental pollution. Here, we systematically determined the response in lipidome and metabolome in rapeseed during nitrogen starvation. Plant growth was severely retarded during nitrogen deficiency, while the levels of most amino acids were significantly decreased. The level of monogalactosyldiacyglycerol (MGDG) in leaves and roots was significantly decreased, while the level of digalactosyldiacylglycerol (DGDG) was significantly decreased in roots, resulting in a significant reduction of the MGDG/DGDG ratio during nitrogen starvation. Meanwhile, the levels of sulfoquinovosyl diacylglycerol, phosphatidylglycerol and glucuronosyl diacylglycerol were reduced to varying extents. Moreover, the levels of metabolites in the tricarboxylic acid cycle, Calvin cycle and energy metabolism were changed during nitrogen deficiency. These findings show that nitrogen deprivation alters the membrane lipid metabolism and carbon metabolism, and our study provides valuable information to further understand the response of rapeseed to nitrogen deficiency at the metabolism level.
Collapse
Affiliation(s)
- Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Hongxiang Lou
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Shenzhen 518000, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|
3
|
Raab A, Zhang J, Ge Y, Fernández-Mendoza F, Feldmann J. Lipophilic arsenic compounds in the cultured green alga Chlamydomonas reinhardtii. Anal Bioanal Chem 2024; 416:2809-2818. [PMID: 38189919 PMCID: PMC11009773 DOI: 10.1007/s00216-023-05122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
In this study, arsenic (As) speciation was investigated in the freshwater alga Chlamydomonas reinhardtii treated with 20 μg/L arsenate using fractionation as well as ICP-MS/ESI-MS analyses and was compared with the known As metabolite profile of wild-grown Saccharina latissima. While the total As accumulation in C. reinhardtii was about 85% lower than in S. latissima, the relative percentage of arsenolipids was significantly higher in C. reinhardtii (57.0% vs. 5.01%). As-containing hydrocarbons and phospholipids dominated the hydrophobic As profile in S. latissima, but no As-containing hydrocarbons were detectable in C. reinhardtii. Instead for the first time, an arsenoriboside-containing phytol (AsSugPhytol) was found to dominate the hydrophobic arsenicals of C. reinhardtii. Interestingly, this compound and its relatives had so far been only found in green marine microalgae, open sea plankton (mixed assemblage), and sediments but not in brown or red macroalgae. This compound family might therefore relate to differences in the arsenic metabolism between the algae phyla.
Collapse
Affiliation(s)
- Andrea Raab
- TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
| | - Jinyu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, China
| | | | - Jörg Feldmann
- TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
| |
Collapse
|
4
|
Isanta-Navarro J, Peoples LM, Bras B, Church MJ, Elser JJ. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate. JOURNAL OF PHYCOLOGY 2024; 60:418-431. [PMID: 38196398 DOI: 10.1111/jpy.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.
Collapse
Affiliation(s)
- Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
5
|
Zhu L, Scafaro AP, Vierling E, Ball MC, Posch BC, Stock F, Atkin OK. Heat tolerance of a tropical-subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry. THE NEW PHYTOLOGIST 2024; 241:715-731. [PMID: 37932881 DOI: 10.1111/nph.19356] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Marilyn C Ball
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Frederike Stock
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Plant Phenomics Facility, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Kato N, McCuiston C, Szuska KA, Lauersen KJ, Nelson G, Strain A. Chlamydomonas reinhardtii Alternates Peroxisomal Contents in Response to Trophic Conditions. Cells 2022; 11:cells11172724. [PMID: 36078132 PMCID: PMC9454557 DOI: 10.3390/cells11172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlamydomonas reinhardtii is a model green microalga capable of heterotrophic growth on acetic acid but not fatty acids, despite containing a full complement of genes for β-oxidation. Recent reports indicate that the alga preferentially sequesters, rather than breaks down, lipid acyl chains as a means to rebuild its membranes rapidly. Here, we assemble a list of potential Chlamydomonas peroxins (PEXs) required for peroxisomal biogenesis to suggest that C. reinhardtii has a complete set of peroxisome biogenesis factors. To determine involvements of the peroxisomes in the metabolism of exogenously added fatty acids, we examined transgenic C. reinhardtii expressing fluorescent proteins fused to N- or C-terminal peptide of peroxisomal proteins, concomitantly with fluorescently labeled palmitic acid under different trophic conditions. We used confocal microscopy to track the populations of the peroxisomes in illuminated and dark conditions, with and without acetic acid as a carbon source. In the cells, four major populations of compartments were identified, containing: (1) a glyoxylate cycle enzyme marker and a protein containing peroxisomal targeting signal 1 (PTS1) tripeptide but lacking the fatty acid marker, (2) the fatty acid marker alone, (3) the glyoxylate cycle enzyme marker alone, and (4) the PTS1 marker alone. Less than 5% of the compartments contained both fatty acid and peroxisomal markers. Statistical analysis on optically sectioned images found that C. reinhardtii simultaneously carries diverse populations of the peroxisomes in the cell and modulates peroxisomal contents based on light conditions. On the other hand, the ratio of the compartment containing both fatty acid and peroxisomal markers did not change significantly regardless of the culture conditions. The result indicates that β-oxidation may be only a minor occurrence in the peroxisomal population in C. reinhardtii, which supports the idea that lipid biosynthesis and not β-oxidation is the primary metabolic preference of fatty acids in the alga.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Correspondence:
