1
|
Lee JTE, Bu J, Senadheera S, Tiong YW, Majid MBA, Yuan X, Wang CH, Zhang J, Ok YS, Tong YW. Methanosarcina thermophila bioaugmentation with biochar growth support for valorisation of food waste via thermophilic anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122869. [PMID: 39423614 DOI: 10.1016/j.jenvman.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Methanosarcina thermophila bioaugmentation on biochar as the growth support particle has previously been shown to enhance biomethane production of anaerobic digestion of food waste. In this paper, the duration of the beneficial effects is examined by a semi-continuous thermophilic regime starting from pooled digestate from a previous batch digestion. An additional experiment is performed to decouple the solids retention time, mitigating the washout effect and resulting in improved methane yield for 17 days. The second experiment is extended incorporating various permutations of biochar amendment, and the findings suggest that liquid soluble supplements are essential for prolonging the advantages. Experimental and microbiological analyses indicate that the biochar's enhancement is likely due to microbial factors like direct interspecies electron transfer (DIET) or syntrophic interactions, rather than physicochemical mechanisms.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Jie Bu
- Environmental Research Institute, National University of Singapore, Singapore
| | - Sachini Senadheera
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A∗STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | | | - Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jingxin Zhang
- China-US Low Carbon College, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
2
|
Deng M, Wang Y, Qiu S, Jiang Z, Jing B, Yang S, Jia X. Role of polyferric sulfate and ferric chloride on anaerobic fermentation of sludge from novel two-stage process for resource recovery. BIORESOURCE TECHNOLOGY 2024; 406:131014. [PMID: 38901746 DOI: 10.1016/j.biortech.2024.131014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Polyferric sulfate (PFS) and ferric chloride (FC) were compared for their efficiencies in capturing organic carbon and phosphorus, and their effects on the anaerobic fermentation process of sludge from a pilot-scale two-stage reactor were studied. Both PFS and FC promoted organic carbon and phosphorus capture. Further study revealed that PFS-based sludge with a dosage of 18 mg Fe/Lsewage showed a better volatile fatty acids (VFAs) production performance (202.97 ± 2.38 mg chemical oxygen demand (COD)/g volatile solids (VS)) than that of FC-based sludge (169.25 ± 1.56 mg COD/g VS). Besides, the high dosage of PFS effectively promoted the activities of the α-glucosidase and proteases. The dissimilatory iron reduction process enhanced sludge flocs disintegration and the conversion of carbohydrates and proteins to VFAs. Non-hydroxyapatite phosphorus predominated in the total phosphorus of all samples. This study contributes to developing strategies for optimizing iron-based sludge management and high-value product recovery.
Collapse
Affiliation(s)
- Mengxuan Deng
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yonglong Wang
- China Shanghai Architectural Design & Research Institute CO., LTD, Shanghai 200000, PR China
| | - Shan Qiu
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zhongqi Jiang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baojian Jing
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Siyi Yang
- China Metallurgical Construction Engineering Group CO., LTD, Chongqing 404100, PR China
| | - Xinghua Jia
- Longjiang Environmental Protection Group CO., LTD, Harbin 150090, PR China
| |
Collapse
|
3
|
Vijande C, Bevilacqua R, Balboa S, Carballa M. Altering operational conditions during protein fermentation to volatile fatty acids modifies the associated bacterial community. Microb Biotechnol 2024; 17:e14505. [PMID: 38932670 PMCID: PMC11195571 DOI: 10.1111/1751-7915.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the production of volatile fatty acids (VFA) through mixed culture fermentation (MCF) has been gaining attention. Most authors have focused on the fermentation of carbohydrates, while other possible substrates, such as proteins, have not been considered. Moreover, there is little information about how operational parameters affect the microbial communities involved in these processes, even though they are strongly related to reactor performance and VFA selectivity. Hence, this study aims to evaluate how microbial composition changes according to three different parameters (pH, type of protein and micronutrient addition) during anaerobic fermentation of protein-rich side streams. For this, two continuous stirred tank reactors (CSTR) were fed with two different proteins (casein and gelatine) and operated at different conditions: three pH values (5.0, 7.0 and 9.0) with only macronutrients supplementation and two pH values (5.0 and 7.0) with micronutrients' supplementation as well. Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the two reactors at all operational conditions, but their relative abundance varied with the parameters studied. At pH 7.0 and 9.0, the microbial composition was mainly affected by protein type, while at acidic conditions the driving force was the pH. The influence of micronutrients was dependent on the pH and the protein type, with a special effect on Clostridiales and Bacteroidales populations. Overall, this study shows that the acidogenic microbial community is affected by the three parameters studied and the changes in the microbial community can partially explain the macroscopic results, especially the process selectivity.
