1
|
Yu Y, Wu J, Tang Z, Wan S, Hu J, Li B, Wang J, Li F. Unveiling the nitrogen metabolism mechanism for nitrogen retention in compost via in-situ ammonia recycling strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124863. [PMID: 40054356 DOI: 10.1016/j.jenvman.2025.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
A large amount of ammonia volatilization in compost causes environmental pollution and reduces the quality of compost. Ammonia recycling composting strategy (ARCS) is new strategy for reducing ammonia volatilization by absorbing with backfilling ammonia into the compost. This study revealed the mechanism of ARCS on ammonia volatilization and nitrogen retention during chicken manure composting. The results showed that the adsorption layer containing wood vinegar had an obvious inhibition effect on ammonia volatilization. Compared to CK, ARCS treatment could reduce ammonia emissions and nitrogen loss by 20.65% and 39.6% with T3 (12d), respectively. Different adsorption time would affect the occurrence of various nitrogen components in the adsorption layer, especially the change of inorganic nitrogen content. Metagenomic analysis showed that ARCS treatment resulted in significant changes in bacterial communities, and different backfilling times had significant effects on nitrogen metabolism pathways in compost. Glutamate dehydrogenase and glutamate synthase were the key nitrogen metabolism processes during composting, which played an important role in ammonia volatilization and nitrogen retention. The suitable backfilling time (12d) promoted the acceleration of ammonia nitrogen metabolism in the early stage of composting and enhanced the ammonia assimilation and dissimilatory nitrate reduction function in the maturation stage to achieve nitrogen retention. This study provided valuable insights into the effects of in-situ ammonia absorption and backfilling on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Ji Wu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shuixia Wan
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Jiankun Hu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Boyu Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jing Wang
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Fan Li
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China.
| |
Collapse
|
2
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Guidoni LLC, Corrêa ÉK, Moncks PCS, Nadaleti WC, Silva FMR, Lucia T. Innovation for recycling of organic matter through composter with automatic and sustainable temperature recording accessed via Bluetooth/mobile app. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1093. [PMID: 39436501 DOI: 10.1007/s10661-024-13285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Compost reactors, commonly used in experiments, industrial assays, and home residue treatment systems, have the potential to facilitate composting. Challenges persist in the realm of small-scale composting, encompassing facets such as temperature monitoring, homogenization of the compost mass, management of moisture with the control of leachate generation, and integration with a renewable energy source. This study assesses a pioneering composter prototype endowed with essential features to ensure a pragmatic and secure composting process. This includes the facilitation of remote access to temperature data via Bluetooth and a mobile application. Across successive trials, the scrutinized composter prototype consistently yielded reproducible outcomes, exhibiting a coefficient of variation below 25% for the majority of appraised parameters. In comparison to a conventional reactor, the decomposing residue mixture within the examined prototype manifested elevated temperatures (p < 0.05). Moreover, the tested prototype demonstrated C/N ratio lower than 20/1 within 45 days, a higher final nitrogen concentration, and enhanced germination of seeds that served as phytotoxicity bioindicators. Notably, the prototype needed 46.6% less space, offering improved leachate control, three times faster turning time, temperature monitoring, and reduced fly attraction.
Collapse
Affiliation(s)
- Lucas Lourenço Castiglioni Guidoni
- Post-Graduation Program in Biotechnology, CDTec, Federal University of Pelotas, Pelotas-RS, Brazil.
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil.
- Fibra, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas-RS, Brazil.
| | - Érico Kunde Corrêa
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Paulo César Sedrez Moncks
- Post-Graduation Program in Computer Science,CDTec, Federal University of Pelotas, Pelotas-RS, Brazil
| | - William Cezar Nadaleti
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil
| | | | - Thomaz Lucia
- Post-Graduation Program in Biotechnology, CDTec, Federal University of Pelotas, Pelotas-RS, Brazil
- Fibra, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
4
|
Jiang J, Hou R, Cui H, Tang Z, Yousif Abdellah YA, Chater CCC, Cheng K, Yu F, Liu D. Removal of artificial sweeteners in wastewater treatment plants and their degradation during sewage sludge composting with micro- and nano-sized kaolin. BIORESOURCE TECHNOLOGY 2024; 406:131060. [PMID: 38950831 DOI: 10.1016/j.biortech.2024.131060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Hou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huilin Cui
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuyu Tang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Cheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
5
|
Lei X, Cui G, Sun H, Hou S, Deng H, Li B, Yang Z, Xu Q, Huo X, Cai J. How do earthworms affect the pathway of sludge bio-stabilization via vermicomposting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170411. [PMID: 38280597 DOI: 10.1016/j.scitotenv.2024.170411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.
Collapse
Affiliation(s)
- Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Guangyu Cui
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hongxin Sun
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Suxia Hou
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Hongying Deng
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Bo Li
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Zhengzheng Yang
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Qiushi Xu
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Xueyu Huo
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Jiaxuan Cai
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| |
Collapse
|
6
|
Vráblová M, Smutná K, Chamrádová K, Vrábl D, Koutník I, Rusín J, Bouchalová M, Gavlová A, Sezimová H, Navrátil M, Chalupa R, Tenklová B, Pavlíková J. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169818. [PMID: 38184247 DOI: 10.1016/j.scitotenv.2023.169818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Chamrádová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Daniel Vrábl
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Jiří Rusín
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Markéta Bouchalová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Anna Gavlová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Hana Sezimová
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Navrátil
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Richard Chalupa
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Barbora Tenklová
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Jitka Pavlíková
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| |
Collapse
|
7
|
Wang B, Zhang P, Guo X, Bao X, Tian J, Li G, Zhang J. Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH 3 and N 2O emissions and increase of nitrate. BIORESOURCE TECHNOLOGY 2024; 391:129981. [PMID: 37926358 DOI: 10.1016/j.biortech.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Co-composting of chicken manure, straw and zeolite was investigated in a water bath heating system to estimate the effect of zeolite on physicochemical properties and metabolic functions related to nitrogen conversion. The results indicated that NH3 catches by zeolite was concentrated in the early stage and zeolite with 10 % addition reduced 28 % NH3 and 55 % N2O emissions as compost ended. The nitrate content in 10 % zeolite group was 17 % higher than that in control group. There was no significant increase of NO2- in zeolite group. More NO2- formed NH3, rather than being converted to NOx through denitrification. The abundance of nitrification genes amoA and hao increased except nxrA in zeolite groups. Denitrification was the most obvious at 20 d and zeolite decreased the abundance of denitrification genes narG, nirK and nosZ at this time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Peng Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Guo
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Bao
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Junjie Tian
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
8
|
Li T, Zhang X, Wang X, Yan Z, Peng C, Zhao S, Xu D, Liu D, Shen Q. Effect of inoculating thermophilic bacterial consortia on compost efficiency and quality. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:341-353. [PMID: 37748282 DOI: 10.1016/j.wasman.2023.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The objective of this study was to investigate the potential effects of thermophilic bacterial consortia on compost efficiency and quality. The application of bacterial consortia resulted in an earlier onset of the thermophilic period (THP), an increased upper temperature limit, and an extended duration of the THP by 3-5 days compared to the control group (CK). Microbial inoculation significantly improved the efficiency of organic matter degradation, as well as the content of water-soluble nitrogen (WSN) and humic acid-carbon (HAC). In the case of consortium Ⅱ inoculation (T2), the activities of cellobiohydrolase, β-glucosidase, and protease were increased by 81.81 %, 70.13 %, and 74.09 % at the THP respectively compared to CK. During the maturation stage, T2 also exhibited the highest PV, n/PIII, n value (1.33) and HAC content (39.53 mg·g-1), indicating that inoculation of consortium Ⅱ effectively promoted substrate maturity and product quality. Moreover, this inoculation effectively optimized the bacterial communities, particularly the growth of Planococcus, Chelatococcus, and Chelativorans during the composting, which were involved in carbon and nitrogen conversion or HAC synthesis. Carbohydrate and amino acid metabolism, and membrane transport were predominant in the consortia-inoculated samples, with an increased gene abundance, suggesting that inoculation contributed to promoting the biodegradation of lignocellulose and the exchange of favorable factors. In conclusion, this study demonstrates that inoculating thermophilic bacterial consortia has a positive impact on enhancing the resource utilization efficiency of agricultural waste and improving the quality of compost products.
