1
|
Fei L, Propato AP, Lotti G, Nardini P, Guasti D, Polvani S, Bani D, Galli A, Casini D, Cantini G, Chiaramonti D, Luconi M. Tailor-made Biochar enhances the anti-tumour effects of butyrate-glycerides in colorectal cancer. Biomed Pharmacother 2025; 184:117900. [PMID: 39921946 DOI: 10.1016/j.biopha.2025.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second cause of cancer death in the world. Emerging evidence suggests that the short-chain-fatty-acid butyrate diet-assumed or produced by gut microbiota may interfere with CRC. Novel, more focused and effective anti-cancer natural molecules selectively acting on tumour cells are required to improve patients' compliance compared to more aggressive drug-based schemes. This study explored the in vitro anti-cancer effects of a novel green compound consisting of butyrate-glycerides (BMDG) alone or absorbed on tailor-made Biochar (BMDG-Biochar) or on activated-carbon Norit-B (BMDG-Norit), by using two CRC cell lines, HCT116 and HT29. Tailor-made Biochar characterised by a larger share of meso and macroporosity compared to commercially available activated-carbon Norit-B, with micro-pored ultrastructure, displayed superior performances as a BMDG carrier, with higher absorption/release properties. BMDG, in particular when absorbed on Biochar, interfered significantly with CRC cell proliferation compared to BMDG-Norit that showed no effect. Analysis of cell metabolism revealed a superior sensitivity of HCT116 to the inhibitory effect of BMDG-Biochar. This compound specifically induced a shift from a glycolytic metabolism in particular in HCT116 cells where glycolysis supports the aggressive phenotype, towards the mitochondrial respiration that characterises the more differentiated and less aggressive HT29 cells. Biochar's ability to deliver the butyrate-glyceride bioactive mixture and to exert in vitro combined anti-cancer activity in colorectal cancer, interfering with the Warburg effect that characterises the aggressive CRC forms, opens future translational opportunities to develop new orally assumed green molecules as promising anti-cancer strategies for CRC.
Collapse
Affiliation(s)
- Laura Fei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Arianna Pia Propato
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Giulia Lotti
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - David Casini
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - David Chiaramonti
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy; DENERG-Politecnico di Torino and RE-CORD, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Zhao Z, Liang S, Wu M, Chen Z, Li Z, He L, Wang Q, Wang K, Liu S. Removal of tetracycline by biochar synergistic with ferrate: Influencing mechanism on precursor biomass components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178175. [PMID: 39721549 DOI: 10.1016/j.scitotenv.2024.178175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Biochar can serve as an activator for potassium ferrate, significantly enhancing the treatment efficiency to antibiotics. However, the mechanism by which biochar activated potassium ferrate remained unclear, necessitating further investigation. Cellulose biochar (CBC) and lignin biochar (LBC) derived by two model compounds which were the highest proportion of content in biomass were adopted to be study object, to investigate the removal efficiency of tetracycline (TC) by ferrate synergetic with CBC and LBC, respectively for the first time, and thoroughly analyzed the adsorption and degradation processes within the reaction system. It is noteworthy that CBC contributed to this synergy primarily through the phenolic hydroxyl groups which facilitated the decomposition of ferrate and increase the generation of intermediate valence iron species, thereby improving removal rates. Whereas, LBC enhanced removal rates of TC mainly across its own adsorption capabilities. This also resulted in LBC manifesting excellent synergistic effects under various pH environments, while the CBC system was primarily suited for alkaline conditions. This study provided new theoretical support for the efficient utilization of ferrate in organic wastewater treatment and offered a novel perspective on the precise control of structure in the process of biochar material prepared by agricultural and forestry solid waste biomass.