Collapse
Affiliation(s)
- Carlota Vijande
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Riccardo Bevilacqua
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sabela Balboa
- CRETUS, Department of Microbiology and ParasitologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Marta Carballa
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
4
|
Geng H, Xu Y, Dai X, Yang D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169313. [PMID: 38123094 DOI: 10.1016/j.scitotenv.2023.169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
5
|
Alam M, Dhar BR. Boosting thermophilic anaerobic digestion with conductive materials: Current outlook and future prospects. CHEMOSPHERE 2023; 343:140175. [PMID: 37714472 DOI: 10.1016/j.chemosphere.2023.140175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Thermophilic anaerobic digestion (TAD) can provide superior process kinetics, higher methane yields, and more pathogen destruction than mesophilic anaerobic digestion (MAD). However, the broader application of TAD is still very limited, mainly due to process instabilities such as the accumulation of volatile fatty acids and ammonia inhibition in the digesters. An emerging technique to overcome the process disturbances in TAD and enhance the methane production rate is to add conductive materials (CMs) to the digester. Recent studies have revealed that CMs can promote direct interspecies electron transfer (DIET) among the microbial community, increasing the TAD performance. CMs exhibited a high potential for alleviating the accumulation of volatile fatty acids and inhibition caused by high ammonia levels. However, the types, properties, sources, and dosage of CMs can influence the process outcomes significantly, along with other process parameters such as the organic loading rates and the type of feedstocks. Therefore, it is imperative to critically review the recent research to understand the impacts of using different CMs in TAD. This review paper discusses the types and properties of CMs applied in TAD and the mechanisms of how they influence methanogenesis, digester start-up time, process disturbances, microbial community, and biogas desulfurization. The engineering challenges for industrial-scale applications and environmental risks were also discussed. Finally, critical research gaps have been identified to provide a framework for future research.
Collapse
Affiliation(s)
- Monisha Alam
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biogas production involves various types of intricate microbial populations in an anaerobic digester (AD). To understand the anaerobic digestion system better, a broad-based study must be conducted on the microbial population. Deep understanding of the complete metagenomics including microbial structure, functional gene form, similarity/differences, and relationships between metabolic pathways and product formation, could aid in optimization and enhancement of AD processes. With advancements in technologies for metagenomic sequencing, for example, next generation sequencing and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic digestion. This review includes a brief introduction to the basic process of metagenomics research and includes a detailed summary of the various bioinformatics approaches, viz., total investigation of data obtained from microbial communities using bioinformatics methods to expose metagenomics characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis of anaerobic microbial community and biogas production, and (4) restriction and prediction of bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a summarized insight into bioinformatic tools and also promoting the future prospects of integrating humungous data with artificial intelligence and neural network software.
Collapse
|
7
|
Wu Q, Zou D, Zheng X, Liu F, Li L, Xiao Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157384. [PMID: 35843318 DOI: 10.1016/j.scitotenv.2022.157384] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
As a common biological engineering technology, anaerobic digestion can stabilize sewage sludge and convert the carbon compounds into renewable energy (i.e., methane). However, anaerobic digestion of sewage sludge is severely affected by antibiotics. This review summarizes the effects of different antibiotics on anaerobic digestion of sewage sludge, including production of methane and volatile fatty acids (VFAs), and discusses the impact of antibiotics on biotransformation processes (solubilization, hydrolysis, acidification, acetogenesis and methanogenesis). Moreover, the effects of different antibiotics on microbial community structure (bacteria and archaea) were determined. Most of the research results showed that antibiotics at environmentally relevant concentrations can reduce biogas production mainly by inhibiting methanogenic processes, that is, methanogenic archaea activity, while a few antibiotics can improve biogas production. Moreover, the combination of multiple environmental concentrations of antibiotics inhibited the efficiency of methane production from sludge anaerobic digestion. In addition, some lab-scale pretreatment methods (e.g., ozone, ultrasonic combined ozone, zero-valent iron, Fe3+ and magnetite) can promote the performance of anaerobic digestion of sewage sludge inhibited by antibiotics.