| | - Clayton McCuiston
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly A. Szuska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
9
|
Song I, Kim S, Kim J, Oh H, Jang J, Jeong SJ, Baek K, Shin WS, Sim SJ, Jin E. Macular pigment-enriched oil production from genome-edited microalgae. Microb Cell Fact 2022; 21:27. [PMID: 35183173 PMCID: PMC8858528 DOI: 10.1186/s12934-021-01736-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background The photosynthetic microorganism Chlamydomonas reinhardtii has been approved as generally recognized as safe (GRAS) recently, this can excessively produce carotenoid pigments and fatty acids. Zeaxanthin epoxidase (ZEP), which converts zeaxanthin to violaxanthin, and ADP-glucose pyrophosphorylase (AGP). These are key regulating genes for the xanthophyll and starch pathways in C. reinhardtii respectively. In this study, to produce macular pigment-enriched microalgal oil, we attempted to edit the AGP gene as an additional knock-out target in the zep mutant as a parental strain. Results Using a sequential CRISPR-Cas9 RNP-mediated knock-out method, we generated double knock-out mutants (dZAs), in which both the ZEP and AGP genes were deleted. In dZA1, lutein (2.93 ± 0.22 mg g−1 DCW: dried cell weight), zeaxanthin (3.12 ± 0.30 mg g−1 DCW), and lipids (450.09 ± 25.48 mg g−1 DCW) were highly accumulated in N-deprivation condition. Optimization of the culture medium and process made it possible to produce pigments and oil via one-step cultivation. This optimization process enabled dZAs to achieve 81% higher oil productivity along with similar macular pigment productivity, than the conventional two-step process. The hexane/isopropanol extraction method was developed for the use of macular pigment-enriched microalgal oil for food. As a result, 196 ± 20.1 mg g−1 DCW of edible microalgal oil containing 8.42 ± 0.92 mg g−1 lutein of oil and 7.69 ± 1.03 mg g−1 zeaxanthin of oil was produced. Conclusion Our research showed that lipids and pigments are simultaneously induced in the dZA strain. Since dZAs are generated by introducing pre-assembled sgRNA and Cas9-protein into cells, antibiotic resistance genes or selective markers are not inserted into the genome of dZA, which is advantageous for applying dZA mutant to food. Therefore, the enriched macular pigment oil extracted from improved strains (dZAs) can be further applied to various food products and nutraceuticals. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01736-7.
Collapse
|
10
|
Chowdhury NB, Schroeder WL, Sarkar D, Amiour N, Quilleré I, Hirel B, Maranas CD, Saha R. Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:275-291. [PMID: 34554248 DOI: 10.1093/jxb/erab435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N-) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Debolina Sarkar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Nardjis Amiour
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Isabelle Quilleré
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Root and Rhizobiome Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
11
|
Blasio M, Balzano S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front Microbiol 2021; 12:718933. [PMID: 34659147 PMCID: PMC8511707 DOI: 10.3389/fmicb.2021.718933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.
Collapse
Affiliation(s)
- Martina Blasio
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Sergio Balzano
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg (Texel), Netherlands
| |
Collapse
|
12
|
Williamson CJ, Turpin-Jelfs T, Nicholes MJ, Yallop ML, Anesio AM, Tranter M. Macro-Nutrient Stoichiometry of Glacier Algae From the Southwestern Margin of the Greenland Ice Sheet. FRONTIERS IN PLANT SCIENCE 2021; 12:673614. [PMID: 34262580 PMCID: PMC8273243 DOI: 10.3389/fpls.2021.673614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Glacier algae residing within the surface ice of glaciers and ice sheets play globally significant roles in biogeochemical cycling, albedo feedbacks, and melt of the world's cryosphere. Here, we present an assessment of the macro-nutrient stoichiometry of glacier algal assemblages from the southwestern Greenland Ice Sheet (GrIS) margin, where widespread glacier algal blooms proliferate during summer melt seasons. Samples taken during the mid-2019 ablation season revealed overall lower cellular carbon (C), nitrogen (N), and phosphorus (P) content than predicted by standard microalgal cellular content:biovolume relationships, and elevated C:N and C:P ratios in all cases, with an overall estimated C:N:P of 1,997:73:1. We interpret lower cellular macro-nutrient content and elevated C:N and C:P ratios to reflect adaptation of glacier algal assemblages to their characteristic oligotrophic surface ice environment. Such lower macro-nutrient requirements would aid the proliferation of blooms across the nutrient poor cryosphere in a warming world. Up-scaling of our observations indicated the potential for glacier algal assemblages to accumulate ∼ 29 kg C km2 and ∼ 1.2 kg N km2 within our marginal surface ice location by the mid-ablation period (early August), confirming previous modeling estimates. While the long-term fate of glacier algal autochthonous production within surface ice remains unconstrained, data presented here provide insight into the possible quality of dissolved organic matter that may be released by assemblages into the surface ice environment.
