1
|
Liu M, Xu L, Yin Z, He D, Zhang Y, Liu C. Harnessing the potential of exogenous microbial agents: a comprehensive review on enhancing lignocellulose degradation in agricultural waste composting. Arch Microbiol 2025; 207:51. [PMID: 39893606 DOI: 10.1007/s00203-025-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Composting converts organic agricultural wastes into value-added products, yet the presence of significant non-biodegradable lignocelluloses hinders its efficiency. The introduction of various exogenous microbial agents has been shown to effectively addresses this challenge. In this context, basing on the microbial enzymatic mechanism for lignocellulose degradation, this paper synthesizes the latest research advancements and practical applications of exogenous microbial agents in agricultural waste composting. Given that the effectiveness of lignocellulose degradation is highly dependent on the waste's inherent characteristics, it is crucial to carefully consider the composition of fungi and bacteria, the dosage of microbial agents, and the composting process operation, tailored to the specific type of agricultural waste. Moreover, the combination of additives with exogenous microbial agents can further enhance the degradation of lignocelluloses and the humification of organic matters. Furthermore, insights into the future research and application trends of exogenous microbial agents in agricultural waste composting was prospected.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Luxin Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Zhixuan Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Deming He
- Shanghai Chengtou Shangjing Ecological Restoration Technology Co., Shanghai, 200120, People's Republic of China
| | - Yujia Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| |
Collapse
|
2
|
Li K, Rahman SU, Rehman A, Li H, Hui N, Khalid M. Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: The influence of different fertilizer regimes and biochar application. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137148. [PMID: 39799673 DOI: 10.1016/j.jhazmat.2025.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups. The presence of ARGs varied significantly across groups, with manure-treated samples exhibiting the greatest diversity and abundance, raising concerns about ARGs dissemination. Soil enzyme activities responded differently to treatments; manure significantly enhanced catalase, acid phosphatase, and urease activities, whereas saccharase was most responsive to chemical fertilizer. These differences are possibly responsible for the distinct microbiome structure associated with the plant's root system. The analysis of bacterial diversity and richness across rhizocompartments and the phyllosphere highlighted that manure-treated rhizospheres and phyllospheres displayed the highest species richness and diversity. Notably, Proteobacteria dominated across most treatments, with distinct shifts in bacterial phyla and genera influenced by manure and biochar applications. The LEfSe analysis identified key indicator genera specific to each group, indicating that both fertilizer type and biochar application significantly shape microbial community composition. Co-occurrence network analysis further demonstrated that manure and biochar treatments created unique microbial networks in the rhizosphere, rhizoplane, phyllosphere, and endosphere, highlighting the role of these amendments in modulating microbial interactions in plant-associated environments. These findings suggest that manure, while enhancing microbial diversity and soil enzyme activities, also increases ARGs, whereas biochar may not contribute to the spread of ARGs and fosters distinct microbial communities, offering valuable insights for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedi Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxiang Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Qin X, Huang W, Li Q. Lignocellulose biodegradation to humic substances in cow manure-straw composting: Characterization of dissolved organic matter and microbial community succession. Int J Biol Macromol 2024; 283:137758. [PMID: 39557245 DOI: 10.1016/j.ijbiomac.2024.137758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Composting, a sustainable practice, facilitates the biodegradation of organic waste, notably lignocellulosic biomass, into value-added humic substances. Despite its potential, the application of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize dissolved organic matter (DOM) for assessing the changes in maturity during cow manure-straw composting is underexplored. Furthermore, the link between these changes, microbial community succession, and the biochemical pathways of humus formation is seldom investigated. This study leveraged ESI FT-ICR MS and metagenomic analysis to elucidate the molecular changes in DOM, identified key microbes in humus formation, and traced the humus formation pathway during composting. The results highlighted the crucial role of microorganisms such as Thermobifida, Luteimonas, Ascomycota, and Chloroflexi in accelerating the breakdown and transformation of plant biopolymers. Large molecular nitrogen compounds from cow manure-straw were converted into unsaturated, aromatic oxygen compounds, which resemble humic substances in their chemical properties. The ESI FT-ICR MS data revealed that humus formation occurred through a series of reactions, including protein deamination, lignin delignification, and decarbonylation. This research offered new light on strategies to enhance the stabilization and humification of cow manure-straw composting, contributing to more effective composting processes.
Collapse
Affiliation(s)
- Xiaoya Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenyu Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Zhou X, Yu Z, Deng W, Deng Z, Wang Y, Zhuang L, Zhou S. Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176676. [PMID: 39383961 DOI: 10.1016/j.scitotenv.2024.176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hyperthermophilic composting (HTC) has been proven to be an effective strategy to recycle organic wastes, while vermicomposting (VC) has been widely applied to produce humic fertilizer. The combination of HTC with VC (HVC) is expected to integrate the advantages of both. This study showed that HTC pre-fermentation provided plentiful substances such as dissolved organic matter (DOM) for the subsequent VC enriching humic acid (HA). Compared to thermophilic composting (TC), HVC significantly stimulated the degradation of organic matter (OM) and the production of N-rich HA, and incubated higher diversity of bacterial community. SHapley Additive exPlanations (SHAP), correlation network, Mantel test and PLS-LM model were constructed to identify the potential roles of the key bacterial groups contributing to OM transformation. Firmicutes (e.g., Bacillus and Tuberibacillus) dominant in HTC may mineralize and mobilize OM, providing affluent bioavailable nutrients as part of DOM for microbial metabolism and abundant precursors for HA formation in the further VC. Actinobacteriota (e.g., Microbacterium) and Bacteroidota (e.g., Flavobacterium and Parapedobacter) prominent in VC metabolized DOM, mineralized OM and produced HA probably by enhancing the metabolic activity involved in OM degradation and amino acid generation. However, when DOM was exhausted, some members especially Proteobacteria (e.g., Ochrobactrum, Devosia and Cellvibrio) would change their roles from promoter to inhibitor of mineralization and humification. Altering the nutrient bioavailability and the composition of bacterial community can regulate the mineralization, mobilization and humification of OM. Overall, this study provides new insights into the roles of bacteria participating in transforming organic wastes into HA-rich composts.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Jiao Z, Zhang L, Zhang A, Li R, Zhang K, Wu Z, Kang Z, Wei Y, Zhang L, Wang Y, Shi X, Li J. Mature compost enhanced the harmlessness level in co-composting swine manure and carcasses in large-scale silo reactors. Front Microbiol 2024; 15:1494332. [PMID: 39606114 PMCID: PMC11599618 DOI: 10.3389/fmicb.2024.1494332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the impact of incorporating mature compost on the harmlessness and maturity level of composting from swine manure and carcasses from industrialized pig farms in continuously running large-scale silo reactor systems. The potential human or animal bacterial pathogens and core bacterial community in composting were analyzed by high-throughput sequencing of 16S rRNA gene amplicons. The results showed that the addition of mature compost in the GD group significantly increased the temperature of all depths, the accumulated temperature of compost, and the germination index (75.43%) compared to that in the HN group without mature compost. High-throughput sequencing revealed that the dominated genera in GD were Ureibacillus, Lactobacillus, Corynebacterium, Staphylococcus, and Jeotgalicoccus, and the addition of mature compost could significantly increase the relative abundance of Ureibacillus (16.82%) that was associated with the biodegradation of organics. A total of 421 potential bacterial pathogens were detected, and the dominated genera of pathogens were Streptococcus, Staphylococcus, and Anaerococcus. The potential pathogen in the GD group with mature compost was reduced from 7.16 to 0.77%, which was significantly lower than that (2.97%) in the HN group. Together, these findings revealed that mature compost addition in large-scale reactor composting could accelerate the harmless and humification process, providing an effective and environmentally friendly scheme to deal with the main organic wastes in intensive pig farms.
Collapse
Affiliation(s)
- Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, China
| | - Liping Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ake Zhang
- Fuyang Agricultural Science Academy, Fuyang, Anhui, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Kui Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | | | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Yu H, Xiao H, Deng H, Frew A, Hossain MA, Tan W, Xi B. Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity. J Environ Sci (China) 2024; 144:55-66. [PMID: 38802238 DOI: 10.1016/j.jes.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 05/29/2024]
Abstract
Composting presents a viable management solution for lignocellulose-rich municipal solid waste. However, our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose, particularly in industrial-scale composting plants, remains limited. This study employed metaproteomics to compare the impact of upgrading from aerated static pile (ASP) to agitated bed (AB) systems on physicochemical parameters, lignocellulose biodegradation, and microbial metabolic pathways during large-scale biowaste composting process, marking the first investigation of its kind. The degradation rates of lignocellulose including cellulose, hemicellulose, and lignin were significantly higher in AB (8.21%-32.54%, 10.21%-39.41%, and 6.21%-26.78%) than those (5.72%-23.15%, 7.01%-33.26%, and 4.79%-19.76%) in ASP at three thermal stages, respectively. The AB system in comparison to ASP increased the carbohydrate-active enzymes (CAZymes) abundance and production of the three essential enzymes required for lignocellulose decomposition involving a mixture of bacteria and fungi (i.e., Actinobacteria, Bacilli, Sordariomycetes and Eurotiomycetes). Conversely, ASP primarily produced exoglucanase and β-glucosidase via fungi (i.e., Ascomycota). Moreover, AB effectively mitigated microbial stress caused by acetic acid accumulation by regulating the key enzymes involved in acetate conversion, including acetyl-coenzyme A synthetase and acetate kinase. Overall, the AB upgraded from ASP facilitated the lignocellulose degradation and fostered more diverse functional microbial communities in large-scale composting. Our findings offer a valuable scientific basis to guide the engineering feasibility and environmental sustainability for large-scale industrial composting plants for treating lignocellulose-rich waste. These findings have important implications for establishing green sustainable development models (e.g., a circular economy based on material recovery) and for achieving sustainable development goals.