Collapse
Affiliation(s)
- Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China.
| |
Collapse
|
8
|
Ahmed B, Tyagi S, Rahmani AM, Kazmi AA, Varjani S, Tyagi VK. Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154621. [PMID: 35306085 DOI: 10.1016/j.scitotenv.2022.154621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Thermal-chemical pre-treatment has proven to facilitate the solubilization of organics and improvement in biogas generation from the organic fraction of municipal solid waste (OFMSW). However, the production of recalcitrant is inevitable when OFMSW is pretreated at high temperatures and alkali dosage. This study develops a strategy to use Fe3+ to reduce the formation of recalcitrant compounds, i.e., 5-HydroxyMethyl Furfural (5-HMF), furfurals, and humic acids (HA) during thermal-alkali pre-treatment. It was postulated that the formation of the recalcitrant compound during pre-treatment can be reduced by Fe3+ dosing to oxidize intermediates of Maillard reactions. A decrease in 5-HMF (45-49%) and furfurals (54-66%) was observed during Fe3+ (optimum dose: 10 mg/L) mediated thermal-alkali pre-treatment owing to the Lewis acid behavior of FeCl3. The Fe3+ mediated assays show a substantial improvement in VS removal (28%) and biogas yield, i.e., 31% (292 mL/gVSadded) in 150 °C + 3 g/L NaOH, 34% (316 mL/gVSadded) in 175 °C + 3 g/L NaOH, and 36% (205 mL/gVSadded) in 200 °C + 3 g/L NaOH assays, over their respective controls (no Fe3+ dosing). The reducing property of Fe3+ rendered a low ORP (-345 mV) in the system than control, which is beneficial to the anaerobic microbiome. Electrical conductivity (EC) also shows a three-fold increase in Fe3+ mediated assays over control, promoting direct interspecies electron transfer (DIET) amongst microbes involved in the electrical syntrophy. The score plot and loading plots from principal component analysis (PCA) showed that the results obtained by supplementing 10 mg/L Fe3+ at 150, 175, and 200 °C were significantly different. The correlation of the operational parameters was also mutually correlated. This work provides a techno-economically and environmentally feasible option to mitigate the formation of recalcitrant compounds and enhance biogas production in downstream AD by improving the degradability of pretreated substrate.
Collapse
Affiliation(s)
- Banafsha Ahmed
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Shivi Tyagi
- Department of Environmental Science, Gurukul Kangri University, Haridwar, India
| | - Ali Mohammad Rahmani
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Vinay Kumar Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
9
|
Ali MM, Mustafa AM, Zhang X, Lin H, Zhang X, Abdulbaki Danhassan U, Zhou X, Sheng K. Impacts of molybdate and ferric chloride on biohythane production through two-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue. BIORESOURCE TECHNOLOGY 2022; 355:127239. [PMID: 35489573 DOI: 10.1016/j.biortech.2022.127239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Biohythane production through one-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue has been hampered by high H2S production. Herein, two-stage anaerobic digestion was investigated with the addition of molybdate (MoO42-; 0.24-3.63 g/L) and ferric chloride (FeCl3; 0.025-5.4 g/L) to the dark fermentation stage (DF) to improve biohythane production. DF supplemented with 1.21 g/L MoO42- increased hydrogen yield by 14.6% over the control (68.39 ml/g-VSfed), while FeCl3 had no effect. Furthermore, the maximum methane yields of methanogenic fermentation were 524.8 and 521.6 ml/g-VSfed with 3.63 g/L MoO42- and 0.6 g/L FeCl3 compared to 466.07 ml/g-VSfed of the control. The maximum yields of biohythane and energy were 796.7 ml/g-VSfed and 21.8 MJ/kg-VSfed with 0.6 g/L FeCl3 when the sulfate removal efficiency was 66.7%, and H2S content was limited at 0.08%. Therefore, adding 0.6 g/L FeCl3 is the most beneficial in improving energy recovery and sulfate removal with low H2S content.
Collapse
Affiliation(s)
- Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Biological Engineering Department, Agricultural Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Avila R, García-Vara M, López-García E, Postigo C, López de Alda M, Vicent T, Blánquez P. Evaluation of an outdoor pilot-scale tubular photobioreactor for removal of selected pesticides from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150040. [PMID: 34798717 DOI: 10.1016/j.scitotenv.2021.150040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed. Four and two transformation products (TPs) were generated in the biodegradation process for acetamiprid and propanil, respectively. Then, the simultaneous removal of the pesticides was assessed in an outdoor pilot photobioreactor, operated with a hydraulic residence time of 8 days. During the steady-state, high removal efficiencies were observed for propanil (99%) and acetamiprid (71%). The results from batch experiments suggest that removal is mainly caused by algal-mediated biodegradation. Acetamiprid TPs raised throughout the operational time in the photobioreactor, while no propanil TP was detected at the pilot-scale. This suggests complete mineralization of propanil or residual formation of its TPs at concentrations below the analytical method detection limit. Aiming at biomass valorization, diverse microalgae harvesting methods were investigated for biomass concentration, and the effect of residual pesticides on the biogas yield was determined by biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by the digestion performance. The results highlight the potential of microalgae-based systems to couple nutrient removal, biomass production, micropollutant biodegradation, and biofuel production.