Collapse
Affiliation(s)
- Christopher J. Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Thomas Turpin-Jelfs
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Miranda J. Nicholes
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Marian L. Yallop
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
14
|
Gu X, Cao L, Wu X, Li Y, Hu Q, Han D. A Lipid Bodies-Associated Galactosyl Hydrolase Is Involved in Triacylglycerol Biosynthesis and Galactolipid Turnover in the Unicellular Green Alga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040675. [PMID: 33807496 PMCID: PMC8065580 DOI: 10.3390/plants10040675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main constituent lipids of thylakoid and chloroplast envelop membranes. Many microalgae can accumulate large amounts of triacylglycerols (TAGs) under adverse environmental conditions, which is accompanied by degradation of the photosynthetic membrane lipids. However, the process mediating the conversion from galactolipids to TAG remains largely unknown. In this study, we performed genetic and biochemical analyses of galactosyl hydrolases (CrGH) identified in the proteome of lipid bodies of the green microalga Chlamydomonas reinhardtii. The recombinant CrGH was confirmed to possess galactosyl hydrolase activity by using o-nitrophenyl-β-D-galactoside as the substrate, and the Michaelis constant (Km) and Kcat of CrGH were 13.98 μM and 3.62 s-1, respectively. Comparative lipidomic analyses showed that the content of MGDG and DGDG increased by 14.42% and 24.88%, respectively, in the CrGH-deficient mutant as compared with that of the wild type cc4533 grown under high light stress conditions, and meanwhile, the TAG content decreased by 32.20%. Up-regulation of CrGH at both a gene expression and protein level was observed under high light stress (HL) conditions. In addition, CrGH was detected in multiple subcellular localizations, including the chloroplast envelope, mitochondria, and endoplasmic reticulum membranes. This study uncovered a new paradigm mediated by the multi-localized CrGH for the conversion of the photosynthetic membranes to TAGs.
Collapse
Affiliation(s)
- Xiaosong Gu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Xiaoying Wu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- Correspondence:
| |
Collapse
|
15
|
Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Sci Rep 2021; 11:381. [PMID: 33431982 PMCID: PMC7801397 DOI: 10.1038/s41598-020-79711-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
Collapse
|
16
|
Hocart CH, El Habti A, James GO. One-Pot Extractive Transesterification of Fatty Acids Followed by DMOX Derivatization for Location of Double Bonds Using GC-EI-MS. Methods Mol Biol 2021; 2306:105-121. [PMID: 33954943 DOI: 10.1007/978-1-0716-1410-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acids are an essential structural and energy storage component of cells and hence there is much interest in their metabolism, requiring identification and quantification with readily available instrumentation, such as GC-MS. Fatty acid methyl esters (FAMEs) can be generated and extracted directly from biological tissue, in a one-pot process, and following high resolution GC, their respective chain length, degrees of unsaturation, and other functionalities can be readily identified using EI-MS. Defining the positions of the double bonds in the alkyl chain requires conversion of the FAMEs into their respective dimethyloxazoline (DMOX) derivatives. Following EI, this derivative allows charge retention on the heterocycle, and concomitant charge remote fragmentation of the alkyl chain to yield key double bond position identifying ions. The protocols described herein have been applied to the identification and quantification of fatty acids harvested from microalgae grown to produce biofuels and to the screening of salt tolerant Arabidopsis mutants.
Collapse
Affiliation(s)
- Charles H Hocart
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
- Isotopomics in Chemical Biology Group, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Abdeljalil El Habti
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Gabriel O James
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Devadasu E, Subramanyam R. Enhanced Lipid Production in Chlamydomonas reinhardtii Caused by Severe Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2021; 12:615577. [PMID: 33927732 PMCID: PMC8076870 DOI: 10.3389/fpls.2021.615577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/23/2021] [Indexed: 05/19/2023]
Abstract
Microalgae are used as a source of lipids for the production of biofuels. Most algae produce neutral lipids under stress conditions. Here, lipid accumulation by the unicellular alga Chlamydomonas reinhardtii was examined during cultivation under iron-limiting conditions. Severe iron stress caused the cells to accumulate a significant amount of lipid, specifically triacylglycerols (TAGs), by compromising the growth. Semi-quantitative measurements by Fourier transform infrared (FTIR) spectroscopy showed an increase in both carbohydrate and lipid content in iron-stressed C. reinhardtii cells compared to control. Analysis by flow cytometry and thin layer chromatography confirmed that severe iron deficiency-induced TAG accumulation to fourfold higher than in iron-replete control cells. This accumulation of TAGs was mostly degraded from chloroplast lipids accompanied by overexpression of diacylglycerol acyltransferase (DGAT2A) protein. Furthermore, liquid chromatography-mass spectrometry (LC-MS) analysis demonstrated significantly enhanced levels of C16:0, C18:2, and C18:3 fatty acids (FAs). These results indicate that iron stress triggers the rapid accumulation of TAGs in C. reinhardtii cells. The enhanced production of these lipids caused by the iron deficiency may contribute to the efficient production of algal biofuels if we escalate to the photobioreactor's growth conditions.