Collapse
Affiliation(s)
- Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Huiyu Deng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Md Akhter Hossain
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Yang M, Guo Y, Yang F, Wang J, Gao Y, Wang M, Liang X, He S. Dynamic changes in and correlations between microbial communities and physicochemical properties during the composting of cattle manure with Penicillium oxalicum. BMC Microbiol 2024; 24:301. [PMID: 39134942 PMCID: PMC11318117 DOI: 10.1186/s12866-024-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.
Collapse
Affiliation(s)
- Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750002, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| | - Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Yunhang Gao
- School of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| | - Mingcheng Wang
- School of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
9
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Guo F, Wang C, Wang S, Wu S, Zhao X, Li G. Fenton-ultrasound treatment of corn stalks enhances humification during composting by stimulating the inheritance and synthesis of polyphenolic compounds-preliminary evidence from a laboratory trial. CHEMOSPHERE 2024; 358:142133. [PMID: 38670511 DOI: 10.1016/j.chemosphere.2024.142133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The impact of Fenton-ultrasound treatment on the production of polyphenols and humic acid (HA) during corn stalk composting was investigated by analyzing the potential for microbial assimilation of polysaccharides in corn stalks to generate polyphenols using a13C-glucose tracer. The results showed that Fenton-ultrasound treatment promoted the decomposition of lignocellulose and increased the HA content, degree of polymerization (DP), and humification index (HI). The primary factor could be attributed to Fenton-ultrasound treatment-induced enhanced the abundance of lignocellulose-degrading microorganisms, as Firmicutes, Actinobacteria phylum and Aspergillis genus, which serve as the primary driving forces behind polyphenol and HA formation. Additionally, the utilization of a13C isotope tracer revealed that corn stalk polysaccharide decomposition products can be assimilated by microbes and subsequently secrete polyphenolic compounds. This study highlights the potential of microbial activity to generate phenolic compounds, offering a theoretical basis for increasing polyphenol production and promoting HA formation during composting.
Collapse
Affiliation(s)
- Fenglei Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuaipeng Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guitong Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
12
|
Zeng T, Sha H, Xie Q, Lu Y, Nong H, Wang L, Tang L. Comprehensive assessment of the microbial community structure in a typical lead-zinc mine soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33377-9. [PMID: 38648006 DOI: 10.1007/s11356-024-33377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Understanding the microbial community structure in soil contaminated with heavy metals (HMs) is a precondition to conduct bioremediation in mine soil. Samples were collected from a typical lead-zinc (Pb-Zn) mine to assess the microbial community structure of the HMs concentrated in the soil. The goal was to analyze the bacterial and fungal community structures and their interactions using the 16S rRNA genes and internal transcribed spacer high-throughput sequencing. Analyses at different sampling sites showed that contamination with HMs significantly reduced the bacterial richness and diversity but increased that of the fungi. The predominant bacteria genera of Acidobacteriales, Gaiellales, Anaerolineaceae, Sulfurifustis, and Gemmatimonadaceae, and predominant fungal genera of Sordariomycetes, Talaromyces, and Mortierella were assumed as HM resistant genera in Pb-Zn mining area. The pH effect on the bacterial and fungal communities was opposite to those of Cd, Pb, and Zn. This study offers comprehensive outlooks for bacterial and fungal community structures upon multiple HM stresses in the soil around a typical Pb-Zn mine area.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
13
|
Chen J, Cai Y, Wang Z, Xu Z, Zhuang W, Liu D, Lv Y, Wang S, Xu J, Ying H. Solid-state fermentation of corn straw using synthetic microbiome to produce fermented feed: The feed quality and conversion mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171034. [PMID: 38369147 DOI: 10.1016/j.scitotenv.2024.171034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Straw is a typical biomass resource which can be converted into high nutritional value feed via microbial fermentation. The degradation and conversion of straw using a synthetic microbial community (SMC-8) was functionally investigated to characterise its nitrogen conversion and carbon metabolism. Four species of bacteria were found to utilise >20 % of the inorganic nitrogen within 15 h, and the ratio of the diameter of fungal transparent circles (D) to the diameter of the colony (d) of the four fungal species was >1. Solid-state fermentation of corn straw increased the total amino acid (AA) content by 41.69 %. The absolute digestibility of fermented corn straw dry weight (DW) and true protein was 34.34 % and 45.29 %, respectively. Comprehensive analysis of functional proteins revealed that Aspergillus niger, Trichoderma viride, Cladosporium cladosporioides, Bacillus subtilis and Acinetobacter johnsonii produce a complex enzyme system during corn straw fermentation, which plays a key role in the degradation of lignocellulose. This study provided a new insight in utilizing corn straw.
Collapse
Affiliation(s)
- Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhengzhong Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Dong Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
14
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
15
|
Long Y, Zhu N, Zhu Y, Shan C, Jin H, Cao Y. Hydrochar drives reduction in bioavailability of heavy metals during composting via promoting humification and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 395:130335. [PMID: 38242237 DOI: 10.1016/j.biortech.2024.130335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
This study presented the effects of hydrochar on humification, heavy metals (HMs) bioavailability and bacterial community succession during composting. Results indicated that hydrochar addition led to elevated composting temperature, 7.3% increase in humic acid (HA), and 52.9% increase in ratio of humic acid to fulvic acid. The diethylene triamine pentacetic acid extractable Zn, Cu, Pb, and Ni were reduced by 19.2%, 36.3%, 37.8%, and 27.1%, respectively, in hydrochar-involved composting system. Furthermore, main mechanisms driving the reduced HMs bioavailability by hydrochar addition were revealed. The addition of hydrochar significantly modified the microbial community structure. Correlation analysis and microbial analysis demonstrated that relative abundance of bacterial groups connected with humification and HMs passivation were increased. Consequently, the HA formation was promoted and the HMs bioavailability were reduced through bacterial bioremediation and HA complexation. This study demonstrates the addition of hydrochar as a promising strategy to mitigate the HMs bioavailability during composting.
Collapse
Affiliation(s)
- Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yun Cao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
16
|
Li D, Jiang W, Ye Y, Luo J, Zhou X, Yang L, Guo G, Wang S, Liu Z, Guo W, Ngo HH. A change in substance and microbial community structure during the co-composting of kitchen waste anaerobic digestion effluent, sewage sludge and Chinese medicine residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167679. [PMID: 37848150 DOI: 10.1016/j.scitotenv.2023.167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Anaerobic digestion is a resource recovery method for organic waste, gaining attention due to carbon reduction. Disposing of anaerobic digestion effluent (ADE) is crucial for developing anaerobic digestion, but conventional wastewater treatment fails to effectively recover nutrients contained in the ADE. In the present study, the ADE without solid-liquid separation was mixed with sewage sludge and Chinese medicine residue for the composting, where the ADE could be recovered at high temperature through humification. Besides, the nitrogen balance, humification process, and microbial dynamics during the composting process were studied. The results showed that the group supplemented with ADE could increase the nitrogen retention efficiency by 2.21 % compared to the control group. High ammonia nitrogen content and salinity did not negatively affect the maturity and phytotoxicity of compost products and even increase the humification degree of compost products. Moreover, additional ADE may not alter microbial community structure, which could contribute to microbial succession. This is the first time to investigate the substance transformation and shift in microbial community structure while applying composting process for ADE treatment, in which the anaerobic-aerobic collaborative disposal process provides an alternative solution for the recovery of ADE.
Collapse
Affiliation(s)
- Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China.