Collapse
Affiliation(s)
- Ziyu Zhao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Shengdian Liang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Meixuan Wu
- School of Atmospheric Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Ziyi Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zhi Li
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Linglin He
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Qinyu Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Keke Wang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, Sichuan 610041, China
| | - Shengyu Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
3
|
Liu Y, Li B, Tong WK, Tang H, Ping Z, Wang W, Gao MT, Dai C, Liu N, Hu J, Li J. Eco-friendly, stable, and high-performance biochar prepared by a twice-modification scheme: Saccharification of raw materials & thermal air oxidation of biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123226. [PMID: 39522191 DOI: 10.1016/j.jenvman.2024.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Organic pollutants, such as phenolic compounds, pose significant risks to both the environment and human health. While biochar is an effective adsorbent for removing these pollutants, its dissolved solid (DS) components can lead to the loss of functional groups, structural disintegration, unstable performance, and environmental issues. This study introduces a twice-modification scheme designed to produce a biochar (BC-M) that combines high stability with superior performance. The process begins with the preparation of a stable biochar from cellulase-treated lignocellulose. This precursor biochar is then subjected to thermal air oxidation to enhance its oxygen-containing functional groups, thereby improving its adsorption capabilities. A mathematical model was developed to explore the relationship between different thermal air oxidation conditions and the properties of BC-M, aiming to optimize both adsorption capacity and DS. The model's multi-objective optimization indicated the optimal modification conditions. Compared to unmodified biochar (BC-O), BC-M showed significant improvements: its specific surface area increased by 63.6%, pore volume by 139%, and functional groups by 50%-1271%. Notably, the DS of BC-M was reduced to just 1.08 mg/L, representing a 97.5% reduction from BC-O, with a minimal mass loss of only 0.78 ± 0.45% during modification. BC-M also demonstrated a remarkable enhancement in the adsorption of phenolic compounds, with a capacity 21%-2408% higher than BC-O. Furthermore, calculations indicated that BC-M could reduce carbon emissions by 0.70 t CO2/yr/t, outperforming activated carbon in this regard. This study offers valuable insights into biochar modification, providing a low-cost, high-stability, and high-efficiency alternative for environmental cleanup.
Collapse
Affiliation(s)
- Yundong Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bu Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wang Kai Tong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China; College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Han Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoli Ping
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Wenjuan Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Nan Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Sun Z, Zhou H, Hou J, Shen F, Guo X, Dai L. In-situ DRIFTS insights into the evolution of surface functionality of biochar upon thermal air oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122582. [PMID: 39299126 DOI: 10.1016/j.jenvman.2024.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biochar surface functionality is crucial for its application. Herein, the evolution of biochar surface functionality upon thermal air oxidation (TAO) was investigated in-situ by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The results show that, although the surface functionality of biochar is remarkably changed during TAO at the initial low temperature range, the biochar weight is still stable in the initial low temperature range, suggesting the chemisorption of O2 as intermediate oxygenated functional groups (OFGs) on biochar surface. Moreover, the evolution of biochar surface functionality upon TAO is highly affected on its preparation temperature and intrinsic minerals. Specifically, biochar produced at a high temperature is more resistant to TAO, and more favorable for the formation of ketone groups during TAO. While the biochars prepared at low or medium temperatures show a remarkable formation of carboxyl/lactone groups upon TAO, and the maximum temperature for the formation of carboxyl/lactone groups can be achieved at 400 °C. It's worth noting that the intrinsic minerals in biochar catalyze the TAO reaction, resulting in a much higher mass loss of biochar upon TAO. Furthermore, with the catalysis of intrinsic minerals, TAO is more suitable for enhancing the performance of biochar with intrinsic minerals. These results facilitate the design of engineered biochar via TAO for enhanced applications.
Collapse
Affiliation(s)
- Zhuozhuo Sun
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Haiqin Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin, 300191, China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Chen J, Zhou J, Zheng W, Leng S, Ai Z, Zhang W, Yang Z, Yang J, Xu Z, Cao J, Zhang M, Leng L, Li H. A complete review on the oxygen-containing functional groups of biochar: Formation mechanisms, detection methods, engineering, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174081. [PMID: 38908575 DOI: 10.1016/j.scitotenv.2024.174081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Biochar is a porous carbon material generated by the thermal treatment of biomass under anaerobic or anoxic conditions with wealthy Oxygen-containing functional groups (OCFGs). To date, OCFGs of biochar have been extensively studied for their significant utility in pollutant removal, catalysis, capacitive applications, etc. This review adopted a whole system philosophy and systematically summarizes up-to-date knowledge of formation, detection methods, engineering, and application for OCFGs. The formation mechanisms and detection methods of OCFGs, as well as the relationships between OCFGs and pyrolysis conditions (such as feedstocks, temperature, atmosphere, and heating rate), were discussed in detail. The review also summarized strategies and mechanisms for the oxidation of biochar to afford OCFGs, with the performances and mechanisms of OCFGs in the various application fields (environmental remediation, catalytic biorefinery, and electrode material) being highlighted. In the end, the future research direction of biochar OCFGs was put forward.