Collapse
|
18
|
Liu X, Wang S, Deng X, Zhang Z, Yin L. Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC PLANT BIOLOGY 2020; 20:501. [PMID: 33143654 PMCID: PMC7607636 DOI: 10.1186/s12870-020-02717-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Nitrogen (N) deficiency is a major constraint for plant production in many areas. Developing the new crop genotypes with high productivity under N deficiency is an important approach to maintain agricultural production. Therefore, understanding how plant response to N deficiency and the mechanism of N-deficiency tolerance are very important for sustainable development of modern crop production. RESULTS In this study, the physiological responses and fatty acid composition were investigated in 24 wheat cultivars under N-deficient stress. Through Pearson's correlation analysis and principal component analysis, the responses of 24 wheat cultivars were evaluated. The results showed that the plant growth and carbohydrate metabolism were all differently affected by N deficiency in all tested wheat cultivars. The seedlings that had high shoot biomass also maintained high level of chlorophyll content under N deficiency. Moreover, the changes in fatty acid composition, especially the linolenic acid (18:3) and the double bond index (DBI), showed close positive correlations with the shoot dry weight and chlorophyll content alterations in response to N-deficient condition. These results indicated that beside the chlorophyll content, the linolenic acid content and DBI may also contribute to N-deficiency adaptation, thus could be considered as efficient indicators for evaluation of different response in wheat seedlings under N-deficient condition. CONCLUSIONS The alteration in fatty acid composition can potentially contribute to N-deficiency tolerance in plants, and the regulation of fatty acid compositions maybe an effective strategy for plants to adapt to N-deficient stress.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi China
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of cotton and wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003 Henan China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100 Shaanxi China
| |
Collapse
|
19
|
Ganie AH, Pandey R, Kumar MN, Chinnusamy V, Iqbal M, Ahmad A. Metabolite Profiling and Network Analysis Reveal Coordinated Changes in Low-N Tolerant and Low-N Sensitive Maize Genotypes under Nitrogen Deficiency and Restoration Conditions. PLANTS 2020; 9:plants9111459. [PMID: 33137957 PMCID: PMC7716227 DOI: 10.3390/plants9111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022]
Abstract
Nitrogen (N), applied in the form of a nitrogenous fertilizer, is one of the main inputs for agricultural production. Food production is closely associated with the application of N. However, the application of nitrogenous fertilizers to agricultural fields is associated with heavy production of nitrous oxide because agricultural crops can only utilize 30-40% of applied N, leaving behind unused 60-70% N in the environment. The global warming effect of this greenhouse gas is approximately 300 times more than of carbon dioxide. Under the present scenario of climate change, it is critical to maintain the natural balance between food production and environmental sustainability by targeting traits responsible for improving nitrogen-use-efficiency (NUE). Understanding of the molecular mechanisms behind the metabolic alterations due to nitrogen status needs to be addressed. Additionally, mineral nutrient deficiencies and their associated metabolic networks have not yet been studied well. Given this, the alterations in core metabolic pathways of low-N tolerant (LNT) and low-N sensitive (LNS) genotypes of maize under N-deficiency and their efficiency of recovering the changes upon resupplying N were investigated by us, using the GC-MS and LC-MS based metabolomic approach. Significant genotype-specific changes were noted in response to low-N. The N limitation affected the whole plant metabolism, most significantly the precursors of primary metabolic pathways. These precursors may act as important targets for improving the NUE. Limited availability of N reduced the levels of N-containing metabolites, organic acids and amino acids, but soluble sugars increased. Major variations were encountered in LNS, as compared to LNT. This study has revealed potential metabolic targets in response to the N status, which are indeed the prospective targets for crop improvement.
Collapse
Affiliation(s)
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India; (R.P.); (M.N.K.); (V.C.)
| | - M. Nagaraj Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India; (R.P.); (M.N.K.); (V.C.)
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India; (R.P.); (M.N.K.); (V.C.)
| | - Muhammad Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (A.H.G.); (M.I.)
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
- Correspondence: ; Tel.: +00-91-9999886334
| |
Collapse
|
20
|
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020; 10:E1102. [PMID: 32722284 PMCID: PMC7464705 DOI: 10.3390/biom10081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 České Budějovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Marie Vancová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
21
|
Burian A, Nielsen JM, Hansen T, Bermudez R, Winder M. The potential of fatty acid isotopes to trace trophic transfer in aquatic food-webs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190652. [PMID: 32536314 DOI: 10.1098/rstb.2019.0652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compound-specific isotope analyses (CSIA) of fatty acids (FA) constitute a promising tool for tracing energy flows in food-webs. However, past applications of FA-specific carbon isotope analyses have been restricted to a relatively coarse food-source separation and mainly quantified dietary contributions from different habitats. Our aim was to evaluate the potential of FA-CSIA to provide high-resolution data on within-system energy flows using algae and zooplankton as model organisms. First, we investigated the power of FA-CSIA to distinguish among four different algae groups, namely cyanobacteria, chlorophytes, haptophytes and diatoms. We found substantial within-group variation but also demonstrated that δ13C of several FA (e.g. 18:3ω3 or 18:4ω3) differed among taxa, resulting in group-specific isotopic fingerprints. Second, we assessed changes in FA isotope ratios with trophic transfer. Isotope fractionation was highly variable in daphnids and rotifers exposed to different food sources. Only δ13C of nutritionally valuable poly-unsaturated FA remained relatively constant, highlighting their potential as dietary tracers. The variability in fractionation was partly driven by the identity of food sources. Such systematic effects likely reflect the impact of dietary quality on consumers' metabolism and suggest that FA isotopes could be useful nutritional indicators in the field. Overall, our results reveal that the variability of FA isotope ratios provides a substantial challenge, but that FA-CSIA nevertheless have several promising applications in food-web ecology. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.