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., No. 8 Jiefang Park Rord, Wuhan 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., No. 8 Jiefang Park Rord, Wuhan 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd., No. 37 Xinye Road, Wuhan 430024, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Songlin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan 430072, China
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
17
|
Meilander J, Caporaso JG. Microbiome science of human excrement composting. THE ISME JOURNAL 2024; 18:wrae228. [PMID: 39520251 PMCID: PMC11631093 DOI: 10.1093/ismejo/wrae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Linear waste management systems are unsustainable and contribute to environmental degradation, economic inequity, and health disparities. Among the array of environmental challenges stemming from anthropogenic impacts, the management of human excrement (human feces and urine) stands as a significant concern. Over two billion people do not have access to adequate sanitation, signifying a global public health crisis. Composting is the microbial biotechnology aimed at cycling organic waste, including human excrement, for improved public health, agricultural productivity and safety, and environmental sustainability. Applications of modern microbiome omics and related technologies have the capacity to support continued advances in composting science and praxis. In this article, we review literature focused on applications of microbiome technologies to study composting systems and reactions. The studies we survey generally fall into the categories of animal manure composting, biosolids composting, and human excrement composting. We review experiments utilizing microbiome technologies to investigate strategies for enhancing pathogen suppression and accelerating the biodegradation of organic matter. Additionally, we explore studies focused on the bioengineering potential of microbes as inoculants to facilitate degradation of toxins, such as pharmaceuticals or per- and polyfluoroalkyl substances. The findings from these studies underscore the importance of advancing our understanding of composting processes through the integration of emerging microbiome omics technologies. We conclude that work to-date has demonstrated exciting basic and applied science potential from studying compost microbiomes, with promising implications for enhancing global environmental sustainability and public health.
Collapse
Affiliation(s)
- Jeff Meilander
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, United States
| | - J Gregory Caporaso
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, United States
| |
Collapse
|
18
|
Liu S, Hou J, Zhang S, Zhang X, Zhang Q. The transformation of heavy metal speciation during rapid high-temperature aerobic fermentation of food waste and their potential mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119030. [PMID: 37741195 DOI: 10.1016/j.jenvman.2023.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
In this study, the content changes of multiple trace heavy metals (HMs) in food waste using a new rapid high-temperature aerobic fermentation (RTAF) technology and their relationships with different physicochemical factors were researched. The results indicated that the content of HMs in the decomposed products met the industry standards for organic fertilizers (NY/T525-2021, China). Physicochemical factors played an important role in controlling the changes in HM content. The component evolution of dissolved organic matter was studied, and its influences on the transformation of HM speciation showed that the RTAF process converted proteins into humus-like substances. Redundancy analysis revealed that the main factors driving the speciation transformation of HMs were tyrosine-like substances or microbial-derived humus (C3), molecular weight of dissolved organic matter (SUVA254) and humification degree (E250/E365). The increase in humification degree contributed to passivating HMs. The correlation network analysis results showed that the exchangeable HMs (Exc-HMs) were related to Lactobacillus and Pediococcu. Additionally, the cytoskeleton, coenzyme transport and metabolic function of microorganisms affected the Exc-HM content. These research results can provide a scientific basis for the prevention and control of HM pollution during the treatment of food waste.
Collapse
Affiliation(s)
- Shujia Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Shanghai SUS Environment Co, LTD., Shanghai, 201703, China
| | - JinJu Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
19
|
Chen G, Yuan Y, Tang S, Yang Z, Wu Q, Liang Z, Chen S, Li W, Lv X, Ni L. Comparative analysis of microbial communities and volatile flavor components in the brewing of Hongqu rice wines fermented with different starters. Curr Res Food Sci 2023; 7:100628. [PMID: 38021257 PMCID: PMC10660030 DOI: 10.1016/j.crfs.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
As one of the quintessential representatives of Chinese rice wine, Hongqu rice wine is brewed with glutinous rice as the main raw material and Hongqu (Gutian Qu or Wuyi Qu) as the fermentation starter. The present study aimed to investigate the impact of Hongqu on the volatile compositions and the microbial communities in the traditional production of Gutian Hongqu rice wine (GT) and Wuyi Hongqu rice wine (WY). Through the OPLS-DA analysis, 3-methylbutan-1-ol, isobutanol, ethyl lactate, ethyl acetate, octanoic acid, diethyl succinate, phenylethyl alcohol, hexanoic acid and n-decanoic acid were identified as the characteristic volatile flavor components between GT and WY. Microbiome analysis revealed significant enrichments of Lactobacillus, Pediococcus, Aspergillus and Hyphopichia in WY brewing, whereas Monascus, Saccharomyces, Pantoea, and Burkholderia-Caballeronia-Paraburkholderia were significantly enriched in GT brewing. Additionally, correlation analysis showed that Saccharomyces, Lactobacillus, Weissella and Pediococcus were significantly positively correlated wih most characteristic volatile components. Conversely, Picha, Monascus, Franconibacter and Kosakonia showed significant negative correlations with most of the characteristic volatile components. Furthermore, bioinformatical analysis indicated that the gene abundances for enzymes including glucan 1,4-alpha-glucosidase, carboxylesterase, alcohol dehydrogenase, dihydroxy-acid dehydratase and branched-chain-amino-acid transaminase were significantly higher in WY compared to GT. This finding explains the higher content of higher alcohols and characteristic esters in WY relative to GT. Collectively, this study provides a theoretical basis for improving the flavor profile of Hongqu rice wine and establishing a solid scientific foundation for the sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yujie Yuan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Suwen Tang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
20
|
Hussain A, Wu SC, Le TH, Huang WY, Lin C, Bui XT, Ngo HH. Enhanced biodegradation of endocrine disruptor bisphenol A by food waste composting without bioaugmentation: Analysis of bacterial communities and their relative abundances. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132345. [PMID: 37643575 DOI: 10.1016/j.jhazmat.2023.132345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Composting with food waste was assessed for its efficacy in decontaminating Bisphenol A (BPA). In a BPA-treated compost pile, the initial concentration of BPA 847 mg kg-1 fell to 6.3 mg kg-1 (99% reduction) over a 45-day composting period. The biodegradation rate was at its highest when bacterial activity peaked in the mesophilic and thermophilic phases. The average rate of total biodegradation was 18.68 mg kg-1 day-1. Standard methods were used to assess physicochemical parameters of the compost matrix and gas chromatography combined with mass spectrometry (GC/MS) was used to identify BPA intermediates. Next-generation sequencing (NGS) was used to detect BPA degraders and the diverse bacterial communities involved in BPA decomposition. These communities were found consist of 12 phyla and 21 genera during the composting process and were most diversified during the maturation phase. Three dominant phyla, Firmicutes, Pseudomonadota, and Bacteroidetes, along with Lactobacillus, Proteus, Bacillus, and Pseudomonas were found to be the most responsible for BPA degradation. Different bacterial communities were found to be involved in the food waste compost biodegradation of BPA at different stages of the composting process. In conclusion, food waste composting can effectively remove BPA, resulting in a safe product. These findings might be used to expand bioremediation technologies to apply to a wide range of pollutants.
Collapse
Affiliation(s)
- Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Suei Chang Wu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Hieu Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Wen-Yen Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
21
|
Liu Y, Zhang Y, Wang M, Wang L, Zheng W, Zeng Q, Wang K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2023; 379:128996. [PMID: 37011845 DOI: 10.1016/j.biortech.2023.128996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minghuan Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510130, China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wanting Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Qiannuo Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
22
|
Ahmed I, Zhang Y, Sun P, Zhang B. Co-occurrence pattern of ARGs and N-functional genes in the aerobic composting system with initial elevated temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118073. [PMID: 37229868 DOI: 10.1016/j.jenvman.2023.118073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Animal manure is known to harbor antibiotic resistance genes (ARGs). Aerobic composting is a prevalent cost-effective and sustainable method to treat animal waste. However, the effect of initially elevated temperature on antibiotic resistome during the composting process is unclear. In this study composting was subjected to initial external heating (EHC) for a period of 5 days compared to conventional composting (CC). After composting ARGs abundance was significantly reduced by 2.43 log in EHC and 1.95 log in CC. Mobile genetic elements (MGEs) also exhibited a reduction of 1.95 log in EHC and 1.49 log in CC. However, during the cooling phase, the genes resisting macrolide lincosamide and streptogramin B (MLSB) rebounded by 0.04 log in CC. The potential human pathogenic bacteria Pseudomonas (41.5-61.5%) and Actinobacteria (98.4-98.8%) were significantly reduced in both treatments and the bulk of targeted antibiotics were eliminated by 80.74% in EHC and 68.98% in CC. ARGs and N-functional genes (NFGs), mainly denitrification genes, were carried by the same microbial species, such as Corynebacterium sp. and Bacillus sp., of the dominant phylum. Redundancy analysis (RDA) revealed that CC microbial communities played a key role in the enrichment of ARGs while in EHC the variation of ARGs was attributed to the composting temperature. The number of high-risk ARGs was also lower in EHC (4) compared with CC (6) on day 30. These results provide insight into the effects of an initially enhanced temperature on ARGs removal and the relationship between ARGs and NFGs during the composting process.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongpeng Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Pengyu Sun
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- Environmental Science and Engineering School, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200240, China.
