1
|
Lai T, Luo C, Yuan Y, Fang J, Wang Y, Tang X, Ouyang L, Lin K, Wu B, Yao W, Huang R. Promising Intestinal Microbiota Associated with Clinical Characteristics of COPD Through Integrated Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2024; 19:873-886. [PMID: 38596203 PMCID: PMC11003469 DOI: 10.2147/copd.s436551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD), an incurable chronic respiratory disease, has become a major public health problem. The relationship between the composition of intestinal microbiota and the important clinical factors affecting COPD remains unclear. This study aimed to identify specific intestinal microbiota with high clinical diagnostic value for COPD. Methods The fecal microbiota of patients with COPD and healthy individuals were analyzed by 16S rDNA sequencing. Random forest classification was performed to analyze the different intestinal microbiota. Spearman correlation was conducted to analyze the correlation between different intestinal microbiota and clinical characteristics. A microbiota-disease network diagram was constructed using the gut MDisorder database to identify the possible pathogenesis of intestinal microorganisms affecting COPD, screen for potential treatment, and guide future research. Results No significant difference in biodiversity was shown between the two groups but significant differences in microbial community structure. Fifteen genera of bacteria with large abundance differences were identified, including Bacteroides, Prevotella, Lachnospira, and Parabacteroides. Among them, the relative abundance of Lachnospira and Coprococcus was negatively related to the smoking index and positively related to lung function results. By contrast, the relative abundance of Parabacteroides was positively correlated with the smoking index and negatively correlated with lung function findings. Random forest classification showed that Lachnospira was the genus most capable of distinguishing between patients with COPD and healthy individuals suggesting it may be a potential biomarker of COPD. A Lachnospira disease network diagram suggested that Lachnospira decreased in some diseases, such as asthma, diabetes mellitus, and coronavirus disease 2019 (COVID-19), and increased in other diseases, such as irritable bowel syndrome, hypertension, and bovine lichen. Conclusion The dominant intestinal microbiota with significant differences is related to the clinical characteristics of COPD, and the Lachnospira has the potential value to identify COPD.
Collapse
Affiliation(s)
- Tianwen Lai
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Chaole Luo
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Yalian Yuan
- Respiratory Diseases Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Jia Fang
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Yun Wang
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Xiantong Tang
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Lihuan Ouyang
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Keyan Lin
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Bin Wu
- Respiratory Diseases Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Weimin Yao
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| | - Ruina Huang
- Department of Respiratory and Critical Care Medicine, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523121, People’s Republic of China
| |
Collapse
|
2
|
Chen Z, Yu L, Liu J, Kong J, Deng X, Guo X, Shan J, Zhou D, Li W, Lin Y, Huang W, Zeng W, Shi X, Bai Y, Fan H. Gut microbiota dynamics and fecal SCFAs after colonoscopy: accelerating microbiome stabilization by Clostridium butyricum. J Transl Med 2024; 22:222. [PMID: 38429821 PMCID: PMC10908214 DOI: 10.1186/s12967-024-05031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Liu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoshi Deng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaotong Guo
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiamin Shan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daixuan Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. Of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wendan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yangfan Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. Of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanwen Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medicine, Southern Medical University, Guangzhou, China
| | - Xinlong Shi
- Department of Colorectal Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. Of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
4
|
Kou H, Zheng J, Ye G, Qiao Z, Zhang K, Luo H, Zou W. Optimization of Clostridium beijerinckii semi-solid fermentation of rape straw to produce butyric acid by genome analysis. BIORESOUR BIOPROCESS 2024; 11:24. [PMID: 38647595 PMCID: PMC10992193 DOI: 10.1186/s40643-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
Butyric acid is a volatile saturated monocarboxylic acid, which is widely used in the chemical, food, pharmaceutical, energy, and animal feed industries. This study focuses on producing butyric acid from pre-treated rape straw using simultaneous enzymatic hydrolysis semi-solid fermentation (SEHSF). Clostridium beijerinckii BRM001 screened from pit mud of Chinese nongxiangxing baijiu was used. The genome of C. beijerinckii BRM001 was sequenced and annotated. Using rape straw as the sole carbon source, fermentation optimization was carried out based on the genomic analysis of BRM001. The optimized butyric acid yield was as high as 13.86 ± 0.77 g/L, which was 2.1 times higher than that of the initial screening. Furthermore, under optimal conditions, non-sterile SEHSF was carried out, and the yield of butyric acid was 13.42 ± 0.83 g/L in a 2.5-L fermentor. This study provides a new approach for butyric acid production which eliminates the need for detoxification of straw hydrolysate and makes full use of the value of fermentation waste residue without secondary pollution, making the whole process greener and more economical, which has a certain industrial potential.
Collapse
Affiliation(s)
- Hui Kou
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
| | - Zongwei Qiao
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China
| | - Huibo Luo
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644005, Sichuan, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, No.1 Baita Road, Sangjiang District, Yibin, 644005, Sichuan, China.
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644005, Sichuan, China.
| |
Collapse
|
5
|
Wang S, Wang J, Gui Z, Liu L, Xu S, Guo Y, Zhou T, Cao J, Gao R, Xie F, He A, Luo H. Model construction and theoretical evaluation of the performance improvement of acetone-butanol-ethanol extractive fermentation by adding surfactant. Bioprocess Biosyst Eng 2023; 46:1837-1845. [PMID: 37924351 DOI: 10.1007/s00449-023-02942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Severe butanol toxicity to the metabolism of solventogenic clostridia significantly impede the application of fermentative butanol as a biofuel. Liquid-liquid extraction is an efficient method to reduce the butanol toxicity by in-situ removing it in the extractant phase. Butanol mass transfer into extractant phase in static acetone-butanol-ethanol (ABE) extractive fermentation with biodiesel as the extractant could be enhanced by adding a tiny amount of surfactant such as tween-80. In the case of corn-based ABE extractive fermentation by Clostridium acetobutylicum ATCC 824 using biodiesel originated from waste cooking oil as extractant, addition of 0.14% (w/v) tween-80 could increase butanol production in biodiesel and total solvents production by 21% and 17%, respectively, compared to those of control under non-surfactant existence. Furthermore, a mathematical model was developed to elucidate the mechanism of enhanced ABE extractive fermentation performance. The results indicated that the mass transfer improvement was obtained by effectively altering the physical properties of the self-generated bubbles during ABE extractive fermentation, such as reducing bubble size and extending its retention time in extractant phase, etc. Overall, this study provided an efficient approach for enhancing biobutanol production by integration of bioprocess optimization and model interpretation.