Collapse
Affiliation(s)
- Alfred Burian
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden.,Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Jens M Nielsen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Thomas Hansen
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Rafael Bermudez
- Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
22
|
Chang KS, Kim J, Park H, Hong SJ, Lee CG, Jin E. Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. BIORESOURCE TECHNOLOGY 2020; 303:122932. [PMID: 32058903 DOI: 10.1016/j.biortech.2020.122932] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
A marine green microalga, Tetraselmis sp., has been studied for the production of biomass and lipids in seawater culture. Since carbohydrate and lipid biosynthesis are competitive metabolic pathways, we attempted to increase lipid synthesis in Tetraselmis by inhibiting carbohydrate synthesis. The main regulatory enzyme in the starch synthesis pathway is ADP-glucose pyrophosphorylase (AGP). AGP loss-of-function mutants were developed using the CRISPR-Cas9 ribonucleoprotein (RNP) delivery system. AGP mutants showed a slight decrease in growth. However, the lipid content in two AGP mutants was significantly enhanced by 2.7 and 3.1 fold (21.1% and 24.1% of DCW), respectively, compared to that in the wild type (7.68% of DCW) under nitrogen starvation. This study is an example of metabolic engineering by genetic editing using the CRISPR-Cas9 RNP method in marine green microalgae. Consequently, starchless Tetraselmis mutants might be considered potential producers of lipids in seawater cultures.
Collapse
Affiliation(s)
- Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hanwool Park
- Department of Marine Science & Biological Engineering, Marine Bioenergy R&D Consortium, Inha University, Inchon 22212, Republic of Korea
| | - Seong-Joo Hong
- Department of Marine Science & Biological Engineering, Marine Bioenergy R&D Consortium, Inha University, Inchon 22212, Republic of Korea
| | - Choul-Gyun Lee
- Department of Marine Science & Biological Engineering, Marine Bioenergy R&D Consortium, Inha University, Inchon 22212, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
23
|
Kumbhar AN, He M, Rajper AR, Memon KA, Rizwan M, Nagi M, Woldemicael AG, Li D, Wang C, Wang C. The Use of Urea and Kelp Waste Extract is A Promising Strategy for Maximizing the Biomass Productivity and Lipid Content in Chlorella sorokiniana. PLANTS (BASEL, SWITZERLAND) 2020; 9:E463. [PMID: 32272580 PMCID: PMC7238413 DOI: 10.3390/plants9040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells-1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells-1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.
Collapse
Affiliation(s)
- Ali Nawaz Kumbhar
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Abdul Razzaque Rajper
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Khalil Ahmed Memon
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Muhammad Rizwan
- US Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology; Jamshoro 76062, Pakistan;
| | - Mostafa Nagi
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Abeselom Ghirmai Woldemicael
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Dan Li
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Chun Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| |
Collapse
|
24
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
25
|
Zhu J, Wakisaka M. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis. BIORESOURCE TECHNOLOGY 2020; 296:122343. [PMID: 31711907 DOI: 10.1016/j.biortech.2019.122343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
To better understand the promotion effect of phytic acid and its uptake mechanism in freshwater microalga Euglena gracilis, cell growth, photosynthetic pigment content and cell morphology of E. gracilis were evaluated under four conditions: phosphorus deficient group (CMP-), single phosphate treatment group (CMP+), single phytic acid treatment group (CMPA-), and phosphate-phytic acid mixed treatment group (CMPA+). The results showed that phytic acid could serve as the sole phosphorus source for the growth of E. gracilis, and phytase which catalyzes the hydrolysis of phytic acid was discovered for the first time in E. gracilis. Fourier transform infrared spectroscopy combined with multivariate analysis showed the good recognition of metabolites from different culture conditions especially focusing on relative carbohydrate or lipid contents. Phytic acid derived from agro-wastes is a cheap growth promoter for E. gracilis, and this E. gracilis with high nutritional value is applicable to animal feed while minimizing environmental impact.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
26
|
Nanda AK, El Habti A, Hocart CH, Masle J. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6417-6435. [PMID: 31504732 PMCID: PMC6859730 DOI: 10.1093/jxb/erz385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.