Collapse
Affiliation(s)
- Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanqing Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhangxin Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenglin Peng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, National Agricultural Experimental Station for Soil Quality, Wuhan 430064, China
| | - Shujun Zhao
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, National Agricultural Experimental Station for Soil Quality, Wuhan 430064, China
| | - Dabing Xu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, National Agricultural Experimental Station for Soil Quality, Wuhan 430064, China.
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Liu L, Li C, Li H. Long-term microbial community succession and mechanisms of regulation of dissolved organic matter derivation in livestock manure fermentation system. CHEMOSPHERE 2023; 329:138588. [PMID: 37019405 DOI: 10.1016/j.chemosphere.2023.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Industrial-scale aerobic fermentation was conducted with livestock manures. Microbial inoculation promoted the growth of Bacillaceae and consolidated its position as the dominant microorganism. Microbial inoculation substantially influenced dissolved organic matter (DOM) derivation and variations of related components in the fermentation system. The relative abundance of humic acid-like substances of DOM increased from 52.19% to 78.27% in microbial inoculation system, resulting in a high humification level. Moreover, lignocellulose degradation and microbial utilization were the important factors influencing DOM content in fermentation systems. The fermentation system was regulated by microbial inoculation, thus achieving a high level of fermentation maturity.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
10
|
Zhao X, Li J, Che Z, Xue L. Succession of the Bacterial Communities and Functional Characteristics in Sheep Manure Composting. BIOLOGY 2022; 11:biology11081181. [PMID: 36009808 PMCID: PMC9404829 DOI: 10.3390/biology11081181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Bacterial community is a key factor affecting aerobic composting, and understanding bacterial community succession is important to revealing the mechanism of organic matter degradation. In this study, the succession and metabolic characteristics of bacterial communities were explored in 45 days composting of sheep manure and wheat straw by using high-throughput sequencing technology and bioinformatics tools, respectively. Results showed that the alpha diversity of bacterial community significantly decreased in the thermophilic (T2) phase and then recovered gradually in the bio-oxidative (T3) and the maturation (T4) phases. Bacterial communities varied at different stages, but there were 158 genera in common bacterial species. Unclassified_f_Bacillaceae, Oceanobacillus, Bacillus, Pseudogracilibacillus, and Nocardiopsis were identified as keystone bacterial genera. Eleven genera were significantly correlated (p < 0.05), or even extremely significantly correlated (p < 0.001), with the physicochemical factors. Redundancy analysis (RDA) showed that changes of bacterial community diversity correlated with physicochemical factors. The highest relative abundances were amino acid and carbohydrate metabolism among the metabolic groups in the compost. These results will provide theoretical support for further optimizing sheep manure composting conditions and improving the quality of organic fertilizers.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Juan Li
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| | - Lingui Xue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| |
Collapse
|
11
|
Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. CHEMOSPHERE 2022; 300:134514. [PMID: 35398076 DOI: 10.1016/j.chemosphere.2022.134514] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.
Collapse
Affiliation(s)
- Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Bui Thi Phuong Thuy
- Faculty of Basic Sciences, Van Lang University, 68/69 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan.
| | - Mahadi B Bahari
- Faculty of Science, Universiti Technoloki Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
12
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
13
|
Effect of Microbial Inoculation on Carbon Preservation during Goat Manure Aerobic Composting. Molecules 2021; 26:molecules26154441. [PMID: 34361594 PMCID: PMC8348721 DOI: 10.3390/molecules26154441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Carbon is the crucial source of energy during aerobic composting. There are few studies that explore carbon preservation by inoculation with microbial agents during goat manure composting. Hence, this study inoculated three proportions of microbial agents to investigate the preservation of carbon during goat manure composting. The microbial inoculums were composed of Bacillus subtilis, Bacillus licheniformis, Trichoderma viride, Aspergillus niger, and yeast, and the proportions were B1 treatment (1:1:1:1:2), B2 treatment (2:2:1:1:2), and B3 treatment (3:3:1:1:2). The results showed that the contents of total organic carbon were enriched by 12.21%, 4.87%, and 1.90% in B1 treatment, B2 treatment, and B3 treatment, respectively. The total organic carbon contents of B1 treatment, B2 treatment, and B3 treatment were 402.00 ± 2.65, 366.33 ± 1.53, and 378.33 ± 2.08 g/kg, respectively. B1 treatment significantly increased the content of total organic carbon compared with the other two treatments (p < 0.05). Moreover, the ratio of 1:1:1:1:2 significantly reduced the moisture content, pH value, EC value, hemicellulose, and lignin contents (p < 0.05), and significantly increased the GI value and the content of humic acid carbon (p < 0.05). Consequently, the preservation of carbon might be a result not only of the enrichment of the humic acid carbon and the decomposition of hemicellulose and lignin, but also the increased OTU amount and Lactobacillus abundance. This result provided a ratio of microbial agents to preserve the carbon during goat manure aerobic composting.
Collapse
|
14
|
Li X, Shi X, Feng Q, Lu M, Lian S, Zhang M, Peng H, Guo R. Gases emission during the continuous thermophilic composting of dairy manure amended with activated oil shale semicoke. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112519. [PMID: 33862318 DOI: 10.1016/j.jenvman.2021.112519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
NH3 and greenhouse gases emission are big problems during composting, which can cause great nitrogen nutrient loss and environmental pollution. This study investigated effects of the porous bulking agent of oil shale semicoke and its activated material on the gases emission during the continuous thermophilic composting. Results showed addition of semicoke could significantly reduce the NH3 emission by 74.65% due to its great adsorption capacity to NH4+-N and NH3, further the effect could be enhanced to 85.92% when utilizing the activated semicoke with larger pore volume and specific surface area. In addition, the CH4 emission in the semicoke and activated semicoke group was also greatly mitigated, with a reduction of 67.23% and 87.62% respectively, while the N2O emission was significantly increased by 93.14% and 100.82%. Quantification analysis of the functional genes found the abundance of mcrA was high at the massive CH4-producing stage and the archaeal amoA was dominant at the N2O-producing stage in all the composting groups. Correlation and redundancy analysis suggested there was a positive correlation between the CH4 emission and mcrA. Addition of semicoke especially activated semicoke could reduce the CH4 production by inhibiting the methanogens. For the NH3 and N2O, it was closely related with the nitrification process conducted by archaeal amoA. Addition of semicoke especially activated semicoke was beneficial for the growth of ammonia-oxidizing archaea, causing the less NH4+-N transformation to NH3 but more N2O emission.
Collapse
Affiliation(s)
- Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China.