| |
Collapse
|
23
|
Zhu L, Zhao Y, Yao X, Zhou M, Li W, Liu Z, Hu B. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. CHEMOSPHERE 2023; 322:138191. [PMID: 36812995 DOI: 10.1016/j.chemosphere.2023.138191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Inoculation can effectively improve the recycling level of organic waste in composting process. However, the role of inocula in the humification process has been rarely studied. Therefore, we constructed a simulated food waste composting system by adding commercial microbial agents to explore the function of inocula. The results showed that adding microbial agents extended the high temperature maintenance time by 33% and increased the humic acid content by 42%. Inoculation significantly improved the degree of directional humification (HA/TOC = 0.46, p < 0.001). The proportion of positive cohesion in the microbial community underwent an overall increase. The strength of bacterial/fungal community interaction increased by 1.27-fold after inoculation. Furthermore, the inoculum stimulated the potential functional microbes (Thermobifida and Acremonium) which were highly related to the formation of humic acid and the degradation of organic matter. This study showed that additional microbial agents could strengthen microbial interaction to raise the humic acid content, thus opening the door for the development of targeted biotransformation inocula in the future.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenji Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Ning Y, Liu Y, Guo H, Wang X, Yang Y, Zhou D. Effect of the lignocellulolytic Psychrotroph Lelliottia sp. on bacterial community succession in corn straw compost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66346-66358. [PMID: 37095218 DOI: 10.1007/s11356-023-27092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to explore the effect of an inoculation, Lelliottia sp., on the corn straw compost's physico-chemical properties, composition, and the succession of bacterial community structure. The compost community composition and succession changed after Lelliottia sp. inoculation. Inoculation increased the bacterial community diversity and abundance in the compost to promote composting. The inoculated group entered the thermophilic stage on the first day, lasting 8 days. Judging the pile maturity based on the carbon:nitrogen ratio and germination index values, the inoculated group reached the maturity standard, which was 6 days faster than the control group. The relationship between environmental factors and bacterial communities was comprehensively analyzed using redundancy analysis. Temperature and carbon:nitrogen ratio were the main environmental factors driving the succession of bacterial communities, to provide basic information on the changes of physicochemical indexes and bacterial community succession in Lelliottia sp. inoculated maize straw composting, providing assistance for practical composting applications of this strain.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houyu Guo
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanna Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Verma S, Kumar Awasthi M, Liu T, Kumar Awasthi S, Yadav V, Ravindran B, Syed A, Eswaramoorthy R, Zhang Z. Biochar as smart organic catalyst to regulate bacterial dynamics during food waste composting. BIORESOURCE TECHNOLOGY 2023; 373:128745. [PMID: 36796733 DOI: 10.1016/j.biortech.2023.128745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The impact of wheat straw biochar (WSB) on bacterial dynamics succession during food waste (FW) composting was analyzed. Six treatments [0(T1), 2.5(T2), 5 (T3), 7.5 (T4), 10 (T5), and 15 %(T6)] dry weight WSB were used with FW and saw dust for composting. At the highest thermal peak at 59 ℃ in T6, the pH varied from 4.5 to 7.3, and electrical conductivity among the treatments varied from 1.2 to 2.0 mScm1. Firmicutes (25-97 %), Proteobacteria (8-45 %), and Bacteroidota (5-50 %) were among the dominate phyla of the treatments. Whereas, Bacillus (5-85 %), Limoslactobacillus (2-40 %), and Sphingobacterium (2-32 %) were highest among the identified genus in treatments but surprisingly Bacteroides was in greater abundance in the control treatments. Moreover, heatmap constructed with 35 various genera in all the treatments showed that Gammaproteobacterial genera contributed in large proportion after 42 days in T6. Additionally, a dynamic shift from Lactobacillus fermentum to higher abundance of Bacillus thermoamylovorans was reported on 42 days of FW composting. Biochar 15 % amendment can improve FW composting by influencing bacterial dynamics.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
26
|
Sha H, Li J, Wang L, Nong H, Wang G, Zeng T. Preparation of phosphorus-modified biochar for the immobilization of heavy metals in typical lead-zinc contaminated mining soil: Performance, mechanism and microbial community. ENVIRONMENTAL RESEARCH 2023; 218:114769. [PMID: 36463989 DOI: 10.1016/j.envres.2022.114769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The use of modified biochar for the remediation of heavy metal (HM) has received much attention. However, the immobilization mechanism of biochar to multiple HMs and the interaction of different forms of HMs with microorganisms are still unclear. K2HPO4-modified biochar (PBC) was produced and used in a 90-days immobilization experiment with soil collected from a typic lead-zinc (Pb-Zn) mining soil. Incubation experiments showed that PBC enhanced the transformation of Cd, Pb, Zn and Cu from exchangeable (Ex-) and/or carbonate-bound forms (Car-) to organic matter-bound (Or-) and/or residual forms (Re-). After scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffractometry (XRD), fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analysis, the mechanisms of HM immobilization by PBC were proposed as precipitation (PO43-, HPO42-, OH- and CO32-), electrostatic attraction, complexation (-COOH, -OH and R-O-H) and the indirect roles of soil parameter variations (pH, moisture and microbial community). Microbial community analysis through high-throughput sequencing showed that PBC reduced bacterial and fungal abundance. However, addition of PBC increased the relative proportions of Proteobacteria by 15.04%-42.99%, Actinobacteria by 4.74%-22.04%, Firmicutes by 0.76%-23.35%, Bacteroidota by 0.16%-12.34%, Mortierellomycota by 4.00%-9.66% and Chytridiomycota by 0.10%-13.7%. Ex-Cd/Pb/Zn, Car-Cd/Zn and Re-Cd/Pb/As were significantly positively (0.001<P≤0.05) correlated with bacterial phyla of Crenarchaeota and Methylomirabilota, and Re-Cu and Ex-/Car-/Fe-Mn oxide-bound (Fe-Mn-)/Or-As were significantly positively correlated (0.001<P≤0.05) with the bacterial phyla of Proteobacteria and Bacteroidota. While Car-Cd/Zn and Re-Pb/As were positively correlated (0.01<P≤0.05) with fungal phyla of Ascomycota, Glomeromycota, Kickxellomycota, Basidiomycota and Mucoromycota. The bacterial network contained more complex interactions than the fungal network, suggesting that bacteria play a larger role in HMs transformation processes. The results indicate that PBC is an effective agent for the remediation of HMs polluted soil in Pb-Zn mining areas.
Collapse
Affiliation(s)
- Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
27
|
Changes of bacterial and fungal communities and relationship between keystone taxon and physicochemical factors during dairy manure ectopic fermentation. PLoS One 2022; 17:e0276920. [PMID: 36534655 PMCID: PMC9762577 DOI: 10.1371/journal.pone.0276920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to interactions with variety of environmental and physicochemical factors, the composition and diversity of bacteria and fungi in manure ectopic fermentation are constantly changing. The purpose of this study was to investigated bacterial and fungal changes in dairy manure ectopic fermentation, as well as the relationships between keystone species and physicochemical characteristics. METHODS Ectopic fermentation was carried out for 93 days using mattress materials, which was combined with rice husk and rice chaff (6:4, v/v), and dairy waste mixed with manure and sewage. Physicochemical characteristics (moisture content, pH, NH4+-N (NN), total organic carbon (TO), total nitrogen (TN) and the C/N ratio) of ectopic fermentation samples were measured, as well as enzymatic activity (cellulose, urease, dehydrogenase and alkaline phosphatase). Furthermore, the bacterial and fungal communities were studied using 16S rRNA and 18S rRNA gene sequencing, as well as network properties and keystone species were analyzed. RESULTS During the ectopic fermentation, the main pathogenic bacteria reduced while fecal coliform increased. The C/N ratio gradually decreased, whereas cellulase and dehydrogenase remained at lower levels beyond day 65, indicating fermentation maturity and stability. During fermentation, the dominant phyla were Chloroflexi, Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria of bacteria, and Ascomycota of fungi, while bacterial and fungal community diversity changed dramatically and inversely. The association between physicochemical characteristics and community keystone taxon was examined, and C/N ratio was negative associated to keystone genus. CONCLUSION These data indicated that microbial composition and diversity interacted with fermentation environment and parameters, while regulation of keystone species management of physicochemical factors might lead to improved maturation rate and quality during dairy manure ectopic fermentation. These findings provide a reference to enhance the quality and efficiency of waste management on dairy farm.
Collapse
|
28
|
He Y, Liu D, He X, Wang Y, Liu J, Shi X, Chater CCC, Yu F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116377. [PMID: 36352711 DOI: 10.1016/j.jenvman.2022.116377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.