Collapse
Affiliation(s)
- Amrit K Nanda
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Abdeljalil El Habti
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | | |
Collapse
|
27
|
Gopi K, Mazumder D, Sammut J, Saintilan N. Determining the provenance and authenticity of seafood: A review of current methodologies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. PHOTOSYNTHESIS RESEARCH 2019; 139:253-266. [PMID: 30218258 DOI: 10.1007/s11120-018-0580-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/28/2018] [Indexed: 05/19/2023]
Abstract
The unicellular photosynthetic alga Chlamydomonas reinhardtii was propagated in iron deficiency medium and patterns of growth, photosynthetic efficiency, lipid accumulation, as well as the expression of lipid biosynthetic and photosynthesis-related proteins were analysed and compared with iron-sufficient growth conditions. As expected, the photosynthetic rate was reduced (maximally after 4 days of growth) as a result of increased non-photochemical quenching (NPQ). Surprisingly, the stress-response protein LHCSR3 was expressed in conditions of iron deficiency that cause NPQ induction. In addition, the protein contents of both the PSI and PSII reaction centres were gradually reduced during growth in iron deficiency medium. Interestingly, the two generations of Fe deficiency cells could be able to recover the photosynthesis but the second generation cells recovered much slower as these cells were severely in shock. Analysis by flow cytometry with fluorescence-activated cell sorting and thin layer chromatography showed that iron deficiency also induced the accumulation of triacylglycerides (TAG), which resulted in the formation of lipid droplets. This was most significant between 48 and 72 h of growth. Dramatic increases in DGAT2A and PDAT1 levels were caused by iron starvation, which indicated that the biosynthesis of TAG had been increased. Analysis using gas chromatography mass spectrometry showed that levels of 16:0, 18:0, 18:2 and 18:3Δ9,12,15 fatty acids were significantly elevated. The results of this study highlight the genes/enzymes of Chlamydomonas that affect lipid synthesis through their influence on photosynthesis, and these represent potential targets of metabolic engineering to develop strains for biofuel production.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Dinesh Kumar Chinthapalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Girish Kumar Rasineni
- Center for Excellence in Medical Services Pvt. Ltd., Kineta Towers, Road No. 3, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Prabhakar Sripadi
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
29
|
|
30
|
Batista AD, Rosa RM, Machado M, Magalhães AS, Shalaguti BA, Gomes PF, Covell L, Vaz MGMV, Araújo WL, Nunes-Nesi A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019; 15:31. [PMID: 30830512 DOI: 10.1007/s11306-019-1496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Collapse
Affiliation(s)
- Aline D Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rinamara M Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado
- Instituto de Biociências, Universidade Federal de Goiás - Regional Jataí, Jataí, Goiás, 75801-615, Brazil
| | - Alan S Magalhães
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bárbara A Shalaguti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Priscilla F Gomes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo G M V Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
31
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
32
|
Kim EJ, Jung W, Lim S, Kim S, Choi HG, Han SJ. Lipid Production by Arctic Microalga Chlamydomonas sp. KNF0008 at Low Temperatures. Appl Biochem Biotechnol 2018; 188:326-337. [PMID: 30443891 DOI: 10.1007/s12010-018-2921-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
Abstract
A lipid-producing microalga, Chlamydomonas sp. KNF0008, collected from the Arctic was capable of growing at temperatures ranging from 4 to 20 °C, and the highest cell density was measured at 15 °C and 100 μmol photons m-2 s-1 light intensity under continuous shaking and external aeration. KNF0008 showed the elevated accumulation of lipid bodies under nitrogen-deficient conditions, rather than under nitrogen-sufficient conditions. Fatty acid production of KNF0008 was 4.2-fold (104 mg L-1) higher than that of C. reinhardtii CC-125 at 15 °C in Bold's Basal Medium. The dominant fatty acids were C16:0, C16:4, C18:1, and C18:3, and unsaturated fatty acids (65.69%) were higher than saturated fatty acids (13.65%) at 15 °C. These results suggested that Arctic Chlamydomonas sp. KNF0008 could possibly be utilized for production of biodiesel during periods of cold weather because of its psychrophilic characteristics.
Collapse
Affiliation(s)
- Eun Jae Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Woongsic Jung
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Department of Research and Development, GDE, Siheung, 14985, South Korea
| | - Suyoun Lim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Functional Genomics R&D Team, Syntekabio, Daejeon, 34025, South Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Han-Gu Choi
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| |
Collapse
|
33
|
Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J Biosci Bioeng 2018; 126:644-648. [DOI: 10.1016/j.jbiosc.2018.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
|
34
|
Wang Y, Feng Y, Liu X, Zhong M, Chen W, Wang F, Du H. Response of Gracilaria lemaneiformis to nitrogen deprivation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Zhu L, Bloomfield KJ, Hocart CH, Egerton JJG, O'Sullivan OS, Penillard A, Weerasinghe LK, Atkin OK. Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. PLANT, CELL & ENVIRONMENT 2018; 41:1251-1262. [PMID: 29314047 DOI: 10.1111/pce.13133] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In many biomes, plants are subject to heatwaves, potentially causing irreversible damage to the photosynthetic apparatus. Field surveys have documented global, temperature-dependent patterns in photosynthetic heat tolerance (PHT ); however, it remains unclear if these patterns reflect acclimation in PHT or inherent differences among species adapted to contrasting habitats. To address these unknowns, we quantified seasonal variations in Tcrit (high temperature where minimal chlorophyll-a fluorescence rises rapidly, reflecting disruption to photosystem II) in 62 species native to 6 sites from 5 thermally contrasting biomes across Australia. Tcrit and leaf fatty acid (FA) composition (important for membrane stability) were quantified in three temperature-controlled glasshouses in 20 of those species. Tcrit was greatest at hot field sites and acclimated seasonally (summer > winter, increasing on average 0.34 °C per °C increase in growth temperature). The glasshouse study showed that Tcrit was inherently higher in species from warmer habitats (increasing 0.16 °C per °C increase in origin annual mean maximum temperature) and acclimated to increasing growth temperature (0.24 °C °C-1 ). Variations in Tcrit were positively correlated with the relative abundance of saturated FAs, with FAs accounting for 40% of Tcrit variation. These results highlight the importance of both plastic adjustments and inherent differences determining contemporary continent-wide patterns in PHT .