Collapse
Affiliation(s)
- Jiefeng Chen
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Junhui Zhou
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Zheng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Songqi Leng
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada
| | - Zejian Ai
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhengyong Xu
- Hunan Modern Environmental Technology Co., LTD., 410000, China
| | - Jianbing Cao
- Research Department of Hunan Eco-environmental Affairs Center, Changsha 410000, China
| | - Mingguang Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
6
|
Wang S, Zhang Y, Zhou X, Xu X, Pan M. Synergistic mechanisms of carbon-based materials for VOCs photocatalytic degradation: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122087. [PMID: 39111001 DOI: 10.1016/j.jenvman.2024.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
With the rapid expansion of human activities, there has been a significant increase in the release of volatile organic compounds (VOCs) from factories and interior decoration materials, posing a substantial risk to the surrounding ecosystem and human health. Photocatalysis technology based on semiconductors has emerged as a promising solution for mitigating atmospheric pollution and indoor air quality concerns. However, single semiconductors encounter several challenges when it comes to VOC photodegradation, including issues like the weak adsorption capacity for VOC molecules, insufficient surface-active sites, and limited light utilization. In recent decades, carbon-based materials have gained considerable interest in photodegrading VOCs owing to their strong adsorption capacity, electrical conductivity, broad light absorption range, and tunable surface characteristics. The incorporation of carbon materials can enhance the photodegradation efficiency of VOCs by facilitating the transfer of VOCs from the ambient air to the surface of the photocatalysts, increasing the number of active surface sites, expanding the light absorption region, and promoting the separation of charge carriers. This review provides a comprehensive overview of the applications of carbon materials with different dimensions in enhancing the performance of semiconductors for the photocatalytic degradation of VOCs. Based on the fundamental principles of photocatalytic VOC degradation, this review explores the factors influencing the degradation performance of catalysts and elucidates the degradation mechanisms. Moreover, it summarizes a range of synthesis approaches for carbon-based photocatalysts, discussing the multiple roles played by carbon materials in these processes. In conclusion, the review offers insights into the current state of carbon-based photocatalysts and outlines the existing challenges. It also provides a perspective on the future development of these materials, highlighting the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Shuaiqi Wang
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yin Zhang
- The Yunnan Provincial Key Lab of Wood Adhesives and Glued Products, College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
| | - Xiaojian Zhou
- The Yunnan Provincial Key Lab of Wood Adhesives and Glued Products, College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingzhu Pan
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Nguyen TKT, Nguyen TB, Chen CW, Chen WH, Bui XT, Lam SS, Dong CD. Boosting acetaminophen degradation in water by peracetic acid activation: A novel approach using chestnut shell-derived biochar at varied pyrolysis temperatures. ENVIRONMENTAL RESEARCH 2024; 252:119143. [PMID: 38751000 DOI: 10.1016/j.envres.2024.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.
Collapse
Affiliation(s)
- Thi-Kim-Tuyen Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
8
|
Xu S, Yuan JY, Zhang YT, Yang QL, Zhang CX, Guo Q, Qin Z, Liu HM, Wang XD, Mei HX, Duan YH. Effects of different precursors on the structure of lignin-based biochar and its ability to adsorb benzopyrene from sesame oil. Int J Biol Macromol 2024; 269:132216. [PMID: 38729483 DOI: 10.1016/j.ijbiomac.2024.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.