Collapse
Affiliation(s)
- Yan He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA; School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jianwei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, 553600, Guizhou, China
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
29
|
Zhang M, Sayer EJ, Zhang W, Ye J, Yuan Z, Lin F, Hao Z, Fang S, Mao Z, Ren J, Wang X. Seasonal Influence of Biodiversity on Soil Respiration in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2022; 11:3391. [PMID: 36501430 PMCID: PMC9738006 DOI: 10.3390/plants11233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Soil respiration in forests contributes to significant carbon dioxide emissions from terrestrial ecosystems but it varies both spatially and seasonally. Both abiotic and biotic factors influence soil respiration but their relative contribution to spatial and seasonal variability remains poorly understood, which leads to uncertainty in models of global C cycling and predictions of future climate change. Here, we hypothesize that tree diversity, soil diversity, and soil properties contribute to local-scale variability of soil respiration but their relative importance changes in different seasons. To test our hypothesis, we conducted seasonal soil respiration measurements along a local-scale environmental gradient in a temperate forest in Northeast China, analyzed spatial variability of soil respiration and tested the relationships between soil respiration and a variety of abiotic and biotic factors including topography, soil chemical properties, and plant and soil diversity. We found that soil respiration varied substantially across the study site, with spatial coefficients of variation (CV) of 29.1%, 27.3% and 30.8% in spring, summer, and autumn, respectively. Soil respiration was consistently lower at high soil water content, but the influence of other factors was seasonal. In spring, soil respiration increased with tree diversity and biomass but decreased with soil fungal diversity. In summer, soil respiration increased with soil temperature, whereas in autumn, soil respiration increased with tree diversity but decreased with increasing soil nutrient content. However, soil nutrient content indirectly enhanced soil respiration via its effect on tree diversity across seasons, and forest stand structure indirectly enhanced soil respiration via tree diversity in spring. Our results highlight that substantial differences in soil respiration at local scales was jointly explained by soil properties (soil water content and soil nutrients), tree diversity, and soil fungal diversity but the relative importance of these drivers varied seasonally in our temperate forest.
Collapse
Affiliation(s)
- Mengxu Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Emma J. Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Smithsonian Tropical Research Institute, Panama City 32402, Panama
| | - Weidong Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zhanqing Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Jing Ren
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| |
Collapse
|
30
|
Kong Y, Wang G, Chen W, Yang Y, Ma R, Li D, Shen Y, Li G, Yuan J. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114251. [PMID: 36327785 DOI: 10.1016/j.ecoenv.2022.114251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Static facultative heap composting of animal manure is widely used in China, but there is almost no systematic research on the phytotoxicity of the produced compost. Here, we evaluated the phytotoxic variation in compost produced by facultative heap composting of four types of animal manure (chicken manure, pig manure, sheep manure, and cattle manure) using different plant seeds (cucumber, radish, Chinese cabbage, and oilseed rape) to determine germination index (GI). The key factors that affected GI values were identified, including the dynamics of the phytotoxicity and microbial community during heap composting. Sensitivity to toxicity differed depending on the type of plant seed used. Phytotoxicity during facultative heap composting, evaluated by the GI, was in the order: chicken manure (0-6.6 %) < pig manure (14.4-90.5 %) < sheep manure (46.0-93.0 %) < cattle manure (50.2-105.8 %). Network analysis showed that the volatile fatty acid (VFA) concentration was positively correlated with Firmicutes abundance, and NH4+-N was correlated with Actinobacteria, Proteobacteria, and Bacteroidetes. More bacteria were stimulated to participate in conversions of dissolved organic carbon, dissolved nitrogen, VFA, and ammonia-nitrogen (NH4+-N) in sheep manure heap composting than that in other manure. The GI was most affected by VFA in chicken manure and cattle manure heap composting, while NH4+-N was the main factor affecting the GI in pig manure and sheep manure compost. The dissolved carbon and nitrogen content and composition, as well as the core and proprietary microbial communities, were the primary factors that affected the succession of phytotoxic substances in facultative heap composting, which in turn affected GI values. In this study, the key pathways of livestock manure composting that affected GI and phytotoxicity were found and evaluated, which provided new insights and theoretical support for the safe use of organic fertilizer.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
31
|
Lu GH, Zheng K, Cao R, Fazal A, Na Z, Wang Y, Yang Y, Sun B, Yang H, Na ZY, Zhao X. Root-associated fungal microbiota of the perennial sweet sorghum cultivar under field growth. Front Microbiol 2022; 13:1026339. [PMID: 36386674 PMCID: PMC9643593 DOI: 10.3389/fmicb.2022.1026339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Root-associated fungal microbiota, which inhabit the rhizosphere, rhizoplane and endosphere, have a profound impact on plant growth and development. Sorghum bicolor (L.) Moench, also called broomcorn or sweet sorghum, is a multipurpose crop. The comparison between annual and perennial sweet sorghum cultivars in terms of plant growth, as well as their interactions with belowground fungal microbiota, is still poorly understood, although there has been growing interest in the mutualism between annual sweet sorghum and soil bacteria or bacterial endophytes. In this study, the perennial sweet sorghum cultivar N778 (N778 simply) and its control lines TP213 and TP60 were designed to grow under natural field conditions. Bulk soil, rhizosphere soil and sorghum roots were collected at the blooming and maturity stages, and then the fungal microbiota of those samples were characterized by high-throughput sequencing of the fungal ITS1 amplicon. Our results revealed that the alpha diversity of the fungal microbiota in rhizosphere soil and root samples was significantly different between N778 and the two control lines TP213 and TP60 at the blooming or maturity stage. Moreover, beta diversity in rhizosphere soil of N778 was distinct from those of TP213 and TP60, while beta diversity in root samples of N778 was distinct from those of TP213 but not TP60 by PCoA based on Bray–Curtis and WUF distance metrics. Furthermore, linear discriminant analysis (LDA) and multiple group comparisons revealed that OTU4372, a completely unclassified taxon but with symbiotroph mode, was enriched in sorghum roots, especially in N778 aerial roots at the blooming stage. Our results indicate that Cladosporium and Alternaria, two fungal genera in the rhizosphere soil, may also be dominant indicators of sorghum yield and protein content in addition to Fusarium at the maturity stage and imply that the perennial sweet sorghum N778 can primarily recruit dominant psychrotolerant bacterial taxa but not dominant cold-tolerant fungal taxa into its rhizosphere to support its survival below the freezing point.
Collapse
Affiliation(s)
- Gui-Hua Lu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Gui-Hua Lu,
| | - Kezhi Zheng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Rui Cao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiye Na
- Yunnan Eco-Agriculture Research Institute, Kunming, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongjun Yang
- Yunnan Eco-Agriculture Research Institute, Kunming, China
| | - Zhong-Yuan Na
- Yunnan Eco-Agriculture Research Institute, Kunming, China
- Zhong-Yuan Na,
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Xiangxiang Zhao,
| |
Collapse
|
32
|
Zeng J, Shen X, Yin H, Sun X, Dong H, Huang G. Oxygen dynamics, organic matter degradation and main gas emissions during pig manure composting: Effect of intermittent aeration. BIORESOURCE TECHNOLOGY 2022; 361:127697. [PMID: 35905876 DOI: 10.1016/j.biortech.2022.127697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effect of intermittent aeration on oxygen dynamics, organic matter degradation and main gas emissions, a lab-scale pig manure composting experiment was conducted with intermittent aeration (I_A, 30-min on and 30-min off) and continuous aeration (C_A). Although aeration volume and oxygen supply of I_A was only half of C_A, I_A could obviously enhance the oxygen utilization efficiency by 96.67 % and reduce energy dissipation for aeration by 50.87 %. Based on the comprehensive analysis of total organic matter, total carbon, total nitrogen, cellulose, hemicellulose and lignin contents, there was no significant difference in organic matter degradation between I_A and C_A (p > 0.05). Moreover, a reduction of 21.71 %, 38.93 %, 44.40 % and 62.19 % of CH4, N2O and the total GHG emission equivalent as well as NH3 emissions was realized, respectively, in I_A compared with C_A. Therefore, adopting intermittent aeration was a useful strategy and choice for high-efficiency, high-quality and environment-friendly composting.