Collapse
Affiliation(s)
- Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Teresa Vicent
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Zhou J, Huang W, Qiu B, Hu Q, Cheng X, Guo Z. Core-shell structured polyaniline/polypyrrole composites promoted methane production from anaerobic sludge. CHEMOSPHERE 2022; 287:132296. [PMID: 34826944 DOI: 10.1016/j.chemosphere.2021.132296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The core-shell structured polypyrrole/polyaniline (PPy@PANI) were synthesized by in-situ polymerization method and were used as the conductive medium to enhance methane production from the anaerobic wastewater treatment. It was found that the PPy@PANI has a good performance on methane production from the anaerobic wastewater treatment, and it composites can improve the methane production rate and yield by 70.2% and 28.3% in the initial 4 h compared with the control group. A high methane production rate was achieved when the dosage of PPy@PANI was 0.6 g/L, which suggested that 0.6 g/L was the optimal dosage. Finally, the mechanisms involved in the improved methane production rate by the PPy@PANI were disclosed. The PPy@PANI can enrich the functional microorganisms to enhance both the degradation of organics and the electron transfer, which contributed to the improved methane production rate from the anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Wen Huang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Qian Hu
- College of Environment Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
13
|
Pasalari H, Gholami M, Rezaee A, Esrafili A, Farzadkia M. Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. CHEMOSPHERE 2021; 270:128618. [PMID: 33121817 DOI: 10.1016/j.chemosphere.2020.128618] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 05/07/2023]
Abstract
This paper review is aiming to comprehensively identify and appraise the current available knowledge on microbial composition and microbial dynamics in anaerobic digestion with focus on the interconnections between operational parameters and microbial community. We systematically searched Scopus, Web of Science, pubmed and Embase (up to August 2019) with relative keywords to identify English-language studies published in peer-reviewed journals. The data and information on anaerobic reactor configurations, operational parameters such as pretreatment methods, temperature, trace elements, ammonia, organic loading rate, and feedstock composition and their association with the microbial community and microbial dynamics were extracted from eligible articles. Of 306 potential articles, 112 studies met the present review objectives and inclusion criteria. The results indicated that both aceticlastic and hydrogenotrophic methanogenesis are dominant in anaerobic digesters and their relative composition is depending on environmental conditions. However, hydrogenotrophic methanogens are more often observed in extreme conditions due to their higher robustness compared to aceticlastic methangoens. Firmicutes and Bacteroidetes phyla are most common fermentative bacteria of the acidogenic phase. These bacteria secrete lytic enzymes to degrade organic matters and are able to survive in extreme conditions and environments due to their spores. In addition, among archaea Methanosaeta, Methanobacterium, and Methanosarcinaceae are found at high relative abundance in anaerobic digesters operated with different operational parameters. Overall, understanding the shifts in microbial composition and diversity as results of operational parameters variation in anaerobic digestion process would improve the stability and process performance.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
14
|
He ZW, Yang CX, Tang CC, Liu WZ, Zhou AJ, Ren YX, Wang AJ. Response of anaerobic digestion of waste activated sludge to residual ferric ions. BIORESOURCE TECHNOLOGY 2021; 322:124536. [PMID: 33341712 DOI: 10.1016/j.biortech.2020.124536] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to investigate the effects of residual ferric ions (FI), released from iron or its oxides for wastewater or waste activated sludge (WAS) treatment, on anaerobic digestion of WAS. Herein it was found that the anaerobic digestion process was greatly affected by FI dosages as well as FI distributions. The responses of performance and microorganism suggested that a low FI (e.g., 0.125 mmol/g volatile suspended solid (VSS)) enhanced methane production by 29.3%, and a medium FI (e.g., 0.3 mmol/g VSS) promoted short chain fatty acids accumulation to reach the maximum of 247 mg chemical oxygen demand /g VSS, conversely, a high FI (e.g., 0.9 mmol/g VSS) led to severe inhibition on acidogenesis and methanogenesis. The findings may provide some new insights for mechanism understanding on anaerobic digestion process influenced by iron or its oxides, as well as the disposal of WAS contained FI.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China.