Collapse
Affiliation(s)
- Shuai Xu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Ya-Ting Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou University, Zhengzhou 450001, China
| | - Qiao-Li Yang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Guo
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hong-Xian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - Ying-Hui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| |
Collapse
|
9
|
Satyam S, Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024; 10:e29573. [PMID: 38699034 PMCID: PMC11064087 DOI: 10.1016/j.heliyon.2024.e29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Water contamination is an escalating emergency confronting communities worldwide. While traditional adsorbents have laid the groundwork for effective water purification, their selectivity, capacity, and sustainability limitations have driven the search for more advanced solutions. Despite many technological advancements, economic, environmental, and regulatory hurdles challenge the practical application of advanced adsorption techniques in large-scale water treatment. Integrating nanotechnology, advanced material fabrication techniques, and data-driven design enabled by artificial intelligence (AI) and machine learning (ML) have led to a new generation of optimized, high-performance adsorbents. These advanced materials leverage properties like high surface area, tailored pore structures, and functionalized surfaces to capture diverse water contaminants efficiently. With a focus on sustainability and effectiveness, this review highlights the transformative potential of these advanced materials in setting new benchmarks for water purification technologies. This article delivers an in-depth exploration of the current landscape and future directions of adsorbent technology for water remediation, advocating for a multidisciplinary approach to overcome existing barriers in large-scale water treatment applications.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
10
|
Gui Y, Guo S, Lv Y, Li H, Zhang J, Li J. Coactivation of Hydrogen Peroxide Using Pyrogenic Carbon and Magnetite for Sustainable Oxidation of Organic Pollutants. ACS OMEGA 2024; 9:6595-6605. [PMID: 38371804 PMCID: PMC10870288 DOI: 10.1021/acsomega.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Pyrogenic carbon and magnetite (Fe3O4) were mixed together for the activation of hydrogen peroxide (H2O2), aiming to enhance the oxidation of refractory pollutants in a sustainable way. The experimental results indicated that the straw-derived carbon obtained by pyrolysis at 500-800 °C was efficient on coactivation of H2O2, and the most efficient one was that prepared at 700 °C (C700) featured with abundant defects. Specifically, the reaction rate constant (kobs) for removal of an antibiotic ciprofloxacin in the coactivation system (C700/Fe3O4/H2O2) is 12.5 times that in the magnetite-catalyzed system (Fe3O4/H2O2). The faster pollutant oxidation is attributed to the sustainable production of •OH in the coactivation process, in which the carbon facilitated decomposition of H2O2 and regeneration of Fe(II). Besides the enhanced H2O2 utilization in the coactivation process, the leaching of iron was controlled within the concentration limit in drinking water (0.3 mg·L-1) set by the World Health Organization.
Collapse
Affiliation(s)
- Yao Gui
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Sen Guo
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Ying Lv
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Huiming Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Junhuan Zhang
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| | - Jianfa Li
- College of Chemistry and
Chemical Engineering, Shaoxing University,Shaoxing 312000, Zhejiang, China
| |
Collapse
|
11
|
Qin Y, Wang S, Zhang B, Chen W, An M, Yang Z, Gao H, Qin S. Zinc and sulfur functionalized biochar as a peroxydisulfate activator via deferred ultraviolet irradiation for tetracycline removal. RSC Adv 2024; 14:5648-5664. [PMID: 38352677 PMCID: PMC10863648 DOI: 10.1039/d3ra07923f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
To enhance the degradation of tetracycline class (TC) residuals of high-concentration from pharmaceutical wastewater, a novel zinc (Zn) and sulfur (S) functionalized biochar (SC-Zn), as a peroxydisulfate (PDS) activator, was prepared by two-step pyrolysis using ZnSO4 accumulated water-hyacinth. Results showed that the removal rate of 50, 150, and 250 mg per L TC reached 100%, 99.22% and 94.83% respectively, by the SC-Zn/PDS system at a dosage of 0.3 g per L SC-Zn and 1.2 mM PDS, via the deferred ultraviolet (UV) irradiation design. Such excellent performance for TC removal was due to the synergetic activation of PDS by the biochar activator and UV-irradiation with biochar as a responsive photocatalyst. The functionalization of the co-doped Zn and S endowed the biochar SC-Zn with a significantly enhanced catalytic performance, since Zn was inferred to be the dominant catalytic site for SO4˙- generation, while S played a key role in the synergism with Zn by acting as the primary adsorption site for the reaction substrates. The employed SC-Zn/PDS/UV system had excellent anti-interference under different environmental backgrounds, and compared with the removal rate of TC by adsorption of SC-Zn, the increasing rate in the SC-Zn/PDS/UV system (18.75%) was higher than the sum of the increases in the SC-Zn/PDS (9.87%) and SC-Zn/UV systems (3.34%), furtherly verifying the systematic superiority of this synergy effect. This study aimed to prepare a high-performance functionalized biochar activator and elucidate the rational design of deferred UV-irradiation of PDS activation to efficiently remove high-concentration antibiotic pollutants.