Collapse
Affiliation(s)
- Jianfei Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuli Shen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongjie Yin
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoxi Sun
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
33
|
Yang H, Huang Y, Li K, Zhu P, Wang Y, Li X, Meng Q, Niu Q, Wang S, Li Q. Lignocellulosic depolymerization induced by ionic liquids regulating composting habitats based on metagenomics analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76298-76309. [PMID: 35668255 DOI: 10.1007/s11356-022-21148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The application of ionic liquids with sawdust and fresh dairy manure was studied in composting. The degradation of organic matter (OM), dissolved organic matter (DOM), and lignocellulose was analyzed. The DOM decreased by 14.25 mg/g and 11.11 mg/g in experimental group (ILs) and control group (CK), respectively. OM decreased by 7.32% (CK) and 8.91% (ILs), respectively. The degradation rates of hemicellulose, lignin, and cellulose in ILs (56.62%, 42.01%, and 23.97%) were higher than in CK (38.39%, 39.82%, and 16.04%). Microbial community and carbohydrate-active enzymes (CAZymes) were analyzed based on metagenomics. Metagenomic analysis results showed that ionic liquids enriched Actinobacteria and Proteobacteria in composting. Compared with CK, the total abundance values of GH11, GH6, AA6, and AA3_2 in ILs increased by 13.98%, 10.12%, 11.21%, and 13.68%, respectively. Ionic liquids can improve the lignocellulosic degradation by regulating the environmental physicochemical parameters (temperature, pH, C/N) to promote the growth of Actinobacteria and Proteobacteria and carbohydrate-active enzymes (CAZymes) abundance. Therefore, ionic liquids are a promising additive in lignocellulosic waste composting.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
34
|
Liu X, Li X, Hua Y, Sinkkonen A, Romantschuk M, Lv Y, Wu Q, Hui N. Meat and bone meal stimulates microbial diversity and suppresses plant pathogens in asparagus straw composting. Front Microbiol 2022; 13:953783. [PMID: 36204619 PMCID: PMC9530395 DOI: 10.3389/fmicb.2022.953783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, China
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
| | - Yanfang Lv
- Food Safety Key Lab of Liaoning Province, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Qian Wu
- Boda Environmental Protection Co., Ltd., Yixing, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland
- *Correspondence: Nan Hui
| |
Collapse
|
35
|
Chen GM, Li WL, Tong SG, Qiu YT, Han JZ, Lv XC, Ai LZ, Sun JY, Sun BG, Ni L. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine. Curr Res Food Sci 2022; 5:1433-1444. [PMID: 36110382 PMCID: PMC9467907 DOI: 10.1016/j.crfs.2022.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
As a typical representative of Chinese rice wine (Huangjiu), Hongqu rice wine is famous for its red color, mellow taste and strong fragrance. However, due to the open brewing environment and traditional fermentation technology, there are some safety risks in traditional brewed Hongqu rice wine, such as a certain amount of biogenic amines. In this study, the dynamic changes and the differences of microbial communities and volatile flavor components between two types of Hongqu rice wine with high and low biogenic amine contents (LBAW and HBAW) during the traditional brewing were systematically investigated. The results showed that the total biogenic amine contents in LBAW and HBAW were 20.91 and 69.06 mg/L, respectively. The contents of putrescine, cadaverine, spermine and spermidine in HBAW were significantly higher than those in LBAW, and it was noteworthy that spermine content in HBAW was 17.62 mg/L, which was not detected in LBAW. In addition, the volatile flavor characteristics of the two kinds of Hongqu rice wine were obviously different. The contents of acetophenone, n-butyl butanoate and benzothiazole were obviously higher in HBAW, while the contents of isoamyl acetate, ethyl lactate, ethyl caprate and phenylethyl alcohol were significantly higher in LBAW. High-throughput sequencing of 16S/ITS amplicon revealed that Weissella, Kosakonia, Pantoea, Monascus, Saccharomyces and Millerozyma were the predominant microbial genera during the traditional brewing of HBAW, while Weissella, Kosakonia, Monascus, Saccharomyces and Issatchenkia were the predominant microbial genera during the traditional brewing of LBAW. Correlation analysis revealed that biogenic amines were significantly negatively correlated with unclassified_o_Saccharomycetales, Cyberlindnera, Zygoascus, Aspergillus and Acinetobacter, but positively correlated with Lactobacillus, Pediococcus, Millerozyma and Apiotrichum. In addition, we also found that Lactobacillus, Pediococcus and Saccharomyces were significantly positively correlated with most of the volatile flavor components, while Candida, Trichosporon and Monascus were significantly negatively correlated with most of the volatile flavor components. In addition, bioinformatical analysis based on PICRUSt demonstrated that the key enzymes for biogenic amine biosynthesis were more abundant in the microbial community of HBAW than LBAW. These findings demonstrate that the formations of volatile flavor and biogenic amines in Hongqu rice wine are influenced by microbial community during the fermentation. This work facilitates scientific understanding of the formation mechanism of biogenic amines, and may be useful to develop effective strategies to improve the quality of Hongqu rice wine.
Collapse
Affiliation(s)
- Gui-Mei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wen-Long Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shan-Gong Tong
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Yun-Tao Qiu
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xu-Cong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Lian-Zhong Ai
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jin-Yuan Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Bao-Guo Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
36
|
Kumar Awasthi S, Verma S, Zhou Y, Liu T, Kumar Awasthi M, Zhang Z. Effect of scleral protein shell amendment on bacterial community succession during the pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127644. [PMID: 35868462 DOI: 10.1016/j.biortech.2022.127644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The impact of scleral protein shell (SPS) amendment on bacterial community succession during pig manure (PM) composting were evaluated in the present work. Five treatments representing different dry weight dosage of SPS [0 % (T1), 2.5 % (T2), 5 % (T3), 7.5 % (T4), 10 % (T5) and 12 % (T6)] were applied with initial mixture of raw materials (Wheat straw along with the PM) and composted for 42 days. Results indicated that the dominant of phyla were Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. The relative abundance (RA) of genus un-identified, Ruminofilibacter, Thermovum, Longispora and Pseudomonas were greater among the all treatments but interestingly genus Ruminofilibacter was also higher in control treatment. The network analysis was confirmed that T6 treatment with higher dosage of SPS amendment could enhance the bacterial population and rate of organic matter mineralization. Compared with T1, the T5 has greater potential impact to enhance the bacterial population and significant correlation among the pH and temperature.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
37
|
Wang P, Wang Z, Ren Z, Ding Y, Pan J, Wang Y, Jin D. Effects of di-n-butyl phthalate on aerobic composting process of agricultural waste: Mainly based on bacterial biomass and community dynamics analysis. ENVIRONMENTAL RESEARCH 2022; 212:113290. [PMID: 35427593 DOI: 10.1016/j.envres.2022.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Phthalic acid esters (PAEs) pollution has become a major environmental problem in agricultural waste composting. However, little information was available about the how the PAEs alter microbial processes during composting. This study investigated the effects of di-n-butyl phthalate (DBP) on bacterial biomass and community dynamics during composting. The results showed that a decreasing of DBP was observed from thermophilic phase and 43.26% of DBP was degraded after composting. The bacterial biomass and diversity during composting were reduced under DBP stress, so delaying the decomposition of organic matter. Moreover, the changes in bacterial community were observed since the thermophilic phase of DBP-contaminated composting. KEGG pathway analysis indicated that DBP stress decreased the relative abundance of the main metabolic pathways and inhibited compost maturation. Moreover, DBP stress had more significant correlation with the dominant bacteria. This work will expand the understanding of PAEs-contaminated organic waste composting and further control of PAEs pollutants.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ziming Ren
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yuejie Ding
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
38
|
Fan D, Zhao Z, Wang Y, Ma J, Wang X. Crop-type-driven changes in polyphenols regulate soil nutrient availability and soil microbiota. Front Microbiol 2022; 13:964039. [PMID: 36090073 PMCID: PMC9449698 DOI: 10.3389/fmicb.2022.964039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Crop rotation is a typical agronomic practice to mitigate soil deterioration caused by continuous cropping. However, the mechanisms of soil biotic and abiotic factors in response to different cropping patterns in acidic and polyphenol-rich tea nurseries remain unclear. In this study, the composition and function of microbial communities were comparatively investigated in soils of tea seedlings continuously planted for 2 years (AC: autumn-cutting; SC: summer-cutting) and in soils rotation with strawberries alternately for 3 years (AR: autumn-cutting). The results showed that AR significantly improved the survival of tea seedlings but greatly reduced the contents of soil polyphenols. The lower soil polyphenol levels in AR were associated with the decline of nutrients (SOC, TN, Olsen-P) availability, which stimulates the proliferation of nutrient cycling-related bacteria and mixed-trophic fungi, endophytic fungi and ectomycorrhizal fungi, thus further satisfying the nutrient requirements of tea seedlings. Moreover, lower levels of polyphenols facilitated the growth of plant beneficial microorganisms (Bacillus, Mortierella, etc.) and suppressed pathogenic fungi (Pseudopestalotiopsis, etc.), creating a more balanced microbial community that is beneficial to plant health. Our study broadens the understanding of the ecological role of plant secondary metabolites and provides new insights into the sustainability of tea breeding.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhumeng Zhao
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junhui Ma
- Administration of Agriculture and Rural Affairs of Lishui, Lishui, China
| | - Xiaochang Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xiaochang Wang,
| |
Collapse
|
39
|
Dang H, Zhao W, Zhang T, Cheng Y, Dong J, Zhuang L. Great gerbil burrowing-induced microbial diversity shapes the rhizosphere soil microenvironments of Haloxylon ammodendron in temperate deserts. Front Microbiol 2022; 13:960594. [PMID: 36051766 PMCID: PMC9427191 DOI: 10.3389/fmicb.2022.960594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
In the Gurbantunggut Desert of northwest China, the main habitat of Rhombomys opimus (great gerbil) is under the thickets of Haloxylon ammodendron, the main construction species. In the long-term coexistence, continuous gerbil activities (burrowing, defecating, and gnawing) limited the growth of H. ammodendron, affected the root microenvironment under the H. ammodendron forest, and weakened the desert ecosystem. However, there is a lack of general understanding about the response of desert soil microhabitats to such gerbil disturbance. Accordingly, this study examined the effects of different intensities of gerbil disturbance (none, mild, moderate, or severe disturbances) on soil nutrients content and used high-throughput sequencing to explore the change in diversity and structure of microbial communities (bacteria and fungi) in H. ammodendron rhizosphere at different soil depths (0–20, 20–40, and 40–60 cm). In the arid desert ecosystem, compared with the soil fungal community, the alpha diversity of the soil bacterial community was significantly affected by gerbil disturbance. Meanwhile, both soil depth and gerbil disturbance significantly impacted the beta diversity and relative abundance of soil bacterial and fungal communities. In addition, gerbil disturbance significantly altered the soil characteristics affecting the distribution and composition of soil microbial communities in H. ammodendron rhizosphere, especially the soil bacterial community. This survey provides evidence that remold impact of gerbil disturbance on soil microenvironment of H. ammodendron rhizosphere in desert ecosystems in northwest China, which helps to further understand the potential correlations with changes in the microbial community at a regional scale.
