1
|
Diniz BC, Wilfert P, Sorokin DY, van Loosdrecht MCM. Anaerobic digestion at high-pH and alkalinity for biomethane production: Insights into methane yield, biomethane purity, and process performance. BIORESOURCE TECHNOLOGY 2025; 429:132505. [PMID: 40220921 DOI: 10.1016/j.biortech.2025.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The role of high-pH conditions in anaerobic digestion (AD) has traditionally been confined to it's use in pre-treatment processes. However, operating AD at elevated pH and alkalinity offers significant advantages, including in-situ upgrading of biogas to biomethane. This study examines the potential and scalability of AD under these conditions (pH ∼ 9.3; alkalinity ∼ 0.5 eq/L). The substrate used was the alkaline waste generated from the extraction of extracellular polymeric substances (EPS) from aerobic granular sludge (AGS), and the inoculum used was a haloalkaliphile microbial community from soda lake sediments. To evaluate the system's performance, the organic loading rate (OLR) was incrementally increased. The highest methane production obtained was 8.4 ± 0.1 mL/day/gVSadded at a hydraulic retention time (HRT) of 15 days and an OLR of 1 kgVS/day/m3. At this loading rate, methanogenesis became the rate limiting conversion. The maximum volatile solids conversion was 48.1 ± 1.1 %. Throughout the reactor operation, methane purity in the biogas consistently exceeded 90 % peaking at 96.0 ± 0.2 %, showcasing the potential for in-situ biogas purification under these conditions. In addition, no ammonia inhibition was observed, even with free-ammonia (NH3) concentrations reaching up to 14 mM. This study underscores the potential of high-pH anaerobic digestion as a sustainable method for both waste treatment and energy recovery.
Collapse
Affiliation(s)
- Beatriz C Diniz
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Philipp Wilfert
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Labor für Siedlungswasserwirtschaft und Abfalltechnik, Fachbereich Bauwesen, Technische Hochschule Lübeck 23562 Lübeck, Germany
| | - Dimitry Y Sorokin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| |
Collapse
|
2
|
García-Fuentevilla L, Eugenio ME, Martín-Sampedro R, Ibarra D. Applicability of a laccase from the eucalypt wood endophytic fungus Hormonema sp. CECT-13092 for advanced bioethanol production. N Biotechnol 2025; 87:60-71. [PMID: 40057118 DOI: 10.1016/j.nbt.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 05/26/2025]
Abstract
This work studies, for the first time, the potential of a laccase from the endophyte fungus Hormonema sp. CECT-13092, compared to a laccase from the saprophyte fungus Trametes villosa, for delignification and detoxification of steam-exploded eucalypt to improve subsequent bioethanol production. Regarding laccase delignification, the use of Hormonema sp. and T. villosa laccases did not show evidence of delignification of steam-exploded material, and rather low glucose and xylose recoveries were obtained during saccharification assays of laccase-treated samples compared with their respective controls. With regard to laccase detoxification, the reduction of the total phenolic inhibitors content presents in steam-exploded material by both laccases (phenols removal of 47 % and 60 % by Hormonema sp. and T. villosa laccases, respectively), triggered the fermentation by Saccharomyces cerevisiae of laccase-treated samples when 0.2 g L-1 of inoculum was used during a simultaneous saccharification and fermentation (SSF) process. Moreover, when the inoculum was increased from 0.2 to 1.0 g L-1, both laccases shortened the yeast lag phase during the SSF process. Then, faster glucose consumption and ethanol production rates (ethanol productivity values of 0.25 and 0.28 g L-1 h-1 for T. villosa and Hormonema sp. laccases, respectively, compared to 0.02 g L-1 h-1 for control samples) were noticed. This fact proves the high potential of this new entophytic fungal laccase for bioethanol production enhancement, comparable to commercial laccases.
Collapse
Affiliation(s)
| | - María E Eugenio
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| | - Raquel Martín-Sampedro
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| |
Collapse
|
3
|
Bai X, Rebosura MJ, Jensen PD. Enhanced anaerobic digestion of lignocellulosic paunch waste using potassium hydroxide pre-treatment. BIORESOURCE TECHNOLOGY 2025; 425:132323. [PMID: 40024574 DOI: 10.1016/j.biortech.2025.132323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alkaline pre-treatment enhances the biological accessibility and methane recovery of lignocellulosic feedstocks during anaerobic digestion. This study investigates the impact of potassium hydroxide (KOH) pre-treatment on paunch (2.5 and 12 g per 100 g paunch TS for 24 hr at 22 °C) using biochemical methane potential tests and 5 L bench-scale CSTR bioreactors. BMP tests showed significant improvements in hydrolysis kinetics and methane yield. Continuous experiments validated these findings, with volatile solids destruction increasing from 33 % for raw paunch to 61 % for 12 % KOH pre-treated paunch. Methane yield was consistently enhanced with an increase of up to 150 % compared to raw paunch. Microbial analysis revealed a shift in dominant methanogens from Methanosaeta to Methanobacterium, in response to KOH pre-treatment. While the results highlight the potential of KOH pre-treatment to improve both degradability and methane recovery, challenges related to process stability were identified, emphasizing the need for further investigation to optimise operational conditions for full-scale applications.
Collapse
Affiliation(s)
- Xue Bai
- Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Mario Jr Rebosura
- Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul D Jensen
- Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Cedeno FRP, Olubiyo OJ, Ferreira S. From microbial proteins to cultivated meat for alternative meat-like products: a review on sustainable fermentation approaches. J Biol Eng 2025; 19:44. [PMID: 40369620 PMCID: PMC12077041 DOI: 10.1186/s13036-025-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
The global demand for protein is rapidly increasing due to population growth and changing dietary preferences, highlighting the need for sustainable alternatives to traditional animal-based proteins. This review explores cultivated meat and microbial alternative proteins, focusing on their potential to meet nutritional needs while mitigating environmental impacts. It also examines the production of cultivated meat as well as various sources of microbial proteins, including mycoproteins, bacterial proteins, and microalgae, highlighting their nutritional profiles, production methods, and commercial applications. This includes an evaluation of the state of commercialization of mycoproteins and the innovative use of agricultural and industrial by-products as substrates for microbial fermentation. The integration of microbial protein production with the bioenergy sector is evaluated as a relevant alternative to attain a synergetic effect between energy and food production systems. Ultimately, this work aims to underscore the importance of microbial proteins in advancing towards a more sustainable protein production system, offering insights into current challenges and future opportunities in the field of fermentation to produce alternative proteins.
Collapse
Affiliation(s)
- Fernando Roberto Paz Cedeno
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Olumide Joseph Olubiyo
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Sungil Ferreira
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA.
| |
Collapse
|
5
|
Prado ERL, Rial RC. Biohydrogen production from residual biomass: The potential of wheat, corn, rice, and barley straw - recent advances. BIORESOURCE TECHNOLOGY 2025; 432:132638. [PMID: 40355006 DOI: 10.1016/j.biortech.2025.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
This work reviews the potential of wheat, corn, rice, and barley straw for biohydrogen production, highlighting it as a promising solution for sustainable energy. We analyze the physicochemical properties of these straws, which are rich in carbohydrates and lignin, essential components for bioenergy production. Advanced pretreatment approaches, such as ultrasound, torrefaction, and electrohydrolysis, have proven effective in increasing biohydrogen yields. Research and development of fermentation technologies, such as dark fermentation and photofermentation, are crucial to improving process efficiency. Despite environmental and economic advantages, biohydrogen production faces significant challenges, including biomass conversion efficiency and economic viability. The infrastructure for the collection, transportation, and storage of agricultural residues also presents a challenge. This review explores the potential of wheat, corn, rice, and barley straw for biohydrogen production, emphasizing its role in sustainable energy generation. Biohydrogen production from agricultural residues is a viable alternative for the circular economy and environmental sustainability, contributing to waste reduction and climate change mitigation.
Collapse
Affiliation(s)
| | - Rafael Cardoso Rial
- Federal Institute of Mato Grosso do Sul, 79750-000, Nova Andradina, MS, Brazil.