Collapse
Affiliation(s)
- Yixue Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Sheng Wang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Bingbing Zhang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Weijie Chen
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Mingze An
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Zhao Yang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Hairong Gao
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Shuhao Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| |
Collapse
|
12
|
Rizwan M, Murtaza G, Zulfiqar F, Moosa A, Iqbal R, Ahmed Z, Khan I, Siddique KHM, Leng L, Li H. Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115916. [PMID: 38171108 DOI: 10.1016/j.ecoenv.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.
Collapse
Affiliation(s)
- Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Urumqi 848300, China
| | - Imran Khan
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
13
|
Ahammad NA, Ahmad MA, Hameed BH, Mohd Din AT. A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124459-124473. [PMID: 35314938 DOI: 10.1007/s11356-022-19829-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants (ECs) originating from pharmaceutical waste in water, wastewater, and marine ecosystems at various geographical locations has been clearly publicised. This review paper presents an overview of current monitoring data on the occurrences and distributions of ECs in coastal ecosystem, tap water, surface water, ground water, treated sewage effluents, and other sources. Technological advancements for EC removal are also presented, which include physical, chemical, biological, and hybrid treatments. Adsorption remains the most effective method to remove ECs from water bodies. Various types of adsorbents, such as activated carbons, biochars, nanoadsorbents (carbon nanotubes and graphene), ordered mesoporous carbons, molecular imprinting polymers, clays, zeolites, and metal-organic frameworks have been extensively used for removing ECs from water sources and wastewater. Extensive findings on adsorptive performances, process efficiency, reusability properties, and other related information are thoroughly discussed in this mini review.
Collapse
Affiliation(s)
- Nur Azian Ahammad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Azam Taufik Mohd Din
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
14
|
Li X, Zeng J, Zuo S, Lin S, Chen G. Preparation, Modification, and Application of Biochar in the Printing Field: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5081. [PMID: 37512355 PMCID: PMC10386302 DOI: 10.3390/ma16145081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Biochar is a solid material enriched with carbon produced by the thermal transformation of organic raw materials under anoxic or anaerobic conditions. It not only has various environmental benefits including reducing greenhouse gas emissions, improving soil fertility, and sequestering atmospheric carbon, but also has the advantages of abundant precursors, low cost, and wide potential applications, thus gaining widespread attention. In recent years, researchers have been exploring new biomass precursors, improving and developing new preparation methods, and searching for more high-value and meaningful applications. Biochar has been extensively researched and utilized in many fields, and recently, it has also shown good industrial application prospects and potential application value in the printing field. In such a context, this article summarizes the typical preparation and modification methods of biochar, and also reviews its application in the printing field, to provide a reference for future work.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinyu Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuai Zuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Saiting Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Wang S, Wu L, Wang L, Zhou J, Ma H, Chen D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4966. [PMID: 37512241 PMCID: PMC10381690 DOI: 10.3390/ma16144966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The environment has been heavily contaminated with tetracycline (TC) due to its excessive use; however, activated carbon possessing well-developed pores can effectively adsorb TC. This study synthesized pinecone-derived activated carbon (PAC) with high specific surface area (1744.659 cm2/g, 1688.427 cm2/g) and high adsorption properties (840.62 mg/g, 827.33 mg/g) via hydrothermal pretreatment methods utilizing pinecones as precursors. The results showed that PAC treated with 6% KOH solution had excellent adsorption properties. It is found that the adsorption process accords with the PSO model, and a large amount of C=C in PAC provides the carrier for π-πEDA interaction. The results of characterization and the isothermal model show that TC plays a key role in the adsorption process of PAC. It is concluded that the adsorption process of TC on PAC prepared by hydrothermal pretreatment is mainly pore filling and π-πEDA interaction, which makes it a promising adsorbent for TC adsorption.