Collapse
Affiliation(s)
- Shijie Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jiabin Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zheng Gui
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lina Liu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuo Xu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yufen Guo
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tairan Zhou
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jin Cao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ruihong Gao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Fang Xie
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Hongzhen Luo
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
6
|
Luo H, Zhou T, Cao J, Gao L, Wang S, Gui Z, Shi Y, Xie F, Yang R. Utilization of lignocellulosic biomass by glycerol organosolv pretreatment for biobutanol production integrated with bioconversion of residual glycerol into value-added products. BIORESOURCE TECHNOLOGY 2023; 387:129661. [PMID: 37573976 DOI: 10.1016/j.biortech.2023.129661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Glycerol organosolv pretreatment (GOP) is considered an efficient method to deconstruct lignocellulose for producing fermentable sugars. Herein, the liquid fraction containing glycerol after GOP was utilized for recycled pretreatment of corn stover (CS) for four cycles. Enzymatic yield of glucose after recycled pretreatment was enhanced by 2.4-3.5 folds compared with untreated CS. Meanwhile, residual glycerol was used as carbon source for cultivation of Pichia pastoris to obtain high cell-density, and a final titer of 1.3 g/L human lysozyme was produced by P. pastoris under low temperature methanol induction strategy. Additionally, the pretreated CS was mixed with cassava as fermentable substrates for butanol production by wild-type Clostridium acetobutylicum ATCC 824. Final butanol production of 13.9 g/L was obtained from mixed substrates (25%:75% of CS/cassava) at 10% solids loading by simultaneous saccharification and fermentation. Overall, integration of residual glycerol utilization and butanol production by microbial fermentation provided an efficient strategy for biorefinery.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tairan Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jin Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lei Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shijie Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Gui
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yongjiang Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
7
|
Zhang Y, Li J, Yong YC, Fang Z, Liu W, Yan H, Jiang H, Meng J. Efficient butyrate production from rice straw in an optimized cathodic electro-fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117695. [PMID: 36907062 DOI: 10.1016/j.jenvman.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenbin Liu
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Patyal U, Kumar V, Singh M, Kumar A, Sharma AK, Ali SF, Syed SM. Butyric acid: fermentation production using organic waste as low-cost feedstocks. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
Butyric acid is an important chemical which has many applications in the chemical, food, and pharmaceutical industries. Butyraldehyde, which is derived from propylene, is now converted into butyrate by petrochemical processes known as oxo synthesis. Because of its poor productivity and low butyrate concentration in the fermentation broth, biotechnological production of butyric acid is not economically viable. Typically, a sizable amount of the overall production expenses goes toward the cost of the fermentation substrate. If the fermentation process can use minimal biomass as the feedstock, a cost-competitive production of butyric acid from the fermentation technique would be generated with a strong market prospect. Organic wastes are recommended as a source of butyric acid fermentation feedstock because they are inexpensive, can be generated in huge numbers, and are biodegradable. With a focus on the low-cost feedstock, the many uses of butyric acid are discussed, with its present production status. As a result, this paper explores several butyric acid fermentation-related problems and offers ideas for potential solutions.
Collapse
Affiliation(s)
- Urvasha Patyal
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
- Department of Microbiology , International Medical School, UIB , Almaty , Kazakhstan
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Great Noida , India
| | - Anil K. Sharma
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), MMEC , Mullana , Ambala , Haryana , India
| | - Syed Fahad Ali
- Department of Pharmacology , International Medical School, UIB , Almaty , Kazakhstan
| | - Sheikh Mudasir Syed
- Department of Genral surgery , International Medical School, UIB , Almaty , Kazakhstan
| |
Collapse
|
9
|
Industrial and Ruminant Trans-Fatty Acids-Enriched Diets Differentially Modulate the Microbiome and Fecal Metabolites in C57BL/6 Mice. Nutrients 2023; 15:nu15061433. [PMID: 36986163 PMCID: PMC10052023 DOI: 10.3390/nu15061433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Industrially originated trans-fatty acids (I-tFAs), such as elaidic acid (EA), and ruminant trans-fatty acids (R-tFAs), such as trans-palmitoleic acid (TPA), may have opposite effects on metabolic health. The objective was to compare the effects of consuming 2–3% I-tFA or R-tFA on the gut microbiome and fecal metabolite profile in mice after 7 and 28 days. Forty C57BL/6 mice were assigned to one of the four prepared formulations: lecithin nanovesicles, lecithin nanovesicles with EA or TPA, or water. Fecal samples and animals’ weights were collected on days 0, 7, and 28. Fecal samples were used to determine gut microbiome profiles by 16S rRNA sequencing and metabolite concentrations by GC/MS. At 28 days, TPA intake decreased the abundance of Staphylococcus sp55 but increased Staphylococcus sp119. EA intake also increased the abundance of Staphylococcus sp119 but decreased Ruminococcaceae UCG-014, Lachnospiraceae, and Clostridium sensu stricto 1 at 28 days. Fecal short-chain fatty acids were increased after TPA while decreased after EA after 7 and 28 days. This study shows that TPA and EA modify the abundance of specific microbial taxa and fecal metabolite profiles in distinct ways.
Collapse
|
10
|
Kamal M, Abdel-Raouf N, Alwutayd K, AbdElgawad H, Abdelhameed MS, Hammouda O, Elsayed KNM. Seasonal Changes in the Biochemical Composition of Dominant Macroalgal Species along the Egyptian Red Sea Shore. BIOLOGY 2023; 12:biology12030411. [PMID: 36979103 PMCID: PMC10045638 DOI: 10.3390/biology12030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Macroalgae are significant biological resources in coastal marine ecosystems. Seasonality influences macroalgae biochemical characteristics, which consequentially affect their ecological and economic values. Here, macroalgae were surveyed from summer 2017 to spring 2018 at three sites at 7 km (south) from El Qusier, 52 km (north) from Marsa Alam and 70 km (south) from Safaga along the Red Sea coast, Egypt. Across all the macroalgae collected, Caulerpa prolifera (green macroalgae), Acanthophora spicifera (red macroalgae) and Cystoseira myrica, Cystoseira trinodis and Turbinaria ornata (brown macroalgae) were the most dominant macroalgal species. These macroalgae were identified at morphological and molecular (18s rRNA) levels. Then, the seasonal variations in macroalgal minerals and biochemical composition were quantified to determine the apt period for harvesting based on the nutritional requirements for commercial utilizations. The chemical composition of macroalgae proved the species and seasonal variation. For instance, minerals were more accumulated in macroalgae C. prolifera, A. spicifera and T. ornata in the winter season, but they were accumulated in both C. myrica and C. trinodis in the summer season. Total sugars, amino acids, fatty acids and phenolic contents were higher in the summer season. Accordingly, macroalgae collected during the summer can be used as food and animal feed. Overall, we suggest the harvesting of macroalgae for different nutrients and metabolites in the respective seasons.