| |
Collapse
|
6
|
Yi R, Zheng J, Xu Z, Wu J, Liu F, Zheng J, Li D, Han S, Yu Z. Klebsiella pneumoniae under xylose pressure: the growth adaptation, antimicrobial susceptibility, global proteomics analysis and role of XylA and XylB proteins. BMC Microbiol 2025; 25:257. [PMID: 40301709 PMCID: PMC12038955 DOI: 10.1186/s12866-025-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
Klebsiella pneumoniae can be cultured in medium with xylose as the sole carbon source. However, the effect of xylose exposure on its growth adaptation, virulence, antimicrobial susceptibility, and proteomic response remain unclear. Here, we show that low concentrations of xylose (≤ 2%) promote the planktonic growth of three K. pneumoniae isolates (K2044, EKP19, and EKP108) in a concentration-dependent manner, while 8% xylose consistently inhibits their planktonic growth. Notably, the xylose-induced isolate K2044-8Xyl-60G, when exposed to various xylose concentrations, exhibited the longest logarithmic growth phase and the highest optical density (OD) after logarithmic growth, compared to K2044. In contrast, the xylose-induced isolates EKP19 and EKP108 did not successfully reshape growth adaptation under persistent xylose pressure compared to K2044. Additionally, while the growth adaptation of K2044-8Xyl-60G under xylose pressure was confirmed, no amino acid mutations were detected in the functional proteins of this xylose-induced isolate, suggesting that persistent xylose pressure does not cause nonsense mutations in the bacterial genome. Xylose exposure reduced the gentamicin minimum inhibitory concentration (MIC) in all three K. pneumoniae isolates (K2044, EKP108, and EKP19) and their xylose-induced derivatives. In a Galleria mellonella infection model, significantly decreased virulence was observed in the xylose-induced isolates of K2044 and EKP19. Proteomic analysis of K2044-8Xyl-60G treated with 8% xylose revealed upregulation of proteins involved in glycolysis, the pentose phosphate pathway, and transmembrane transport. We also constructed K2044-ΔxylA (with deletion of the xylA gene) and K2044-ΔxylB (with deletion of the xylB gene). Our data showed that K2044-ΔxylA exhibited enhanced planktonic growth compared to K2044 when exposed to xylose concentrations of ≥ 4%, while K2044-ΔxylB displayed significantly reduced growth capacity regardless of xylose exposure. The virulence of K2044-ΔxylA was also significantly reduced, as demonstrated by the increased survival rates in G. mellonella infection models. Additionally, xylose exposure strongly enhanced membrane depolarization in both K2044-ΔxylA and K2044-ΔxylB compared to the wild-type K2044. Proteomic analysis indicated that the deletion of xylA primarily affected functional proteins related to ribosomes, xylose transmembrane transporters and capsular polysaccharides, while the deletion of xylB impacted the expression of xylose metabolism-related proteins. In conclusion, xylose exposure can reshape the growth adaptation, virulence, and antimicrobial susceptibility of K. pneumoniae in an isolate-specific manner, with xylA playing a more critical role than xylB under high xylose concentrations.
Collapse
Affiliation(s)
- Ruolan Yi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiaoyang Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhichao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China
| | - Jiayan Wu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China
| | - Fangfang Liu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China
| | - Duoyun Li
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital and Affiliated Nanshan Hospital of Shenzhen University, Shenzhen, 518052, China.
| |
Collapse
|
7
|
Camargos CM, Yang L, Jackson JC, Tanganini IC, Francisco KR, Ceccato-Antonini SR, Rezende CA, Faria AF. Lignin and Nanolignin: Next-Generation Sustainable Materials for Water Treatment. ACS APPLIED BIO MATERIALS 2025; 8:2632-2673. [PMID: 39933070 PMCID: PMC12015965 DOI: 10.1021/acsabm.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Water scarcity, contamination, and lack of sanitation are global issues that require innovations in chemistry, engineering, and materials science. To tackle the challenge of providing high-quality drinking water for a growing population, we need to develop high-performance and multifunctional materials to treat water on both small and large scales. As modern society and science prioritize more sustainable engineering practices, water treatment processes will need to use materials produced from sustainable resources via green chemical routes, combining multiple advanced properties such as high surface area and great affinity for contaminants. Lignin, one of the major components of plants and an abundant byproduct of the cellulose and bioethanol industries, offers a cost-effective and scalable platform for developing such materials, with a wide range of physicochemical properties that can be tailored to improve their performance for target water treatment applications. This review aims to bridge the current gap in the literature by exploring the use of lignin, both as solid bulk or solubilized macromolecules and nanolignin as multifunctional (nano)materials for sustainable water treatment processes. We address the application of lignin-based macro-, micro-, and nanostructured materials in adsorption, catalysis, flocculation, membrane filtration processes, and antimicrobial coatings and composites. Throughout the exploration of recent progress and trends in this field, we emphasize the importance of integrating principles of green chemistry and materials sustainability to advance sustainable water treatment technologies.
Collapse
Affiliation(s)
- Camilla
H. M. Camargos
- Departamento
de Artes Plásticas, Escola de Belas Artes, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Liu Yang
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Jennifer C. Jackson
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Isabella C. Tanganini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Kelly R. Francisco
- Departamento
de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Sandra R. Ceccato-Antonini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Camila A. Rezende
- Departamento
de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Andreia F. Faria
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| |
Collapse
|
8
|
Suhag S, Hooda V. Epoxy-Affixed ZIF-8/CS/Cellulase: a Sustainable Approach for Hydrolysis of Agricultural Waste to Reducing Sugars. Appl Biochem Biotechnol 2025; 197:2681-2712. [PMID: 39792338 DOI: 10.1007/s12010-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.01 ± 0.01% of its specific activity. The bare and cellulase-bound supports was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The immobilized enzyme exhibited optimal activity at pH 5.5 and a temperature of 70 ℃. The efficiency, stability and reactivity of the enzyme improved after immobilization, as evidenced by a decrease in activation energy, enthalpy and Gibbs free energy along with an increase in entropy change. The epoxy-affixed ZIF-8/CS/cellulase strip was successfully employed for rice husk hydrolysis achieving an impressive conversion efficiency of 95%. The method demonstrated a linear range from 0.1 to 0.9% (0.1 × 10-2 to 0.9 × 10-2 mg/ml) and exhibited a strong correlation (R2 = 0.998) with the widely adopted 3, 5-dinitrosalicylic acid method. The epoxy/ZIF-8/CS bound cellulase exhibited remarkable thermal stability, retaining 100% of its activity at 70 °C, in contrast to just 53% for the free enzyme and displayed a half-life of 21 days after storage at 4 °C compared to 9 days for the free enzyme. Furthermore, it retained over 95% activity after 12 h at pH levels of 4.5 and 5.5 and showcased excellent reusability, maintaining activity over 25 cycles. Overall, this method offers high conversion efficiency and selectivity under benign conditions, with no undesirable by-products, making it a cost-effective solution for the routine hydrolysis of lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
9
|
Marrocchi A. A review of lignin as a precursor for macromonomers: Challenges and opportunities in utilizing agri-food waste. Int J Biol Macromol 2025; 300:140332. [PMID: 39870264 DOI: 10.1016/j.ijbiomac.2025.140332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Lignocellulosic biomass, rich in cellulose, hemicellulose, and lignin, represents a promising renewable resource. However, lignin, a complex polyphenolic material, remains underutilized despite its surplus production. This review focuses on the conversion of lignin into macromonomers for polymer production. While lignin's potential in polymer science is gaining recognition, studies focusing specifically on lignin-based macromonomers remain limited. This review addresses this gap by discussing the synthesis of lignin macromonomers and their role in polymer synthesis. It also highlights the potential and challenges of sourcing lignin from agri-food waste, with the goal of inspiring advancements and fostering innovation in the development of more sustainable and circular polymer systems.
Collapse
Affiliation(s)
- Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
10
|
Yuan S, Li B, Chang L, Guo H, Ding L, Hou J, Zhang S, Zang C, Zheng L, Yang W, Guan H. Characterization and antioxidant activity of differentiated fractionation lignin from corn stover. Int J Biol Macromol 2025; 303:140538. [PMID: 39894110 DOI: 10.1016/j.ijbiomac.2025.140538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Lignin contains many chemical functional groups with multiple biological activities. However, the heterogeneity of lignin such as complex structure and high polydispersity, and poor dissolution performance hinders its value-added application. In this study, it was found that there was a significant difference in the solubility of the chemical components of corn stover alkali-extracted lignin-carbohydrate complex (CSALCC) in a 0.6 M NaHCO3 solution. Herein, CSALCC was fractionated using a 0.6 M NaHCO3 solution, hot water, acid precipitation, and macroporous adsorption resin D101 column chromatography to afford fraction F1-1, F2, and F3-1. To demonstrate the improvement in composition, water solubility and antioxidant activity of the fractions. The characterization techniques UV, FTIR, NMR, TGA, SDS-PAGE and GPC were employed. Antioxidant activities were evaluated by ABTS, ORAC and ferric reducing power assay. F1-1 consists mainly of hemicellulose and is soluble in deionized water. F2 is a more water-soluble lignin than CSALCC, which is conducive to the development of value-added products of lignin in aqueous systems. F3-1 was acidic-soluble lignin with the highest total polyphenol content of all fractions, and exhibited higher water solubility, antioxidant properties and UV absorption. F3-1 may have potential application in cosmetics, pharmaceuticals, the food processing field.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Boyu Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Liya Chang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Hao Guo
- Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Lin Ding
- Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Jiajun Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Shenglong Zhang
- Heilongjiang Guohong Energy Saving and Environmental Protection Co., Ltd., Harbin, PR China
| | - Chuangang Zang
- Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Long Zheng
- Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Wenqin Yang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China; Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China.
| | - Hong Guan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China; Department of Scientific Research, Research Center of Microecological Engineering Technology, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
11
|
Tang Y, Ju X, Chen X, Li L. Advances in the biological production of sugar alcohols from biomass-derived xylose. World J Microbiol Biotechnol 2025; 41:110. [PMID: 40148723 DOI: 10.1007/s11274-025-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.
