1
|
Ao Q, Ni Z, Su L, Zhao H, Zhao X. Effect of iron-carbon microelectrolysis and magnetite on biological nitrogen removal: Analysis of microbial communities, functional genes, and mechanisms. ENVIRONMENTAL RESEARCH 2025; 274:121229. [PMID: 40020866 DOI: 10.1016/j.envres.2025.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Iron-carbon microelectrolysis (IC-ME) is a highly effective approach for achieving efficient denitrogenation in low carbon-to-nitrogen (C/N) ratio wastewater; however, its mechanism and electron transfer pathways remain unclear. This study developed iron-carbon fillers with added magnetite (Fe3O4) to investigate the influence of Fe3O4 and IC-ME on biological denitrification under varying C/N ratios. In batch experiments, the experimental group achieved an average total nitrogen removal improvement of 20.45% and 31.80%, respectively, compared to the control group at a simulated wastewater C/N ratio of 3. When compared to the sequencing batch reactor (SBR) without fillers, the SBR with iron-carbon fillers demonstrated a 22.50% increase in average total nitrogen removal. Additionally, activities of Cyt-c, complex I, and complex III significantly increased when the influent water C/N ratio was reduced to 3. The structural composition of the microbial community exhibited an abundance of denitrifying microorganisms, including Pseudomonadota, Betaproteobacteria, and Gammaproteobacteria, alongside iron-autotrophic denitrifying microorganisms such as Acidovorax and Pseudoxanthomonas. Moreover, the genes narG, nirS, and nosZ showed increased abundance, with most genes becoming progressively more abundant as the C/N ratio decreased. This study aims to provide valuable insights for energy conservation and carbon reduction in wastewater treatment plants facing limited carbon sources.
Collapse
Affiliation(s)
- Qianxi Ao
- School of Civil Engineering, Chang'an University, Shanxi, Xi'an, 710061, China
| | - Zhaoxia Ni
- School of Civil Engineering, Chang'an University, Shanxi, Xi'an, 710061, China
| | - Lianying Su
- School of Civil Engineering, Chang'an University, Shanxi, Xi'an, 710061, China
| | - Hongmei Zhao
- School of Civil Engineering, Chang'an University, Shanxi, Xi'an, 710061, China.
| | - Xiaohong Zhao
- School of Civil Engineering, Chang'an University, Shanxi, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhuo Y, Wang H, Wang X, Jing D, Zhou M, Peng D, Han Y. Performance of electroactive anaerobic granular sludge under ammonia stress: Performance, microbe and morphology. BIORESOURCE TECHNOLOGY 2025; 424:132295. [PMID: 40010542 DOI: 10.1016/j.biortech.2025.132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Thermal hydrolysis pretreatment increases the organic loading rate by releasing organics into the liquid phase. However, high solid anaerobic digestion often faces ammonia stress, which inhibits methanogenic performance. This study explored the feasibility of direct interspecies electron transfer (DIET) in improving the performance of anaerobic granular sludge (AnGS) under ammonia stress. Furthermore, when incubated with ethanol, COD removal efficiency decreased from 95 ± 4 % under conventional ammonia nitrogen conditions to 75 ± 3 % under ammonia stress. Similarly, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-electron transport system activity declined by 16 % under ammonia stress. Microbial community analysis revealed a shift in DIET partners, from Geobacter - Methanothrix to unclassified genus from family Anaerolineaceae, order Bacteroidales, and family Clostridiaceae - Methanosarcina under ammonia stress. Methanothrix deficiency under ammonia stress altered the spatial structure of AnGS. Therefore, reconstructing spatial structure of AnGS by providing filamentous methanogens skeleton could improve DIET performance under ammonia stress.
Collapse
Affiliation(s)
- Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Hao Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Xuena Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Dantong Jing
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Yang Q, Liu H, Liu L, Yan Z, Chui C, Yang N, Wang C, Shen G, Chen Q. Enhancing Methane Production in Anaerobic Digestion of Food Waste Using Co-Pyrolysis Biochar Derived from Digestate and Rice Straw. Molecules 2025; 30:1766. [PMID: 40333788 PMCID: PMC12029908 DOI: 10.3390/molecules30081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Anaerobic digestion (AD) is a preferred method for food waste (FW) treatment due to its sustainability and potential for production of renewable bioenergy. However, the accumulation of volatile fatty acids (VFAs) and ammonia often destabilizes the AD process, and managing the digestate byproduct poses additional challenges. This study investigates the use of co-pyrolysis biochar synthesized from digestate and rice straw (DRB) to enhance methane production and AD efficiency. DRB addition increased cumulative methane yield by 37.1%, improved VFA conversion efficiency, and achieved a 42.3% higher NH3-N-removal rate compared to the control group. The COD-removal rate was 68.7% throughout the process. Microbial analysis revealed that DRB selectively enriched Fastidiosipila and Methanosarcina, promoting direct interspecies electron transfer (DIET) and methane yield. These findings highlight DRB's potential to enhance AD efficiency and support closed-loop resource utilization.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Li Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Zhen Yan
- Shanghai Pudong Development (Group) Co., Ltd., Shanghai 200127, China;
| | - Chunmeng Chui
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Niannian Yang
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station (Shanghai Urban Ecosystem Research Station), Ministry of Science and Technology, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| |
Collapse
|
4
|
Chen N, Zhang X, Qi L, Gao F, Wu G, Li H, Guo W, Ngo HH. Enhancement of volatile fatty acids degradation and rapid methanogenesis in a biochar-assisted anaerobic membrane bioreactor via enhancing direct interspecies electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125045. [PMID: 40127599 DOI: 10.1016/j.jenvman.2025.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
In this investigation, we assessed the efficacy of a biochar-supported anaerobic membrane bioreactor (BC-AnMBR) for continuously treating swine wastewater (SWW) under varying NH4+-N stress levels. Our findings revealed that as the NH4+-N concentration escalated from 440 mg/L to 1400 mg/L, the BC-AnMBR exhibited a notable 14.5 % improvement in NH4+-N removal under heightened ammonia pressure compared to the conventional AnMBR (CG-AnMBR). This enhancement primarily stemmed from ion-exchange interactions between the functional groups (hydroxyl, carboxyl, ester, and aldehyde groups) on the biochar surface and NH4+-N, serving as the primary mechanism of action. Moreover, concerning resource recovery, the BC-AnMBR sustained a standard methane yield of 0.184 LCH4/gCOD, surpassing that of the CG-AnMBR by more than threefold. Microbial community analysis unveiled that the BC-AnMBR fostered the enrichment of ammonia-tolerant electroactive methanogenic archaea, notably from the genera Methanosarcina and Methanolinea. Notably, up-regulation of functional genes associated with key enzymes involved in propionic and butyric acid degradation and the autotrophic methanogenic pathway was observed in the BC-AnMBR, consequently accelerating methane production rates. Ultimately, the incorporation of biochar amplified the activity of the microbial electron transport system by 41.77 % and boosted the concentration of c-type cytochrome by 50.6 %. These enhancements facilitated the establishment of direct interspecies electron transfer, ensuring the stability of the anaerobic digestion process under ammonia-inhibited conditions.
Collapse
Affiliation(s)
- Nianwen Chen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Li Qi
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Fu Gao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland
| | - Hongxia Li
- Tianjin Caring Technology Development Co., Ltd., Haitai North Road 2, Tianjin, 300381, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Frazier AN, Willis W, Robbe H, Ortiz A, Koziel JA. Characterization and Assembly Dynamics of the Microbiome Associated with Swine Anaerobic Lagoon Manure Treated with Biochar. Microorganisms 2025; 13:758. [PMID: 40284595 PMCID: PMC12029491 DOI: 10.3390/microorganisms13040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Biochar has significant potential for livestock microbiomes and crop agriculture regarding greenhouse gas emissions reduction. Therefore, a pilot study was designed to investigate the effect of biochar application on the surface of swine manure from an open lagoon and the associated microbial communities. Samples were collected from four different treatment groups: control (n = 4), coarse biochar (n = 4), fine biochar (n = 4), and ultra-fine biochar (n = 4). Additionally, aged manure in bulk was collected (n = 4) to assess alterations from the control group. The method of 16S rRNA amplicon sequencing along with microbial analyses was performed. Diversity was significantly different between aged manure in bulk samples and all treatment groups (Kruskal-Wallis; p < 0.05). Additionally, distinct community compositions were seen using both weighted and unweighted UniFrac distance matrices (PERMANOVA; p < 0.01). Differential abundance analysis revealed four distinct features within all treatment groups that were enriched (q < 0.001): Idiomarina spp., Geovibrio thiophilus, Parapusillimonas granuli, and an uncultured Gammaproteobacteria species. Similarly, Comamonas spp. and Brumimicrobium aurantiacum (q-value < 0.001) were significantly depleted by all the treatments. Stochastic and functional analyses revealed that biochar treatments were not deterministically altering assembly patterns, and functional redundancy was evident regardless of compositional shifts.