Collapse
Affiliation(s)
- Marwa Kamal
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Neveen Abdel-Raouf
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
11
|
Wang B, Zhou X, Liu W, Liu MH, Mo D, Wu QF, Wang YJ, Zhang MM, Chen L, Yuan S, Zhou B, Li X, Lu D. Construction of Clostridium tyrobutyricum strain and ionic membrane technology combination pattern for refinery final molasses recovery and butyric acid production. Front Microbiol 2023; 14:1065953. [PMID: 36825085 PMCID: PMC9941566 DOI: 10.3389/fmicb.2023.1065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Clostridium tyrobutyricum has considerable prospect in the production of organic acids. Globally, refinery final molasses is rich in sugar and reported to have high levels of accumulation and high emission costs, recognized as an excellent substrate for C. tyrobutyricum fermentation, but there is no suitable method available at present. Methods In this study, an acid-base treatment combined with a new green membrane treatment technology - a dynamic ion-exchange membrane -was used to pretreat refinery final molasses, so that it could be used for C. tyrobutyricum to produce butyric acid. A high-performance liquid chromatography method was established to determine the conversion of a large amount of sucrose into fermentable sugars (71.88 g/L glucose and 38.06 g/L fructose) in the treated refinery final molasses. The process of sequential filtration with 3, 1, and 0.45 μm-pore diameter dynamic ion-exchange membranes could remove impurities, pigments, and harmful substances from the refinery final molasses, and retain the fermentable sugar. Results and discussion This means that refinery final molasses from the sugar industry could be utilized as a high-value by-product and used for the growth of C. tyrobutyricum, with industrial feasibility and economic competitiveness. Using the treated refinery final molasses as a carbon source, C. tyrobutyricum was screened by the method of adaptive evolution. The strain with butyric acid yielded 52.54 g/L, and the yield of the six carbon sugar was increased from 0.240 to 0.478 g/g. The results showed that combination of C. tyrobutyricum and ionic membrane technology broke through the bottleneck of its utilization of refinery final molasses. This study provided an innovative idea for the C. tyrobutyricum fermentation to produce butyric acid.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiang Zhou, ,
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Mei-Han Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dan Mo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lei Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shan Yuan
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China,Xin Li,
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China,Dong Lu,
| |
Collapse
|
12
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
13
|
Feng J, Guo X, Cai F, Fu H, Wang J. Model-based driving mechanism analysis for butyric acid production in Clostridium tyrobutyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:71. [PMID: 35752796 PMCID: PMC9233315 DOI: 10.1186/s13068-022-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Butyric acid, an essential C4 platform chemical, is widely used in food, pharmaceutical, and animal feed industries. Clostridium tyrobutyricum is the most promising microorganism for industrial bio-butyrate production. However, the metabolic driving mechanism for butyrate synthesis was still not profoundly studied.
Results
This study reports a first-generation genome-scale model (GEM) for C. tyrobutyricum, which provides a comprehensive and systematic analysis for the butyrate synthesis driving mechanisms. Based on the analysis in silico, an energy conversion system, which couples the proton efflux with butyryl-CoA transformation by two redox loops of ferredoxin, could be the main driving force for butyrate synthesis. For verifying the driving mechanism, a hydrogenase (HydA) expression was perturbed by inducible regulation and knockout. The results showed that HydA deficiency significantly improved the intracellular NADH/NAD+ rate, decreased acetate accumulation (63.6% in serum bottle and 58.1% in bioreactor), and improved the yield of butyrate (26.3% in serum bottle and 34.5% in bioreactor). It was in line with the expectation based on the energy conversion coupling driving mechanism.
Conclusions
This work show that the first-generation GEM and coupling metabolic analysis effectively promoted in-depth understanding of the metabolic driving mechanism in C. tyrobutyricum and provided a new insight for tuning metabolic flux direction in Clostridium chassis cells.
Collapse
|
14
|
Luo H, Gao L, Xie F, Shi Y, Zhou T, Guo Y, Yang R, Bilal M. A new l-cysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. BIORESOURCE TECHNOLOGY 2022; 363:127975. [PMID: 36122842 DOI: 10.1016/j.biortech.2022.127975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Deconstruction of lignocellulose via efficient pretreatment is crucial for producing fermentable sugars. In this study, effects of glycerol organosolv pretreatment (GOP) on main chemical composition of corn stover were investigated. Results indicate that the residual corn stover after 80 wt% glycerol pretreatment (at 220 °C for 0.5 h) yielded 75.97 % glucose and 78.21 % xylose after enzymatic hydrolysis, which were enhanced by 3.39- and 6.08-fold compared to the untreated corn stover. Subsequently, an l-cysteine-assisted GOP was proposed with higher yields of glucose (86.20 %) and xylose (91.13 %). When pretreating corn stover with 80 wt% glycerol containing 0.07 wt% l-cysteine at 220 °C for 0.5 h, higher fermentable sugars of 26.08 g were produced from 100 g feedstock after enzymolysis. Intrinsic mechanisms of the proposed pretreatment for enhancing enzymatic digestibility were elucidated by physiochemical characterization technologies and techno-economic analysis was also studied. This study provides guidance for fermentable sugars production from renewable lignocellulose.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Lei Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yongjiang Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Tairan Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yufen Guo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
15
|
Yang Z, Leero DD, Yin C, Yang L, Zhu L, Zhu Z, Jiang L. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks. BIORESOURCE TECHNOLOGY 2022; 361:127656. [PMID: 35872277 DOI: 10.1016/j.biortech.2022.127656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of chemicals and biofuels from non-fossil carbon sources is considered key to reducing greenhouse gas (GHG) emissions. Clostridium sp. can convert various substrates, including the 1st-generation (biomass crops), the 2nd-generation (lignocellulosic biomass), and the 3rd-generation (C1 gases) feedstocks, into high-value products, which makes Clostridia attractive for biorefinery applications. However, the complexity of lignocellulosic catabolism and C1 gas utilization make it difficult to construct efficient production routes. Accordingly, this review highlights the advances in the development of three generations of feedstocks with Clostridia as cell factories. At the same time, more attention was given to using agro-industrial wastes (lignocelluloses and C1 gases) as the feedstocks, for which metabolic and process engineering efforts were comprehensively analyzed. In addition, the challenges of using agro-industrial wastes are also discussed. Lastly, several new synthetic biology tools and regulatory strategies are emphasized as promising technologies to be developed to address the aforementioned challenges in Clostridia and realize the efficient utilization of agro-industrial wastes.