Collapse
Affiliation(s)
- Yue Tang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xiaobao Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China.
| |
Collapse
|
12
|
Fareed SZ, Tangjaidee P, Khumsap T, Klangpetch W, Phongthai S, Kanpiengjai A, Khanongnuch C, Unban K. Xylooligosaccharides from Barley Malt Residue Produced by Microwave-Assisted Enzymatic Hydrolysis and Their Potential Uses as Prebiotics. PLANTS (BASEL, SWITZERLAND) 2025; 14:769. [PMID: 40094717 PMCID: PMC11901517 DOI: 10.3390/plants14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Barley malt residue (BMR) was subjected to microwave-assisted enzymatic hydrolysis to evaluate its potential as a raw material to produce xylooligosaccharides (XOS) suitable for use as a prebiotic. The influent factors on XOS production, microwave power, exposure time, and xylanase dosage were ascertained with response surface methodology based on Box-Behnken design (BBD). The fitted models of XOS and xylose yields were in good agreement with the experimental results. Using a microwave power of 1235.1 W, a 6 min exposure time, and a xylanase concentration of 89.12 U/g substrate gave the highest yield of XOS: 208.05 mg/g substrate at 4 h of enzyme incubation time. Based on the product composition, BMR-XOS purification by Saccharomyces cerevisiae treatment was superior to the process of activated carbon adsorption and ethanol precipitation treatment and was selected for further experiments. Thin-Layer Chromatography (TLC) and high-performance liquid chromatography (HPLC) clearly elucidated the oligosaccharide compositions, and the result of Fourier Transform Infrared Spectroscopy (FTIR) confirms the molecular structure and sugar components of achieved BMR-XOS. In vitro fermentation of BMR-XOS obtained from this study by the selected probiotics, Lactococcus lactis TISTR 1401, Levicaseibacillus brevis FS 2.1, Lactobacillus casei TISTR 1463, showed similar prebiotic activity compared with the commercial XOS, galactooligosaccharides (GOS), xylose, and glucose (control). In conclusion, the present study was successful in establishing the use of barley malt residue for the extraction of xylan and XOS, which could be further used as a prebiotic.
Collapse
Affiliation(s)
- Shah Zaib Fareed
- Master’s Degree Program in Food Science and Technology (International Program), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pipat Tangjaidee
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (T.K.); (W.K.); (S.P.)
| | - Tabkrich Khumsap
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (T.K.); (W.K.); (S.P.)
| | - Wannaporn Klangpetch
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (T.K.); (W.K.); (S.P.)
| | - Suphat Phongthai
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (T.K.); (W.K.); (S.P.)
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (T.K.); (W.K.); (S.P.)
| |
Collapse
|
13
|
Ly TB, Nguyen DDB, Trinh AMH, Tran NTT, Truong THM, Le KA, Le HV, Le PK. Lignin nano/micro-particles from agricultural biomasses: Developing direct precipitation for integrated biorefinery. BIORESOURCE TECHNOLOGY 2025; 419:132025. [PMID: 39746381 DOI: 10.1016/j.biortech.2024.132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation. By combining with the pretreatment steps, direct one-pot lignin micro-/nano-particle recovery can be achieved using the lignin-containing black liquor or organosolv liquor. These lignin micro-/nano-particles can then be applied as high-value functional products in cosmetics, pharmaceuticals, environmental remediation, and energy sectors. The systematic evaluation of lignin micro-/nano-particles recovery from agricultural biomasses in this review can support the full utilization of these natural resources to aim towards a circular agriculture.
Collapse
Affiliation(s)
- Tuyen B Ly
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Dat D B Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Anh M H Trinh
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Nhi T T Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thi H M Truong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kien A Le
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Phung K Le
- CIRTECH Institute, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Miao G, Wong JL, Chew JJ, Khaerudini DS, Sunarso J, Xu F. Deep eutectic solvent pretreatment of oil palm biomass: Promoted lignin pyrolysis and enzymatic digestibility of solid residues. Int J Biol Macromol 2025; 293:138847. [PMID: 39725101 DOI: 10.1016/j.ijbiomac.2024.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.56 % and 95.63 %, respectively, for EFB and 75.95 % and 88.60 %, for MSF. Uncondensed lignin enriched with 71.79-81.61 % of β-O-4 bonds was obtained from EFB and MSF using ChCl/OA/EG. 2D HSQC NMR and the density functional theory calculation confirmed that substituting the lignin Cα position by ethylene glycol changed the local potentials of the β-O-4 bonds, impeding the attack of protons (H+). The higher β-O-4 linkage content in ChCl/OA/EG-Ls led to the formation of several oxygenated alkyl methoxy phenols and alkyl methoxy phenols were promoted during the pyrolysis. Moreover, molecular dynamics simulations showed that the main factor affecting lignin extraction and dissolution in this study was the diffusion coefficient of lignin in DESs.
Collapse
Affiliation(s)
- Guohua Miao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jung Lin Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Jiuan Jing Chew
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Deni Shidqi Khaerudini
- Research Center for Advanced Materials, National Research and Innovation Agency, Bld. 440 Kawasan Puspiptek Serpong, South Tangerang 15314, Banten, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Arruda GL, Raymundo MTFR, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, da Silva SS, Mussatto SI, Santos JC. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol 2025; 45:393-412. [PMID: 38817002 DOI: 10.1080/07388551.2024.2349581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.
Collapse
Affiliation(s)
- Gabriel L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | | - Mónica M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Vinícius P Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Fanny M Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Carina A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Júlio C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| |
Collapse
|
16
|
Toghiani J, Fallah N, Nasernejad B, Mahboubi A, Taherzadeh MJ, Afsham N. Production of protein-rich fungal biomass from pistachio dehulling waste using edible Neurospora intermedia. Sci Rep 2025; 15:5873. [PMID: 39966440 PMCID: PMC11836291 DOI: 10.1038/s41598-024-81941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 02/20/2025] Open
Abstract
Pistachio dehulling waste, known as Pistachio byproduct mixture (PBM), is a valuable resource that is often overlooked. An effective sustainable approach involves utilizing this agricultural waste through a fermentation process using edible filamentous fungi, demonstrating potential applications in nutrition and animal feed. The focus of this study was on converting PBM extract obtained from a hot water extraction pre-treatment into a protein-rich fungal biomass of Neurospora intermedia. The optimal conditions for growth were achieved at 72 h, pH 5.5, and 30 °C which are achieved by one-factor-at-a-time approach (OFAT), resulting in 6.7 g/L of dried fungal biomass, with a protein content of 20.4%. The conversion efficiency, expressed as grams of fungal biomass per gram of initial Total COD, was 0.37 g/g, highlighting the significant potential of PBM extract with high COD levels and low sugar content for fermentation processes. Additionally, an investigation was carried out to assess the impact of inoculation method, culture adaptation, COD/N ratio, and pH control on fungal biomass growth during cultivation. The results of optimal conditions with response of fungal biomass growth showed production of 0.44, 0.45, and 0.49 g of fungal biomass per gram of initial total COD, with protein contents of 20.2%, 27.1%, and 18.6%, respectively, leading to improved fungal biomass yield. The resulting protein-rich fungal biomass with a focus on the biorefinery platform to complete the value-added cycle, holds promise for applications in various sectors including food, animal feed, biochemical, and biomaterial industries.
Collapse
Affiliation(s)
- Javad Toghiani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | | | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| |
Collapse
|
17
|
Kaur J, Taggar MS, Kalia A, Sanghera GS, Khatkar SK, Vashisht P, Singh L. Assessment of the chemical pre-treatment methods for the delignification of sugarcane bagasse. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 39956147 DOI: 10.1080/09593330.2025.2464265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
For the extraction of sugars and their subsequent conversion into ethanol, removing lignin from sugarcane bagasse is a major challenge attributed to its recalcitrant nature. This study compares the efficacy of green deep eutectic solvents with conventional acid/alkali pre-treatments for the delignification of sugarcane bagasse. Among different deep eutectic solvent pre-treatments, the maximum removal of lignin i.e. 77.37% was reported when bagasse was treated with choline chloride: formic acid (1:2) for 6 h. The comparison between deep eutectic solvents and conventional acid/alkali pretreatments revealed that acid (H2SO4) pre-treatment showed no significant reduction in lignin content. However, the alkaline pre-treatment with 1 M NaOH for 60 min resulted in significant removal of lignin content (83.17%) from bagasse compared to deep eutectic solvent pre-treatment. Fourier transform infrared spectroscopy and scanning electron microscopic results of bagasse indicated significant structural alterations after the pre-treatment. The saccharification of alkali-pretreated bagasse with in-house cellulase resulted in a maximum reducing sugar concentration of 54.50 g/L with a hydrolytic efficiency of 67.01%. The batch fermentation of bagasse hydrolysate with Saccharomyces cerevisiae resulted in an ethanol concentration of 9.55 g/L with a fermentation efficiency of 53.81%. This study made a median attempt to identify an effective pre-treatment method to delignifying sugarcane bagasse, ultimately enhancing the enzymatic accessibility and increasing the efficiency of cellulose hydrolysis into fermentable sugars.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | | | - Sunil Kumar Khatkar
- Department of Dairy Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | | |
Collapse
|
18
|
Premjet D, Premjet S. Enhanced Sugar and Bioethanol Production from Broom Grass via NaOH-Autoclave Pretreatment. Polymers (Basel) 2025; 17:266. [PMID: 39940469 PMCID: PMC11820400 DOI: 10.3390/polym17030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The effective utilization of nonfood biomass for bioethanol production represents a promising strategy for sustainable energy development. Moreover, limited research has been conducted on broom grass (Thysanolaena latifolia) as a potential feedstock for bioethanol production, particularly regarding the effects of NaOH autoclave pretreatment on its enzymatic digestibility and fermentability. This study optimized sodium hydroxide (NaOH) pretreatment combined with autoclaving to enhance the enzymatic digestibility of broom grass biomass. The effects of NaOH concentration (1-4%) and temperature (110-130 °C) on biomass composition, structural features, and enzymatic hydrolysis were systematically evaluated. Pretreatment with 2% NaOH at 120 °C emerged as optimal, achieving 74.7% lignin removal and 93.2% glucan recovery, thereby significantly improving enzymatic hydrolysis efficiency (88.0%) and glucose recovery (33.3%). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that these improvements were attributed to the increased surface porosity and the selective removal of amorphous components while maintaining cellulose crystallinity. The pretreated biomass hydrolysate exhibited excellent bioethanol production. Fermentation using Saccharomyces cerevisiae TISTR 5339 achieved an 86.4% ethanol conversion rate, yielding 147 g of bioethanol per 1000 g of pretreated biomass and representing a 2.6-fold increase compared to untreated feedstock. These findings demonstrate the potential of the NaOH autoclave pretreatment in enhancing bioethanol production from broom grass biomass, aiding the advancement of sustainable and cost-effective lignocellulosic biorefinery processes. The utilization of broom grass for bioethanol production presents an opportunity to valorize this multifaceted plant and expand its potential beyond its traditional uses.