| |
Collapse
|
15
|
Liu X, Wu Y, Xu Q, Du M, Wang D, Yang Q, Yang G, Chen H, Zeng T, Liu Y, Wang Q, Ni BJ. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. WATER RESEARCH 2021; 189:116645. [PMID: 33227607 DOI: 10.1016/j.watres.2020.116645] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Poly ferric sulfate (PFS), one of the typical inorganic flocculants widely used in wastewater management and waste activated sludge (WAS) dewatering, could be accumulated in WAS and inevitably entered in anaerobic digestion system at high levels. However, knowledge about its impact on methane production is virtually absent. This study therefore aims to fill this gap and provide insights into the mechanisms involved through both batch and long-term tests using either real WAS or synthetic wastewaters as the digestion substrates. Experimental results showed that the maximum methane potential and production rate of WAS was respectively retarded by 39.0% and 66.4%, whereas the lag phase was extended by 237.0% at PFS of 40 g per kg of total solids. Mechanism explorations exhibited that PFS induced the physical enmeshment and disrupted the enzyme activity involved in anaerobic digestion, resulting in an inhibitory state of the bioprocess of hydrolysis, acidogenesis, and methanogenesis. Furthermore, PFS's inhibition to hydrogenotrophic methanogenesis was much severer than that to acetotrophic methanogenesis, which could be supported by the elevated abundances of Methanosaeta sp and the dropped abundances of Methanobacterium sp in PFS-present digester, and probably due to the severe mass transfer resistance of hydrogen between the syntrophic bacteria and methanogens, as well as the higher hydrogen appetency of PFS-induced sulfate reducing bacteria. Among the derivatives of PFS, "multinucleate and multichain-hydroxyl polymers" and sulfate were unveiled to be the major contributors to the decreased methane potential, while the "multinucleate and multichain-hydroxyl polymers" were identified to be the chief buster to the slowed methane-producing rate and the extended lag time.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Tianjing Zeng
- Ecology and Environment Department of Hunan Provience, Changsha 410014, P.R. China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Xiao K, Abbt-Braun G, Horn H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. WATER RESEARCH 2020; 187:116441. [PMID: 33022515 DOI: 10.1016/j.watres.2020.116441] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) of sludge is a heterogeneous mixture of high to low molecular weight organic substances which is including proteinaceous compounds, carbohydrates, humic substances, lipids, lignins, organic acids, organic micropollutants and other biological derived substances generated during wastewater treatment. This paper reviews definition, composition, quantification, and transformation of DOM during different sludge treatments, and the complex interplay of DOM with microbial communities. In anaerobic digestion, anaerobic digestion-refractory organic matter, particularly compounds showing polycyclic steroid-like, alkane and aromatic structures can be generated after pretreatment. During dewatering, the DOM fraction of low molecular weight proteins (< 20,000 Dalton) is the key parameter deteriorating sludge dewaterability. During composting, decomposition and polymerization of DOM occur, followed by the formation of humic substances. During landfill treatment, the composition of DOM, particularly humic substances, are related with leachate quality. Finally, suggestions are proposed for a better understanding of the transformation and degradation of DOM during sludge treatment. Future work in sludge studies needs the establishment and implementation of definitions for sample handling and the standardization of DOM methods for analysis, including sample preparation and fractionation, and data integration. A more detailed knowledge of DOM in sludge facilitates the operation and optimization of sludge treatment technologies.
Collapse
Affiliation(s)
- Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
| |
Collapse
|
17
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
18
|
Liu W, Yang H, Ye J, Luo J, Li YY, Liu J. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review. BIORESOURCE TECHNOLOGY 2020; 311:123446. [PMID: 32402992 DOI: 10.1016/j.biortech.2020.123446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants face the problem of a shortage of carbon source for denitrification. Acidogenic fermentation is an effective method for recovering short-chain fatty acids (SCFAs) as a carbon source from sewage sludge. Herein, the most recent advances in SCFAs production from primary sludge and waste activated sludge are systematically summarised and discussed. New technologies and problems pertaining to the improvement in SCFAs availability in fermentation liquids, including removal of ammoniacal nitrogen and phosphate and extraction of SCFAs from fermentation liquids, are analysed and evaluated. Furthermore, studies on the use of recovered SCFAs as a carbon source for denitrification are reviewed. Based on the above summarisation and discussion, some conclusions as well as perspectives on future studies and practical applications are presented. In particular, the recovery of carbon source/bioenergy from sewage sludge must be optimised considering nutrient removal/recovery simultaneously.