Collapse
Affiliation(s)
- Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donald Delano Leero
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chengtai Yin
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel A Biorefinery. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The looming climate and energy crises, exacerbated by increased waste generation, are driving research and development of sustainable resource management systems. Research suggests that organic materials, such as food waste, grass, and manure, have potential for biotransformation into a range of products, including: high-value volatile fatty acids (VFAs); various carboxylic acids; bioenergy; and bioplastics. Valorizing these organic residues would additionally reduce the increasing burden on waste management systems. Here, we review the valorization potential of various sustainably sourced feedstocks, particularly food wastes and agricultural and animal residues. Such feedstocks are often micro-organism-rich and well-suited to mixed culture fermentations. Additionally, we touch on the technologies, mainly biological systems including anaerobic digestion, that are being developed for this purpose. In particular, we provide a synthesis of VFA recovery techniques, which remain a significant technological barrier. Furthermore, we highlight a range of challenges and opportunities which will continue to drive research and discovery within the field. Analysis of the literature reveals growing interest in the development of a circular bioeconomy, built upon a biorefinery framework, which utilizes biogenic VFAs for chemical, material, and energy applications.
Collapse
|
17
|
Fu H, Zhang H, Guo X, Yang L, Wang J. Elimination of carbon catabolite repression in Clostridium tyrobutyricum for enhanced butyric acid production from lignocellulosic hydrolysates. BIORESOURCE TECHNOLOGY 2022; 357:127320. [PMID: 35589044 DOI: 10.1016/j.biortech.2022.127320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Clostridium tyrobutyricum, a gram-positive anaerobic bacterium, is recognized as the promising butyric acid producer. But, the existence of carbon catabolite repression (CCR) is the major drawback for C. tyrobutyricum to efficiently use the lignocellulosic biomass. In this study, the xylose pathway genes were first identified and verified. Then, the potential regulatory mechanisms of CCR in C. tyrobutyricum were proposed and the predicted engineering targets were experimental validated. Inactivation of hprK blocked the CcpA-mediated CCR and resulted in simultaneous conversion of glucose and xylose, although xylose consumption was severe lagging behind. Deletion of xylR further shortened the lag phase of xylose utilization. When hprK and xylR were inactivated together, the CCR in C. tyrobutyricum was completely eliminated. Consequently, ATCC 25755/ΔhprKΔxylR showed significant increase in butyrate productivity (1.8 times faster than the control) and excellent butyric acid fermentation performance using both mixed sugars (11.0-11.9 g/L) and undetoxified lignocellulosic hydrolysates (12.4-13.4 g/L).
Collapse
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huihui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lu Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
19
|
Wu J, Zhou B, Pang X, Song X, Gu Y, Xie R, Liu T, Xu X, Wang B, Cao H. Clostridium butyricum, a butyrate-producing potential probiotic, alleviates experimental colitis through epidermal growth factor receptor activation. Food Funct 2022; 13:7046-7061. [PMID: 35678197 DOI: 10.1039/d2fo00478j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory bowel disease. Modulation of gut microbiota with dietary and nutritional targets is a feasible strategy for the prevention and treatment of IBD. In this study, we focused on Clostridium butyricum Prazmowski (CB), a butyrate-producing potential probiotic. We found that CB feeding decreased the disease activity index, colon inflammation/injury score and cell apoptosis in an experimental colitis mouse model, as well as elevated the level of SCFAs in cecal feces. CB could also balance the inflammatory cytokines, protect tight junctions, and increase the number of goblet cells and MUC2 production in mice, accompanied by EGFR signaling activation triggered by heparin-binding epidermal growth factor (HB-EGF) and amphiregulin (AREG). From the perspective of mechanism, the CB supernatant (CBS) stimulated EGFR activation in colon epithelial cell lines in concentration-dependent and time-dependent manners. CBS reduced the damage of tight junctions induced by H2O2, and inhibition of EGFR could suppress the protective effect of CBS. In conclusion, CB could protect the gut barrier and alleviate experimental colitis through the transactivation of EGFR signaling in intestinal epithelial cells induced by ligands (HB-EGF and AREG). This study identified the potential efficacy of CB as a preventive strategy for IBD and showed the broad prospect of CB as a food supplement.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Bingqian Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
20
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
21
|
Son J, Joo JC, Baritugo KA, Jeong S, Lee JY, Lim HJ, Lim SH, Yoo JI, Park SJ. Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127001. [PMID: 35292386 DOI: 10.1016/j.biortech.2022.127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
22
|
Dudek K, Molina-Guerrero CE, Valdez-Vazquez I. Profitability of single- and mixed-culture fermentations for the butyric acid production from a lignocellulosic substrate. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Cheng W, Chen X, Gong L, Wei J, Ding J, Shi Z. Anaerobically Digesting Hazardous Waste Pichia pastoris Associated with Butyric Acid Cleaner Production. ACS OMEGA 2022; 7:2918-2928. [PMID: 35097286 PMCID: PMC8792918 DOI: 10.1021/acsomega.1c05840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Recombinant Pichia pastoris semisolid hazardous waste treatment is difficult and traditional solid waste treatment is not applicable. However, P. pastoris wastes have features of high density and enriched proteins/polysaccharides, which could supply nitrogen/carbon sources for butyric acid production. The waste P. pastoris was first treated using NaOH to form a waste yeast suspension, and then the suspension was mixed with glucose to obtain a starting medium containing 5.6 g DCW/L (dry cell weight) yeast to initiate butyrate fermentation. The suspension was intermediately supplemented to bring the total waste yeast concentration to 26.3 g DCW/L while continuously feeding the concentrated glucose solution. With the proposed strategy, butyrate concentration reached high levels of 51.0-54.0 g/L using Clostridium tyrobutyricum as the strain. Amino acids/oligosaccharides/SO4 2- in the suspension, raw material costs, complicated pretreatment process, and butyric acid cleaner production could be effectively utilized, reduced, eliminated, and realized. However, the apparent waste P. pastoris reduction rate was only 49% per batch, thus a "tanks in-series type's repeated waste treating system" model was developed to theoretically explore the possibility of increasing the waste yeast reduction rate R. The simulation results indicated that when setting the treatment unit numbers at 4, waste solid concentration could decrease from 26.3 to 3.37 g DCW/L and the hazardous waste yeast reduction rate R would increase from 49 to 97%.