Collapse
Affiliation(s)
- Shouqi Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linkai Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huanhuan Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dengyu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Yang C, Wu H, Cai M, Zhou Y, Guo C, Han Y, Zhang L. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers (Basel) 2023; 15:2741. [PMID: 37376387 DOI: 10.3390/polym15122741] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Polymers from biomass waste including plant/forest waste, biological industrial process waste, municipal solid waste, algae, and livestock are potential sources for renewable and sustainable resources. Converting biomass-derived polymers to functional biochar materials via pyrolysis is a mature and promising approach as these products can be widely utilized in many areas such as carbon sequestration, power production, environmental remediation, and energy storage. With abundant sources, low cost, and special features, the biochar derived from biological polymeric substances exhibits great potential to be an alternative electrode material of high-performance supercapacitors. To extend this scope of application, synthesis of high-quality biochar will be a key issue. This work systematically reviews the char formation mechanisms and technologies from polymeric substances in biomass waste and introduces energy storage mechanisms of supercapacitors to provide overall insight into the biological polymer-based char material for electrochemical energy storage. Aiming to enhance the capacitance of biochar-derived supercapacitor, recent progress in biochar modification approaches including surface activation, doping, and recombination is also summarized. This review can provide guidance for valorizing biomass waste to functional biochar materials for supercapacitor to meet future needs.
Collapse
Affiliation(s)
- Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mengyu Cai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Chunyu Guo
- Jintong Internet of Things (Suzhou) Co., Ltd., Suzhou 215000, China
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Li Y, Wang B, Shang H, Cao Y, Yang C, Hu W, Feng Y, Yu Y. Influence of adsorption sites of biochar on its adsorption performance for sulfamethoxazole. CHEMOSPHERE 2023; 326:138408. [PMID: 36925005 DOI: 10.1016/j.chemosphere.2023.138408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of various types of key adsorption sites on biochar were investigated on its adsorption capacity for sulfamethoxazole (SMX). The biochar obtained by carbonization of corncob at 800 °C (named CC800) was applied to the adsorption of SMX in aqueous environment. The adsorption of SMX by CC800 exhibited a "Three-stage downward adsorption ladder" characteristic in the whole pH range, which was attributed to the different mechanisms corresponding to different adsorption sites of CC800. The organic solvent method and heat treatment method restored the adsorption sites of CC800 after saturated adsorption. And the results revealed that the pore structure and aromatic structure under acidic conditions, and surface functional groups and pore structure under alkaline conditions were confirmed to be key SMX adsorption sites. The adsorption energies of each adsorption mechanism were calculated by density functional theory (DFT), and their order was (-)CAHB (-COO-) > π+-π EDA interaction > (-)CAHB (-O-) > pore filling mechanism > π-π EDA interaction. Based on the above studies, the adsorption performance of biochar to SMX can be improved by targeted modification of its micropore structure, surface functional groups, and aromatic structures.
Collapse
Affiliation(s)
- Yinxue Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Bin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongru Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yongna Cao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunhui Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, People's Republic of China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Guangdong, Maoming, 525000, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, People's Republic of China
| | - Yanling Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
18
|
Zhou H, Jiao G, Li X, Gao C, Zhang Y, Hashan D, Liu J, She D. High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: Adsorption behavior and mechanism. Int J Biol Macromol 2023; 234:123689. [PMID: 36801292 DOI: 10.1016/j.ijbiomac.2023.123689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this study, an adsorbent with mesoporous structure and PO/PO bonds is prepared by hydrothermal and phosphoric acid activation from industrial alkali lignin for the adsorption of oxytetracycline (OTC). The adsorption capacity is 598 mg/g, which is three times higher than that of the adsorbent with microporous structure. The rich mesoporous structure of the adsorbent provides adsorption channels and filling sites, and π-π attraction, cation-π interaction, hydrogen bonds, and electrostatic attraction provide adsorption forces at the adsorption sites. The removal rate of OTC exceeds 98 % over a wide range of pH values (3-10). It has high selectivity for competing cations in water, with higher than 86.7 % removal rate of OTC from medical wastewater. After 7 consecutive adsorption-desorption cycles, the removal rate of OTC remains as high as 91 %. This efficient removal rate and excellent reusability indicate the strong potential of the adsorbent for industrial applications. This study prepares a highly efficient, environmentally friendly antibiotic adsorbent that can not only efficiently remove antibiotics from water but also recycle industrial alkali lignin waste.