Collapse
Affiliation(s)
- Wen Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiongjiong Ye
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
19
|
Wang M, Zhao Z, Zhang Y. Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge. WATER RESEARCH 2019; 163:114900. [PMID: 31362207 DOI: 10.1016/j.watres.2019.114900] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Fenton sludge (FS) generated from Fenton process with high contents of iron and organic contaminants is regarded as a hazardous waste that requires to be properly disposed. Considering that Fe(III) compounds could stimulate dissimilatory iron reduction (DIR) and enrich iron reducing bacteria (IRB) that utilized Fe(III) as electron acceptor to oxidize organic matters, FS was introduced in anaerobic digestion (AD) reactors for treating wastewater meanwhile disposing FS. Results showed that methane production and organic matters removal significantly increased with dosing FS from 0 to 2.4 g. Also, a majority of organic matters involved in FS was mineralized, including 38.5% of PAHs removal. Humic acids (HA) with redox-activity involved in FS might affect efficiency of DIR. After extracting HA from FS, the rate and the extent of Fe(III) reduction of FS decreased by 33.2% and 13.9%, respectively. Together with analysis of the electron exchange capacity of HA, it suggested that the HA involved in FS might serve as an electron shuttle to effectively promote DIR. The increase of sludge conductivity and the enrichment of IRBs in microbial communities with dosage of FS were in agreement with the above results.
Collapse
Affiliation(s)
- Mingwei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering Dalian University of Technology, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering Dalian University of Technology, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering Dalian University of Technology, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
20
|
Chemically Enhanced Primary Sludge as an Anaerobic Co-Digestion Additive for Biogas Production from Food Waste. Processes (Basel) 2019. [DOI: 10.3390/pr7100709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In order to overcome process instability and buffer deficiency in the anaerobic digestion of mono food waste (FW), chemically enhanced primary sludge (CEPS) was selected as a co-substrate for FW treatment. In this study, batch tests were conducted to study the effects of CEPS/FW ratios on anaerobic co-digestion (coAD) performances. Both soluble chemical oxygen demand (SCOD) and protease activity were decreased, with the CEPS/FW mass ratio increasing from 0:5 to 5:0. However, it was also found that the accumulation of volatile fatty acids (VFAs) was eliminated by increasing the CEPS/FW ratio, and that corresponding VFAs concentrations decreased from 13,872.97 to 1789.98 mg chemical oxygen demand per L (mg COD/L). In addition, the maximum value of cumulative biogas yield (446.39 mL per g volatile solids removal (mL/g VSsremoval)) was observed at a CEPS/FW ratio of 4:1, and that the tendency of coenzyme F420 activity was similar to biogas production. The mechanism analysis indicated that Fe-based CEPS relived the VFAs accumulation caused by FW, and Fe(III) induced by Fe-based CEPS enhanced the activity of F420. Therefore, the addition of Fe-based CEPS provided an alternative method for FW treatment.
Collapse
|
21
|
Liu S, Yang G, Fu J, Zhang G. Synchronously enhancing biogas production, sludge reduction, biogas desulfurization, and digestate treatment in sludge anaerobic digestion by adding K 2FeO 4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35154-35163. [PMID: 30328043 DOI: 10.1007/s11356-018-3438-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China
- Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou, 450046, China
- Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, 450046, China
| | - Guang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jinwei Fu
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Guangming Zhang
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
22
|
Lavergne C, Jeison D, Ortega V, Chamy R, Donoso-Bravo A. A need for a standardization in anaerobic digestion experiments? Let's get some insight from meta-analysis and multivariate analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:141-147. [PMID: 29807264 DOI: 10.1016/j.jenvman.2018.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
An important variability in the experimental results in anaerobic digestion lab test has been reported. This study presents a meta-analysis coupled with multivariate analysis aiming to assess the impact of this experimental variability in batch and continuous operation at mesophilic and thermophilic anaerobic digestion of waste activated sludge. An analysis of variance showed that there was no significant difference between mesophilic and thermophilic conditions in both continuous and batch conditions. Concerning the operation mode, the values of methane yield were significantly higher in batch experiment than in continuous reactors. According to the PCA, for both cases, the methane yield is positive correlated to the temperature rises. Interestingly, in the batch experiments, the higher the volatile solids in the substrate was, the lowest was the methane production, which is correlated to experimental flaws when setting up those tests. In continuous mode, unlike the batch test, the methane yield is strongly (positively) correlated to the organic content of the substrate. Experimental standardization, above all, in batch conditions are urgently necessary or move to continuous experiments for reporting results. The modeling can also be a source of disturbance in batch test.