Collapse
|
25
|
Luo H, Gao L, Liu Z, Shi Y, Xie F, Bilal M, Yang R, Taherzadeh MJ. Prediction of phenolic compounds and glucose content from dilute inorganic acid pretreatment of lignocellulosic biomass using artificial neural network modeling. BIORESOUR BIOPROCESS 2021; 8:134. [PMID: 38650283 PMCID: PMC10992208 DOI: 10.1186/s40643-021-00488-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022] Open
Abstract
Dilute inorganic acids hydrolysis is one of the most promising pretreatment strategies with high recovery of fermentable sugars and low cost for sustainable production of biofuels and chemicals from lignocellulosic biomass. The diverse phenolics derived from lignin degradation during pretreatment are the main inhibitors for enzymatic hydrolysis and fermentation. However, the content features of derived phenolics and produced glucose under different conditions are still unclear due to the highly non-linear characteristic of biomass pretreatment. Here, an artificial neural network (ANN) model was developed for simultaneous prediction of the derived phenolic contents (CPhe) and glucose yield (CGlc) in corn stover hydrolysate before microbial fermentation by integrating dilute acid pretreatment and enzymatic hydrolysis. Six processing parameters including inorganic acid concentration (CIA), pretreatment temperature (T), residence time (t), solid-to-liquid ratio (RSL), kinds of inorganic acids (kIA), and enzyme loading dosage (E) were used as input variables. The CPhe and CGlc were set as the two output variables. An optimized topology structure of 6-12-2 in the ANN model was determined by comparing root means square errors, which has a better prediction efficiency for CPhe (R2 = 0.904) and CGlc (R2 = 0.906). Additionally, the relative importance of six input variables on CPhe and CGlc was firstly calculated by the Garson equation with net weight matrixes. The results indicated that CIA had strong effects (22%-23%) on CPhe or CGlc, then followed by E and T. In conclusion, the findings provide new insights into the sustainable development and inverse optimization of biorefinery process from ANN modeling perspectives.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China.
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Lei Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
| | - Yongjiang Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1 Meicheng East Road, Huaian, 223003, China
- Faculty of Applied Technology, Huaiyin Institute of Technology, Huaian, 223003, China
| | | |
Collapse
|
26
|
Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nat Commun 2021; 12:6886. [PMID: 34824227 PMCID: PMC8617184 DOI: 10.1038/s41467-021-27226-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Microbial populations are a promising model for achieving microbial cooperation to produce valuable chemicals. However, regulating the phenotypic structure of microbial populations remains challenging. In this study, a programmed lysis system (PLS) is developed to reprogram microbial cooperation to enhance chemical production. First, a colicin M -based lysis unit is constructed to lyse Escherichia coli. Then, a programmed switch, based on proteases, is designed to regulate the effective lysis unit time. Next, a PLS is constructed for chemical production by combining the lysis unit with a programmed switch. As a result, poly (lactate-co-3-hydroxybutyrate) production is switched from PLH synthesis to PLH release, and the content of free PLH is increased by 283%. Furthermore, butyrate production with E. coli consortia is switched from E. coli BUT003 to E. coli BUT004, thereby increasing butyrate production to 41.61 g/L. These results indicate the applicability of engineered microbial populations for improving the metabolic division of labor to increase the efficiency of microbial cell factories.
Collapse
|
27
|
Amaro Bittencourt G, Porto de Souza Vandenberghe L, Valladares-Diestra K, Wedderhoff Herrmann L, Fátima Murawski de Mello A, Sarmiento Vásquez Z, Grace Karp S, Ricardo Soccol C. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review. BIORESOURCE TECHNOLOGY 2021; 339:125594. [PMID: 34311407 DOI: 10.1016/j.biortech.2021.125594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Soybean is one of the major world crops, with an annual production of 359 million tons. Each ton of processed soybean generates 50-80 kg of soybean hulls (SHs), representing 5-8% of the whole seed. Due to environmental concerns and great economic potential, the search of SHs re-use solutions are deeply discussed. The lignocellulosic composition of SHs has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of SHs in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the management and exploitation of SHs, including pre-treatment methods and fermentation techniques, for the production of different biomolecules. Great potentialities and innovations were found concerning SH exploration and valorisation of the soybean chain under a biorefinery and circular bioeconomy optic.
Collapse
Affiliation(s)
- Gustavo Amaro Bittencourt
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil.
| | - Kim Valladares-Diestra
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Leonardo Wedderhoff Herrmann
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Zulma Sarmiento Vásquez
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
28
|
Role of microbubbles coupling fibrous-bed bioreactor in butyric acid production by Clostridium tyrobutyricum using Brewer’s spent grain as feedstock. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Maskarinec G, Raquinio P, Kristal BS, Setiawan VW, Wilkens LR, Franke AA, Lim U, Le Marchand L, Randolph TW, Lampe JW, Hullar MAJ. The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS One 2021; 16:e0250855. [PMID: 34161346 PMCID: PMC8221508 DOI: 10.1371/journal.pone.0250855] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/15/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The gut microbiome may play a role in inflammation associated with type 2 diabetes (T2D) development. This cross-sectional study examined its relation with glycemic status within a subset of the Multiethnic Cohort (MEC) and estimated the association of circulating bacterial endotoxin (measured as plasma lipopolysaccharide-binding protein (LBP)) with T2D, which may be mediated by C-reactive protein (CRP). METHODS In 2013-16, cohort members from five ethnic groups completed clinic visits, questionnaires, and stool and blood collections. Participants with self-reported T2D and/or taking medication were considered T2D cases. Those with fasting glucose >125 and 100-125 mg/dL were classified as undiagnosed (UT2D) and pre-diabetes (PT2D) cases, respectively. We characterized the gut microbiome through 16S rRNA gene sequencing and measured plasma LBP and CRP by standard assays. Linear regression was applied to estimate associations of the gut microbiome community structure and LBP with T2D status adjusting for relevant confounders. RESULTS Among 1,702 participants (59.9-77.4 years), 735 (43%) were normoglycemic (NG), 506 (30%) PT2D, 154 (9%) UT2D, and 307 (18%) T2D. The Shannon diversity index decreased (ptrend = 0.05), while endotoxin, measured as LBP, increased (ptrend = 0.0003) from NG to T2D. Of 10 phyla, Actinobacteria (ptrend = 0.007), Firmicutes (ptrend = 0.003), and Synergistetes (ptrend = 0.02) were inversely associated and Lentisphaerae (ptrend = 0.01) was positively associated with T2D status. Clostridium sensu stricto 1, Lachnospira, and Peptostreptococcaceae were less, while Escherichia-Shigella and Lachnospiraceae were more abundant among T2D patients, but the associations with Actinobacteria, Clostridium sensu stricto 1, and Escherichia-Shigella may be due metformin use. PT2D/UT2D values were closer to NG than T2D. No indication was detected that CRP mediated the association of LBP with T2D. CONCLUSIONS T2D but not PT2D/UT2D status was associated with lower abundance of SCFA-producing genera and a higher abundance of gram-negative endotoxin-producing bacteria suggesting that the gut microbiome may contribute to chronic systemic inflammation and T2D through bacterial translocation.