Collapse
Affiliation(s)
- Hanjun Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Guangjia Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianzhen Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chunli Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yiru Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Dana Hashan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| |
Collapse
|
19
|
Huang B, Huang D, Zheng Q, Yan C, Feng J, Gao H, Fu H, Liao Y. Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area †. RSC Adv 2023; 13:10397-10407. [PMID: 37020889 PMCID: PMC10068915 DOI: 10.1039/d3ra00745f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Excessive tetracycline in the water environment may lead to the harming of human and ecosystem health. Removing tetracycline antibiotics from aqueous solution is currently a most urgent issue. Porous graphitic biochar with an ultra-large surface area was successfully prepared by a one-step method. The effects of activation temperature, activation time, and activator dosage on the structural changes of biochar were investigated by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Raman spectroscopy. The effect of the structure change, adsorption time, temperature, initial pH, and co-existing ions on the tetracycline removal efficiency was also investigated. The results show that temperature had the most potent effect on the specific surface area, pore structure, and extent of graphitization. The ultra-large surface area and pore structure of biochar are critical to the removal of tetracycline. The qe of porous graphitic biochar could reach 1122.2 mg g−1 at room temperature. The calculations of density functional theory indicate that π–π stacking interaction and p–π stacking interaction can enhance the tetracycline adsorption on the ultra-large surface area of graphitic biochar. 1. A ultra-large surface area of porous graphitic biochar was successfully using corn starch and ZnCl2 by a one-step method. 2. The adsorption capacity of tetracycline on the biochar could get 1122.2 mg g−1 at room temperature.![]()
Collapse
Affiliation(s)
- Bingyuan Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Dan Huang
- People's Hospital of Gaoping DistrictNanchongSichuan 637100China
| | - Qian Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Changhan Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Jiaping Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Hejun Gao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| |
Collapse
|
20
|
Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158562. [PMID: 36089037 DOI: 10.1016/j.scitotenv.2022.158562] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | | | - Vineet Vimal
- Institute of Minerals and Materials Technology, Orissa, India
| | - Ajay Kumar Gupta
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
21
|
Hao J, Wu L, Lu X, Zeng Y, Jia B, Luo T, He S, Liang L. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv 2022; 12:31650-31662. [PMID: 36380923 PMCID: PMC9634719 DOI: 10.1039/d2ra05334a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2023] Open
Abstract
In this study, Fe-Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78-89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.
Collapse
Affiliation(s)
- Jiajie Hao
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Lieshan Wu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Xiaowei Lu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Yalin Zeng
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Bing Jia
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Tingting Luo
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Shixing He
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre Nanning 530028 China
| |
Collapse
|
22
|
Ding W, Zhou G, Wen S, Yin J, Liu C, Fu Y, Zhang L. Two-dimensional activated carbon nanosheets for rapid removal of tetracycline via strong π-π electron donor receptor interactions. BIORESOURCE TECHNOLOGY 2022; 360:127544. [PMID: 35777638 DOI: 10.1016/j.biortech.2022.127544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional carbonaceous materials have sparked extensive attention in organic pollutants adsorption due to their unique structure to facilitate the formation of the physical or chemical bonding. Herein, natural two-dimensional porous activated carbon nanosheets with ultra-high specific surface area (2276.44 m2 g-1) are prepared by alkaline immersion-assisted circulating calcination techniques from corn straw piths. The prepared nanosheets exhibit rapid tetracycline adsorption capacity (633 mg g-1 within 5 min) and high equilibrium adsorption capacity of 804.5 mg g-1. Significantly, the nanosheets can adapt to a wide range of pH (at least between pH = 3-10) and are almost unaffected by coexisting ions. Mechanism studies and theoretical calculations demonstrate that the rapid and high-efficient adsorption of tetracycline mainly depends on the π-π electron donor receptor interactions. In addition, hydrogen bonding and pore filling was also responsible for tetracycline adsorption. This work provides important guidance for the development of the biobased high-performance adsorbents from agricultural waste.