Collapse
Affiliation(s)
- A. Nathan Frazier
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - William Willis
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Heather Robbe
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Anna Ortiz
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Jacek A. Koziel
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Callegari A, Tucci M, Aulenta F, Cruz Viggi C, Capodaglio AG. Anaerobic sludge digestion enhancement with bioelectrochemical and electrically conductive materials augmentation: A state of the art review. CHEMOSPHERE 2025; 372:144101. [PMID: 39798721 DOI: 10.1016/j.chemosphere.2025.144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilization of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment. As for in-process amendments, iron, micro and macro-nutrients, ashes from waste incineration and nanoparticles addition have been studied for the improvement of enzymatic reactions. Recently, use of electrically conductive materials has been credited with the possibility to accelerate and stabilize the conversion of organic substrates to methane. The possibility of increasing both biogas generation and its relative biomethane content by interfacing anaerobic digestion with bioelectrochemical systems was also postulated. This review addresses the research gap surrounding the integration of anaerobic digestion with novel technologies, particularly bioelectrochemical systems, to enhance biogas production and methane enrichment. While existing studies focus on pre-treatment and in-process amendments, the feasibility, mechanisms, and benefits of such integration remain underexplored. By critically evaluating the current state of the art, this review identifies the potential of bioelectrochemical integration to improve energy recovery and process stability, while highlighting key challenges and research needs for advancing these technologies toward practical implementation.
Collapse
Affiliation(s)
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy; National Biodiversity Future Center, Palermo, 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | | |
Collapse
|
7
|
Deng B, Hou Y, Lu S, Yan S, Guo Z, Liu Z, Wang X, Jia C, Wang W, Yu L, Zhao L. The electrochemical ion membrane system (EIMs) enhanced light reactions of photosynthesis with intermittent electrical stimulation. Chem Commun (Camb) 2025; 61:572-575. [PMID: 39656085 DOI: 10.1039/d4cc05340k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Despite the widespread application of electrochemical systems in bioproduction, their detailed effects on photosynthetic organisms remain to be explored. In this study, a three-chamber electrochemical ion membrane system (EIMs) was optimized for minimizing carbon resource interference in the cathode chamber, thereby elucidating the role of EIMs in the light reactions of photosynthesis. By applying intermittent electrical stimulation, the photosynthetic activity of microalgae was enhanced, manifesting as the promoted accumulation of intracellular ATP and NADPH, while allowing the collection of hydrogen and oxygen as by-products. These findings suggest that EIMs not only facilitate photosynthesis by enhancing both light and dark reactions but also provide new avenues for improving the efficiency of photosynthetic production and advancing sustainable biotechnological processes.
Collapse
Affiliation(s)
- Bicheng Deng
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
| | - Yuyong Hou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Sihan Lu
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
| | - Zhile Guo
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xinqi Wang
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
| | - Changhong Jia
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
| | - Weijie Wang
- College of Life Sciences, North China University of Science and Technology, No. 21 Bohai Avenue, Tangshan, Heibei 063210, P. R. China.
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, P. R. China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
8
|
Aulenta F, Tucci M, Cruz Viggi C, Milia S, Hosseini S, Farru G, Sethi R, Bianco C, Tosco T, Ioannidis M, Zanaroli G, Ruffo R, Santoro C, Marzocchi U, Cassiani G, Peruzzo L. Groundwater electro-bioremediation via diffuse electro-conductive zones: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100516. [PMID: 39703569 PMCID: PMC11655697 DOI: 10.1016/j.ese.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and in situ implementation of groundwater electro-bioremediation processes.
Collapse
Affiliation(s)
- Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy
| | - Stefano Milia
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Cagliari, Italy
| | - Seyedmehdi Hosseini
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Gianluigi Farru
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Rajandrea Sethi
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Carlo Bianco
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Tiziana Tosco
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
| | - Marios Ioannidis
- Department of Environment, Land and Infrastructure Engineering & Clean Water Center, CWC, Politecnico di Torino, Torino, Italy
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Riccardo Ruffo
- Department of Materials Science, University of Milano-Bicocca, Milano, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca, Milano, Italy
| | - Ugo Marzocchi
- Center for Water Technology WATEC, Department of Biology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology CEM, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Luca Peruzzo
- Department of Geosciences, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Zhou N, Chen D, Xiao Z. Humin accelerates interspecies electron transfer between Shewanella oneidensis MR-1 and Methanosarcina barkeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177643. [PMID: 39577578 DOI: 10.1016/j.scitotenv.2024.177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Existing researches involving accelerated interspecies electron transfer (IET) by solid redox mediators focus mainly on the conductive nature of these materials. Although non-conductive solid redox mediator-humin has been reported to promote methanogenic performance of anaerobic granular sludge, likely through accelerating IET of microorganisms, this phenomenon has not been validly proven. In this study, a wetland sediment sourced HM (HMWS) was added into a co-culture of a syntrophic bacteria Shewanella oneidensis MR-1 and an archaeal Methanosarcina barkeri with ethanol as sole electron donor to examine whether HMWS can accelerate the IET between these two species. Results showed that the average ethanol consumption rate and methanogenic rate in the HMWS-containing co-culture were 1.6-fold and 2.9-fold higher than that without HMWS, indicating that HMWS enhanced the cooperation of S. oneidensis MR-1 and M. barkeri. Further experiment suggested that except for interspecies acetate transfer, an alternative HMWS-mediated IET pathway occurred between M. barkeri and S. oneidensis MR-1. The estimated total IET rate in the HMWS-containing co-culture was 0.53 ± 0.1 meq/(d-1·g cell-dry weight-1), which was 2.2-fold higher than that without HMWS. CO/CO and NO/NH2 were the functional groups of HMWS contributing to HMWS-mediated IET, and flavin and cytochrome c of microorganisms participated in the reduction and oxidation of HMWS. The findings are of significance for understanding the diverse IET occurred in natural environments and providing a novel strategy for renewable bioenergy processes with high efficiency.
Collapse
Affiliation(s)
- Ningli Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China.
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
10
|
Chen N, Zhang X, Du Q, Wang H, Wang Z, Ren J, Li H, Guo W, Ngo HH. An in-situ biochar-enhanced anaerobic membrane bioreactor for swine wastewater treatment under various organic loading rates. J Environ Sci (China) 2024; 146:304-317. [PMID: 38969460 DOI: 10.1016/j.jes.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 07/07/2024]
Abstract
A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.