Collapse
Affiliation(s)
- Duangporn Premjet
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Siripong Premjet
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
19
|
Sun J, Zhang L, Loh KC. Revisiting alkali pretreatment to transform lignocellulose fermentation with integration of bioprocessible lignin. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:82-90. [PMID: 39615289 DOI: 10.1016/j.wasman.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
This study emphasized the synergistic production of bioprocessible lignin and carbohydrates during a sequential liquid hot water and alkali pretreatment of lignocellulose, facilitating their subsequent individual fermentation. Increasing the dose of alkaline lignin from 0 to 8 g/L inhibited cell growth in anaerobic digestion, with varying levels of inhibition observed in the following order: hydrolytic bacteria < acidogens < acetogens. Alkali pretreatment was adapted to maximize yields of bioprocessible lignin liquor without compromising utilization of the carbohydrates. Increasing the NaOH dose from 50 to 200 mg/g-feedstock monotonically improved lignin yields, but further increases in alkali loading led to a decline in lignin recovery. Volatile fatty acids production from anaerobic digestion of the carbohydrate moiety consistently increased with higher NaOH doses. The optimal conditions for maximizing lignin yields were determined to be 105 °C for 30 min, with NaOH loading in the range of 150-200 mg/g-feedstock, resulting in approximately 80 % lignin recovery, of which 35 % was biologically utilizable. Liquid hot water treatment prior to alkali pretreatment was confirmed as necessary to preserve carbohydrates of 0.1 g/g-feedstock at a low temperature of 70 °C. These findings are crucial for economically producing bioprocessible lignin without carbohydrate loss, a key step towards achieving full lignocellulose valorization.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore
| | - Le Zhang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore.
| |
Collapse
|
20
|
Shaikh-Ibrahim A, Curci N, De Lise F, Sacco O, Di Fenza M, Castaldi S, Isticato R, Oliveira A, Aniceto JPS, Silva CM, Serafim LS, M Krogh KBR, Moracci M, Cobucci-Ponzano B. Carbohydrate conversion in spent coffee grounds: pretreatment strategies and novel enzymatic cocktail to produce value-added saccharides and prebiotic mannooligosaccharides. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:2. [PMID: 39773291 PMCID: PMC11705863 DOI: 10.1186/s13068-024-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications. Notably, they are rich in carbohydrates, primarily galactomannan, arabinogalactan type II, and cellulose. Within the framework of a circular bioeconomy, the targeted degradation of these polysaccharides via a tailored cocktail of carbohydrate-active enzymes offers a promising strategy for producing high-value saccharides from coffee waste. RESULTS In this study, various mild pretreatments were evaluated to increase the enzyme accessibility of SCG-derived biomass, reduce lignin content, and minimize hemicellulose loss. Thermostable enzymes were selected to construct an enzymatic cocktail specifically targeting cellulose and hemicelluloses in pretreated SCGs. The approach used achieved a conversion of 52% of the polysaccharide content to oligo- and monosaccharides, producing 17.4 mg of reducing sugars and 5.1 mg of monosaccharides from 50 mg of SCG. Additionally, microwave pretreatment followed by the application of a thermostable endo β-mannanase resulted in the production of 62.3 mg of mannooligosaccharides from 500 mg of SCG. In vitro experiments demonstrated that the produced mannooligosaccharides exhibited prebiotic activity, promoting the growth and biofilm formation of five probiotic bacterial strains. CONCLUSIONS This study highlights an effective strategy for the valorization of SCG polysaccharides through mild pretreatment and customized enzymatic cocktails in a circular bioeconomic context. The production of both monosaccharides and oligosaccharides with prebiotic activity illustrates the versatility and commercial potential of SCG as a substrate for high-value saccharides. Furthermore, the use of mild pretreatment methods and thermostable enzymes minimizes chemical inputs and energy demands, aligning with sustainable processing practices. The ability to selectively target and degrade specific polysaccharides within SCG not only enhances the yield of desirable products, but also preserves key structural components, reducing waste and promoting resource efficiency.
Collapse
Affiliation(s)
- Ali Shaikh-Ibrahim
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, P.O. Box 707, Nablus, Palestine
| | - Nicola Curci
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
| | - Federica De Lise
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
| | - Oriana Sacco
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - André Oliveira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - José P S Aniceto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos M Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luísa Seuanes Serafim
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Marco Moracci
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
21
|
MariaJoseph A, Okhawilai M, Rajendran S, Pattananuwat P. Waste lignocellulosic biomass-derived graphitic carbon encased bimetallic nickel‑palladium oxide nanofibers for efficient organic dye pollutant removal and antibacterial actions. Int J Biol Macromol 2025; 284:137655. [PMID: 39561821 DOI: 10.1016/j.ijbiomac.2024.137655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
A one-stone-for-three-bird strategy comprising lignocellulose waste management, photocatalytic toxic organic dye degradation, and anti-bacterial activity has been demonstrated using waste coconut coir derived carbon-supported NiO/PdO (NiO/PdO@C) nanocomposite. The formation of interconnected fibrous morphology with intact formation of face-centered cubic NiO and tetragonal PdO within the graphitic carbon shell in NiO/PdO@C was identified from various structural and morphological analyses. Additionally, the elemental mapping and high magnification transmission electron microscopy analyses observed the homogeneous distribution of bimetallic oxides and their complete coverage by multilayered carbon shell. After systematic structural and morphological analyses, the prepared materials were exploited as photocatalysts for the degradation of rhodamine 6G dye. The importance of NiO and PdO heterostructure formation toward overall photocatalytic activity was analyzed by performing catalytic efficiency of individual NiO@C and PdO@C nanostructures and achieving the dye removal efficiencies of 44 % and 34 %, respectively. By integrating NiO and PdO, the electron-hole charge separation was greatly increased while the electron-hole recombination was decreased, and thereby NiO/PdO@C-equipped catalysis degraded 94 % of rhodamine 6G dye within 20 min. Furthermore, similar to photocatalytic activity, the NiO/PdO@C also exhibited exceptional anti-bacterial activity against Klebsiella pneumonia (K. pneumonia), Pseudomonas aeruginosa (P. aeruginosa), and Staphylococcus aureus (S. aureus) bacteria.
Collapse
Affiliation(s)
- AngelaaLincy MariaJoseph
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saravanan Rajendran
- Instituto de Alta Investigacion, Universidad de Tarapacá, Arica 1000000, Chile
| | - Prasit Pattananuwat
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand; Photocatalysts for Clean Environment and Energy Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Yang S, Luo J, Gao Y, Wang S, Zhang Y, Wang Y, Ge P, Li W, Zheng Y, Cui J, Fu Y, Pan H. Experimental Study on the Effects of Washing Time, Washing Temperature, and Particle Size on the Combustion and Ash Formation Characteristics of Rice Husk. ACS OMEGA 2024; 9:50705-50719. [PMID: 39741802 PMCID: PMC11683596 DOI: 10.1021/acsomega.4c08820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
There are many problems in the direct combustion of biomass, such as low combustion efficiency and easy slagging. In this paper, rice husk (RH) was taken as the research object, and the effects of different washing pretreatment conditions (washing time (WTI), washing temperature (WTE), and particle size) on the combustion characteristics and ash formation characteristics were discussed. The results show that the combustion characteristics of RH were significantly coupling-affected by the WTE and WTI, and the comprehensive characteristics of volatile release were significantly coupling-affected by the particle size and WTI. Specifically, under the condition of high-temperature washing, prolonging the WTI will increase the ignition temperature of washed RH powder. The particle size could affect the temperature of the maximum rate of decomposition. Under the same conditions, the temperature difference of maximum rate of decomposition between washed RH powder and RH was 5-10 °C. For the original RH, the longer the WTI, the more unfavorable it was to increase the maximum weight loss rate, and the opposite was true for RH powder. With the increase in WTE, the flammability index, burnout temperature, and volatile devolatilization initial temperature increased obviously. In addition, washing pretreatment could reduce the ashing quality of RH and RH powder to varying degrees, and the ash quality was decreased by about 15% compared with that of unwashed RH. The alkali metal removal effect of washed RH powder was better than that of washed RH. The proportion of alkali metal K was decreased from 1 to 4% (washed RH) to 0.2-1% (washed RH powder). The ash deposit and slagging phenomenon were obviously improved. Under the same WTI, the higher the WTE was, the better the removal effect of alkali metals was. Correspondingly, the proportion of the eutectic composite salt of Mg-Fe-Al with a high melting point increased in the high-temperature sintering stage, which effectively improved the ash melting point and reduced the probability of ash deposit and slagging.