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Peng
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
15
|
Poblete R, Salihoglu G, Salihoglu NK. Incorporation of solar-heated aeration and greenhouse in grass composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26807-26818. [PMID: 33501574 DOI: 10.1007/s11356-021-12577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Composting is an environment-friendly method for recycling organic waste, and incorporation of heat and aeration can enhance favorable conditions for microbial growth in the process. This research aimed to evaluate the influence of the introduction of solar heat and aeration to the waste grass exposed to the composting process. The compost piles studied were subjected to different processes: application of solar-heated aeration, only-aeration, solar heating with a greenhouse, and control. Solar-heated air was introduced to a compost pile of grass clippings and compared with a greenhouse compost system. The composting process of 70 days was monitored for temperature, oxygen, moisture, organic matter loss, and humification rate. Germination index has been used to evaluate the maturation of the composts produced. The highest temperature was obtained at the compost pile with the greenhouse. This system reached the highest temperature (68.2 °C) on day 15; the ambient temperature on that day was 20.6 °C. The decreases in the C/N ratios after day 70 of composting were 20% and 15% for the greenhouse and the system where solar-heated air was introduced, respectively. Although the temperature of the solar-heated air was higher than that of the greenhouse, thermophilic temperature levels could not be reached in the aerated compost pile, which indicated a cooling effect of excessive aeration even with the heated air. Composting of grass clippings resulted in a decrease in organic matter content and enhancement in seed germination and root growth, obtaining high GI levels, inferring no phytotoxicity. This study showed that composting of grass clippings with low C/N ratios and high humidity can still be possible by using solar energy.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente, Coquimbo, Chile.
| | - Guray Salihoglu
- Environmental Engineering Department, Engineering Faculty, Bursa Uludag University, Bursa, Turkey
| | - Nezih Kamil Salihoglu
- Environmental Engineering Department, Engineering Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
16
|
Jiang J, Wang F, Wang J, Li J. Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:360-367. [PMID: 32988329 DOI: 10.1177/0734242x20960225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study examined the release characteristics of malodorous ammonia (NH3) and hydrogen sulphide (H2S) gases in different areas of a full-capacity operational landfill in Hangzhou, China. Gas samples were collected using static boxes from exposed working areas (EWAs), temporarily covered areas (TCAs), and final closure areas (FCAs), and were analysed using spectrophotometric methods. Gas release increased in the following order: TCA > EWA > FCA. The average concentrations of released NH3 in these areas were 2763, 1171, and 27 mg m-3, respectively, and those of H2S were 2481, 631, and 10 mg m-3, respectively. The concentrations of gases released from holes in the film in the temporarily covered and EWAs were significantly higher than the AEGL-3 level values specified by the Acute Exposure Guideline Levels (AEGL) Advisory Committee. EWAs were identified as key for odour control, where the highest NH3 release was recorded at approximately 12:00. The diurnal variation in H2S release was insignificant (p > 0.05). Therefore, the study shows that working in EWAs should be avoided at approximately noon. Adverse impacts on human health can be reduced by standardising procedures, using higher-quality films, and improving film installation procedures. The results of this study serve as a valuable reference for odour control in operational landfills.
Collapse
Affiliation(s)
- Jun Jiang
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Hangzhou Urban Construction & Investment Group Co., Ltd., Hangzhou, People's Republic of China
| | - Fei Wang
- Hangzhou Environment Group Co., Ltd., Hangzhou, People's Republic of China
| | - Jun Wang
- Hangzhou Environment Group Co., Ltd., Hangzhou, People's Republic of China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Kuramae EE, Dimitrov MR, da Silva GHR, Lucheta AR, Mendes LW, Luz RL, Vet LEM, Fernandes TV. On-Site Blackwater Treatment Fosters Microbial Groups and Functions to Efficiently and Robustly Recover Carbon and Nutrients. Microorganisms 2020; 9:E75. [PMID: 33396683 PMCID: PMC7824102 DOI: 10.3390/microorganisms9010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Wastewater is considered a renewable resource water and energy. An advantage of decentralized sanitation systems is the separation of the blackwater (BW) stream, contaminated with human pathogens, from the remaining household water. However, the composition and functions of the microbial community in BW are not known. In this study, we used shotgun metagenomics to assess the dynamics of microbial community structure and function throughout a new BW anaerobic digestion system installed at The Netherlands Institute of Ecology. Samples from the influent (BW), primary effluent (anaerobic digested BW), sludge and final effluent of the pilot upflow anaerobic sludge blanket (UASB) reactor and microalgae pilot tubular photobioreactor (PBR) were analyzed. Our results showed a decrease in microbial richness and diversity followed by a decrease in functional complexity and co-occurrence along the different modules of the bioreactor. The microbial diversity and function decrease were reflected both changes in substrate composition and wash conditions. Our wastewater treatment system also decreased microbial functions related to pathogenesis. In summary, the new sanitation system studied here fosters microbial groups and functions that allow the system to efficiently and robustly recover carbon and nutrients while reducing pathogenic groups, ultimately generating a final effluent safe for discharge and reuse.
Collapse
Affiliation(s)
- Eiko E. Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mauricio R. Dimitrov
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Gustavo H. R. da Silva
- Department of Environmental and Civil Engineering, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| | - Adriano R. Lucheta
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Lucas W. Mendes
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Ronildson L. Luz
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Louise E. M. Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands;
| | - Tania V. Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
18
|
Sharma S, Basu S, Shetti NP, Kamali M, Walvekar P, Aminabhavi TM. Waste-to-energy nexus: A sustainable development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115501. [PMID: 32892013 DOI: 10.1016/j.envpol.2020.115501] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of 'simultaneous waste reduction and energy production' technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.
Collapse
Affiliation(s)
- Surbhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580 027, Karnataka, India
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Pavan Walvekar
- Department of Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad, 580 002, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad, 580 002, Karnataka, India.