Collapse
Affiliation(s)
- Nianwen Chen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Qing Du
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Huizhong Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junzhi Ren
- Tianjin Caring Technology Development Co., Ltd., Tianjin 300381, China
| | - Hongxia Li
- Tianjin Caring Technology Development Co., Ltd., Tianjin 300381, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
11
|
Song Y, Zhang Z, Liu Y, Peng F, Feng Y. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135514. [PMID: 39243542 DOI: 10.1016/j.jhazmat.2024.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
12
|
Wang X, Zhang J, Xie Y, Li X, Ran J, Zhang M, Zhang L, Zhang A. The effect of Fenton sludge on anaerobic digestion of papermaking wastewater in an upflow anaerobic sludge blanket reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122762. [PMID: 39366241 DOI: 10.1016/j.jenvman.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
An upflow anaerobic sludge blanket (UASB) reactor was used to investigate the effect of adding Fenton sludge (FS) on the anaerobic digestion of actual papermaking wastewater. The results showed that a one-time addition of 10 g/L FS could sustainably promote the performance of UASB for more than 40 days. The organic matter removal efficiency increased by 15.56%, and the biogas production increased by 24.52%. The proportion of methane in biogas increased by 12.87%. Adding FS increased the capacitance values of sludge extracellular polymeric substances and the electron transfer system activity in reactor increased by 1.76 times. The dehydrogenase activity and coenzyme F420 of the sludge increased by 1.54 and 2.11 times, respectively. Adding FS enriched the iron-reducing bacteria (Thermodesulfobacteriota) and hydrolytic acid-producing bacteria (Chloroflexota and Synergistota), thereby promoting the hydrolysis and acidification process. Adding FS was beneficial to the enrichment of methanogen, especially Methanosaeta, significantly increasing the methane production.
Collapse
Affiliation(s)
- Xianbao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China.
| | - Jialu Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Yili Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Xiang Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Jiarong Ran
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Minting Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China
| | - Anlong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China
| |
Collapse
|
13
|
Akram J, Song C, El Mashad HM, Chen C, Zhang R, Liu G. Advances in microbial community, mechanisms and stimulation effects of direct interspecies electron transfer in anaerobic digestion. Biotechnol Adv 2024; 76:108398. [PMID: 38914350 DOI: 10.1016/j.biotechadv.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Anaerobic digestion (AD) has been proven to be an effective green technology for producing biomethane while reducing environmental pollution. The interspecies electron transfer (IET) processes in AD are critical for acetogenesis and methanogenesis, and these IET processes are carried out via mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). The latter has recently become a topic of significant interest, considering its potential to allow diffusion-free electron transfer during the AD process steps. To date, different multi-heme c-type cytochromes, electrically conductive pili (e-pili), and other relevant accessories during DIET between microorganisms of different natures have been reported. Additionally, several studies have been carried out on metagenomics and metatranscriptomics for better detection of DIET, the role of DIET's stimulation in alleviating stressed conditions, such as high organic loading rates (OLR) and low pH, and the stimulation mechanisms of DIET in mixed cultures and co-cultures by various conductive materials. Keeping in view this significant research progress, this study provides in-depth insights into the DIET-active microbial community, DIET mechanisms of different species, utilization of various approaches for stimulating DIET, characterization approaches for effectively detecting DIET, and potential future research directions. This study can help accelerate the field's research progress, enable a better understanding of DIET in complex microbial communities, and allow its utilization to alleviate various inhibitions in complex AD processes.
Collapse
Affiliation(s)
- Jehangir Akram
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hamed M El Mashad
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States; Agricultural Engineering Department, Mansoura University, Egypt
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States.
| | - Guangqing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
14
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
15
|
Cuciurean CI, Sidor CG, Camarero JJ, Buculei A, Badea O. Detecting changes in industrial pollution by analyzing heavy metal concentrations in tree-ring wood from Romanian conifer forests. ENVIRONMENTAL RESEARCH 2024; 252:118884. [PMID: 38582431 DOI: 10.1016/j.envres.2024.118884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
The impact of air pollution on forests, especially in urban areas, has been increasingly discussed recently. Many pollutants, including heavy metals, are released into the atmosphere from various sources, such as mining, non-ferrous metal processing plants, and fossil fuel combustion. These pollutants can adversely affect not only tree growth but also other species, including humans. This study compared the concentrations of several elements in tree-ring wood from two conifer species (Silver fir, Abies alba; Norway spruce, Picea abies) growing in polluted and unpolluted areas. Two regions in northern Romania (Bicaz and Tarnița) that were subjected to historical pollution changes were selected. Two chemical analyses were used: inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). The silver fir trees from the intensively polluted area in the Tarnița region were negatively impacted by industrial pollution: the Mn concentrations were, on average, three times higher in polluted areas than in unpolluted areas (ca. 30 vs. 10 mg kg-1). This finding was consistent for both ICP-MS and XRF analyses. However, in Norway spruce, this difference was found only in the XRF data, which detected Mn concentrations seven times higher in trees from polluted areas than those from unpolluted areas (ca. 700 vs. 100 mg kg-1). In the Tarnița region, Norway spruce accumulated more heavy metals than silver fir, but the most pronounced differences between polluted and unpolluted areas were found in silver fir. The two analytical methods are commonly used to determine metal concentrations in wood, and they complement each other, with ICP-MS having a low detection limit for some elements and XRF having higher detection limits and better accuracy. Each method has its advantages and disadvantages, and the optimal method depends on many factors, such as the type of heavy metal analyzed, its concentration in wood, sample type, cost, analysis time, and sample preparation.
Collapse
Affiliation(s)
- Cosmin Ilie Cuciurean
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS Marin Drăcea), 077190, Voluntari, Romania; Doctoral School of Engineering Sciences, "Ștefan Cel Mare" University from Suceava, 720229, Suceava, Romania
| | - Cristian Gheorghe Sidor
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS Marin Drăcea), 077190, Voluntari, Romania.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192, Zaragoza, Spain
| | - Amelia Buculei
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS Marin Drăcea), 077190, Voluntari, Romania
| | - Ovidiu Badea
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS Marin Drăcea), 077190, Voluntari, Romania; Transilvania University, Faculty of Silviculture and Forest Engineering, 1, Ludwig van Beethoven Street, Brasov, 500123, Romania
| |
Collapse
|
16
|
Lu Q, Li X, Rene ER, Hu Q, Qiu B. Heterogeneous g-C 3N 4/polyaniline composites enhanced the conversion of organics into methane during anaerobic wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 258:119480. [PMID: 38909948 DOI: 10.1016/j.envres.2024.119480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
In this study, g-C3N4/PANI was prepared by in situ oxidative polymerization. Graphite-phase carbon nitride (g-C3N4) with surface defects was deposited onto the surface of conductive polyaniline (PANI) to form a p-n heterojunction. This construction aimed to create an efficient heterogeneous catalyst, increasing the surface defect level and active sites of the composite, and augmenting its capability to capture and transfer extracellular electrons under anaerobic conditions. This addresses the challenge of low efficiency in direct interspecies electron transfer between bacteria and archaea during anaerobic digestion for methane production. The results showed that the prepared g-C3N4/PANI increased the CH4 yield and CH4 production rate by 82% and 96%, respectively. Notably, the conductivity and XPS test results showed that the ratio of g-C3N4 to PANI was 0.15, and the composite exhibited favorable conductivity, with a uniform distribution of pyrrolic nitrogen, pyridinic nitrogen, and graphitic nitrogen, each accounting for approximately 30%. Furthermore, g-C3N4/PANI effectively enhanced the metabolic efficiency of intermediate products such as acetate and butyrate. Analysis of the microbial community structure revealed that g-C3N4/PANI led to a significant increase in the abundance of hydrogenotrophic methanogen Methanolinea (from 48% to 64%) and enriched Clostridium (a rise of 1%) with direct interspecies electron transfer capability. Microbial community function analysis demonstrated that the addition of g-C3N4/PANI boosted the activities of key enzymes involved in anaerobic digestion, including phosphate transacetylase (PTA), phospho-butyryl transferase (PTB), and NAD-independent lactate dehydrogenase (NNLD), by 47%, 135%, and 153%, respectively. This acceleration in enzymatic activity promoted the metabolism of acetyl-CoA, butyryl-CoA, and pyruvate. Additionally, the function of ABC transporters was enhanced, thereby improving the efficiency of material and energy exchange among microorganisms.