Collapse
Affiliation(s)
- Hanli Dang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Wenqin Zhao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of life Sciences, Shihezi University, Shihezi, Xinjiang, China
- *Correspondence: Wenqin Zhao,
| | - Tao Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yongxiang Cheng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jianrui Dong
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
40
|
Zhao X, Li J, Che Z, Xue L. Succession of the Bacterial Communities and Functional Characteristics in Sheep Manure Composting. BIOLOGY 2022; 11:biology11081181. [PMID: 36009808 PMCID: PMC9404829 DOI: 10.3390/biology11081181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Bacterial community is a key factor affecting aerobic composting, and understanding bacterial community succession is important to revealing the mechanism of organic matter degradation. In this study, the succession and metabolic characteristics of bacterial communities were explored in 45 days composting of sheep manure and wheat straw by using high-throughput sequencing technology and bioinformatics tools, respectively. Results showed that the alpha diversity of bacterial community significantly decreased in the thermophilic (T2) phase and then recovered gradually in the bio-oxidative (T3) and the maturation (T4) phases. Bacterial communities varied at different stages, but there were 158 genera in common bacterial species. Unclassified_f_Bacillaceae, Oceanobacillus, Bacillus, Pseudogracilibacillus, and Nocardiopsis were identified as keystone bacterial genera. Eleven genera were significantly correlated (p < 0.05), or even extremely significantly correlated (p < 0.001), with the physicochemical factors. Redundancy analysis (RDA) showed that changes of bacterial community diversity correlated with physicochemical factors. The highest relative abundances were amino acid and carbohydrate metabolism among the metabolic groups in the compost. These results will provide theoretical support for further optimizing sheep manure composting conditions and improving the quality of organic fertilizers.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Juan Li
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| | - Lingui Xue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| |
Collapse
|
41
|
Bao J, Lv Y, Liu C, Li S, Yin Z, Yu Y, Zhu L. Performance evaluation of rhamnolipids addition for the biodegradation and bioutilization of petroleum pollutants during the composting of organic wastes with waste heavy oil. iScience 2022; 25:104403. [PMID: 35663019 PMCID: PMC9157225 DOI: 10.1016/j.isci.2022.104403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental pollution caused by petroleum hydrocarbons is being paid more and more attention worldwide. Surfactants are able to improve the solubility of petroleum hydrocarbons, but their effects on petroleum hydrocarbon degradation in composting systems are still unclear. In this study, the effects on microbial community succession were investigated by adding petroleum hydrocarbons and rhamnolipids during composting of organic wastes. The results showed that the compost and the addition of rhamnolipids could effectively reduce the petroleum hydrocarbon content with an efficiency of 73.52%, compared to 53.81% for the treatment without addition. Network analyses and Structural Equation Model suggested that there were multiple potential petroleum degraders microbes that might be regulated by nitrogen. The findings in this study can also provide an implication for the treatment of petroleum hydrocarbon pollutants from oil-polluted soil, and the technology can be potentially applied on an industrial scale in practice. Effects of rhamnolipids on the removal of petroleum hydrocarbons were investigated The relationship between PDM, APDM, and environmental factors was revealed There was a significant correlation between nitrogen and PDM and APDM Rhamnolipids are bio-resources for effectively removing petroleum hydrocarbons
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
42
|
Kong Z, Wang M, Shi X, Wang X, Zhang X, Chai L, Liu D, Shen Q. The functions of potential intermediates and fungal communities involved in the humus formation of different materials at the thermophilic phase. BIORESOURCE TECHNOLOGY 2022; 354:127216. [PMID: 35472639 DOI: 10.1016/j.biortech.2022.127216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Humus is the final product of humus precursors (HPS) during the humification process, while the associated mechanisms of humus formation have not been clarified. Here, the HPS degradation intermediate and core fungal function for wheat straw and chicken manure compost (SCM), cow dung compost (CD), Chinese traditional medicine residue compost (CTM) and mushroom dreg and chicken manure compost (MCM) was investigated during the thermophilic phase. The results showed SCM and MCM were rich in proteins, lipids, cellulose, low-molecular-weight organic acids, while CD and CTM contained abundant carbohydrates, aliphatic compounds, easily biodegradable aromatic structures, and intermediates from the lignocellulose degradation. In particular, the HPS degrading intermediates including O-alkyl-C and aromatic C compounds were the critical factors, and Scedosporium, Hypsizygus and Remersonia were the core fungal genera for the humification. Furthermore, the potential fungal functional genes involved in carbohydrate and lignin degradation might be the key factors to drive the humification process.
Collapse
Affiliation(s)
- Zhijian Kong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People' Republic of China, Nanjing 210042, People' Republic of China
| | - Xiaoteng Shi
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| | - Xudong Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| | - Xiangkai Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| | - Lifang Chai
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, People' Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People' Republic of China
| |
Collapse
|
43
|
Bello A, Ogundeji A, Yu S, Jiang X, Deng L, Zhao L, Jong C, Xu X. Dynamics of fungal species related to nitrogen transformation and their network patterns during cattle manure-corn straw with biochar composting. Arch Microbiol 2022; 204:236. [PMID: 35362815 DOI: 10.1007/s00203-022-02848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Fungi are reputed to play a significant role in the composting matrix as decomposers of recalcitrant organic materials like cellulose and lignin. However, information on the fungi communities' roles in nitrogen transformation under a compost-biochar mixture is scarce. This study investigated shifts in fungal species mediating N transformation and their network patterns in cattle manure-corn straw (CMCS) and CMCS plus biochar (CMCB) composting using high-throughput sequencing data. The results revealed that the addition of biochar altered fungal richness and diversity and significantly influenced their compositions during composting. Biochar also altered the compost fungal network patterns; CMCS had a more complex network with higher positive links than CMCB, suggesting stable niche overlap. The consistent agreement of multivariate analyses (redundancy, network, regression, Mantel and path analyses) indicated that Ciliophora_sp in CMCS and unclassified_norank_Pleosporales in CMCB were the key fungal species mediating total N transformation, whereas Scedosporium_prolificans in CMCS and unclassified_Microascaceae in CMCB were identified as major predictive indices determining NO3--N transformation. Also, Coprinopsis cinerea and Penicillium oxalicum were the predictive factors for NH4+-N transformation in CMCS and CMCB during composting. These results indicated that the effects of biochar on N conversions in composting could be unraveled using multivariate analyses on fungi community evolution, network patterns, and metabolism.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.,College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Abiola Ogundeji
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Sun Yu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chol Jong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.,College of Agriculture, Kimjewon Agricultural University, Haeju City, Hwanghae South Province, 999093, Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
44
|
Sun Y, Liu X, Sun L, Men M, Wang B, Deng L, Zhao L, Han Y, Jong C, Bi R, Zhao M, Li X, Liu W, Shi S, Gai Z, Xu X. Microecological insight to fungal structure and key fungal communities regulating nitrogen transformation based on spatial heterogeneity during cow manure composting by multi-angle and multi-aspect analyses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:132-142. [PMID: 35219063 DOI: 10.1016/j.wasman.2022.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Composting is the mainstream technology for the treatment of agricultural solid waste, but limited efforts were made to investigate fungal composition and its contributions to nitrogen transformation in different depths of compost. In this study, spatial distributions of fungi were analyzed using high throughput sequencing by multi-angle analyses, and the key fungal communities determining nitrogen transformation were quantified and identified by multi-aspect analyses during cow manure composting. Multi-angle analyses showed that fungal structure, biomarkers and trophic mode composition varied in different layers, revealing that spatial heterogeneity is the distinctive attribute of composting system. Ascomycota and Basidiomycota were dominant phyla during composting, the two phyla peaked in top and bottom layer respectively. At mesophilic stage, Tremellales, and unclassified Ascomycota (order) were biomarkers in top and middle layer respectively, and so were Remersonia, Pyrenochaetopsis, and Wallemia in bottom layer by LEfSe analysis. Based on multi-aspect analyses, Unclassified Dothideomycetes mainly affected NH4+-N transformation both in top (1.2816***) and middle layers (1.1726*). Trichocladium asperum (0.9536***) and Zopfiella (-0.9484***) mainly affected TN transformation in top layer. Guehomyces pullulans (-0.9684**) and Preussia (-1.0508**) regulated NO3--N transformation in middle layer. Thermomyces lanuginosus (0.7127***) and Typhula sp. UW973129 (0.7298***) were the key species promoting TN and C/N transformation in bottom layer, respectively. Interestingly, different fungal communities showed a complex network interaction driving nitrogen transformation, and the abundance of microbial community could be conducive to characterizing nitrogen transformation in the vertical space of composting.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Men