| |
Collapse
|
19
|
Yang Y, Awasthi MK, Bao H, Bie J, Lei S, Lv J. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. BIORESOURCE TECHNOLOGY 2020; 313:123647. [PMID: 32562966 DOI: 10.1016/j.biortech.2020.123647] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
This study researched the impacts of biochar (B) and bean dregs (BD) on organic matter degradation and humification, as well as the bacterial community and functional characteristics during pig manure (PM) composting. The temperature, pH, and dissolved organic carbon (DOC) were reached the maturity of compost. Results indicated that BD + B treatment promoted organic matter degradation and increased humic acid content by 19.5-25.1% from the control (CK). Additionally, the bacterial communities were determined by high-throughput sequencing, and their metabolic functions were evaluated through the phylogenetic investigation of communities by reconstructing unobserved states (PICRUSt). BD + B influenced the microbial community structure of compost, and the PICRUSt results indicated that BD + B strengthened the metabolism of carbohydrates and amino acids. Redundancy analysis (RDA) was conducted, and a positive correlation was observed between organic matter transformation and temperature, pH, DOC, and community structure. Therefore, regulating these compost properties can effectively promote organic matter transformation during composting.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jingya Bie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Shuang Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
20
|
Bello A, Deng L, Sheng S, Jiang X, Yang W, Meng Q, Wu X, Han Y, Zhu H, Xu X. Biochar reduces nutrient loss and improves microbial biomass of composted cattle manure and maize straw. Biotechnol Appl Biochem 2020; 67:799-811. [DOI: 10.1002/bab.1862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/15/2019] [Indexed: 05/06/2024]
Abstract
AbstractIn this study, nutrient loss, the direct and indirect relationship between period, compost types, temperature, total nitrogen (TN), nitrate nitrogen (NO3−‐N), ammonium nitrogen (NH4+‐N), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were investigated during composting of cattle manure–maize straw mixture. This study findings revealed that biochar addition lowered NH4+‐N but did not increase NO3−‐N concentrations unlike no biochar piles during composting. The first‐order kinetic models showed that biochar accelerated organic matter (OM) degradation and improved nitrogen mineralization, consequently reducing TN losses by 13.6% and OM losses by 12.66%. Transformation ratio of MBC/MBN, coupled with other chemical components of the entire microbial community, suggested a shift in the microbial succession and diversity during composting from the dominant bacteria and actinomycetes to fungi. The structural equation model and path coefficient revealed temperature to be the main factor mediating the evolution of MBC and MBN in composting. The physicochemical variables, phytotoxicity, and final product quality revealed that biochar incorporation to the composting feedstock is an ideal material for mitigating problems of TN and OM losses in composting and ultimately enhancing the fertility potential of the final compost product.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Liting Deng
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Siyuan Sheng
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Xin Jiang
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Wei Yang
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Qingxin Meng
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Xiaotong Wu
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Yue Han
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Haifeng Zhu
- College of Resources and Environment Northeast Agricultural University Harbin China
| | - Xiuhong Xu
- College of Resources and Environment Northeast Agricultural University Harbin China
| |
Collapse
|
21
|
Abdul Rahman MH, Sadi T, Ahmad AA, Masri IN, Mohammad Yusoff M, Kamaruddin H, Shakri NA, Hamid MAA, Ab. Malek R. Inventory and composting of yard waste in Serdang, Selangor, Malaysia. Heliyon 2020; 6:e04486. [PMID: 32715140 PMCID: PMC7369616 DOI: 10.1016/j.heliyon.2020.e04486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/24/2019] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
Composting of yard waste is one of the waste management approaches in the Malaysian Agricultural Research and Development Institute (MARDI) in Serdang, Selangor, Malaysia. The yard waste inventory was developed in the headquarters' area and a pilot-scale study was performed on the potential compost product. The total amount of yard waste generated from June 2017 to December 2017 was 16.75 tonnes with an average generation of 0.60 tonnes per week on the dry weight (d.w.) basis. The collected yard waste consisted of three major characteristics, namely dry leaves, fresh green leaves, and grass cuttings, and a waste estimation technique was applied to determine the composition of these three elements. The acquired information was used to formulate the initial compost mixture. The wastes were then mixed with an appropriate amount of livestock manure and other wastes to obtain the optimum initial C/N ratio, which was then found in the analysis to range between 25:1 and 42:1. Meanwhile, the C/N ratios obtained from the matured compost product were from 10:1 and 15:1. Moreover, most of the compost yield ranged between 50% and 70% (w w-1 d.w. basis), while the percentage of the seed germination in the compost was over 95%. The viability of the project was indicated from the economic analysis, with benefit to cost ratio (BCR) values of more than 1. The results also suggested that the large scale composting of yard waste in MARDI was feasible and its applicability is continuous. This technique also fulfilled the objective of producing quality compost, which was suitable for agricultural use.
Collapse
Affiliation(s)
| | - Tosiah Sadi
- Soil & Fertilizer Research Centre, MARDI, 43400 Serdang, Selangor, Malaysia
| | - Aimi Athirah Ahmad
- Socio Economic, Market Intelligence & Agribusiness Research Center, MARDI, 43400 Serdang, Selangor, Malaysia
| | | | | | | | - Nur Alyani Shakri
- Agrobiodiversity & Environment Research Centre, MARDI, 43400 Serdang, Selangor, Malaysia
| | | | - Rashidah Ab. Malek
- Agrobiodiversity & Environment Research Centre, MARDI, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
22
|
Zhang P, He T, Chen H, Li P, Xiang M, Ding N, Deng S. The tetracyclines removal by MgAl layered double oxide in the presence of phosphate or nitrate: Behaviors and mechanism exploration. J Colloid Interface Sci 2020; 578:124-134. [PMID: 32521352 DOI: 10.1016/j.jcis.2020.04.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
Pollution of tetracyclines (TCs) in swine wastewater has been a critical concern worldwide. Notably, multiple anions (e.g. PO43-, NO3-) coexist in the actual environments, which could significantly influence the TCs removal. In the current study, MgAl layered double oxide (MgAl-LDO) was adopted for investigating the TC removal performance with/without PO43- or NO3-. In all systems, the adsorption performance exhibited two different approaches between low and high TC concentrations. In the single system, pseudo-second-order and the Freundlich model fitted well to the equilibrium adsorption data when TC concentration was below 125 mg·L-1, while the pseudo-first-order and the linear model could describe the removal process at high TC concentration (>125 mg·L-1). The maximum adsorption capacity was 83.56 mg·g-1. In the co-existing system, the adsorption capacity was slightly enhanced when TC concentration below 150 mg·L-1 however was inhibited at high concentration (>150 mg·L-1). Combined with the characterization analyses, the interaction mechanism at low concentration was primarily surface adsorption on reconstructed LDH from LDO in the TC-alone system. It is worth mention that both PO43- and NO3- facilitated the formation of LDH via rehydration of LDO which enhanced surface adsorption in the co-existing system. At high TC concentration, the formation of tetracycline-metal complexes played a dominant role in TC removal in the single system, whereas diminished complexation in the binary system led to the decreased TC removal. This study provides a theoretical and practical guidance for MgAl-LDO on the efficient remediation of actual tetracyclines wastewater.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Tao He
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Han Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mingxue Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ 85287, USA.
| |
Collapse
|
23
|
Pattanaik L, Duraivadivel P, Hariprasad P, Naik SN. Utilization and re-use of solid and liquid waste generated from the natural indigo dye production process - A zero waste approach. BIORESOURCE TECHNOLOGY 2020; 301:122721. [PMID: 31986372 DOI: 10.1016/j.biortech.2019.122721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The main aim of this work is focused towards possible reuse of both solid and liquid waste generated from the natural indigo dye production process. The solid waste (C/N:15.01) was utilized to produce stable compost with possible re-use in Indigofera cultivation. Among seven compost combinations (C1-C7) using jeevamrutha (JA) and cow-dung (CD) as inoculum, C4 with 8% JA showed higher biomass degradation (51%) and plant growth potential (GI > 125%). Whereas the undiluted liquid waste was treated using algal consortia, bacteria, and indigenous microbial population, achieved a maximum removal of 90% ammonia, 82% nitrate, and 88% phosphorus for its re-use in the dye production process. Hence, incorporation of suitable waste management strategies in natural indigo dye production could help to achieve a zero waste sustainable process.
Collapse
Affiliation(s)
- Lopa Pattanaik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Duraivadivel
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Hariprasad
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Satya Narayan Naik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
24
|
Effect of Cornstalk Biochar Immobilized Bacteria on Ammonia Reduction in Laying Hen Manure Composting. Molecules 2020; 25:molecules25071560. [PMID: 32231157 PMCID: PMC7181132 DOI: 10.3390/molecules25071560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023] Open
Abstract
NH3 emission has become one of the key factors for aerobic composting of animal manure. It has been reported that adding microbial agents during aerobic composting can reduce NH3 emissions. However, environmental factors have a considerable influence on the activity and stability of the microbial agent. Therefore, this study used cornstalk biochar as carriers to find out the better biological immobilization method to examine the mitigation ability and mechanism of NH3 production from laying hen manure composting. The results from different immobilized methods showed that NH3 was reduced by 12.43%, 5.53%, 14.57%, and 22.61% in the cornstalk biochar group, free load bacteria group, mixed load bacteria group, and separate load bacteria group, respectively. Under the simulated composting condition, NH3 production was 46.52, 38.14, 39.08, and 30.81 g in the treatment of the control, mixed bacteria, cornstalk biochar, and cornstalk biochar separate load immobilized mixed bacteria, respectively. The cornstalk biochar separate load immobilized mixed bacteria treatment significantly reduced NH3 emission compared with the other treatments (p < 0.05). Compared with the control, adding cornstalk biochar immobilized mixed bacteria significantly decreased the electrical conductivity, water-soluble carbon, total nitrogen loss, and concentration of ammonium nitrogen (p < 0.05), and significantly increased the seed germination rate, total number of microorganisms, and relative abundance of lactic acid bacteria throughout the composting process (p < 0.05). Therefore, the reason for the low NH3 emission might be due not only to the adsorption of the cornstalk biochar but also because of the role of complex bacteria, which increases the relative abundance of lactic acid bacteria and promotes the acid production of lactic acid bacteria to reduce NH3 emissions. This result revealed the potential of using biological immobilization technology to reduce NH3 emissions during laying hen manure composting.