Collapse
Affiliation(s)
- Qiaoling Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Department of Water Supply, Sanitation and Environmental Engineering, Westvest 7, 2601, DA, Delft, the Netherlands
| | - Qian Hu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
18
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
19
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca. RENEWABLE ENERGY 2024; 221:119747. [DOI: 10.1016/j.renene.2023.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
20
|
Du B, Zhan X, Lens PNL, Zhang Y, Wu G. Deciphering anaerobic ethanol metabolic pathways shaped by operational modes. WATER RESEARCH 2024; 249:120896. [PMID: 38006787 DOI: 10.1016/j.watres.2023.120896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Efficient anaerobic digestion requires the syntrophic cooperation among diverse microorganisms with various metabolic pathways. In this study, two operational modes, i.e., the sequencing batch reactor (SBR) and the continuous-flow reactor (CFR), were adopted in ethanol-fed systems with or without the supplement of powdered activated carbon (PAC) to examine their effects on ethanol metabolic pathways. Notably, the operational mode of SBR and the presence of CO2 facilitated ethanol metabolism towards propionate production. This was further evidenced by the dominance of Desulfobulbus, and the increased relative abundances of enzymes (EC: 1.2.7.1 and 1.2.7.11) involved in CO2 metabolism in SBRs. Moreover, SBRs exhibited superior biomass-based rates of ethanol degradation and methanogenesis, surpassing those in CFRs by 53.1% and 22.3%, respectively. Remarkably, CFRs with the extended solids retention time enriched high relative abundances of Geobacter of 71.7% and 70.4% under conditions with and without the addition of PAC, respectively. Although both long-term and short-term PAC additions led to the increased sludge conductivity and a reduced methanogenic lag phase, only the long-term PAC addition resulted in enhanced rates of ethanol degradation and propionate production/degradation. The strategies by adjusting operational mode and PAC addition could be adopted for modulating the anaerobic ethanol metabolic pathway and enriching Geobacter.
Collapse
Affiliation(s)
- Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
21
|
Zeng Y, Liu H, Chen W, Li H, Dong H, Wu H, Xu H, Sun D, Liu X, Li P, Qiu B, Dang Y. Riboflavin-loaded carbon cloth aids the anaerobic digestion of cow dung by promoting direct interspecies electron transfer. ENVIRONMENTAL RESEARCH 2024; 241:117660. [PMID: 37979928 DOI: 10.1016/j.envres.2023.117660] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.
Collapse
Affiliation(s)
- Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
22
|
Jiang Z, Tang Y, Chen X, Chen X, Wang H, Zhang H, Zheng C, Chen J. Enhancing electricity-driven methanogenesis by assembling biotic-abiotic hybrid system in anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2024; 391:129945. [PMID: 37914054 DOI: 10.1016/j.biortech.2023.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Biotic-abiotic hybrid systems are promising technologies to enhance methane production in anaerobic wastewater treatment. However, the dense structure of the extracellular polymeric substances (EPS) present in anaerobic granular sludge (AGS) poses challenges with respect to the implementation of hybrid systems and efficient interspecies electron transfer. In this study, the use of AGS with a Ni/Fe layered double hydroxide@activated carbon (Ni/Fe LDH@C-AGS) was investigated in an anaerobic membrane bioreactor (AnMBR). The hybrid system showed a significant increase of 82% in methane production. Further research revealed that Ni/Fe LDH@C regulated the dense structure of EPS, stimulated the production of cytochromes, and facilitated the decomposition of nonconductive substances. Surprisingly, the hybrid system also promoted resistance to membrane fouling and extended membrane life by 81%. This study provides insights into the operation of a biotic-abiotic hybrid system by regulating the dense structure of EPS ultimately resulting in an enhanced methane production.
Collapse
Affiliation(s)
- Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Yi Tang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xinyan Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Haoshuai Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Hongyu Zhang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Chaoqun Zheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
23
|
Zhang H, Hu C, Zhang P, Ren T, Cai W. Purification mechanism of microbial metabolism in kitchen-oil wastewater enhanced by cationic vacancies on γ-Al 2O 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166596. [PMID: 37640079 DOI: 10.1016/j.scitotenv.2023.166596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
The use of catalyst materials to mediate the enhancement of microbial degradation in wastewater is a new economic and energy saving breakthrough in water treatment technology. In this study, γ-Al2O3, which is commonly used as catalyst/carrier, is used as biological filler to treat kitchen-oil wastewater with low biodegradability, and the COD removal rate is about 50 %. It is found that the complexation of cationic vacancies on Al2O3 surface with extracellular polymeric substance (EPS) secreted by microorganisms in wastewater lead to the polarization of electron distribution on biofilm. The efficient degrading bacteria are enriched on reaction interface and obtain electrons to maintain electron dynamic balance by enhancing the transmembrane metabolism of pollutants. The aluminum vacancies on Al2O3 surface accelerate the microbial degradation of pollutants. The cationic vacancies in the structure of catalyst accelerate the acquisition of exogenous electrons by microorganisms without the addition of external energy, which provides a new idea for catalytic fillers to enhance wastewater degradation.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tong Ren
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
24
|
Xin D, Li W, Choi J, Yu YH, Chiu PC. Pyrogenic Black Carbon Suppresses Microbial Methane Production by Serving as a Terminal Electron Acceptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20605-20614. [PMID: 38038997 PMCID: PMC10720376 DOI: 10.1021/acs.est.3c05830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.
Collapse
Affiliation(s)
| | | | - Jiwon Choi
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yu-Han Yu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Pei C. Chiu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Frolov EN, Gavrilov SN, Toshchakov SV, Zavarzina DG. Genomic Insights into Syntrophic Lifestyle of ' Candidatus Contubernalis alkaliaceticus' Based on the Reversed Wood-Ljungdahl Pathway and Mechanism of Direct Electron Transfer. Life (Basel) 2023; 13:2084. [PMID: 37895465 PMCID: PMC10608574 DOI: 10.3390/life13102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other's metabolic activity, their isolation in pure cultures is almost impossible. Thus, little is known about their physiology, and the only available way to fill in the knowledge gap on these organisms is genomic and metabolic analysis of syntrophic cultures. Here we report the results of genome sequencing and analysis of an obligately syntrophic alkaliphilic bacterium 'Candidatus Contubernalis alkaliaceticus'. The genomic data suggest that acetate oxidation is carried out by the Wood-Ljungdahl pathway, while a bimodular respiratory system involving an Rnf complex and a Na+-dependent ATP synthase is used for energy conservation. The predicted genomic ability of 'Ca. C. alkaliaceticus' to outperform interspecies electron transfer both indirectly, via H2 or formate, and directly, via pili-like appendages of its syntrophic partner or conductive mineral particles, was experimentally demonstrated. This is the first indication of DIET in the class Dethiobacteria.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| | - Stepan V. Toshchakov
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq., 1, Moscow 123182, Russia;
| | - Daria G. Zavarzina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| |
Collapse
|
26
|
Kundu R, Kunnoth B, Pilli S, Polisetty VR, Tyagi RD. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118743. [PMID: 37572403 DOI: 10.1016/j.jenvman.2023.118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
In recent years, anaerobic digestion (AD) has gained popularity as a practical method for generating clean energy and efficiently managing organic waste. However, the effectiveness of the reactor is compromised by the accumulation of ammonia, acids, and nutrients, leading to inhibition and instability. Because of its adaptability, biochar (BC) has sparked a substantial interest in biogas production and can be created by charring biomass and waste materials. Adding BC to the AD process could yield the following benefits: mitigating toxic inhibition, reducing the duration of the methanogenic lag phase, immobilising functional bacteria, and enhancing the rate of electron transfer between methanogenic and acetogenic microorganisms. Nonetheless, there remains to be more comprehensive knowledge regarding the multifaceted function of BC and its intricate mechanisms in the generation of biogas in AD. The research summarises scattered information from the literature on BC production from various feedstocks and factors affecting its characteristics. Additionally, a comprehensive analysis of the utilisation of BC as an additive within AD is presented here, emphasising how BC characteristics impact AD processes and how they effectively engage key challenges.