Collapse
Affiliation(s)
- Gertraud Maskarinec
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Phyllis Raquinio
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
| | - Bruce S. Kristal
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Veronica W. Setiawan
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lynne R. Wilkens
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
| | - Adrian A. Franke
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
| | - Unhee Lim
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
| | - Loïc Le Marchand
- Population Sciences in the Pacific, University of Hawai’i Cancer Center, Honolulu, Hawaii, United States of America
| | - Timothy W. Randolph
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Johanna W. Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meredith A. J. Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Guo L, Lu J, Gao C, Zhang L, Liu L, Chen X. Dynamic control of the distribution of carbon flux between cell growth and butyrate biosynthesis in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:5173-5187. [PMID: 34115183 DOI: 10.1007/s00253-021-11385-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Microbial cell factories offer an economic and environmentally friendly method for the biosynthesis of acetyl-CoA-derived chemicals. However, the static control of carbon flux can cause direct and indirect competition for acetyl-CoA between cell growth and chemical biosynthesis, limiting the efficiency of microbial cell factories. Herein, recombinase-based genetic circuits were developed to achieve the optimal distribution of acetyl-CoA between cell growth and butyrate biosynthesis. First, three dynamic devices-a turn-on switch, a turn-off switch, and a recombinase-based inverter (RBI)-were constructed based on Bxb1 recombinase. Then, the turn-on switch was used to dynamically control the butyrate biosynthetic pathway, which directly improved the consumption of acetyl-CoA. Next, the turn-off switch was applied to dynamically control cell growth, which indirectly enhanced the supply of acetyl-CoA. Finally, an RBI was adopted for the dynamic dual control of the distribution of acetyl-CoA between cell growth and butyrate biosynthesis. The final butyrate production rate was increased to 34 g/L, with a productivity of 0.405 g/L/h. The strategy described herein will pave the way for the development of high-performance microbial cell factories for the production of other desirable chemicals. KEY POINTS: • Competition for acetyl-CoA between cell growth and synthesis limits productivity. • Recombinase-based genetic circuits were developed to dynamic control of acetyl-CoA. • Optimal distribution of acetyl-CoA between cell growth and synthesis was achieved.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jiaxin Lu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Linpei Zhang
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
31
|
Fonseca BC, Reginatto V, López-Linares JC, Lucas S, García-Cubero MT, Coca M. Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. BIORESOURCE TECHNOLOGY 2021; 329:124929. [PMID: 33706176 DOI: 10.1016/j.biortech.2021.124929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Sugarcane straw (SCS) was pretreated with dilute sulfuric acid assisted by microwave to magnify fermentable sugars and to minimize the concentration of inhibitors in the hydrolysates. The optimum conditions for maximum recovery of sugars were 162 °C and 0.6% (w/v) H2SO4. The low level of inhibitors, such as acetate (2.9 g/L) and total phenolics (1.4 g/L), in the SCS slurry from the pretreatment stage allowed the enzymatic hydrolysis and fermentation steps to occur without detoxification. Besides consuming the total sugar content (31.0 g/L), Clostridium beijerinckii Br21 was able to use acetate from the SCS hydrolysate, to give butyric acid at high conversion factor (0.49 g of butyric acid /g of sugar). The optimized pretreatment conditions spared acid, time, and the detoxification stage, making bio-butyric acid production from SCS extremely attractive.
Collapse
Affiliation(s)
- Bruna Constante Fonseca
- Department of Chemistry, University of São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, Brazil
| | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, Brazil.
| | - Juan Carlos López-Linares
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - Susana Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - M Teresa García-Cubero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| | - Mónica Coca
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Spain
| |
Collapse
|
32
|
Zhu L, Zhang J, Yang J, Jiang Y, Yang S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends Biotechnol 2021; 40:149-165. [PMID: 33965247 DOI: 10.1016/j.tibtech.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
Collapse
Affiliation(s)
- Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Yang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China; Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China.
| |
Collapse
|
33
|
Zhang Y, Li J, Meng J, Wang X. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145011. [PMID: 33636772 DOI: 10.1016/j.scitotenv.2021.145011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Bio-electrochemical system (BES) emerges as a versatile approach to handling environmental problems with the harvest of sustainable energy and value-added chemicals. To enhance the butyric acid production from rice straw, microbial fuel cell (MFC) and cathodic electro-fermentation (CEF) systems were constructed in this study. Inoculated with the same mixed culture, fermentative butyric acid production efficiency of the two BESs were evaluated with/without neutral red (NR) as electron mediator, respectively. It was found that the butyric acid fermentation efficiency in the MFC system was inefficient. While, the CEF system presented an evident positive effect on butyric acid production. The production and specific yield of butyric acid in the CEF system reached 5.54 g/L and 0.41 g/g, higher than that in the open circuit (OC) system by 17.37% and 28.13%, respectively. Mass percentage of butyric acid in the produced total volatile fatty acids (VFAs) was also increased from 44.74% to 52.76%. The addition of NR had no positive effect on the butyric acid production, due to the low contribution of electric current to the end-products. With the cathode potential of -0.80 V (vs Ag/AgCl), relative abundance of the butyric acid fermenting bacteria (Clostridium cluster IV and cluster XIVa) in the microbial mixture was increased from 20.25% in the OC system to 33.61% in the CEF system. This research work not only presents a novel method for enhancing butyric acid production by rice straw fermentation, but also aids an understanding of the fermentation mechanism in CEF systems.