Collapse
|
25
|
Wu X, Sun Y, Deng L, Meng Q, Jiang X, Bello A, Sheng S, Han Y, Zhu H, Xu X. Insight to key diazotrophic community during composting of dairy manure with biochar and its role in nitrogen transformation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 105:190-197. [PMID: 32078983 DOI: 10.1016/j.wasman.2020.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Analyzing diazotrophic community may help to understand nitrogen transformation in composting and improves the final compost quality. In this study, diazotrophic community dynamics were investigated in terms of nifH gene during dairy manure and corn straw composting with biochar addition using high-throughput sequencing. Biochar decreased the diversity of diazotrophic community and altered diazotroph community structure during composting. At phylum level, Proteobacteria, Actinobacteria and Firmicutes were dominant diazotrophic communities throughout composting process. Biochar addition registered higher correlation coefficient (R) between physicochemical factors (temperature, ammonium (NH4+-N) and nitrate (NO3--N)) and diazotroph community composition. Rhodopseudomonas and Pseudoxanthomonas was the key diazotrophic communities influencing NH4+-N transformation in control (CK) and biochar compost (BC), respectively, while for NO3--N transformation Clostridium and Bradyrhizobium in CK, Azospira and Methylocystis in BC served as predominant factors. These results indicated that addition of biochar altered the key diazotroph communities influencing nitrogen transformation. Furthermore, some diazotrophs (e.g. Rhodopseudomonas, Bradyrhizobium and Azospira) affecting NH4+-N and NO3--N transformation were also observed to be mediating total nitrogen (TN). Interestingly, interactions between diazotrophic communities were observed and these interactions could also influence nitrogen transformation.
Collapse
Affiliation(s)
- Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Fan H, Wu S, Woodley J, Zhuang G, Bai Z, Xu S, Wang X, Zhuang X. Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. J Environ Sci (China) 2020; 89:277-286. [PMID: 31892399 DOI: 10.1016/j.jes.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.
Collapse
Affiliation(s)
- Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - John Woodley
- Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Microbes as vital additives for solid waste composting. Heliyon 2020; 6:e03343. [PMID: 32095647 PMCID: PMC7033521 DOI: 10.1016/j.heliyon.2020.e03343] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Composting is a natural process that stems through microbial succession, marking the degradation and stabilization of organic matter present in waste. The use of microbial additives during composting is considered highly efficient, likely to enhance the production of different enzymes resulting in better rate of waste degradation. In lesser developed countries, composting has emerged as a vital technology to recycle the biodegradable waste while generating a useful product. Depending on the composition of the waste material, it can either directly undergo composting or homogenized prior to secondary waste treatment methods such as landfilling. However, a relatively expensive downstream handling all along is a main hurdle towards economics of the process. Although basic methodology and recent approaches are known in crucial aspects of the process through various reviews, exploring the behavior of effective microbial additives will be resourceful. In this review, to fill in the gap, studies related to microbial composting of municipal solid and food waste were acknowledged. Here in, factors that could slow down the composting process and affect the compost quality were addressed. Lastly, the review pictured a positive simulation and stated how excellent results, can be achieved by microbial additives during composting.
Collapse
|
28
|
Yang XC, Han ZZ, Ruan XY, Chai J, Jiang SW, Zheng R. Composting swine carcasses with nitrogen transformation microbial strains: Succession of microbial community and nitrogen functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:555-566. [PMID: 31254821 DOI: 10.1016/j.scitotenv.2019.06.283] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, nitrogen transformation strains, including three ammonium transformation strains, one nitrite strain and one nitrogen fixer, were inoculated at different swine carcass composting stages to regulate the nitrogen transformation and control the nitrogen loss. The final total nitrogen content was significantly increased (p < 0.01). The bacterial communities were assessed by amplicon sequencing and association analysis. Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were the four most dominant phyla.,Brevibacterium, Streptomyces and Ochrobactrum had a significant (p < 0.05) and positive correlation with total nitrogen and ammonium nitrogen content in both groups. The quantitative results of nitrogen transformation genes showed that ammonification, nitrification, denitrification and nitrogen fixation were simultaneously present in the composting process of swine carcasses, with the latter two accounting for a higher proportion. The ammonium transformation strains significantly (p < 0.05) strengthened nitrogen fixation and remarkably (p < 0.01) weakened nitrification and denitrification, which, however, were notably (p < 0.05) enhanced by the nitrite strain and nitrogen fixer. In this research, the inoculated strains changed the bacterial structure by regulating the abundance and activity of the highly connected taxa, which facilitated the growth of nitrogen transformation bacteria and regulated the balance/symbiosis of nitrogen transformation processes to accelerate the accumulation of nitrogen.