Collapse
Affiliation(s)
- Ranarup Kundu
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Bella Kunnoth
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Sridhar Pilli
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - Venkateswara Rao Polisetty
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - R D Tyagi
- BOSK Bioproducts, Quebec City, QC, Canada
| |
Collapse
|
27
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
28
|
Feng L, Gao Z, Hu T, He S, Liu Y, Jiang J, Zhao Q, Wei L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. ENVIRONMENTAL RESEARCH 2023; 234:116589. [PMID: 37423354 DOI: 10.1016/j.envres.2023.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
29
|
Jung H, Yu H, Lee C. Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO 2-reducing methanogenesis. iScience 2023; 26:107504. [PMID: 37636045 PMCID: PMC10448109 DOI: 10.1016/j.isci.2023.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Electric syntrophy between fatty acid oxidizers and methanogens through direct interspecies electron transfer (DIET) is essential for balancing acidogenesis and methanogenesis in anaerobic digestion. Promoting DIET using electrically conductive additives proved effective in enhancing methanogenesis; however, its possibility to affect other microbial redox reactions in methanogenic systems has been little studied. This study provides the first confirmation of the electro-syntrophic coupling of sulfide oxidation to S0 with CO2-reducing methanogenesis in sulfur-rich methanogenic cultures supplemented with conductive magnetite (100-700-nm particle size). The H2S content in biogas, initially exceeding 5000 ppmv, decreased to below 1 ppmv along with an accumulation of extracellular S0 (60-70 mg/L; initially <1 mg/L) at a magnetite dose of 20 mM Fe, while there were no significant changes in methane yield. A comprehensive polyphasic approach demonstrated that the S0 formation occurs through electro-syntrophic oxidation of sulfide coupled with CO2-reducing methanogenesis, involving Methanothrix as the dominant methanogen.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyeonjung Yu
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Zhou J, Smith JA, Li M, Holmes DE. Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens. mBio 2023; 14:e0036023. [PMID: 37306514 PMCID: PMC10470525 DOI: 10.1128/mbio.00360-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Methanothrix is widely distributed in natural and artificial anoxic environments and plays a major role in global methane emissions. It is one of only two genera that can form methane from acetate dismutation and through participation in direct interspecies electron transfer (DIET) with exoelectrogens. Although Methanothrix is a significant member of many methanogenic communities, little is known about its physiology. In this study, transcriptomics helped to identify potential routes of electron transfer during DIET between Geobacter metallireducens and Methanothrix thermoacetophila. Additions of magnetite to cultures significantly enhanced growth by acetoclastic methanogenesis and by DIET, while granular activated carbon (GAC) amendments impaired growth. Transcriptomics suggested that the OmaF-OmbF-OmcF porin complex and the octaheme outer membrane c-type cytochrome encoded by Gmet_0930, were important for electron transport across the outer membrane of G. metallireducens during DIET with Mx. thermoacetophila. Clear differences in the metabolism of Mx. thermoacetophila when grown via DIET or acetate dismutation were not apparent. However, genes coding for proteins involved in carbon fixation, the sheath fiber protein MspA, and a surface-associated quinoprotein, SqpA, were highly expressed in all conditions. Expression of gas vesicle genes was significantly lower in DIET- than acetate-grown cells, possibly to facilitate better contact between membrane-associated redox proteins during DIET. These studies reveal potential electron transfer mechanisms utilized by both Geobacter and Methanothrix during DIET and provide important insights into the physiology of Methanothrix in anoxic environments. IMPORTANCE Methanothrix is a significant methane producer in a variety of methanogenic environments including soils and sediments as well as anaerobic digesters. Its abundance in these anoxic environments has mostly been attributed to its high affinity for acetate and its ability to grow by acetoclastic methanogenesis. However, Methanothrix species can also generate methane by directly accepting electrons from exoelectrogenic bacteria through direct interspecies electron transfer (DIET). Methane production through DIET is likely to further increase their contribution to methane production in natural and artificial environments. Therefore, acquiring a better understanding of DIET with Methanothrix will help shed light on ways to (i) minimize microbial methane production in natural terrestrial environments and (ii) maximize biogas formation by anaerobic digesters treating waste.
Collapse
Affiliation(s)
- Jinjie Zhou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University , Shenzhen, Guangdong, China
- Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University , Shenzhen, Guangdong, China
- Department of Microbiology, University of Massachusetts-Amherst , Amherst, Massachusetts, USA
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University , Shenzhen, Guangdong, China
| | - Jessica A Smith
- Department of Microbiology, University of Massachusetts-Amherst , Amherst, Massachusetts, USA
- Department of Biomolecular Sciences, Central Connecticut State University , New Britain, Connecticut, USA
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University , Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University , Shenzhen, Guangdong, China
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts-Amherst , Amherst, Massachusetts, USA
- Department of Physical and Biological Science, Western New England University , Springfield, Massachusetts, USA
| |
Collapse
|
31
|
Smith JA, Holmes DE, Woodard TL, Li Y, Liu X, Wang LY, Meier D, Schwarz IA, Lovley DR. Detrimental impact of the Geobacter metallireducens type VI secretion system on direct interspecies electron transfer. Microbiol Spectr 2023; 11:e0094123. [PMID: 37650614 PMCID: PMC10580878 DOI: 10.1128/spectrum.00941-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/02/2023] [Indexed: 09/01/2023] Open
Abstract
Direct interspecies electron transfer (DIET) is important in anaerobic communities of environmental and practical significance. Other than the need for close physical contact for electrical connections, the interactions of DIET partners are poorly understood. Type VI secretion systems (T6SSs) typically kill competitive microbes. Surprisingly, Geobacter metallireducens highly expressed T6SS genes when DIET-based co-cultures were initiated with Geobacter sulfurreducens. T6SS gene expression was lower when the electron shuttle anthraquinone-2,6-disulfonate was added to alleviate the need for interspecies contact. Disruption of hcp, the G. metallireducens gene for the main T6SS needle-tube protein subunit, and the most highly upregulated gene in DIET-grown cells eliminated the long lag periods required for the initiation of DIET. The mutation did not aid DIET in the presence of granular-activated carbon (GAC), consistent with the fact that DIET partners do not make physical contact when electrically connected through conductive materials. The hcp-deficient mutant also established DIET quicker with Methanosarcina barkeri. However, the mutant also reduced Fe(III) oxide faster than the wild-type strain, a phenotype not expected from the loss of the T6SS. Quantitative PCR revealed greater gene transcript abundance for key components of extracellular electron transfer in the hcp-deficient mutant versus the wild-type strain, potentially accounting for the faster Fe(III) oxide reduction and impact on DIET. The results highlight that interspecies interactions beyond electrical connections may influence DIET effectiveness. The unexpected increase in the expression of genes for extracellular electron transport components when hcp was deleted emphasizes the complexities in evaluating the electromicrobiology of highly adaptable Geobacter species. IMPORTANCE Direct interspecies electron transfer is an alternative to the much more intensively studied process of interspecies H2 transfer as a mechanism for microbes to share electrons during the cooperative metabolism of energy sources. DIET is an important process in anaerobic soils and sediments generating methane, a significant greenhouse gas. Facilitating DIET can accelerate and stabilize the conversion of organic wastes to methane biofuel in anaerobic digesters. Therefore, a better understanding of the factors controlling how fast DIET partnerships are established is expected to lead to new strategies for promoting this bioenergy process. The finding that when co-cultured with G. sulfurreducens, G. metallireducens initially expressed a type VI secretion system, a behavior not conducive to interspecies cooperation, illustrates the complexity of establishing syntrophic relationships.