Collapse
Affiliation(s)
- Shuo Yang
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Jintao Luo
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Yu Gao
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Shaohui Wang
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Yupeng Zhang
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Yuhang Wang
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Pushi Ge
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Wanqi Li
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Yunyi Zheng
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Jie Cui
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Yudong Fu
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Honggang Pan
- Laboratory of Liaoning Province
for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China
| |
Collapse
|
23
|
Sabapathy PC, Parthiban A, Bhusal CK, Singh S, Sehgal R, Qi X. Recent improvements in starch films with cellulose and its derivatives–A review. J Taiwan Inst Chem Eng 2024:105920. [DOI: 10.1016/j.jtice.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
|
24
|
Zhou Y, Liu Y, Lv Y, Ye X, Song L, Liu M, Lin C. Efficient extraction of Eucommia ulmoides gum by a deep eutectic solvent-organic solvent biphasic recyclable system. Int J Biol Macromol 2024; 283:138056. [PMID: 39592033 DOI: 10.1016/j.ijbiomac.2024.138056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Eucommia ulmoides gum (EUG) with high purity was extracted directly from the Eucommia ulmoides pericarp using a biphasic solvent system consisting of deep eutectic solvent (DES) and petroleum ether. The addition of DES enabled the deconstruction of lignocellulose and the exposure of EUG, leading to the efficient dissolution of EUG in petroleum ether. The extraction rate of EUG was 22.986 %, and the purity of EUG was 98.01 %. The chemical structure of EUG was confirmed by FTIR and NMR characterization. XRD and DSC analysis reviewed the partial destruction of crystal structure and the decline of β-crystal phase of EUG during the extraction process. Moreover, the extracted EUG exhibited high tensile strength of 10.360 MPa, excellent elongation at break of 78.663 % ascribed to the unique crystallinity that enhanced the flexibility of molecular chains. In addition, the recycling performance of DES and petroleum ether was verified, and the recovery rate were up to 94.04 % and 82.60 %, respectively, indicating that this method is expected to replace the traditional pretreatment method for extracting EUG.
Collapse
Affiliation(s)
- Yicheng Zhou
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liang Song
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Minghua Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China.
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
25
|
Nakyp A, Cherezova E, Karaseva Y, Shalmagambetov K, Aleksandrov A, Zhapparbergenov R, Akylbekov N, Turmanov R. Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation. Polymers (Basel) 2024; 16:3208. [PMID: 39599300 PMCID: PMC11598206 DOI: 10.3390/polym16223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The paper presents the process of cellulose extraction from rice straw using water-alkaline solution treatment and the subsequent process of carboxymethylation of the obtained product when activated by microwave radiation. After mercerization of rice straw, the obtained product contained 89.2% cellulose and 6.7% lignin. The X-ray diffraction pattern of the obtained lignocellulose shows three diffraction peaks in the region typical for the polymorphic modification of cellulose Iβ (2θ = 15.50(78), 21.70(145), 34.70(52)). The degree of crystallinity was 65%. The product was heat-stable up to 247 °C. The synthesis of carboxymethylcellulose (CMC) based on the obtained product included successive processes of thermostating in alcohol-alkali solution and cellulose esterification reaction using monochloroacetic acid. To activate the carboxymethylation process, microwave radiation was used (350 W for 90 s), which made it possible to reduce the reaction time by more than 100 times. Functional group analysis of the carboxylated lignocellulose from rice straw was carried out using an FTIR spectrometer. In the IR spectra, a band with a maximum of 1742 cm-1 was recorded, corresponding to stretching vibrations of >C(O)OH groups. The degree of polymerization was recorded by mass spectrometry.
Collapse
Affiliation(s)
- Abdirakym Nakyp
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan;
- Institute of Polymers, Kazan National Research Technological University, 68 K. Marx Str., Kazan 420015, Russia; (E.C.); (Y.K.); (A.A.)
| | - Elena Cherezova
- Institute of Polymers, Kazan National Research Technological University, 68 K. Marx Str., Kazan 420015, Russia; (E.C.); (Y.K.); (A.A.)
| | - Yuliya Karaseva
- Institute of Polymers, Kazan National Research Technological University, 68 K. Marx Str., Kazan 420015, Russia; (E.C.); (Y.K.); (A.A.)
| | - Kaiyrzhan Shalmagambetov
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan;
| | - Aleksandr Aleksandrov
- Institute of Polymers, Kazan National Research Technological University, 68 K. Marx Str., Kazan 420015, Russia; (E.C.); (Y.K.); (A.A.)
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
- “KazEcoChem” LLP, D. Konaev 12, Astana 010010, Kazakhstan
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
- “KazEcoChem” LLP, D. Konaev 12, Astana 010010, Kazakhstan
| | - Rakhymzhan Turmanov
- Department of Science, Abai Kazakh National Pedagogical University, Dostyk Ave., Almaty 1305001, Kazakhstan;
| |
Collapse
|
26
|
Kumari K, Nagar S, Goyal S, Maan S, Chugh V, Kumar V, Kharor N. Xylooligosaccharide Production From Lignocellulosic Biomass and Their Health Benefits as Prebiotics. Biochem Res Int 2024; 2024:6179375. [PMID: 39534514 PMCID: PMC11557181 DOI: 10.1155/2024/6179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Lignocellulosic biomass (LCB) comprising of wheat bran, coconut husk, rice husk, cereals straw, and other hardwood and softwoods is a good source for the production of xylooligosaccharides (XOS) (prebiotic). XOS produced are nondigestible carbohydrates being stable under stomach pH and digestive enzymes so they can be easily delivered to the intestine in native form, thus stimulating the growth of probiotics. Here we review about the raw material, production, purification, and application of XOS with health benefits. Importance of XOS being valuable food ingredient is increasing as they perform a variety of functions, including reduction in cholesterol levels, gastrointestinal health maintenance, anticancer and antioxidant properties, and modulation of immune system. We also discuss the different characterization methods which are necessary to determine the degree of polymerization (DP) of XOS. Low DP (xylobiose and xylotriose) is usually preferred for the application of XOS in various sectors. This review emphasizes the growing significance of XOS as a prebiotic, serving as nourishment for probiotics.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sakshi Goyal
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sonu Maan
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Vishal Chugh
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu 180009, India
| | - Neeraj Kharor
- Forage Section, Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| |
Collapse
|
27
|
Tan J, He Y, Wang T, Tang Y, Zhang T, Cui X. Study on the green extraction of lignin and its crosslinking and solidification properties by geopolymer pretreatment. Int J Biol Macromol 2024; 282:137172. [PMID: 39489231 DOI: 10.1016/j.ijbiomac.2024.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Different delignification processes lead to significant differences in the structure and activity of lignin. Consequently, complex modifications are necessary before lignin to be applied. In this paper, a green process for the selective catalytic extraction of lignin by geopolymer is proposed based on biomass refining. This process can obtain lignin with ideal performance on activity, crosslink ability and curability. Taking eucalyptus, fir and bagasse as examples, the optimal lignin yields reach 46.5 %, 34.8 % and 48.7 % respectively (mFiber/mGeopolymer = 3, 120 min, and 130 °C). Moreover, lignin isolated with geopolymer (GL) shows a similar narrow molecular weight distribution range to that of Milled Wood Lignin (MWL). Studies on crosslinking solidification mechanisms have demonstrated that the phenolic hydroxyl groups of GL participate in the formation of a multi-stage amine crosslinking and solidification network structure. GL does not rely on flexible chains in the crosslinking and solidification of wood adhesives. Since highly active lignin can condense with phenolic hydroxyl groups on the surface of wood, it provides the adhesive with higher bonding strength (3.8 MPa). This study presents a novel approach to fabricating lignin-based formaldehyde-free wood adhesives.
Collapse
Affiliation(s)
- Jianli Tan
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yan He
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Tao Wang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yexuan Tang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Ting Zhang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Xuemin Cui
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
28
|
Mamimin C, O-Thong S, Reungsang A. Enhancing biogas production from hemp biomass residue through hydrothermal pretreatment and co-digestion with cow manure: Insights into methane yield, microbial communities, and metabolic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123039. [PMID: 39461148 DOI: 10.1016/j.jenvman.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the enhancement of biogas production from hemp biomass residue (HBR) through hydrothermal pretreatment and co-digestion with cow manure (CM). Hydrothermal pretreatment at 200 °C for 15 min significantly improved the methane yield from 311.5 to 434.3 mL-CH4/g-VSadded (p ≤ 0.05) from HBR at 10% total solids (TS) loading, a 39% increase. Co-digestion with CM at an optimum ratio of 80:20 further increased the methane yield (738.7 mL-CH4/g-VSadded), representing a 70% improvement over pretreated HBR alone and a 137% increase compared to untreated HBR. Microbial community analysis revealed the dominance of Methanosaeta, comprising 83-93% of archaeal genera across samples. Gene expression analysis showed acetoclastic methanogenesis as the dominant pathway, accounting for 80% of methanogenesis sequences. Hydrogenotrophic methanogenesis and CO2 reduction with H2 pathways contributed 10% each. The optimized process achieved a biodegradation efficiency of 94% for hydrothermally pretreated HBR, compared to 68% for untreated HBR. Mass balance analysis demonstrated that combining hydrothermal pretreatment with anaerobic digestion increased biogas yield from 79% for untreated HBR to 86% for pre-treated HBR (PHBR) co-digested with CM. Integrating hydrothermal pretreatment and co-digestion enhances biogas production from lignocellulosic agricultural residues, contributing to sustainable waste management and renewable energy production.