Collapse
Affiliation(s)
- Céline Lavergne
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | - Valentina Ortega
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, 234000, Valparaíso, Chile
| | | |
Collapse
|
23
|
Wang J, Fang H, Jia H, Yang G, Gao F, Liu W. Effect of zero-valent iron and trivalent iron on UASB rapid start-up. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:749-757. [PMID: 29063397 DOI: 10.1007/s11356-017-0457-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
In order to realize the rapid start-up of upflow anaerobic sludge blanket (UASB) reactor, the iron ion in different valence state was added to UASB. The results indicated that the start-up time of R3 (FeCl3) was 48 h faster than that of R2 (zero-valent iron (ZVI)). It was because the FeCl3 could rapidly promote granulation of sludge as a flocculant. However, ZVI released Fe2+ through corrosion slowly, and then the Fe2+ increased start-up speed by enhancing enzyme activity and enriching methanogens. In addition, the ZVI and FeCl3 could promote hydrolysis acidification and strengthen the decomposition of long-chain fatty acids. The detection of iron ions showed that iron ions mainly existed in the sludge. Because the high concentration of Fe2+ could inhibit anaerobic bacteria activity, excess Fe3+ could be changed into iron hydroxide precipitation to hinder the mass transfer process of anaerobic bacteria under the alkaline condition. The FeCl3 was suitable to be added at the initial stage of UASB start-up, and the ZVI was more fitted to be used in the middle stage of reactor start-up to improve the redox ability.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongyan Fang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Fei Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
24
|
Zhao Z, Song X, Zhang Y, Zhao Y, Wang B, Wang Y. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems. CHEMOSPHERE 2017; 189:10-20. [PMID: 28922630 DOI: 10.1016/j.chemosphere.2017.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe3+ (5.6 mg L-1), iron powder (2.8 mg L-1), and CaCO3 powder (0.2 mg L-1) in influent as the adjusting agents, initial phosphorus source (PO43-) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe3+ and iron powder produced Fe2+, which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L-1.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China.
| | - Yinjiang Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Bodi Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| |
Collapse
|
25
|
Amen TW, Eljamal O, Khalil AM, Matsunaga N. Evaluation of nano zero valent iron effects on fermentation of municipal anaerobic sludge and inducing biogas production. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/67/1/012004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Chen Y, Jiang X, Xiao K, Shen N, Zeng RJ, Zhou Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift. WATER RESEARCH 2017; 112:261-268. [PMID: 28178608 DOI: 10.1016/j.watres.2017.01.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
In this study, a mixture of primary and wasted activated sludge was fermented in a semi-continuous reactor aiming for enhanced volatile fatty acids (VFAs) production. The reactor was subjected to a stepwise pH increase from 7 to 10 during approximately 130 days of operation. The result revealed that the maximum acidification was obtained at pH 8.9 (21%) resulting in the maximum production of VFAs (423.22 ± 25.49 mg COD/g VSS), while the maximum hydrolysis efficiency was observed at pH 9.9 (42%). The high pH was effective in releasing dissolved organic matter (DOM) including protein, carbohydrate, building blocks and low molecular weight (LMW) neutrals. More LMW DOMs were released than high molecular weight (HMW) DOMs fractions at higher pH. pH 9.9 favored hydrolysis of HMW DOMs while it did not enhance the acidogenesis of LMW DOMs. The microbial community analysis showed that the relative abundance of phyla Actinobacteria and Proteobacteria increased with the increased pH, which may lead to the maximum hydrolysis at pH 9.9. At pH 8.9, class Clostridia (59.16%) was the most dominant population where the maximum acidification (21%) was obtained. This suggested that the dominance of Clostridia was highly related to acidification extent. The relative abundance of Euryarchaeota decreased significantly from 58% to 2% with increased pH.
Collapse
Affiliation(s)
- Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xie Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Keke Xiao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
27
|
Zhao Y, Park HD, Park JH, Zhang F, Chen C, Li X, Zhao D, Zhao F. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2016; 216:808-16. [PMID: 27318158 DOI: 10.1016/j.biortech.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/12/2023]
Abstract
The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Fushuang Zhang
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chen Chen
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiangkun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fangbo Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
28
|
Choong YY, Norli I, Abdullah AZ, Yhaya MF. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. BIORESOURCE TECHNOLOGY 2016; 209:369-79. [PMID: 27005788 DOI: 10.1016/j.biortech.2016.03.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 05/28/2023]
Abstract
This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability.