Collapse
Affiliation(s)
- Jessica A. Smith
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Trevor L. Woodard
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - Yang Li
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| | - Xinying Liu
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Li-Ying Wang
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - David Meier
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - Ingrid A. Schwarz
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| |
Collapse
|
32
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Application of multi-heteroatom doping biochar in a newly proposed mechanism of electron transfer in biogas production. CHEMICAL ENGINEERING JOURNAL 2023; 470:144229. [DOI: 10.1016/j.cej.2023.144229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
33
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
34
|
Zhao B, Chen L, Zhang M, Nie C, Yang Q, Yu K, Xia Y. Electric-Inducive Microbial Interactions in a Thermophilic Anaerobic Digester Revealed by High-Throughput Sequencing of Micron-Scale Single Flocs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4367-4378. [PMID: 36791305 DOI: 10.1021/acs.est.2c08833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although conductive materials have been shown to improve efficiency in anaerobic digestion (AD) by modifying microbial interactions, the interacting network under thermophilic conditions has not been examined. To identify the true taxon-taxon associations within thermophilic anaerobic digestion (TAD) microbiome and reveal the influence of carbon cloth (CC) addition, we sampled micron-scale single flocs (40-70 μm) randomly isolated from lab-scale thermophilic digesters. Results revealed that CC addition not only significantly boosted methane yield by 25.3% but also increased the spatial heterogeneity of the community in the sludge medium. After CC addition, an evident translocation of Pseudomonas from the medium to the biofilm was observed, showing their remarkable capacity for biofilm formation. Additionally, Clostridium and Thermotogaceae tightly aggregated and steadily co-occurred in the medium and biofilm of the TAD microbiome, which might be associated with their unique extracellular sugar metabolizing style. Finally, CC induced syntrophic interaction between Syntrophomonas and denitrifiers of Rhodocyclaceae. The upregulated respiration-associated electron transferring genes (Cyst-c, complex III) on the cellular membranes of these collaborating partners indicated a potential coupling of the denitrification pathway with syntrophic acetate oxidation via direct interspecies electron transfer (DIET). These findings provide an insight into how conductive materials promote thermophilic digestion performance and open the path for improved community monitoring of biotreatment systems.
Collapse
Affiliation(s)
- Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
35
|
Feng L, He S, Gao Z, Zhao W, Jiang J, Zhao Q, Wei L. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160813. [PMID: 36502975 DOI: 10.1016/j.scitotenv.2022.160813] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Direct interspecies electron transfer (DIET) has been received tremendous attention, recently, due to the advantages of accelerating methane production via organics reduction during anaerobic digestion (AD) process. DIET-based syntrophic relationships not only occurred with the existence of pili and some proteins in the microorganism, but also can be conducted by conductive materials. Therefore, more researches into understanding and strengthening DIET-based syntrophy have been conducted with the aim of improving methanogenesis kinetics and further enhance methane productivity in AD systems. This study summarized the mechanisms, application and microbial structures of typical conductive materials (carbon-based materials and iron-based materials) during AD reactors operation. Meanwhile, detail analysis of studies on DIET (from substrates, dosage and effectiveness) via conductive materials was also presented in the study. Moreover, the challenges of applying conductive materials in boosting methane production were also proposed, which was supposed to provide a deep insight in DIET for full scale application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Mohan C, Annachhatre A. Role of pine needle biochar in operation and stability of anaerobic processes. Biodegradation 2023; 34:53-71. [PMID: 36399191 DOI: 10.1007/s10532-022-10004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Utility of biochar addition in anaerobic processes for promoting direct interspecies electron transfer (DIET) is demonstrated in this research. Biochar produced from pyrolysis of pine needle forest residue was used as conductive material for DIET. Three CSTRs were operated in parallel with and without biochar addition in fed-batch mode. Reactor without biochar which represented indirect interspecies electron transfer (IIET) exhibited wide variation in pH and VFA and took longer period during startup. All the rectors were operated at steady state with an OLR ranging from 0.5 to 1.75 kg-COD/m3.d. As OLR increased, performance of reactor without biochar resulted in rapid pH drop and increase in VFA, leading to its eventual failure at OLR of 1.75 kg-COD/m3.d. As against to this, performance of reactors with biochar remained robust and relatively unaffected at higher OLR values. Daily VFA accumulation from fed-batch mode always remained highest in reactor without biochar.
Collapse
Affiliation(s)
- Chander Mohan
- Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| | - Ajit Annachhatre
- Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
37
|
Xu W, He X, Wang C, Zhao Z. Effect of granular activated carbon adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer during anaerobic digestion of fat, oil, and grease. BIORESOURCE TECHNOLOGY 2023; 368:128289. [PMID: 36372383 DOI: 10.1016/j.biortech.2022.128289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
To investigate the effect of granular activated carbon (GAC) adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer (DIET) during anaerobic digestion of fat, oil, and grease (FOG), seed sludge was divided into two inocula (big (>0.85 mm)/small (0.15-0.85 mm)) for FOG digestion with/without GAC. More long-chain fatty acids (LCFAs) were adsorbed on GAC in the reactor with small aggregates than that with big aggregates, corresponding to 57 % and 10 % decreased methane production, respectively. Adsorption of unsaturated LCFAs (e.g., oleic acid) on GAC was found to reduce LCFA bioavailability, hinder DIET via GAC, and change community structure. Compared to pre-adsorption of oleic acid on GAC, pre-attachment of microbes on GAC resulted in 5.6-fold higher methane yield for oleic acid digestion. Together, competition of LCFA adsorption between GAC and microbial aggregates is essential for enhanced methane recovery from FOG digestion via GAC-induced DIET.
Collapse
Affiliation(s)
- Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Zihao Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| |
Collapse
|
38
|
Wang W, Dong Q, Mao Y, Zhang Y, Gong T, Li H. GO accelerate iron oxides formation and tetrabromobisphenol A removal enhancement in the GO loaded NZVI system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120512. [PMID: 36309300 DOI: 10.1016/j.envpol.2022.120512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an emerging persistent organic pollutant, which is very difficult to remove by common methods. In this study, the GO-load nanoscale zero-valent iron (NZVI/GO) was fabricated and optimized to improve the reaction rate and removal efficiency for TBBPA reliably and efficiently. The results showed that GO-load significantly reduced the self-aggregation of NZVI and the aggregate size decreased by 50.00% (1400-700 nm). Meanwhile, GO significantly improved the reaction rate kobs (1.11 ± 0.11 h-1) of TBBPA in the NZVI/GO system compared to the NZVI (0.40 ± 0.08 h-1) system, and this increment was more pronounced (177.5%) when the mass ratio of NZVI-to-GO reached 1.0 than other mass ratios. Furthermore, X-Ray Diffraction and X-ray photoelectron spectroscopy analysis suggested that the Fe2+ transformation was changed and enriched by the GO. Only magnetite (Fe3O4) was detected on the surface of NZVI, whereas the maghemite (γ-Fe2O3), hematite (α-Fe2O3), and Fe3O4 were detected on the interface of NZVI/GO, which further performed the complexation adsorption through the -OH of TBBPA. This specific complexation adsorption is another potential accelerated removal mechanism for TBBPA and intermediates within the NZVI/GO system. This research has put forward a new perspective for widening the application of TBBPA removal using the synergistic effect between GO and NZVI.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yitao Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
39
|
Towards engineering application: Integrating current strategies of promoting direct interspecies electron transfer to enhance anaerobic digestion. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Mohan C, Annachhatre A. Facilitation of interspecies electron transfer in anaerobic processes through pine needle biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2197-2212. [PMID: 36378175 DOI: 10.2166/wst.2022.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Role of biochar in promoting methanogenesis during anaerobic processes was investigated in this research. Biochar produced from Himalayan pine needles was used as medium for conductive material mediated interspecies electron transfer (CM-IET) amongst the electron producing microorganisms and electron consuming methanogenic archaea. Three anaerobic continuous stirrer tank reactors (CSTRs) with 0, 5 and 10 g/L pine needle biochar (PNB) were operated at steady state organic loading rate (OLR) of 2.0-2.5 kgCOD/(m3.d). R0 (0 g/L PNB), representing indirect interspecies electron transfer (IIET), failed at an OLR of 2.0 kgCOD/(m3.d) due to the highest volatile fatty acid (VFA) concentration of 6,300 mg/L among the three CSTRs. On the other hand, at an OLR of 2.5 kgCOD/(m3.d), R2 (10 g/L PNB) showed the most superior performance with chemical oxygen demand (COD) removal of 55% and volatile fatty acid (VFA) concentration of 3,500 mg/L, while R1 (5 g/L PNB) recorded COD removal of 45% and VFA concentration of 4,400 mg/L. In comparison, fixed biofilm reactor (FBR) with 80 g/L of PNB as support material operated satisfactorily at OLR of 13.8 kgCOD/(m3.d) with 70% COD removal and VFA concentration of 1,400 mg/L. These investigations confirmed the beneficial role of biochar in anaerobic processes by promoting CM-IET amongst VFA degrading bacteria and methane producing archaea.