Collapse
Affiliation(s)
- Lingling Zhu
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, Australian Capital Territory, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| | - Keith J Bloomfield
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| | - Charles H Hocart
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Building 116, Canberra, Australian Capital Territory, 2601, Australia
| | - Odhran S O'Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| | - Aurore Penillard
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| | - Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, Australian Capital Territory, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
36
|
Shin YS, Choi HI, Choi JW, Lee JS, Sung YJ, Sim SJ. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. BIORESOURCE TECHNOLOGY 2018; 258:335-344. [PMID: 29555159 DOI: 10.1016/j.biortech.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 05/21/2023]
Abstract
Microalgae have been rising as a feedstock for biofuel in response to the energy crisis. Due to a high lipid content, composed of fatty acids favorable for the biodiesel production, microalgae are still being investigated as an alternative to biodiesel. Environmental factors and process conditions can alternate the quality and the quantity of lipid produced by microalgae, which can be critical for the overall production of biodiesel. To maximize both the lipid content and the biomass productivity, it is necessary to start with robust algal strains and optimal physio-chemical properties of the culture environment in combination with a novel culture system. These accumulative approaches for cost reduction can take algal process one step closer in achieving the economic feasibility.
Collapse
Affiliation(s)
- Ye Sol Shin
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Won Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Lin H, Shen H, Lee YK. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase. Front Microbiol 2018; 9:619. [PMID: 29670594 PMCID: PMC5893845 DOI: 10.3389/fmicb.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/16/2018] [Indexed: 01/18/2023] Open
Abstract
Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan K Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, León R. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Smith RT, Gilmour DJ. The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
|
41
|
Tan X, Zhang D, Parajuli K, Upadhyay S, Jiang Y, Duan Z. Comparison of Four Quantitative Techniques for Monitoring Microalgae Disruption by Low-Frequency Ultrasound and Acoustic Energy Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3295-3303. [PMID: 29433322 DOI: 10.1021/acs.est.7b05896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound has been regarded as an environmental friendly technology to utilize microalgae biomass and control algal blooms. In this study, four quantitative techniques, including cell counting, optical density of algal suspension, pigments release, and protein release, were performed on three species of microalgae ( M. aeruginosa, C. pyrenoidosa, and C. reinhardtii) to develop effective techniques for rapid monitoring of cell disruption and to optimize the acoustic energy efficiency. Results showed optical density of algal suspensions was not an optimal indicator to monitor cell disruption, although it is a common technique for determining cell concentration in microbial cultures. Instead, an accurate and reliable technique was to determine the release of intracellular pigments (absorbance peaks of supernatant) for indicating cell rupture. The protein released during sonication could also be a useful indicator if it is the component of interest. A fitted power functional model showed a strong relationship between cell disruption and energy consumption ( R2 > 0.87). This model could provide an effective approach to directly compare the energy efficiency of ultrasound in different systems or with varying microalgae species. This study provides valuable information for microalgae utilization and the treatment of algal blooms by ultrasound, so as to achieve energy conservation and environmental safety.
Collapse
Affiliation(s)
- Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment , Hohai University , 1 Xikang Road , Nanjing , Jiangsu 210098 , China
| | - Danfeng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment , Hohai University , 1 Xikang Road , Nanjing , Jiangsu 210098 , China
| | - Keshab Parajuli
- Origin Energy Limited , Adelaide , South Australia 5000 , Australia
| | - Sanjina Upadhyay
- Water Research Centre, School of Biological Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , Jiangsu 210008 , China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment , Hohai University , 1 Xikang Road , Nanjing , Jiangsu 210098 , China
| |
Collapse
|
42
|
Wang C, Li Y, Lu J, Deng X, Li H, Hu Z. Effect of overexpression of LPAAT and GPD1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:1711-1719. [PMID: 29899598 PMCID: PMC5982436 DOI: 10.1007/s10811-017-1349-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 05/17/2023]
Abstract
Biodiesel is an alternative energy source which has attracted increasing attention lately. Although algae-based biodiesel production has many benefits, it is still far from industrial application. Research suggests that improving lipid quality and production through genetic engineering of metabolic pathways will be the most promising way. To enhance lipid content, both lysophosphatidic acyltransferase gene (c-lpaat) and glycerol-3-phosphate dehydrogenase gene (c-gpd1), optimized according to the codon bias of Chlamydomonas reinhardtii, were inserted into the genomic DNA of model microalga C. reinhardtii by the glass bead method. Transgenic algae were screened by zeomycin resistance and RT-PCR. The transcription levels of inserted genes and the fatty acid content were significantly increased after intermittent heat shock. Most of all, the transcription levels of c-lpaat and c-gpd1 were increased 5.3 and 8.6 times after triple heat shocks, resulting in an increase of 44.5 and 67.5% lipid content, respectively. Furthermore, the content of long-chain saturated fatty acids and monounsaturated fatty acids, especially C18 and C18:1t, notably increased, while unsaturated fatty acids dramatically decreased. The results of this study offer a new strategy combining genetic manipulation and intermittent heat shock to enhance lipid production, especially the production of long-chain saturated fatty acids, using C. reinhardtii.
Collapse
Affiliation(s)
- Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Yi Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1142 New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland, 1142 New Zealand
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
43
|
de Jaeger L, Springer J, Wolbert EJH, Martens DE, Eggink G, Wijffels RH. Gene silencing of stearoyl-ACP desaturase enhances the stearic acid content in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2017; 245:1616-1626. [PMID: 28693951 DOI: 10.1016/j.biortech.2017.06.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 05/18/2023]
Abstract
In this study, stearoyl-ACP desaturase (SAD), the enzyme that converts stearic acid into oleic acid, is silenced by artificial microRNA in the green microalga Chlamydomonas reinhardtii. Two different constructs, which target different positions on the mRNA of stearoyl-ACP desaturase, were tested. The mRNA levels for SAD were reduced after the silencing construct was induced. In one of the strains, the reduction in SAD mRNA resulted in a doubling of the stearic acid content in triacylglycerol molecules, which shows that stearic acid production in microalgae is possible.