Collapse
Affiliation(s)
- Xu-Chen Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen-Zhen Han
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Yi Ruan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jin Chai
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Si-Wen Jiang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Rong Zheng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Wang Y, Bi L, Liao Y, Lu D, Zhang H, Liao X, Liang JB, Wu Y. Influence and characteristics of Bacillus stearothermophilus in ammonia reduction during layer manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:80-87. [PMID: 31078019 DOI: 10.1016/j.ecoenv.2019.04.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Ammonia emissions is an important issue during composting because it can cause secondary pollution and a significant of nitrogen loss. Based on research adding Bacillus stearothermophilus can reduce ammonia emissions during composting because it can use sugar in organic matter fermentation to produce organic acids over 50 °C. This study conducted the batch experiments by adding different concentrations of Bacillus stearothermophilus to reduce the ammonia emissions and find out its characteristic during layer manure composting by using an aerobic composting reactor with sawdust as a bulking agent. The results show that the application of Bacillus stearothermophilus can accelerate the rate of temperature and significantly decrease pH, the warming period was 2 days in the treatment with Bacillus stearothermophilus, while it was 4 days in the treatment without Bacillus stearothermophilus. Ammonia emissions were mainly occurred in warming and high temperature period during composting. The ammonia emissions in the treatment with 8.00 g/kg initial Bacillus stearothermophilus were significantly lower than the other lower Bacillus stearothermophilus treatment and control during composting (p < 0.05), and it can significantly increase ammonium-nitrogen and nitrate-nitrogen concentration, reduce pH (p < 0.05), but the average number of Bacillus stearothermophilus copies in treatment with different initial Bacillus stearothermophilus concentration had no significant difference (p > 0.05). MiSeq System Sequencing results find that the addition of Bacillus stearothermophilus changed the bacterial community structure under warming and high-temperature periods during composting, increased the relative abundance of lactic acid bacillus and nitrification bacteria. Therefore, the reason for the low ammonia emission in 8.00 g/kg initial Bacillus stearothermophilus treatments might be not only due to the Bacillus stearothermophilus itself, but also Bacillus stearothermophilus can change the indigenous microorganism community, including increase the relative content of lactic acid Bacillus and nitrification bacteria, thus reducing the pH and promoting nitrification, and reducing ammonia emissions.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lulu Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yanghui Liao
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Dongdong Lu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huaidan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Juan Boo Liang
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
30
|
Yang Y, Awasthi MK, Ren X, Guo H, Lv J. Effect of bean dregs on nitrogen transformation and bacterial dynamics during pig manure composting. BIORESOURCE TECHNOLOGY 2019; 288:121430. [PMID: 31176946 DOI: 10.1016/j.biortech.2019.121430] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
This work studied the nitrogen transformation and bacterial dynamics in the co-composting of bean dregs (BD) and pig manure (PM). Four treatments were performed with BD at 0% (CK), 5%, 10% and 15% (w/w dry basis of PM) amended for 49-days aerobic compost. Results revealed that the temperature, NH4+-N and pH of end product all met the maturity requirement. The BD-amendment increased nitrogen losses (8.55%-55.92%) during composting compared to CK. However, this amendment also enhanced total nitrogen content (TKN) of end products (1.86%-12%). The highest content of TKN was in 10%BD-amended treatment with relatively lower nitrogen loss compared to 15%BD. Furthermore, the results of 16S rDNA showed that BD-amended changed the bacterial community composition compared with CK. Especially, 10%BD-amended was the optimum in promoting the diversity and abundance of bacteria. Additionally, Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi were dominant phyla and Bacilli was dominant class in BD-amended compost.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| |
Collapse
|
31
|
Sun Y, Men M, Xu B, Meng Q, Bello A, Xu X, Huang X. Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 92:59-67. [PMID: 31160027 DOI: 10.1016/j.wasman.2019.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/17/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Insight to nitrogen transformation and cycling during composting is vital in developing management strategies that improve nitrogen content and quality of the end product. In this study, a positive ventilation device was constructed and used to elucidate nitrogen transformation and microbial community structures during the composting of cow manure and rice straw. Bacterial community successions were analyzed during the composting process by examining the change in their structural dynamics using high-throughput sequencing technique. The results revealed that dominant phyla, included Acidobacter, Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Actinobacteria. Furthermore, a positive strong correlation was observed between the key bacterial communities and nitrogen transformation. Analyses of functional genera, Spearman correlation and Path showed that Thermomonospora_curvata_DSM_43183 followed by Luteimonas and Simiduia, Brevundimonas and Tamlana, Pseudomonas followed by Brevundimonas and Flavobacterium were the key bacterial communities affecting NH4+-N, NO3--N, and NO2--N transformation, respectively. Thauera followed by Pseudomonas_putida_NBRC_14164 played a dominant role in N2O transformation.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Men
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Benshu Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xinning Huang
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| |
Collapse
|
32
|
Ge J, Huang G, Sun X, Yin H, Han L. New insights into the kinetics of bacterial growth and decay in pig manure-wheat straw aerobic composting based on an optimized PMA-qPCR method. Microb Biotechnol 2019; 12:502-514. [PMID: 30838800 PMCID: PMC6465228 DOI: 10.1111/1751-7915.13380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/01/2019] [Accepted: 02/04/2019] [Indexed: 02/04/2023] Open
Abstract
Aerobic composting is a bacteria-driven process to degrade and recycle wastes. This study quantified the kinetics of bacterial growth and decay during pig manure-wheat straw composting, which may provide insights into microbial reaction mechanisms and composting operations. First, a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method was developed to quantify the viable bacteria concentration of composting samples. The optimal PMA concentration and light exposure time were 100 μM and 8 min respectively. Subsequently, the concentrations of total and decayed bacteria were quantified. Viable and decayed bacteria coexisted during the entire composting period (experiments A and B), and the proportion of viable bacteria finally fell to only 35.1%. At the beginning, bacteria grew logarithmically and decayed rapidly. Later, the bacterial growth in experiment A remained stable, while that of experiment B was stable at first and then decomposed. The duration of the stable stage was positively related to the soluble sugar content of composting materials. The logarithmic growth and rapid decay of bacteria followed Monod equations with a specific growth (0.0317 ± 0.0033 h-1 ) and decay rate (0.0019 ± 0.0000 h-1 ). The findings better identified the bacterial growth stages and might enable better prediction of composting temperatures and the degree of maturation.
Collapse
Affiliation(s)
- Jinyi Ge
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
- Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Guangqun Huang
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Xiaoxi Sun
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Hongjie Yin
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| | - Lujia Han
- Biomass Resources and Utilization LaboratoryCollege of EngineeringChina Agricultural University (East Campus)Beijing100083China
| |
Collapse
|
33
|
Ma J, Zhang L, Mu L, Zhu K, Li A. Energetic enhancement of thermal assistance in the cooling stage of biodrying by stimulating microbial degradation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:165-176. [PMID: 31079729 DOI: 10.1016/j.wasman.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, thermal assistance was employed in the cooling stage of conventional biodrying. The results indicated that thermal assistance greatly enhanced water removal with improved vapor-carrying capacity of air-flow, and rapidly decreased moisture contents (MCs) from 45.15% to 49.42% to 15.20-25.85% in 6 days, which were much lower than those of conventional biodrying (CB, 34.90-40.85%). More importantly, a synergistic enhancement of physical and biological effects was observed in thermally assisted biodrying (TB) in terms of stimulated enzymes activity and microbial metabolism (higher oxygen uptake rate and degradation coefficient k). Among the degraded organics, lignocellulose was noted to be important for bio-heat generation in cooling stages, especially for straw as bulking agent. Heat balance results suggested that small fractions of thermal heat (19.76-24.73%) were required to upgrade CB processes for water evaporation with higher energy efficiency. Based on economic viability analysis and with consideration of the further drying for CB products, thermally assisted biodrying presented more economic benefits with less investment and shorter payback period. This research provided an efficient engineering approach to upgrade the cooling stage of conventional biodrying with low external heat cost.
Collapse
Affiliation(s)
- Jiao Ma
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Lei Zhang
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China.
| | - Lan Mu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Kongyun Zhu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Aimin Li
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China.
| |
Collapse
|
34
|
Ding Y, Wei J, Xiong J, Zhou B, Cai H, Zhu W, Zhang H. Effects of operating parameters on in situ NH 3 emission control during kitchen waste composting and correlation analysis of the related microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11756-11766. [PMID: 30815814 DOI: 10.1007/s11356-019-04605-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Ammonia emission during composting results in anthropogenic odor nuisance and reduces the agronomic value of the compost due to the loss of nitrogen. Adjusting the operating parameters during composting is an emerging in situ odor control technique that is cheap and highly efficient. The effects of in situ NH3 emission control were investigated in this study by simultaneously adjusting key operating parameters (such as C/N ratio, aeration rate, and moisture content) during the composting processes (C1-C9). Results showed that the average NH3 emission concentrations for different treatments were in the order of C1 > C4 > C2 > C5 > C3 > C6 > C7 > C8 > C9. The total content of NH3 emission (21.02 g/kg) in C9 (C/N ratio = 35, aeration rate = 15 L/min, and moisture content = 60%) was much lower than that (65.95 g/kg) in C1 (C/N ratio = 15, aeration rate = 5 L/min, and moisture content = 60%). The nitrogen loss ratio was 27.36% for C1, while 16.15% for C9. The microbial diversity and abundance in C9 and C1 were compared using high-throughput sequencing. The relationship between NH3 emission, operating parameters, and the related functional microbial communities was also investigated. Results revealed that Nitrosospira, Nitrosomonas, Nitrobacter, Pseudomonas, Methanosaeta, Rhodobacter, Paracoccus, and Sphingobacterium were negatively related to NH3 emission. According to the above results, the optimal values for different operating parameters for the in situ NH3 control during kitchen waste composting were, respectively, moisture content of 70%, C/N ratio of 35, and aeration rate of 15 L/min, with the order of effectiveness from high to low being aeration rate > C/N > moisture. This information could be used as a valuable reference for the in situ NH3 emission control during kitchen waste composting.