Collapse
Affiliation(s)
- Chander Mohan
- Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India E-mail:
| | - Ajit Annachhatre
- Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India E-mail:
| |
Collapse
|
41
|
Fengmin Z, Baijun W, Jiangtao B, Li L, Patwary AK. Investigating revisit intention of medical tourists in China through nutritional knowledge, perceived medical quality, and trust in the physiologist: A recommendation on health tourism policy measures. Front Public Health 2022; 10:893497. [PMID: 36091519 PMCID: PMC9458905 DOI: 10.3389/fpubh.2022.893497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/02/2022] [Indexed: 01/22/2023] Open
Abstract
Good medical care has long been a top priority in health tourism to keep the flow of visitors coming for medical treatment. Medical tourism encompasses a range of treatments, from basic check-ups to surgical operations. For its friendly character and high quality of service, China has earned a reputation as one of Asia's top destinations for health tourism. Along with India and Taiwan, Japan, Thailand, and South Korea are China's top tourism destinations. Considering the above fact, this study aims to examine the influence of nutritional knowledge, perceived medical quality, and trust in physiologists on revisiting the intention of medical tourists in China. This study is cross-sectional and follows a quantitative approach. The researchers used questionnaires as a survey tool to obtain information from the respondents. The respondents of this chosen international tourists in China who come for medical treatment purposes. A systematic random sampling technique was used to select the respondents, and 315 usable responses were collected from the respondents and proceeded with further analysis. The study conducted structural equation modeling using Smart PLS version 3. The results found that nutritional knowledge, perceived medical quality, and trust in physiologists significantly influence the revisit intention of medical tourists in China.
Collapse
Affiliation(s)
| | - Wu Baijun
- Chengde Medical University, Chengde, China,*Correspondence: Wu Baijun
| | | | - Liu Li
- School of Marxism Studies, North Minzu University, Yinchuan, China
| | - Ataul Karim Patwary
- Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, Pengkalan Chepa, Malaysia
| |
Collapse
|
42
|
Dyksma S, Gallert C. Effect of magnetite addition on transcriptional profiles of syntrophic Bacteria and Archaea during anaerobic digestion of propionate in wastewater sludge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:664-678. [PMID: 35615789 DOI: 10.1111/1758-2229.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) is an important technology for the effective conversion of waste and wastewater to methane. Here, syntrophic bacteria transfer molecular hydrogen (H2 ), formate, or directly supply electrons (direct interspecies electron transfer, DIET) to the methanogens. Evidence is accumulating that the methanation of short-chain fatty acids can be enhanced by the addition of conductive material to the anaerobic digester, which has often been attributed to the stimulation of DIET. Since little is known about the transcriptional response of a complex AD microbial community to the addition of conductive material, we added magnetite to propionate-fed laboratory-scale reactors that were inoculated with wastewater sludge. Compared to the control reactors, the magnetite-amended reactors showed improved methanation of propionate. A genome-centric metatranscriptomics approach identified the active SCFA-oxidizing bacteria that affiliated with Firmicutes, Desulfobacterota and Cloacimonadota. The transcriptional profiles revealed that the syntrophic bacteria transferred acetate, H2 and formate to acetoclastic and hydrogenotrophic methanogens, whereas transcription of potential determinants for DIET such as conductive pili and outer-membrane cytochromes did not significantly change with magnetite addition. Overall, changes in the transcriptional profiles of syntrophic Bacteria and Archaea in propionate-fed lab-scale reactors amended with magnetite refute a major role of DIET in the studied system.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
43
|
Addition of Conductive Materials to Support Syntrophic Microorganisms in Anaerobic Digestion. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Syntrophy and interspecies electron transfer among different microbial groups occurs in anaerobic digestion, and many papers recently reported their positive effect on biogas and methane production. In this paper, we present the results on the effect of conductive material, i.e., graphene, PAC and biochar addition in 3.5 L batch experiments, analyzing the biogas production curve. A peculiar curve pattern occurred in the presence of conductive materials. Compared to the respective controls, the addition of graphene produced a biogas surplus of 33%, PAC 20% and biochar 8%. Microbial community molecular analysis showed that syntrophic microorganisms present in the inoculum were stimulated by the conductive material addition. Graphene also appears to promote an interspecies electron transfer between Geobacter sp. and ca. Methanofastidiosum. This paper contributes to the understanding of the DIET-related microbial community dynamic in the presence of graphene and PAC, which could be exploited to optimize biogas and methane production in real-scale applications.
Collapse
|
44
|
Liu H, Xu Y, Li L, Yuan S, Geng H, Tang Y, Dai X. A novel green composite conductive material enhancing anaerobic digestion of waste activated sludge via improving electron transfer and metabolic activity. WATER RESEARCH 2022; 220:118687. [PMID: 35661512 DOI: 10.1016/j.watres.2022.118687] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) of waste activated sludge (WAS) is usually limited by the low generation efficiency of methane. The addition of composite conductive materials (CMs) is a promising strategy to enhance AD performance. In this study, a new green magnetic-straw-based biochar (MSBC) was synthesised by a simple ball-milling/carbonisation method, and its effects on AD performance of sludge were investigated. Experimental results showed that the as-synthesised MSBC had an intrinsic graphene-oxide-like structure, with Fe species serving as electroactive sites; these characteristics translate into a high electron transfer (ET) capability. After adding MSBC, the volatile fatty acid production and methane yield were significantly increased by 14.13% and 45.36%, respectively. Analysis of the changes in the ET system activities, hydrogenase activities, Cyt-C concentrations and the electron transfer capacity of the sludge sample with and without the MSBC revealed that the MSBC enhanced intracellular ET and changed the extracellular ET pathway from indirect interspecies hydrogen transfer to direct interspecies electron transfer (DIET), which would be responsible for increasing methane production and proportion in the biogas. However, further analyses of key enzyme activities and the microbial community indicated that the MSBC reinforces the methanogenesis pathway by creating a favourable environment (i.e., by enhancing hydrolysis-acidification and DIET-based CO2 reduction) for acetoclastic methanogens. These findings, however, are expected to provide an important reference for developing CMs application in AD.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanfei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
45
|
Liu H, Xu Y, Geng H, Chen Y, Dai X. Contributions of MOF-808 to methane production from anaerobic digestion of waste activated sludge. WATER RESEARCH 2022; 220:118653. [PMID: 35635911 DOI: 10.1016/j.watres.2022.118653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The bioconversion of waste activated sludge (WAS) into methane is usually limited by the poor hydrolysis of sludge and/or poor syntrophic methanogenesis during anaerobic digestion (AD). In this study, the underlying mechanism of MOF-808 enhancing hydrolysis and syntrophic methanogenesis during AD process of WAS was investigated. Experimentally, with the effects of MOF-808 (150 mg MOF-808/g Volatile Solid (VS)), the methane production and the proportion of methane in biogas increased by approximately 26.7% and 15.6%, respectively, and the lag phase of methanogenesis decreased by 50.8%, which indicate that MOF-808 enhanced the generation efficiency of methane. The changes in activities of main hydrolytic enzymes with and without MOF-808 (150 mg MOF-808/g VS) during AD process revealed that MOF-808 improved the enzymatic hydrolysis of sludge, and the abiotic hydrolysis of sludge extracellular organic substances by MOF-808 shows that the maximum proportion and the initial increasing rate of low-molecular weight fractions increased by 60% and 583.7%, respectively, indicating that MOF-808 can greatly enhance the hydrolysis degree and rate of sludge via abiotic effect. These demonstrate that MOF-808 enhanced both biological and abiotic hydrolysis of sludge during AD. In addition, changes in the concentrations of acetate kinase and volatile fatty acids (VFAs) with and without MOF-808 (150 mg MOF-808/g VS) during AD process showed that MOF-808 accelerated the bioconversion of VFAs to methane, suggesting MOF-808 has a positive effect on syntrophic metabolism for methanogenesis. Moreover, further analyses of the microbial community structure of sludge samples with and without MOF-808 (150 mg MOF-808/g VS) showed that MOF-808 enriched hydrogen-producing bacteria and mixotrophic methanogens (i.e. Methanosarcina), and changed the methanogenic pathway via accelerating proton transfer between syntrophic anaerobes, especially improving the reduction of CO2 to methane, and resulting in highly efficient syntrophic methanogenesis. These findings, however, may provide an important reference for enhancing AD efficiency of WAS based on MOF-like materials.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
46
|
Song HL, Zhang C, Lu YX, Li H, Shao Y, Yang YL. Enhanced removal of antibiotics and antibiotic resistance genes in a soil microbial fuel cell via in situ remediation of agricultural soils with multiple antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154406. [PMID: 35276150 DOI: 10.1016/j.scitotenv.2022.154406] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Soil microbial fuel cells (MFCs) have been applied for the in situ remediation of soils polluted by single antibiotics. However, the investigation of only single antibiotic pollution has hindered MFC application in real-world soil remediation, where the effects of multiple antibiotics with similar chemical structures on the fate of antibiotics and their corresponding antibiotic resistance genes (ARGs) remain unknown. In this study, antibiotic removal rates, microbial community compositions, metabolite compositions, and ARG abundances were investigated in soil MFCs by adding two commonly used antibiotics (sulfadiazine, SDZ, and sulfamethoxazole, SMX), and comparing them with the addition of only a single antibiotic (SDZ). The antibiotic removal rate was higher in the soil MFC with addition of mixed antibiotics compared to the single antibiotic due to enhanced biodegradation efficiency in both the upper (57.24% of the initial antibiotic concentration) and lower layers (57.07% of the initial concentration) of the antibiotic-polluted soils. Bacterial community diversity in the mixed antibiotic conditions increased, and this likely resulted from the decreased toxicity of intermediates produced during antibiotic biodegradation. Moreover, the addition of mixed antibiotics led to lower risks of ARG release into soil environments, as reflected by higher abundances of host bacteria in the single antibiotic treatment. These results encourage the further development of soil MFC technology for in situ remediation of antibiotic-polluted soils.