Collapse
Affiliation(s)
- Yee Yaw Choong
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ismail Norli
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Mohd Firdaus Yhaya
- Bioresource, Paper and Coatings Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
29
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate. BIORESOURCE TECHNOLOGY 2016; 204:106-113. [PMID: 26773954 DOI: 10.1016/j.biortech.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongqi Shou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Zhang D, Yuan H, Yu B, Dai X, Huang X, Lou Z, Zhu N. Performance and microbial communities of a batch anaerobic reactor treating liquid and high-solid sludge at thermophilic conditions. RSC Adv 2016. [DOI: 10.1039/c6ra21111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HS-AD with TS of 20% achieved similar reactor utilization efficiency as that in L-AD, and enriched hydrogenotrophic methanogensMethanoculleus.
Collapse
Affiliation(s)
- Dongling Zhang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Bao Yu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Xiaoting Huang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Ziyang Lou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| |
Collapse
|
31
|
Huang XF, Shen Y, Wang YH, Liu JN, Peng KM, Lu LJ, Liu J. Enhanced biodiesel production from glucose-fed activated sludge microbial cultures by addition of nZVI and FeCl 3. RSC Adv 2016. [DOI: 10.1039/c6ra17659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addition of iron simultaneously promoted biodiesel production and biotechnical feasibility.
Collapse
Affiliation(s)
- Xiang-Feng Huang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Yi Shen
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Yi-Han Wang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Jia-Nan Liu
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Kai-Ming Peng
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Li-Jun Lu
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| | - Jia Liu
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Ministry of Education Key Laboratory of Yangtze River Water Environment
- The Collaborative Innovation Center for Regional Environmental Quality
- Tongji University
| |
Collapse
|
32
|
Chen Y, Yu B, Yin C, Zhang C, Dai X, Yuan H, Zhu N. Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv 2016. [DOI: 10.1039/c5ra24134k] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Electrical stimulation has been used conventionally for stimulation of microorganisms, and also as a promising technology to manage wastewater treatment by stimulating microbial metabolism.
Collapse
Affiliation(s)
- Ying Chen
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Bao Yu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Changkai Yin
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute
- Shanghai 200092
- China
| | - Xiaohu Dai
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
33
|
Yu B, Huang X, Zhang D, Lou Z, Yuan H, Zhu N. Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system. RSC Adv 2016. [DOI: 10.1039/c6ra02591a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
NZVI could promote hydrolysis-acidification, facilitate the release of biodegradable compounds and enrich hydrogenotrophic methanogenesis by Clostridia and Methanosarcina.
Collapse
Affiliation(s)
- Bao Yu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Xiaoting Huang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Dongling Zhang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Ziyang Lou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Yu B, Shan A, Zhang D, Lou Z, Yuan H, Huang X, Zhu N, Hu X. Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. BIORESOURCE TECHNOLOGY 2015; 189:154-161. [PMID: 25879183 DOI: 10.1016/j.biortech.2015.03.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
An investigation into the effect of ferric chloride (FeCl3) on the disinhibition of excessive volatile fatty acids (VFAs) in sludge thermophilic anaerobic digestion (AD) system was performed. The optimum dosing time of FeCl3 was tested with the time interval of 0 h, 36 h, 72 h, 108 h and 144 h. The maximum biogas production was obtained in the case of 72nd hour dosing group, and the biogas production potential was 293.13 ± 11.38 mL/gVS based on modified Gompertz predicted model with the maximum rate of 8.55 ± 0.38 mL/(gVS day), which was triple as that in the control group. More biodegradable organic matters were generated from sludge with FeCl3 additive and then consumed efficiently according to excitation-emission matrix (EEM) fluorescence spectra analysis in the dissolved organic matter (DOM). Acetic acid was the main inhibitor and synthetic effects occurred for the disinhibition of excessive VFAs with the additive of FeCl3, except to direct removal of acetic acid in the system.
Collapse
Affiliation(s)
- Bao Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aidang Shan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongling Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoting Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaofang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Wu Q, Guo W, Yang S, Luo H, Peng S, Ren N. Enhancement of volatile fatty acid production using semi-continuous anaerobic food waste fermentation without pH control. RSC Adv 2015. [DOI: 10.1039/c5ra21162j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study proposed a cost-effective and high-yield volatile fatty acid (VFA) production strategy using anaerobic food waste (FW) fermentation without pH control, which could be recommended for practical scale VFA production and FW treatment.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Simai Peng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|