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Democratic People's Republic of Korea
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Wang Y, Tang Y, Yuan Z. Improving food waste composting efficiency with mature compost addition. BIORESOURCE TECHNOLOGY 2022; 349:126830. [PMID: 35143985 DOI: 10.1016/j.biortech.2022.126830] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the impact of mature compost addition on food waste composting physicochemical properties, bacterial community succession and corresponding metabolic function. Analytical results from two pilot-scale composting treatments with (C20) or without (C0) mature compost demonstrated that mature compost amendment increased the reduction rate of volatile solids by 71.4% and shortened the composting period by 7 days. Microbial dynamics analysis revealed that mature compost addition increased the bacteria abundance related to maturity during the initial stage, and these bacteria (mainly SBR1031 and Actinomarinales) were easier to grow again during cooling stage, thus promoted the maturity of compost. Mature compost addition increased the abundance of Ureibacillus, Lysinibacillus, Limochordaceae and Tepidimicrobium by providing an appropriate temperature environment, which enhanced the amino acid and carbohydrate metabolism function and promoted the degradation of organic matter. Together, these findings revealed the underlying mechanisms of bacterial community succession with mature compost addition.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Zhang Y, Duan M, Zhou B, Wang Q, Zhang Z, Su L, Bai Q. Mechanism that allows manno-oligosaccharide to promote cellulose degradation by the bacterial community and the composting of cow manure with straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30265-30276. [PMID: 34997494 DOI: 10.1007/s11356-021-17797-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The new sugar source manno-oligosaccharide can regulate the structure of the microbial community. This study investigated the effects of adding manno-oligosaccharide at four different levels (0, 0.1%, 0.5%, and 1% w/w compost) to composting cow manure and straw on lignocellulose degradation and the bacterial community. Adding 0.5% manno-oligosaccharide had the greatest effects on accelerating the composting process, reducing its toxicity, and improving the stability of the product. After composting for 25 days, adding 0.5% manno-oligosaccharide decreased the hemicellulose, cellulose, and lignin contents to 2.25%, 11.25%, and 7.07%, respectively, compared with those under CK. Manno-oligosaccharide promoted the degradation of lignocellulose by increasing the abundances of Thermobifida, Streptomyces, and Luteimonas. In addition, manno-oligosaccharide inhibited pathogenic bacteria and increased the abundances of functional genes related to metabolism. Finally, adding 0.5% manno-oligosaccharide mainly affected the degradation of lignocellulose by enhancing the C/N ratio and the abundances of Streptomyces and the secretion system during composting according to redundancy analysis.
Collapse
Affiliation(s)
- Yuhua Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
- XianYang and Research Institute of Water Conservancy and Hydropower Planning and Design, XianYang, 712021, China
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an, 710065, China
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Qingjun Bai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
47
|
Metagenomic Analysis of Bacterial Community Structure and Dynamics of a Digestate and a More Stabilized Digestate-Derived Compost from Agricultural Waste. Processes (Basel) 2022. [DOI: 10.3390/pr10020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recycling of different products and waste materials plays a crucial role in circular economy, where the anaerobic digestion (AD) constitutes an important pillar since it reuses nutrients in the form of organic fertilizers. Knowledge about the digestate and compost microbial community structure and its variations over time is important. The aim of the current study was to investigate the microbiome of a slurry cow digestate produced on a farm (ADG) and of a more stabilized digestate-derived compost (DdC) in order to ascertain their potential uses as organic amendments in agriculture. The results from this study, based on a partial fragment of 16S bacterial rRNA NGS sequencing, showed that there is a greater microbial diversity in the DdC originated from agricultural waste compared to the ADG. Overall, the existence of a higher microbial diversity in the DdC was confirmed by an elevated number (1115) of OTUs identified, compared with the ADG (494 OTUs identified). In the DdC, 74 bacterial orders and 125 families were identified, whereas 27 bacterial orders and 54 families were identified in the ADG. Shannon diversity and Chao1 richness indexes were higher in DdC samples compared to ADG ones (Shannon: 3.014 and 1.573, Chao1: 68 and 24.75; p < 0.001 in both cases). A possible association between the microbiome composition at different stages of composting process and the role that these microorganisms may have on the quality of the compost-like substrate and its future uses is also discussed.
Collapse
|
48
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
49
|
Yuan Z, Xu W, He Z, Shen H. Poplar Sawdust Stack Self-Heating Properties and Variations of Internal Microbial Communities. MATERIALS 2022; 15:ma15031114. [PMID: 35161059 PMCID: PMC8840308 DOI: 10.3390/ma15031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
The heat accumulation generated by microbial metabolic activities during the storage of the sawdust may lead to spontaneous combustion accidents. This paper studied the Critical Ambient Temperature (CAT) variation of poplar sawdust at different stack dimensions and investigated the physicochemical properties as well as microbial community dynamics during the self-heating process of poplar sawdust stacks. From the self-heating substances test experiments and Frank-Kamenetskii (FK) theory, it was found that the CAT of poplar sawdust stacks would decrease from 158.27 °C to 102.46 °C with the increase of stack size from 0.1 m to 3.2 m. From the sawdust stack self-heating experiments, microbial metabolic activities were enhanced with the increasing moisture content (by watering) and oxygen (by turning over), which led to a remarkable increase of the sawdust stack temperature and the rapid decomposition of biochemical components (especially cellulose and hemicellulose). From the microbiological community analysis, at the thermophilic stage (around 60 °C, large amounts of heat release in compost bin), the existence of thermostable bacteria (such as Brevibacillus thermoruber, Bacillus thermoamylovorans and Paenibacillus barengoltzii belonging to Firmicutes) played an important role in degrading organic substances. The heat generated by the microbial metabolic activities might lead to spontaneous combustion eventually if sawdust stack is large enough. Therefore, the sawdust should be stacked in a cool and dry area while avoiding large amounts of storage in high humidity environments.
Collapse
Affiliation(s)
- Zitao Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control & Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (W.X.); (Z.H.)
- Correspondence: (Z.Y.); (H.S.)
| | - Wenbin Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control & Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (W.X.); (Z.H.)
| | - Zili He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control & Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (W.X.); (Z.H.)
| | - Hao Shen
- Guangdong Provincial Key Laboratory of Fire Science and Technology, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (Z.Y.); (H.S.)
| |
Collapse
|
50
|
Greff B, Szigeti J, Nagy Á, Lakatos E, Varga L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114088. [PMID: 34798585 DOI: 10.1016/j.jenvman.2021.114088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The rapidly developing agro-industry generates huge amounts of lignocellulosic crop residues and animal manure worldwide. Although co-composting represents a promising and cost-effective method to treat various agricultural wastes simultaneously, poor composting efficiency prolongs total completion time and deteriorates the quality of the final product. However, supplementation of the feedstock with beneficial microorganisms can mitigate these negative effects by facilitating the decomposition of recalcitrant materials, enhancing microbial enzyme activity, and promoting maturation and humus formation during the composting process. Nevertheless, the influence of microbial inoculation may vary greatly depending on certain factors, such as start-up parameters, structure of the feedstock, time of inoculation, and composition of the microbial cultures used. The purpose of this contribution is to review recent developments in co-composting procedures involving different lignocellulosic crop residues and farm animal manure combined with microbial inoculation strategies. To evaluate the effectiveness of microbial additives, the results reported in a large number of peer-reviewed articles were compared in terms of composting process parameters (i.e., temperature, microbial activity, total organic carbon and nitrogen contents, decomposition rate of lignocellulose fractions, etc.) and compost characteristics (humification, C/N ratio, macronutrient content, and germination index). Most studies confirmed that the use of microbial amendments in the co-composting process is an efficient way to facilitate biodegradation and improve the sustainable management of agricultural wastes. Overall, this review paper provides insights into various inoculation techniques, identifies the limitations and current challenges of co-composting, especially with microbial inoculation, and recommends areas for further research in this field.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary.
| | - Jenő Szigeti
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Ágnes Nagy
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|