Collapse
Affiliation(s)
- Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, A. Muang, Khon Kaen, 40002, Thailand.
| |
Collapse
|
29
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
30
|
Cheng Y, Zhao X, Li R, Liao J, Huang C. Study on the effect of phenoxyethanol-citric acid pretreatment for the enzymatic hydrolysis of bamboo residues. Front Bioeng Biotechnol 2024; 12:1483025. [PMID: 39420967 PMCID: PMC11484043 DOI: 10.3389/fbioe.2024.1483025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
This study investigated the biphasic phenoxyethanol-citric acid (PECA) pretreatment for bamboo residues (BRs) and its corresponding effects on the enzymatic hydrolysis performance. It is found that increasing the concentration of citric acid in the pretreatment system from 2.5% to 15% greatly enhanced the delignification and xylan removal for BRs. Consequently, the enzymatic hydrolysis yield of pretreated BRs significantly enhanced, increasing from 12.4% to 58.2% and 28.0%72.4% when the concentration of citric acid was increased from 2.5% to 15.0% at 160°C and 170°C, respectively. The characterization results from cellulose crystallinity, accessibility, and hydrophobicity of pretreated bamboo residues indicated that their changes possessed a beneficial performance on the enzymatic hydrolysis yield, which could result from the synergistic removal of lignin and xylan. The Chrastil model analysis showed that pretreatment at higher conditions resulted in the pretreated BRs possessing weaker diffusion resistance for cellulase, which is attributed to its higher enzymatic hydrolysis yield.
Collapse
Affiliation(s)
| | | | | | | | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Wang J, Kasuga T, Fan Z. Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10. Bioprocess Biosyst Eng 2024; 47:1683-1690. [PMID: 38995362 PMCID: PMC11399197 DOI: 10.1007/s00449-024-03061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.
Collapse
Affiliation(s)
- Jiajie Wang
- Department of Biological and Agricultural Engineering, University of California , Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Takao Kasuga
- Department of Plant Pathology, University of California , Davis, One Shields Avenue, Davis, CA, 95616, USA
- United States Department of Agriculture-Agricultural Research Service, University of California, Davis, CA, 95616, USA
| | - Zhiliang Fan
- Department of Biological and Agricultural Engineering, University of California , Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Hu N, Liu X, Wei S, Yao J, Wang W, Liu B, Tang T, Jiang J, Wang L. Current status and future prospects of pretreatment for tobacco stalk lignocellulose. Front Bioeng Biotechnol 2024; 12:1465419. [PMID: 39205854 PMCID: PMC11349660 DOI: 10.3389/fbioe.2024.1465419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
With the growing demand for sustainable development, tobacco stalks, as a resource-rich and low-cost renewable resource, hold the potential for producing high-value chemicals and materials within a circular economy. Due to the complex and unique structure of tobacco stalk biomass, traditional methods are ineffective in its utilization, making the pretreatment of tobacco stalk lignocellulose a crucial step in obtaining high-value products. This paper reviews recent advancements in various pretreatment technologies for tobacco stalk lignocellulosic biomass, including hydrothermal, steam explosion, acid, alkaline, organic solvent, ionic liquid, and deep eutectic solvent pretreatment. It emphasizes the impact and efficiency of these pretreatment methods on the conversion of tobacco stalk biomass and discusses the advantages and disadvantages of each technique. Finally, the paper forecasts future research directions in the pretreatment of tobacco stalk lignocellulose, providing new insights and methods for enhancing its efficient utilization.
Collapse
Affiliation(s)
- Nianwu Hu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Xiongbin Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Shuoguo Wei
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Jianwu Yao
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Wanxia Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Ben Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Tianming Tang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| |
Collapse
|
33
|
Ruan L, Wu H, Wu S, Zhou L, Wu S, Shang C. Optimizing the Conditions of Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse for Bioethanol Production. ACS OMEGA 2024; 9:29566-29575. [PMID: 39005808 PMCID: PMC11238294 DOI: 10.1021/acsomega.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Haifeng Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shiya Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Lifei Zhou
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shangxin Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
34
|
Yupanqui-Mendoza SL, Sánchez-Moncada BJ, Las-Casas B, Castro-Alvarado ÁP. Simple one-step treatment for saccharification of mango peels using an optimized enzyme cocktail of Aspergillus niger ATCC 9642. Braz J Microbiol 2024; 55:1151-1166. [PMID: 38472698 PMCID: PMC11153387 DOI: 10.1007/s42770-024-01303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Developing efficient microbiological methods to convert polysaccharide-rich materials into fermentable sugars, particularly monosaccharides, is vital for advancing the bioeconomy and producing renewable chemicals and energy sources. This study focused on optimizing the production conditions of an enzyme cocktail from Aspergillus niger ATCC 9642 using solid-state fermentation (SSF) and assessing its effectiveness in saccharifying mango peels through a simple, rapid, and efficient one-step process. A rotatable central composite design was employed to determine optimal conditions of moisture, time, and pH for enzyme production in SSF medium. The optimized enzyme cocktail exhibited cellulase activity (CMCase) at 6.28 U/g, filter paper activity (FPase) at 3.29 U/g, and pectinase activity at 117.02 U/g. These optimal activities were achieved with an SSF duration of 81 h, pH of 4.66, and a moisture content of 59%. The optimized enzyme cocktail effectively saccharified the mango peels without the need for chemical agents. The maximum saccharification yield reached approximately 81%, indicating efficient conversion of mango peels into sugars. The enzyme cocktail displayed consistent thermal stability within the tested temperature range of 30-60°C. Notably, the highest sugar release occurred within 36 h, with glucose, arabinose, galactose, and xylose being the primary monosaccharides released during saccharification. This study highlights the potential application of Aspergillus niger ATCC 9642 and SSF for enzymatic production, offering a simple and high-performance process for monosaccharide production. The optimized enzyme cocktail obtained through solid-state fermentation demonstrated efficient saccharification of mango peels, suggesting its suitability for industrial-scale applications.
Collapse
Affiliation(s)
- Sergio Luis Yupanqui-Mendoza
- Department of Biotechnology, Laboratory of Applied Bionanotechnology, Lorena School of Engineering, University of São Paulo, Lorena/SP, 12602-810, Brazil.
| | | | - Bruno Las-Casas
- Department of Biotechnology, Laboratory of Applied Bionanotechnology, Lorena School of Engineering, University of São Paulo, Lorena/SP, 12602-810, Brazil
| | - Ángel Pablo Castro-Alvarado
- Department of Science, Biotechnology Research Laboratory, National University of Santa, 02712, Chimbote, Peru
| |
Collapse
|
35
|
Chawla SK, Goyal D. Enhanced production of lactic acid from pretreated rice straw using co-cultivation of Bacillus licheniformis and Bacillus sonorenesis. 3 Biotech 2024; 14:169. [PMID: 38828100 PMCID: PMC11143171 DOI: 10.1007/s13205-024-04014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Lactic acid (LA) production from sugar mixture derived from lignocellulosic rice straw employing co- culture system of thermotolerant and inhibitor tolerant Bacillus licheniformis DGB and Bacillus sonorenesis DGS15 was carried out. In minimal media, both the strains of Bacillus DGB and DGS15 worked together by efficiently utilising glucose and xylose respectively. Response Surface Methodology (RSM) was used for optimisation of pretreatment of rice straw to achieve maximum yield of 50.852 g/L total reducing sugar (TRS) from 100 gm of rice straw biomass. Pretreatment of rice straw resulted in its delignification, as confirmed by FTIR spectroscopy, since the peak at 1668 cm-1 disappeared due to removal of lignin and scanning electron microscopy (SEM) revealed disruption in structural and morphological features. Crystallinity index (CrI) of treated rice straw increased by 15.54% in comparison to native biomass. DGB and DGS15 individually yielded 0.64 g/g and 0.82 g/g lactic acid respectively, where as their co-cultivation led to effective utilisation of both glucose and xylose within 15 h (70%) and complete utilisation in 48 h, producing 49.75 g/L LA with a yield of 0.98 g/g and productivity of 1.036 g/L/h, and resulting in reduction in fermentation time. Separate hydrolysis of rice straw and co-fermentation (SHCF) of hydrolysates by Bacillus spp. enhanced the production of lactic acid, can circumvent challenges in biorefining of lignocellulosic biomass.