Collapse
Affiliation(s)
- Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
34
|
Russo R, Santarcangelo C, Badolati N, Sommella E, De Filippis A, Dacrema M, Campiglia P, Stornaiuolo M, Daglia M. In vivo bioavailability and in vitro toxicological evaluation of the new butyric acid releaser N-(1-carbamoyl-2-phenyl-ethyl) butyramide. Biomed Pharmacother 2021; 137:111385. [PMID: 33761606 DOI: 10.1016/j.biopha.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
A large body of evidence suggests that supplementation of butyric acid exerts beneficial intestinal and extra-intestinal effects. Unfortunately, unpleasant sensorial properties and unfavourable physico-chemical properties strongly limit its use in food supplements and foods for medicinal purposes. N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) is a new butyric acid releaser in solid form with neutral sensorial properties. The aim of this investigation is to provide preliminary information on its pharmacokinetic and toxicological properties through the study of a) in vivo bioavailability of FBA administered by oral gavage to male and female Swiss CD1 mice in comparison with sodium butyrate, b) the influence of digestion on FBA stability through an in vitro simulated oro-gastro-duodenal digestion process, and c) in vitro toxicological profile by means of the Ames Test and Micronucleus Test. The results reveal that FBA is a good butyric acid releaser, being able to increase butyrate serum concentration in a dose and time dependent manner in both male and female mice with a pharmacokinetic profile similar to that obtained from sodium butyrate as such. These data are confirmed by investigating the influence of digestion on FBA, which undergoes extensive hydrolysis following oro-gastro-duodenal digestion, especially in duodenal conditions, with a residual concentration of less than 10% of the initial FBA concentration. Finally, in the Ames and Micronucleus Tests, FBA does not show any in vitro genotoxicity as it is non mutagenic in the Ames Test and results to be unable to induce chromosome breaks in the Micronucleus Test. In conclusion, FBA is a new butyric acid releaser that can overcome the disadvantages of butyric acid while maintaining the same pharmacokinetic properties and safety profile, as shown by the results of the preliminary in vitro toxicological studies performed in this investigation.
Collapse
Affiliation(s)
- Roberto Russo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
35
|
Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol 2021; 41:491-512. [PMID: 33541153 DOI: 10.1080/07388551.2020.1869688] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
36
|
|
37
|
Li W, Cheng C, Cao G, Yang ST, Ren N. Comparative transcriptome analysis of Clostridium tyrobutyricum expressing a heterologous uptake hydrogenase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142022. [PMID: 33370888 DOI: 10.1016/j.scitotenv.2020.142022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Clostridium tyrobutyricum is a promising microbial cell factory to produce biofuels. In this study, an uptake hydrogenase (hyd2293) from Ethanoligenens harbinense was overexpressed in C. tyrobutyricum and significantly affected the redox reactions and metabolic profiles. Compared to the parental strain (Ct-WT), the mutant strain Ct-Hyd2293 produced ~34% less butyrate, ~148% more acetate, and ~11% less hydrogen, accompanied by the emerging genesis of butanol. Comparative transcriptome analysis revealed that 666 genes were significantly differentially expressed after the overexpression of hyd2293, including 82 up-regulated genes and 584 down-regulated genes. The up-regulated genes were mainly involved in carbohydrate and energy metabolisms while the down-regulated genes were distributed in nearly all pathways. Genes involved in glucose transportation, glycolysis, different fermentation pathways and hydrogen metabolism were studied and the gene expression changes showed the mechanism of the metabolic flux redistribution in Ct-Hyd2293. The overexpression of uptake hydrogenase redirected electrons from hydrogen and butyrate to butanol. The key enzymes participating in the energy conservation and sporulation were also identified and their transcription levels were generally reduced. This study demonstrated the transcriptomic responses of C. tyrobutyricum to the expression of a heterologous uptake hydrogenase, which provided a better understanding of the metabolic characteristics of C. tyrobutyricum and demonstrated the potential role of redox manipulation in metabolic engineering for biofuel productions.
Collapse
Affiliation(s)
- Weiming Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chi Cheng
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
38
|
Fu H, Lin M, Tang IC, Wang J, Yang ST. Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum. Biotechnol Bioeng 2020; 118:770-783. [PMID: 33058166 DOI: 10.1002/bit.27602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 μM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0-6.25 μM) and exogenous acetate (0-25 g/L). In a fed-batch fermentation with glucose and ∼15 g/L acetate and 3.75 μM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.
Collapse
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - I-Ching Tang
- Bioprocessing Innovative Company, Dublin, Ohio, USA
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
39
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
40
|
Reyes J, Toledo M, Michán C, Siles JA, Alhama J, Martín MA. Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. ENVIRONMENTAL RESEARCH 2020; 190:110057. [PMID: 32805248 DOI: 10.1016/j.envres.2020.110057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study is to evaluate comparatively the odor removal efficacy of two biofilters operated under different conditions and to identify taxonomically the microbial communities responsible for butyric acid degradation. Both biofiltration systems, which were filled with non-inoculated wood chips and exposed to gas streams containing butyric acid, were evaluated under different operational conditions (gas airflow and temperature) from the physical-chemical, microbiological and olfactometric points of view. The physical-chemical characterization showed the acidification of the packing material and the accumulation of butyric acid during the biofiltration process (<60 days). The removal efficacy was found to be 98-100% during the first 20 days of operation, even at high odor concentration. Changes in the operational temperature increased the odor load factor from 400 to 1400 ouE/m2·s, which led to the reduction of microbiota in the packing material, and a drastic drop of the odor removal efficacy. However, the progressive increase in gas airflow improved the biodegradation efficacy of butyric acid up to 88% with odor loadings as high as 33,000 ouE/m3, while a linear relationship between odor inlet load and removal capacity was also found. The analysis of the microbial community showed that Proteobacteria was the most abundant phylum along the biofiltration time (58-92%) and regardless of the operational conditions. Finally, principal component analysis applied to the physical-chemical and microbiological data set revealed significant differences between the two biofilters under study.
Collapse
Affiliation(s)
- J Reyes
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - M Toledo
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - C Michán
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Severo Ochoa, 14071, Córdoba, Spain
| | - J A Siles
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - J Alhama
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Severo Ochoa, 14071, Córdoba, Spain
| | - M A Martín
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain.
| |
Collapse
|
41
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
42
|
Re-circulative utilization of waste Pichia pastoris as efficient nitrogen source for enhancing butyric acid production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World J Microbiol Biotechnol 2020; 36:138. [PMID: 32794091 DOI: 10.1007/s11274-020-02914-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivities are the most promising hosts for potential industrial applications.