Collapse
Affiliation(s)
- L de Jaeger
- Bioprocess Engineering and AlgaePARC, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands; Food and Biobased Research and AlgaePARC, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - J Springer
- Food and Biobased Research and AlgaePARC, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - E J H Wolbert
- Food and Biobased Research and AlgaePARC, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - D E Martens
- Bioprocess Engineering and AlgaePARC, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - G Eggink
- Bioprocess Engineering and AlgaePARC, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands; Food and Biobased Research and AlgaePARC, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - R H Wijffels
- Bioprocess Engineering and AlgaePARC, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway.
| |
Collapse
|
44
|
Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Cañavate JP, Armada I, Hachero-Cruzado I. Common and Species-Specific Effects of Phosphate on Marine Microalgae Fatty Acids Shape Their Function in Phytoplankton Trophic Ecology. MICROBIAL ECOLOGY 2017; 74:623-639. [PMID: 28411302 DOI: 10.1007/s00248-017-0983-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/10/2017] [Indexed: 05/08/2023]
Abstract
The use of fatty acids (FA) to infer structure of phytoplankton assemblages and as indicators of microalgae nutritional value is acquiring relevance in modern phytoplankton ecology and new advances concerning factors influencing FA variability among microalgae are demanded. In this regard, the relationship between phosphorus and FA remains particularly little studied in marine phytoplankton. In the present study, we focus on phosphate effects on FA from a diversified set of marine microalgae and provide new insights into the applicability of FA in phytoplankton trophic ecology. Phosphate deprivation mainly induced monounsaturated FA production in eight out of nine microalgae and their changes were species-specific, with palmitoleic acid exhibiting extreme variation and discriminating between haptophyte classes. The important phosphate-induced and interspecific variability found for oleic acid was perceived as a concern for the current application of this FA as a trophic position indicator in grazers. Chloroplast C-16 and C-18 polyunsaturated FA were more affected by phosphate than C-20 and C-22 highly unsaturated FA (HUFA). The relative stability of stearidonic acid to phosphate in cryptophytes and haptophytes pinpointed this FA as a suited marker for both microalgae groups. Taken all species together, phosphate deprivation and taxonomy accounted for 20.8 and 50.7% of total FA variation, respectively. HUFA were minimally affected by phosphate indicating their suitability as indicators of phytoplankton trophic value. The asymptotic relationship between HUFA and phosphorus cell content suggested mineral composition (phosphorus) could be more important than HUFA content as attribute of marine microalgae nutritional value at the species level.
Collapse
Affiliation(s)
- José Pedro Cañavate
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain.
| | - Isabel Armada
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| | - Ismael Hachero-Cruzado
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
46
|
Proteomic approaches in microalgae: perspectives and applications. 3 Biotech 2017; 7:197. [PMID: 28667637 DOI: 10.1007/s13205-017-0831-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Biofuels are the promising sources which are produced by various microalgae or in the form of metabolic by-products from organic or food waste products. Microalgae have been widely reported for the production of biofuels since these have a high storage of lipids as triacylglycerides, which can mainly be converted into biofuels. Recently, products such as biodiesel, bioethanol and biogas have renewed the interest toward the microalgae. The proteomics alone will not pave the way toward finding an ideal alga which will fulfill the current energy demands, but a combined approach of proteomics, genomics and bioinformatics can be pivotal for a sustainable solution. The present review emphasizes various technologies currently involved in algal proteomics for the efficient production of biofuels.
Collapse
|
47
|
Esquível MG, Matos A.R, Marques Silva J. Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation. Appl Microbiol Biotechnol 2017; 101:5569-5580. [DOI: 10.1007/s00253-017-8322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/19/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022]
|
48
|
Larronde-Larretche M, Jin X. Microalgal biomass dewatering using forward osmosis membrane: Influence of microalgae species and carbohydrates composition. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Bekirogullari M, Fragkopoulos I, Pittman J, Theodoropoulos C. Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Tan KWM, Lee YK. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J Biotechnol 2017; 247:60-67. [PMID: 28279815 DOI: 10.1016/j.jbiotec.2017.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022]
Abstract
Biofuel production from genetically-engineered microalgae is currently among the most widely studied strategies in generating renewable energy. However, microalgae currently suffer from low oil yields which limit the commercial feasibility of industrial-scale production. A major bottleneck in cost-efficient biofuel production from microalgae is the dilemma between biomass productivity and lipid accumulation. When grown under stressful culture conditions such as nitrogen depletion, microalgae accumulate large amounts of neutral lipids, but it comes at the expense of growth which negatively impacts overall lipid productivity. Overexpression of acyl-ACP thioesterases (TE) had been successful in increasing the production of fatty acids (FA) in prokaryotes such as E. coli and cyanobacteria, but has not been effectively tested in microalgae. In this study, we introduced a TE from D. tertiolecta (DtTE) into C. reinhardtii to investigate its effects on FA production without compromising growth. The results indicate that C. reinhardtii transformants were able to produce 63 and 94% more neutral lipids than the wild-type, which translates to an approximately 56% improvement in total lipids, without compromising growth. These findings demonstrate the cross-species functionality of TE, and provide a platform for further studies into using TE as a strategy to increase biofuel production from microalgae.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545.
| |
Collapse
|