Collapse
Affiliation(s)
- Simarpreet Kaur Chawla
- Department of Biotechnology, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala, Punjab 147001 India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala, Punjab 147001 India
| |
Collapse
|
36
|
Khunnonkwao P, Thitiprasert S, Jaiaue P, Khumrangsee K, Cheirsilp B, Thongchul N. The outlooks and key challenges in renewable biomass feedstock utilization for value-added platform chemical via bioprocesses. Heliyon 2024; 10:e30830. [PMID: 38770303 PMCID: PMC11103475 DOI: 10.1016/j.heliyon.2024.e30830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The conversion of renewable biomass feedstock into value-added products via bioprocessing platforms has become attractive because of environmental and health concerns. Process performance and cost competitiveness are major factors in the bioprocess design to produce desirable products from biomass feedstock. Proper pretreatment allows delignification and hemicellulose removal from the liquid fraction, allowing cellulose to be readily hydrolyzed to monomeric sugars. Several industrial products are produced via sugar fermentation using either naturally isolated or genetically modified microbes. Microbial platforms play an important role in the synthesis of several products, including drop-in chemicals, as-in products, and novel compounds. The key elements in developing a fermentation platform are medium formulation, sterilization, and active cells for inoculation. Downstream bioproduct recovery may seem like a straightforward chemical process, but is more complex, wherein cost competitiveness versus recovery performance becomes a challenge. This review summarizes the prospects for utilizing renewable biomass for bioprocessing.
Collapse
Affiliation(s)
- Panwana Khunnonkwao
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Phetcharat Jaiaue
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Katsaya Khumrangsee
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
37
|
Bertran-Llorens S, Zhou W, Palazzolo MA, Colpa DL, Euverink GJW, Krooneman J, Deuss PJ. ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7724-7738. [PMID: 38783842 PMCID: PMC11110678 DOI: 10.1021/acssuschemeng.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Lignocellulose biorefining is a promising technology for the sustainable production of chemicals and biopolymers. Usually, when one component is focused on, the chemical nature and yield of the others are compromised. Thus, one of the bottlenecks in biomass biorefining is harnessing the maximum value from all of the lignocellulosic components. Here, we describe a mild stepwise process in a flow-through setup leading to separate flow-out streams containing cinnamic acid derivatives, glucose, xylose, and lignin as the main components from different herbaceous sources. The proposed process shows that minimal degradation of the individual components and conservation of their natural structure are possible. Under optimized conditions, the following fractions are produced from wheat straw based on their respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51% monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation of cellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the lignin aryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, the crude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-rich fraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercial pure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of the principal components of herbaceous biomasses.
Collapse
Affiliation(s)
- Salvador Bertran-Llorens
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Martín A. Palazzolo
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Instituto
Interdisciplinario de Ciencias Básicas (ICB, UNCuyo-CONICET), Padre Jorge Contreras 1300, Mendoza 5500, Argentina
- Instituto
de Investigaciones en Tecnología Química (INTEQUI),
FQByF, Universidad Nacional de San Luis,
CONICET, Almirante Brown
1455, San Luis 5700, Argentina
| | - Dana l. Colpa
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Gert-Jan W. Euverink
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Janneke Krooneman
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Bioconversion
and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, Groningen 9747 AS, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
38
|
Wang S, Hou X, Sun J, Sun D, Gao Z. Efficacy and Functional Mechanisms of a Two-Stage Pretreatment Approach Based on Alkali and Ionic Liquid for Bioconversion of Waste Medium-Density Fiberboard. Molecules 2024; 29:2153. [PMID: 38731644 PMCID: PMC11085654 DOI: 10.3390/molecules29092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
A novel pretreatment strategy utilizing a combination of NaOH and 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) was proposed to enhance the enzymatic hydrolysis of abandoned Medium-density fiberboard (MDF). The synergistic effect of NaOH and [Bmim]Cl pretreatment significantly improved the glucose yield, reaching 445.8 mg/g within 72 h, which was 5.04 times higher than that of the untreated samples. The working mechanism was elucidated according to chemical composition, as well as FTIR, 13C NMR, XRD, and SEM analyses. The combined effects of NaOH and [Bmim]Cl led to lignin degradation, hemicellulose removal, the destruction and erosion of crystalline regions, pores, and an irregular microscopic morphology. In addition, by comparing the enzymatic hydrolysis sugar yield and elemental nitrogen content of untreated MDF samples, eucalyptus, and hot mill fibers (HMF), it was demonstrated that the presence of adhesives and additives in waste MDF significantly influences its hydrolysis process. The sugar yield of untreated MDF samples (88.5 mg/g) was compared with those subjected to hydrothermal pretreatment (183.2 mg/g), Ionic liquid (IL) pretreatment (406.1 mg/g), and microwave-assisted ionic liquid pretreatment (MWI) (281.3 mg/g). A long water bath pretreatment can reduce the effect of adhesives and additives on the enzymatic hydrolysis of waste MDF. The sugar yield produced by the combined pretreatment proposed in this study and the removal ability of adhesives and additives highlight the great potential of our pretreatment technology in the recycling of waste fiberboard.
Collapse
Affiliation(s)
| | | | | | | | - Zhenzhong Gao
- College of Material and Energy, South China Agricultural University, Guangzhou 510642, China; (S.W.); (X.H.); (J.S.); (D.S.)
| |
Collapse
|
39
|
Cabrera-Villamizar LA, Ebrahimi M, Martínez-Abad A, Talens-Perales D, López-Rubio A, Fabra MJ. Order matters: Methods for extracting cellulose from rice straw by coupling alkaline, ozone and enzymatic treatments. Carbohydr Polym 2024; 328:121746. [PMID: 38220332 DOI: 10.1016/j.carbpol.2023.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Rice straw is a widely produced residue that can be converted into value-added products. This work aimed at using greener processes combining mild alkali (A), ozone (O) and enzymatic (engineered xylanase) (E) treatments to extract cellulose and other value-added compounds from rice straw and to evaluate the effects of the order of the treatments. Solid (S) and liquid (L) fractions from the process were collected for physicochemical characterization. AOE treatment showed the best capacity to extract high purity cellulose and other valuable compounds. The lignin content was significantly decreased independently of the order of the treatments and, its content in the extract obtained after the AOE process was lower than the one obtained after the OAE process. Moreover, thermal stability of the samples increased after the enzymatic process, being higher in SAOE. The alkaline treatment increased the hemicellulose and polyphenol content (antioxidant activity) in the liquid fractions (LA and LOA). In contrast, the ozonized liquid fractions had lower polyphenol content. Therefore, alkali was fundamental in the process. In conclusion, the AOE strategy could be a more environmentally friendly method for extracting cellulose and other valuable compounds, which could be used to develop active materials in the future.
Collapse
Affiliation(s)
- Laura Andrea Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain.
| | - Mahrokh Ebrahimi
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France.
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| | - David Talens-Perales
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| |
Collapse
|
40
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
41
|
Kim S, Kim JC, Kim YY, Yang JE, Lee HM, Hwang IM, Park HW, Kim HM. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169521. [PMID: 38141985 DOI: 10.1016/j.scitotenv.2023.169521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Lactic acid is an important industrial precursor; however, high substrate costs are a major challenge in microbial fermentation-based lactic acid production. Coffee waste is a sustainable feedstock alternative for lactic acid production via microbial fermentation. Herein, the feasibility of coffee waste as a feedstock was explored by employing appropriate pretreatment methods and optimizing enzyme combinations. Coffee waste pretreatment with hydrogen peroxide and acetic acid along with a combination of Viscozyme L, Celluclast 1.5 L, and Pectinex Ultra SP-L achieved the 78.9 % sugar conversion rate at a substrate concentration of 4 % (w/v). Lactiplantibacillus plantarum WiKim0126-induced fermentation with a 4 % solid loading yielded a lactic acid concentration of 22.8 g/L (99.6 % of the theoretical maximum yield) and productivity of 0.95 g/L/h within 24 h. These findings highlight the viability of coffee waste as an eco-friendly resource for sustainable lactic acid production.
Collapse
Affiliation(s)
- Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea.
| |
Collapse
|
42
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
43
|
Jomnonkhaow U, Plangklang P, Reungsang A, Peng CY, Chu CY. Valorization of spent coffee grounds through integrated bioprocess of fermentable sugars, volatile fatty acids, yeast-based single-cell protein and biofuels production. BIORESOURCE TECHNOLOGY 2024; 393:130107. [PMID: 38016585 DOI: 10.1016/j.biortech.2023.130107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Recovering nutrients from waste for biological processes aligns with sustainability principles. This study aimed to convert spent coffee grounds (SCG) into valuable products, including fermentable sugars, volatile fatty acids (VFAs), yeast-based single-cell protein and biofuels. Alkaline pretreatment was conducted before enzymatic hydrolysis, in which the pretreated SCG was hydrolyzed with varying enzyme loadings (20-60 filter paper units (FPU)/g-solid) and solid loadings (3-15 % w/v). The hydrolyzed slurry was utilized for VFAs and hydrogen production, yielding high values of 0.66 g/g-volatile solids (VS) and 109 mL/g-VS, respectively, using an enzyme loading of 50 FPU/g-solid and a solid loading of 3 % (w/v). The derived VFAs were used to cultivate a newly isolated yeast, Candida maltosa KKU-ARY2, resulting in an accumulated protein content of 43.7 % and a biomass concentration of 4.6 g/L. This study highlights the conversion of SCG into essential components, emphasizing the benefits of waste utilization through cascade bioprocesses.