Collapse
Affiliation(s)
- Ying Ding
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China.
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China.
| | - Jiaojiao Wei
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Junsheng Xiong
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Bowei Zhou
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Hanjiang Cai
- China National Bamboo Research Center, Hangzhou, 310012, People's Republic of China
| | - Weiqin Zhu
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Hangjun Zhang
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| |
Collapse
|
35
|
Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Awasthi MK, Chen H, Wang Q, Liu T, Duan Y, Awasthi SK, Ren X, Tu Z, Li J, Zhao J, Zhang Z. Succession of bacteria diversity in the poultry manure composted mixed with clay: Studies upon its dynamics and associations with physicochemical and gaseous parameters. BIORESOURCE TECHNOLOGY 2018; 267:618-625. [PMID: 30056372 DOI: 10.1016/j.biortech.2018.07.094] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, the bacterial community succession and variations were investigated in poultry manure (PM) compost by the using high-throughput sequencing in six different concentration of clay [at 0% (T1), 2% (T2), 4% (T3), 6% (T4), 8% (T5) and 10% (T6) on PM dry weight basis] applied compost. The results indicated that dominant phylum were Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes, while Bacillus, Paenibacillus, Virgibacillus, Oceanobacillus and Clostridium were the dominant genera in all the treatments. Correlation analyses provided useful tools for insight into the bacterial interactions with environmental factors and also extension of the compost maturation and resistance of bacteria. During the course of study, the diversity of bacteria similar but relative abundance variable in each treatments. However, the average and the normalized (to bacterial RAs or copies of sequences) both remained greater in higher dosage of clay applied treatments. Finally, the RAs of various bacterial community composition was affected in PM compost by the clay application.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhineng Tu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
37
|
Yin Y, Gu J, Wang X, Tuo X, Zhang K, Zhang L, Guo A, Zhang X. Effects of copper on the composition and diversity of microbial communities in laboratory-scale swine manure composting. Can J Microbiol 2018; 64:409-419. [DOI: 10.1139/cjm-2017-0622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of adding copper at 3 treatment levels (0 (control: CK), 200 (low: L), and 2000 (high: H) mg·kg−1 treatments) on the bacterial communities during swine manure composting. The abundances of the bacteria were determined by quantitative PCR and their compositions were evaluated by high-throughput sequencing. The results showed that the abundance of bacteria was inhibited by the H treatment during days 7–35, and principal component analysis clearly separated the H treatment from the CK and L treatments. Actinobacteria, Firmicutes, and Proteobacteria were the dominant bacterial taxa, and a high copper concentration decreased the abundances of bacteria that degrade cellulose and lignin (e.g., class Bacilli and genus Truepera), especially in the mesophilic and thermophilic phases. Moreover, network analysis showed that copper might alter the co-occurrence patterns of bacterial communities by changing the properties of the networks and the keystone taxa, and increase the competition by increasing negative associations between bacteria during composting. Temperature, water-soluble carbohydrates, and copper significantly affected the variations in the bacterial community according to redundancy analysis. The copper content mainly contributed to the bacterial community in the thermophilic and cooling phases, where it had positive relationships with potentially pathogenic bacteria (e.g., Corynebacterium_1 and Acinetobacter).
Collapse
Affiliation(s)
- Yanan Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
- Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
- Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Xin Zhang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|
38
|
Shi H, Wang XC, Li Q, Jiang S. Effects of Elevated Tetracycline Concentrations on Aerobic Composting of Human Feces: Composting Behavior and Microbial Community Succession. Indian J Microbiol 2018; 58:423-432. [PMID: 30262952 DOI: 10.1007/s12088-018-0729-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
The effects of antibiotics on aerobic composting are investigated by dosing of tetracycline (TC) in fresh human feces with sawdust as biomass carrier. Variability in process parameters such as temperature, pH, water-soluble carbon, germination index (GI) and dehydrogenase activity (DHA) are evaluated at TC dosages of 0, 100, 250 and 500 mg/kg in a 21-day composting. Moreover, microbial community succession is examined by high-throughput 16S rRNA gene sequencing. Findings indicate significant impacts to the process parameters with the increase of TC concentration such as inhibition of temperature increases during aerobic composting, lowering of pH, increasing of water-soluble carbon residue, a decrease of GI, and hindering of DHA. Furthermore, elevated TC concentrations significantly alter the microbial community succession and reduce the community diversity and abundance. Therefore, interference in microbial community structures and a hindrance to biological activity are believed to be the main adverse effects of TC on the composting process and maturity of the composting products.
Collapse
Affiliation(s)
- Honglei Shi
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, China.,Key Lab of Northwest Water Resource Environment and Ecology, MOE, Xi'an, China.,Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province China.,Key Lab of Environmental Engineering, Xi'an, Shaanxi Province China.,5Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055 China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, China.,Key Lab of Northwest Water Resource Environment and Ecology, MOE, Xi'an, China.,Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province China.,Key Lab of Environmental Engineering, Xi'an, Shaanxi Province China.,5Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055 China
| | - Qian Li
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, China.,Key Lab of Northwest Water Resource Environment and Ecology, MOE, Xi'an, China.,Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province China.,Key Lab of Environmental Engineering, Xi'an, Shaanxi Province China.,5Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055 China
| | - Shanqing Jiang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, China.,Key Lab of Northwest Water Resource Environment and Ecology, MOE, Xi'an, China.,Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province China.,Key Lab of Environmental Engineering, Xi'an, Shaanxi Province China.,5Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055 China
| |
Collapse
|
39
|
Lee LS, Goh KM, Chan CS, Annie Tan GY, Yin WF, Chong CS, Chan KG. Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring. Microbiologyopen 2018; 7:e00615. [PMID: 29602271 PMCID: PMC6291792 DOI: 10.1002/mbo3.615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/12/2022] Open
Abstract
The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y-shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y-shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes.
Collapse
Affiliation(s)
- Li Sin Lee
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Geok Yuan Annie Tan
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kok-Gan Chan
- ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Lumpur, Malaysia.,Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Wang S, Zeng Y. Ammonia emission mitigation in food waste composting: A review. BIORESOURCE TECHNOLOGY 2018; 248:13-19. [PMID: 28736141 DOI: 10.1016/j.biortech.2017.07.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH3) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH3 mitigation and nitrogen conservation in FW composting.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, China
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, China.
| |
Collapse
|
41
|
Huhe, Jiang C, Wu Y, Cheng Y. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting. Microbiologyopen 2017; 6. [PMID: 28736905 PMCID: PMC5727367 DOI: 10.1002/mbo3.518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high‐throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water‐soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts.