Collapse
|
44
|
Song Y, Zhang Y, He M, Liu H, Hu C, Yang L, Yu P. Enhancing the production of poly-γ-glutamate in Bacillus subtilis ZJS18 by the heat- and osmotic shock and its mechanism. Prep Biochem Biotechnol 2020; 50:1023-1030. [PMID: 32552438 DOI: 10.1080/10826068.2020.1780610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Poly-γ-glutamate (γ-PGA) is a natural macromolecule peptide, and is widely used in the food, medicine, and pharmaceutical industries. In this study, heat- and osmotic shock were used to improve the production of γ-PGA in Bacillus subtilis ZJS18, and its molecular mechanism was explored. The results indicated that the heat- and osmotic shock significantly promoted the production of γ-PGA owing to the stress response of B. subtilis cells to adverse environment. The highest concentrations of γ-PGA reached 14.53 and 15.98 g/l under heat- and osmotic shock, respectively. The activities of five enzymes related to the metabolism of the endogenous glutamate were determined and analyzed. It was found that the activities of glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, glutamate dehydrogenase and glutamate synthase were significantly altered during heat- and osmotic shock, while the activity of α-ketoglutarate dehydrogenase only showed a little alteration. This study provides a basis for the industrial production and use of γ-PGA, and for understanding its biosynthetic mechanism in B. subtilis ZJS18.
Collapse
Affiliation(s)
- Yichao Song
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Yishu Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Min He
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Hang Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Chunyu Hu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Liuzhen Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
45
|
Fu H, Hu J, Guo X, Feng J, Zhang Y, Wang J. High-Selectivity Butyric Acid Production from Saccharina japonica Hydrolysate by Clostridium tyrobutyricum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
46
|
Fonseca BC, Bortolucci J, da Silva TM, dos Passos VF, de Gouvêa PF, Dinamarco TM, Reginatto V. Butyric acid as sole product from xylose fermentation by a non-solventogenic Clostridium beijerinckii strain under controlled pH and nutritional conditions. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Silva Rabelo CAB, Okino CH, Sakamoto IK, Varesche MBA. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136868. [PMID: 32014768 DOI: 10.1016/j.scitotenv.2020.136868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Bioconversion of sugarcane bagasse (SCB) into hydrogen (H2) and organic acids was evaluated using a biomolecular approach to monitor the quantity and expression of the cellulase (Cel) gene. Batch reactors at 37 °C were operated with Paraclostridium sp. (10% v/v) and different substrates (5 g/L): glucose, cellulose and SCB in natura and pre-heat treated and hydrothermally. H2 production from glucose was 162.4 mL via acetic acid (2.9 g/L) and 78.4 mL from cellulose via butyric acid (2.9 g/L). H2 production was higher in hydrothermally pretreated SCB reactors (92.0 mL), heat treated (62.5 mL), when compared to in natura SCB (51.4 mL). Butyric acid (5.8, 4.9 and 4.0 g/L) was the main acid observed in hydrothermally, thermally pretreated, and in natura SCB, respectively. In the reactors with cellulose and reactors with hydrothermally pretreated SCB, the Cel gene copy number 3 and 2 log were higher, respectively, during the stage of maximum H2 production rate, when compared to the initial stage. Differences in Cel gene expression were observed according to the concentration of soluble sugars in the reaction medium. That is, there was no gene expression at the initial phase of the experiment using SCB with 2.6 g/L of sugars and increase of 2.2 log in gene expression during the phases with soluble sugars of <1.4 g/L.
Collapse
Affiliation(s)
- Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil.
| | - Cintia Hiromi Okino
- Embrapa Pecuária Sudeste, Rod Washington Luiz, Km 234, Fazenda Canchim, PO Box 339, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil
| |
Collapse
|
48
|
He F, Qin S, Yang Z, Bai X, Suo Y, Wang J. Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes. BIORESOURCE TECHNOLOGY 2020; 304:122977. [PMID: 32062499 DOI: 10.1016/j.biortech.2020.122977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Clostridium tyrobutyricum cannot utilize galactose, which is abundant in lignocellulose and red algae, as a carbon source for butyric acid production. Hence, when using galactose-rich coffee ground hydrolysate as the substrate, the fermentation performance of C. tyrobutyricum is poor. In this work, a recombinant strain, C. tyrobutyricum ATCC 25755/ketp, overexpressing galactose catabolism genes (galK, galE, galT, and galP) from Clostridium acetobutylicum ATCC 824 was constructed for the co-utilization of glucose and galactose. Batch fermentation in the bioreactor showed that ATCC 25755/ketp could efficiently utilize galactose without glucose-induced carbon catabolite repression and consume nearly 100% of the galactose present in the spent coffee ground hydrolysate. Correspondingly, the butyric acid concentration and productivity of ATCC 25755/ketp reached 34.3 g/L and 0.36 g/L·h, respectively, an increase of 78.6% and 56.5% compared with the wild-type strain, indicating its potential for butyric acid production from hydrolysates of inexpensive and galactose-rich biomass.
Collapse
Affiliation(s)
- Feifei He
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Shiwen Qin
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Zhi Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Yukai Suo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
49
|
Guo X, Fu H, Feng J, Hu J, Wang J. Direct conversion of untreated cane molasses into butyric acid by engineered Clostridium tyrobutyricum. BIORESOURCE TECHNOLOGY 2020; 301:122764. [PMID: 31958691 DOI: 10.1016/j.biortech.2020.122764] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The sucrose metabolic genes (scrA, scrB and scrK) from C. acetobutylicum ATCC 824 were successfully overexpressed in C. tyrobutyricum ATCC 25755, endowing it with the ability to co-utilize sucrose, fructose and glucose in the cane molasses. As a result, the engineering strain C. tyrobutyricum ATCC 25755/scrBAK produced 18.07 g/L and 18.98 g/L butyric acid when sucrose and cane molasses were used as the carbon source, respectively. Furthermore, the medium composition and initial cane molasses concentration were optimized to make full use of the untreated cane molasses. Based on these results, 45.71 g/L butyric acid with a yield of 0.39 g/g was obtained in fed-batch fermentation, and the feedstock cost of using untreated cane molasses was decreased by ~47% when compared with the conventional glucose fermentation. This study demonstrated the potential application of C. tyrobutyricum ATCC 25755/scrBAK for economic butyric acid production from untreated cane molasses.
Collapse
Affiliation(s)
- Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
50
|
Luo H, Liu Z, Bilal M, Xie F, Zheng P, Yang R, Wang Z. Efficient production of butyric acid by Clostridium tyrobutyricum immobilized in an internal fibrous bed bioreactor (IFBB). Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|