Collapse
Affiliation(s)
- Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pensri Plangklang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| | - Chi-Yen Peng
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan; Institute of Green Products, Feng Chia University, Taichung 40724, Taiwan
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan; Institute of Green Products, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
44
|
Parsin S, Kaltschmitt M. Processing of hemicellulose in wheat straw by steaming and ultrafiltration - A novel approach. BIORESOURCE TECHNOLOGY 2024; 393:130071. [PMID: 38000637 DOI: 10.1016/j.biortech.2023.130071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Water-soluble xylans useable for many potential applications can be produced based on the hydrolysis of wheat straw within a fixed bed using saturated steam to provide a xylan-rich hydrolysate low in particles and lignin enabling an effective ultrafiltration and xylan separation. Under defined conditions (180 °C, 10 bar, 35 min), a degree of solubilization of 29.6 % for straw and of 63 % for hemicellulose is achieved. The dry mass of the resulting hydrolysate consists of at least 58 % xylose and arabinose. The xylose is mainly (87 %) present in non-monomeric form and appears to have a broad molecular weight distribution. Ultrafiltration with commercial membranes (4 to 50 kDa) is being investigated for the separation of the target fraction; here significant differences in the filtration behavior and rejections from 9 to 81 % for carbohydrates and from 13 to 48 % for phenolic compounds (lignin), respectively, are found.
Collapse
Affiliation(s)
- Stanislav Parsin
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany.
| | - Martin Kaltschmitt
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany
| |
Collapse
|
45
|
Cai D, Wen J, Wu Y, Su C, Bi H, Wang Y, Jiang Y, Qin P, Tan T, Zhang C. Surfactant-assisted dilute ethylenediamine fractionation of corn stover for technical lignin valorization and biobutanol production. BIORESOURCE TECHNOLOGY 2024; 394:130231. [PMID: 38142909 DOI: 10.1016/j.biortech.2023.130231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
In this study, a surfactant-assisted diluted ethylenediamine (EDA) fractionation process was investigated for co-generation of technical lignin and biobutanol from corn stover. The results showed that the addition of PEG 8000 significantly enhanced cellulose recovery (88.9 %) and lignin removal (68.9 %) in the solid fraction. Moreover, the pulp achieved 86.5 % glucose yield and 82.6 % xylose yield in enzymatic hydrolysis. Structural characterization confirmed that the fractionation process promoted the preservation of active β-O-4 bonds (35.8/100R) in isolated lignin and functionalized the lignin through structural modification using EDA and surfactant grafting. The enzymatic hydrolysate of the pulps yielded a sugar solution for acetone-butanol-ethanol (ABE) fermentation, resulting in an ABE concentration of 15.4 g/L and an overall yield of 137.2 g/Kg of dried corn stalk. Thus, the surfactant-assisted diluted EDA fractionation has the potential to enhance the overall economic feasibility of second-generation biofuels production within the framework of biorefinery.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jieyi Wen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yilu Wu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haoran Bi
- Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China; Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China; Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
46
|
Ilango AK, Liang Y. Surface modifications of biopolymers for removal of per- and polyfluoroalkyl substances from water: Current research and perspectives. WATER RESEARCH 2024; 249:120927. [PMID: 38042065 DOI: 10.1016/j.watres.2023.120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly recalcitrant organic contaminants that have attracted ever-increasing attention from the general public, government agencies and scientific communities. To remove PFAS from water, especially the enormous volume of drinking water, stormwater, and groundwater, sorption is the most practical approach. Success of this approach demands green, renewable, and sustainable materials for capturing PFAS at ng/L or µg/L levels. To meet this demand, this manuscript critically reviewed sorbents developed from biopolymers, such as chitosan (CTN), alginate (ALG), and cellulose (CEL) covering the period from 2008 to 2023. The use of different cross-linkers for the surface modifications of biopolymers were described. The underlying removal mechanism of biosorbents for PFAS adsorption from molecular perspectives was discussed. Besides reviewing and comparing the performance of different bio-based sorbents with respect to environmental factors like pH, and sorption kinetics and capacity, strategies for modifying biosorbents for better performance were proposed. Additionally, approaches for regeneration and reuse of the biosorbents were discussed. This was followed by further discussion of challenges facing the development of biosorbents for PFAS removal.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
47
|
Martin E, Dubessay P, Record E, Audonnet F, Michaud P. Recent advances in laccase activity assays: A crucial challenge for applications on complex substrates. Enzyme Microb Technol 2024; 173:110373. [PMID: 38091836 DOI: 10.1016/j.enzmictec.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Despite being one of the first enzymes discovered in 1883, the determination of laccase activity remains a scientific challenge, and a barrier to the full use of laccase as a biocatalyst. Indeed, laccase, an oxidase of the blue multi-copper oxidases family, has a wide range of substrates including substituted phenols, aromatic amines and lignin-related compounds. Its one-electron mechanism requires only oxygen and releases water as a reaction product. These characteristics make laccase a biocatalyst of interest in many fields of applications including pulp and paper industry, biorefineries, food, textile, and pharmaceutical industries. But to fully envisage the use of laccase at an industrial scale, its activity must be reliably quantifiable on complex substrates and in complex matrices. This review aims to describe current and emerging methods for laccase activity assays and place them in the context of a potential industrial use of the enzyme.
Collapse
Affiliation(s)
- Elise Martin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Fabrice Audonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
48
|
Chandrasekar M, Collins JL, Habibi S, Ong RG. Microfluidic reactor designed for time-lapsed imaging of pretreatment and enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 393:129989. [PMID: 37931765 DOI: 10.1016/j.biortech.2023.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 μm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.
Collapse
Affiliation(s)
- Meenaa Chandrasekar
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Jeana L Collins
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA.
| |
Collapse
|
49
|
Zhang X, Fan Y, Hao T, Chen R, Zhang T, Hu Y, Li D, Pan Y, Li YY, Kong Z. Insights into current bio-processes and future perspectives of carbon-neutral treatment of industrial organic wastewater: A critical review. ENVIRONMENTAL RESEARCH 2024; 241:117630. [PMID: 37993050 DOI: 10.1016/j.envres.2023.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
With the rise of the concept of carbon neutrality, the current wastewater treatment process of industrial organic wastewater is moving towards the goal of energy conservation and carbon emission reduction. The advantages of anaerobic digestion (AD) processes in industrial organic wastewater treatment for bio-energy recovery, which is in line with the concept of carbon neutrality. This study summarized the significance and advantages of the state-of-the-art AD processes were reviewed in detail. The application of expanded granular sludge bed (EGSB) reactors and anaerobic membrane bioreactor (AnMBR) were particularly introduced for the effective treatment of industrial organic wastewater treatment due to its remarkable prospect of engineering application for the high-strength wastewater. This study also looks forward to the optimization of the AD processes through the enhancement strategies of micro-aeration pretreatment, acidic-alkaline pretreatment, co-digestion, and biochar addition to improve the stability of the AD system and energy recovery from of industrial organic wastewater. The integration of anaerobic ammonia oxidation (Anammox) with the AD processes for the post-treatment of nitrogenous pollutants for the industrial organic wastewater is also introduced as a feasible carbon-neutral process. The combination of AnMBR and Anammox is highly recommended as a promising carbon-neutral process for the removal of both organic and inorganic pollutants from the industrial organic wastewater for future perspective. It is also suggested that the AD processes combined with biological hydrogen production, microalgae culture, bioelectrochemical technology and other bio-processes are suitable for the low-carbon treatment of industrial organic wastewater with the concept of carbon neutrality in future.
Collapse
Affiliation(s)
- Xinzheng Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuqin Fan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dapeng Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
50
|
Jiang B, Shen F, Jiang Y, Huang M, Zhao L, Lei Y, Hu J, Tian D, Shen F. Extraction of super high-yield lignin-carbohydrate complexes from rice straw without compromising cellulose hydrolysis. Carbohydr Polym 2024; 323:121452. [PMID: 37940260 DOI: 10.1016/j.carbpol.2023.121452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Lignin-carbohydrate complexes (LCC) that exhibit both structural advantages of lignin and carbohydrates are promising amphiphilic biopolymers, but the extraction is challenged by its liable chemical bond cleavage between lignin and carbohydrates. This work proposed a facile chemical route to integrating the production of water-insoluble (WIS LCC) and water-soluble LCC (WS LCC) into the emerging deep eutectic solvent (DES) biorefinery at mild conditions. The tailored mechanochemical fractionation process of ball milling assisted aqueous alkaline DES could extract 24.2 % LCC in total, with the co-production of a highly hydrolysable cellulose fraction (98.7 % glucose conversion). The resulting LCC exhibited considerably high contents of β-O-4, phenyl glycoside, and ferulic acid linkage bonds. When 100 g starting straw was subjected to this technique route, 9.1 g WIS LCC, 15.1 g WS LCC and 45.5 g glucose were cascaded produced. It was proposed that the selective disruption of hydrogen bonding entangled network and the quasi-state dissolution of the whole biomass allowed the subsequent cascade fractionation of WIS LCC, WS LCC and highly hydrolysable cellulose through solution property adjustment. This work showed a promising approach for LCC production with high yield without compromising cellulose conversion potential, which has been challenging in the current lignocellulose biorefinery.
Collapse
Affiliation(s)
- Baiheng Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Feiyue Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuehan Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongjia Lei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|