Collapse
Affiliation(s)
- Huhe
- Soil Fertilizer and Water-Saving Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China.,The Ministry of Agriculture in Gansu Province Cultivated Land Conservation and Agricultural Environmental Science Observation Experiment Stations, Wuwei, Gansu, China
| | - Chao Jiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Yanpei Wu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxiang Cheng
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
42
|
Chen Q, Liu B, Wang J, Che J, Liu G, Guan X. Diversity and dynamics of the bacterial community involved in pig manure biodegradation in a microbial fermentation bed system. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1278-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
43
|
Wang X, Zhao Y, Wang H, Zhao X, Cui H, Wei Z. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:150-156. [PMID: 28024898 DOI: 10.1016/j.wasman.2016.12.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the feasibility of composting of beer vinasse generated from brewing industry, the effect of biochar amendment on beer vinasse composting was also evaluated based on the changes of different physicochemical parameters, phytotoxicity and final compost quality. Four different treatments were performed of beer vinasse with biochar addition at 0, 5%, 10%, 15% (w/w dry basis). The final product obtained from beer vinasse composting was phytotoxicity-free (GI: 120.8%), mature (C/N: 19.88, NH4+-N: 295.0mg/kg, DOC: 9.76g/kg) and nutrient-rich (especially for P: 1.92%) compost except high N loss (60.76%), which had the potential to be as soil amendment or fertilizer. Biochar addition contributed to decomposition of DOC indicating higher microbial activity and attain phytotoxicity-free standard rapidly. N loss significantly reduced by 27% with biochar at 15% addition. And 15% biochar addition ensured all parameters, which was involved in composts quality, to attain the mature standard. Therefore, it was suggested that biochar addition at 15% was optimal.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- College of Water Science, Beijing Normal University, Beijing 100012, China
| | - Hongyang Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
Zhang Y, Zhao Y, Chen Y, Lu Q, Li M, Wang X, Wei Y, Xie X, Wei Z. A regulating method for reducing nitrogen loss based on enriched ammonia-oxidizing bacteria during composting. BIORESOURCE TECHNOLOGY 2016; 221:276-283. [PMID: 27643736 DOI: 10.1016/j.biortech.2016.09.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
In this study, enriched ammonia-oxidizing bacteria (AOB) were acquired by domesticated cultivation, followed by inoculation into the co-composting of rice straw and chicken manure. The effect of inoculation on nitrogen loss, the succession of bacterial community and the correlation between the key bacteria and environmental factors were investigated. The results showed that inoculation could reduce ammonia emission and nitrogen loss by transforming ammonium into nitrite. Inoculation also increased the amount and abundance of bacterial community. Redundancy analysis showed that indigenous and exogenous bacteria in inoculation group, compared with those in control group, were positively correlated with nitrite but negatively correlated with ammonium, demonstrating that the former contributed to the lower ammonia emission and nitrogen loss. Based on these results, the application of enriched AOB was proposed as a new method of resource recycle and improvement of composting technology.
Collapse
Affiliation(s)
- Yun Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanni Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxiao Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Pandey P, Cao W, Wang Y, Vaddella V. Predicting Salmonella Typhimurium reductions in poultry ground carcasses. Poult Sci 2016; 95:2640-2646. [PMID: 27466432 DOI: 10.3382/ps/pew242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
To improve understanding of Salmonella Typhimurium LT2 inactivation in ground poultry carcasses, a series of experiments were carried out at multiple temperatures. Subsequently, a non-linear model was developed to predict Salmonella inactivation at composting and low rendering temperatures. The Salmonella inactivation study was conducted using bench-top experiments at 38, 48, 55, 62.5, 70, and 78°C in mixed and non-mixed reactors using ground poultry carcasses as a feedstock. Subsequently, these observations were used for developing a non-linear model. The model predictions were compared with the observations of a different set of experiments. The comparisons among predictions and observations showed that the model predictions are reasonable and can be useful to determine the time required for Salmonella inactivation in poultry carcasses at multiple temperatures. Results showed that at composting conditions, when temperature varies between 48 and 62.5°C, Salmonella survival can prolong between 10,000 and 25,000 min (7 to 17 d). If ambient temperature is maintained at low temperature rendering range (70 to 78°C), then Salmonella survival can last for 90 to 120 minutes. We anticipate that this study will help in improving the existing understanding of Salmonella survival in poultry carcasses.
Collapse
Affiliation(s)
- P Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California, Davis Division of Agriculture and Natural Resources, University of California Cooperative Extension, Davis
| | - W Cao
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California, Davis Department of Biological and Agricultural Engineering, University of California, Davis
| | - Y Wang
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California, Davis Department of Biological and Agricultural Engineering, University of California, Davis
| | - V Vaddella
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California, Davis
| |
Collapse
|
46
|
Shi H, Wang XC, Li Q, Jiang S. Degradation of typical antibiotics during human feces aerobic composting under different temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15076-15087. [PMID: 27083910 DOI: 10.1007/s11356-016-6664-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Four typical antibiotics were added to human feces for aerobic composting using batch reactors with sawdust as the bulk matrix. Under three composting temperatures (room temperature, 35 ± 2 °C and 55 ± 2 °C), decreases in the extractable concentrations of antibiotics in the compost were monitored for 20 days. As a result, the removals of extractable tetracycline and chlortetracycline were found to be more temperature-dependent than the removals of sulfadiazine and ciprofloxacin. However, more than 90 % of all of the extractable antibiotics were removed at 55 ± 2 °C. Three specific experiments were further conducted to identify the possible actions for antibiotic removal, including self-degradation in aqueous solution, composting with a moist sterile sawdust matrix without adding feces and composting with human feces and moist sterile sawdust. As a result, it was found that the removal of tetracycline and chlortetracycline was mainly due to chemical degradation in water, whereas the removal of sulfadiazine was mainly attributed to adsorption onto sawdust particles. The microbial activity of compost varied with temperature to a certain extent, but the differences were insignificant among different antibiotics. Although microbial action is important for organic matter decomposition, its contribution to antibiotic degradation was small for the investigated antibiotics, except for ciprofloxacin, which was degraded by up to 20 % due to microbial action.
Collapse
Affiliation(s)
- Honglei Shi
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, China
- Key Lab of Environmental Engineering, Xi'an, Shaanxi Province, China
- Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055, China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, China.
- Key Lab of Environmental Engineering, Xi'an, Shaanxi Province, China.
- Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055, China.
| | - Qian Li
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, China
- Key Lab of Environmental Engineering, Xi'an, Shaanxi Province, China
- Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055, China
| | - Shanqing Jiang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an, Shaanxi Province, China
- Key Lab of Environmental Engineering, Xi'an, Shaanxi Province, China
- Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, 710055, China
| |
Collapse
|
47
|
Ren G, Xu X, Qu J, Zhu L, Wang T. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J Microbiol Biotechnol 2016; 32:101. [DOI: 10.1007/s11274-016-2059-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/24/2016] [Indexed: 11/24/2022]
|
48
|
Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z. Relationship between bacterial diversity and environmental parameters during composting of different raw materials. BIORESOURCE TECHNOLOGY 2015; 198:395-402. [PMID: 26409110 DOI: 10.1016/j.biortech.2015.09.041] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyang Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- Laboratory of Water Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Lv B, Xing M, Yang J, Zhang L. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Appl Microbiol Biotechnol 2015; 99:10703-12. [PMID: 26318447 DOI: 10.1007/s00253-015-6884-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.,Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Meiyan Xing
- Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jian Yang
- Institute of Biofilm Technology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liangbo Zhang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
50
|
Wu C, Li W, Wang K, Li Y. Usage of pumice as bulking agent in sewage sludge composting. BIORESOURCE TECHNOLOGY 2015; 190:516-521. [PMID: 25913030 DOI: 10.1016/j.biortech.2015.03.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss.
Collapse
Affiliation(s)
- Chuandong Wu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWER), Harbin Institute of Technology, Harbin 150090, China; School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Yunbei Li
- School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|