Collapse
Affiliation(s)
- Hai-Liang Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, PR China
| | - Chen Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yu-Xiang Lu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Shao
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yu-Li Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
47
|
Nabi M, Liang H, Cheng L, Yang W, Gao D. A comprehensive review on the use of conductive materials to improve anaerobic digestion: Focusing on landfill leachate treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114540. [PMID: 35183937 DOI: 10.1016/j.jenvman.2022.114540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Globally, around 70% of waste is disposed of in open dumps or landfill sites, with the leachate generated from these sites containing high concentrations of organic and inorganic compounds, which will adversely affect aquatic environments if discharged without proper treatment. Anaerobic digestion of landfill leachate is an environmentally-friendly method that efficiently converts organic compounds into methane-rich biogas. However, the widespread application of anaerobic digestion has been hindered by poor system stability, low methanogenic activity and a high level of volatile fatty acids (VFAs) accumulation, increasing the operational costs of treatment. Conductive materials can be added to the digester to improve the performance of anaerobic digestion in landfill leachate treatment systems and studies reporting the use of conductive materials for this purpose are hereby thoroughly reviewed. The mechanism of microbial growth and enrichment by conductive materials is discussed, as well as the subsequent effect on waste metabolism, methane production, syntrophic relationships and interspecies electron transfer. The porous structure, specific surface area and conductivity of conductive materials play vital roles in the facilitation of syntrophic relationships between fermentative bacteria and methanogenic archaea. In addition, the mediation of direct interspecies electron transfer (DIET) by conductive materials increases the methane content of biogas from 16% to 60% as compared to indirect interspecies electron transfer (IIET) in conventional anaerobic digestion systems. This review identifies research gaps in the field of material-amended anaerobic systems, suggesting future research directions including investigations into combined chemical-biological treatments for landfill leachate, microbial management using conductive materials for efficient pollutant removal and the capacity for material reuse. Moreover, findings of this review provide a reference for the efficient and large-scale treatment of landfill leachate by anaerobic digestion with conductive materials.
Collapse
Affiliation(s)
- Mohammad Nabi
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
48
|
Chen L, Fang W, Chang J, Liang J, Zhang P, Zhang G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front Microbiol 2022; 13:860749. [PMID: 35432222 PMCID: PMC9005980 DOI: 10.3389/fmicb.2022.860749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is an effective and sustainable technology for resource utilization of organic wastes. Recently, adding conductive materials in anaerobic digestion to promote direct interspecies electron transfer (DIET) has become a hot topic, which enhances the syntrophic conversion of various organics to methane. This review comprehensively summarizes the recent findings of DIET mechanisms with different mediating ways. Meanwhile, the influence of DIET on anaerobic digestion performance and the underlying mechanisms of how DIET mediated by conductive materials influences the lag phase, methane production, and system stability are systematically explored. Furthermore, current challenges such as the unclear biological mechanisms, influences of non-DIET mechanisms, limitations of organic matters syntrophically oxidized by way of DIET, and problems in practical application of DIET mediated by conductive materials are discussed in detail. Finally, the future research directions for practical application of DIET are outlined.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
49
|
Jiang Z, Yu Q, Sun C, Wang Z, Jin Z, Zhu Y, Zhao Z, Zhang Y. Additional electric field alleviates acidity suppression in anaerobic digestion of kitchen wastes via enriching electro-active methanogens in cathodic biofilms. WATER RESEARCH 2022; 212:118118. [PMID: 35091224 DOI: 10.1016/j.watres.2022.118118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the feasibility that the suppression of acidity in anaerobic digestion of kitchen wastes could be alleviated with additional electric field. The results showed that, the accumulation of acidity seriously suppressed methanogenesis, and no methane was detected in the electrode-supplemented digester without applied voltage. In contrast, with applied voltages of 0.6-1.2 V, the suppression of acidity was alleviated, and methane production rates reached 558-669 L/kg-volatile suspended solid that were higher than that previously reported with carbon-based conductive materials, such as granular active carbon and biochar. Although the reduced peak with a potential ranging from -0.3 V to -0.2 V close to the reduced potential of CO2/CH4 detected via cyclic voltammetry, the maximum methane yield derived from cathodic reduction of CO2 only accounted for 0.13-0.33% of total methane yield with applied voltages. Microbial community analysis showed that, Methanosarcina species were specially enriched with applied voltages, accounting for ca. 40-70% of the communities. Together with the increase in the relative abundance of Syntrophomonas species, Methanosarcina species directly accepting electrons from Syntrophomonas species via DIET might be the primary reason for alleviating the suppression of acidity. Further investigations via three-dimensional excitation emission matrix and in-situ electrochemical Fourier transform infrared spectroscopy found that additional electric field stimulated the secretion of EPS primarily comprised of protein-like substance, which might mediate the EET between Syntrophomonas and Methanosarcina species.
Collapse
Affiliation(s)
- Zhihao Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yahui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
50
|
Paquete CM, Rosenbaum MA, Bañeras L, Rotaru AE, Puig S. Let's chat: Communication between electroactive microorganisms. BIORESOURCE TECHNOLOGY 2022; 347:126705. [PMID: 35065228 DOI: 10.1016/j.biortech.2022.126705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms can exchange electrons with other cells or conductive interfaces in their extracellular environment. This property opens the way to a broad range of practical biotechnological applications, from manufacturing sustainable chemicals via electrosynthesis, to bioenergy, bioelectronics or improved, low-energy demanding wastewater treatments. Besides, electroactive microorganisms play key roles in environmental bioremediation, significantly impacting process efficiencies. This review highlights our present knowledge on microbial interactions promoting the communication between electroactive microorganisms in a biofilm on an electrode in bioelectrochemical systems (BES). Furthermore, the immediate knowledge gaps that must be closed to develop novel technologies will also be acknowledged.
Collapse
Affiliation(s)
- Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-156 Oeiras, Portugal
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Lluís Bañeras
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - Amelia-Elena Rotaru
- Faculty of Natural Sciences, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|