Collapse
Affiliation(s)
- Wenhao Ding
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China
| | - Guolang Zhou
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China
| | - Shizheng Wen
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, 223300, Huaian, China
| | - Jingzhou Yin
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China
| | - Cheng Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lili Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China.
| |
Collapse
|
23
|
Wang YR, Li KW, Wang YX, Liu XL, Mu Y. Nutrient limitation regulates the properties of extracellular electron transfer and hydraulic shear resistance of electroactive biofilm. ENVIRONMENTAL RESEARCH 2022; 212:113408. [PMID: 35561821 DOI: 10.1016/j.envres.2022.113408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding the roles of nutrient restriction in extracellular electron transfer (EET) and stability of mixed electroactive biofilm is essential in pollutant degradation and bioenergy production. However, the relevant studies are still limited so far. Herein, the effect of nutrient restriction on the EET pathways and stability of mixed electroactive biofilm was explored. It was found that the electroactive Pseudomonas and Geobacter genera were selectively enriched in the biofilms cultured under total nutrient and P-constrained conditions, and two EET pathways including direct and indirect were found, while Rhodopseudomonas genus was enriched in the N-constrained biofilm, which only had the direct EET pathway. Moreover, multiple analyses including 2D confocal Raman spectra revealed that P-constrained biofilm was rich in extracellular polymeric substances (EPS) especially for polysaccharide, presented a dense and uniform layered distribution, and had better stability than N-constrained biofilm with lower EPS and biofilm with heterostructures cultured under total nutrient conditions.
Collapse
Affiliation(s)
- Yi-Ran Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
Fan Z, Fang J, Zhang G, Qin L, Fang Z, Jin L. Improved Adsorption of Tetracycline in Water by a Modified Caulis spatholobi Residue Biochar. ACS OMEGA 2022; 7:30543-30553. [PMID: 36061729 PMCID: PMC9434748 DOI: 10.1021/acsomega.2c04033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
A potassium modified biochar (KBC) using Caulis spatholobi residue as the raw material was prepared by adopting a two-step method of pyrolysis followed by high-temperature potassium hydroxide activation, and its properties were characterized. Activation using potassium hydroxide under high temperature induced the loss of CaCO3 and partial C on biochar, which created a high specific surface area (1336.31 m2/g) together with a developed pore structure. pH displayed a slight influence on tetracycline adsorption, which signified the slight influence of the existence of tetracycline and the charge potential of biochar. Besides, pore filling, hydrogen bonding and π-π EDA stacking interactions possibly resulted in tetracycline adsorption on biochar. Tetracycline adsorption was fast in the original period, followed by a slower rate of adsorption until equilibrium was reached. Adsorption kinetics of tetracycline could be described using secondary and Elovich kinetic models. Adsorption isotherms for tetracycline were well fitted to the Langmuir isotherm model, and the maximum adsorption capacity of KBC was 830.78 mg/g at 318 K. According to a study of the thermodynamics, the adsorption of tetracycline on KBC was an endothermic reaction process. Corresponding results in the present study demonstrated that high-temperature potassium hydroxide activation enabled biochar to effectively eliminate tetracycline from water and wastewater.
Collapse
Affiliation(s)
- Zheng Fan
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Jie Fang
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Lei Qin
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Zhenzhen Fang
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Laiyun Jin
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| |
Collapse
|
25
|
Chen J, Li J, Zeng Q, Li H, Chen F, Hou H, Lan J. Efficient removal of tetracycline from aqueous solution by Mn-N-doped carbon aerogels: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Microwave-assisted pyrolysis of phosphoric acid-activated Goldenberry peel powder biochar for enhancing the adsorption of trace beta-lactamase inhibitors. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Nardis BO, Franca JR, Carneiro JSDS, Soares JR, Guilherme LRG, Silva CA, Melo LCA. Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151559. [PMID: 34785233 DOI: 10.1016/j.scitotenv.2021.151559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g-1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils.
Collapse
Affiliation(s)
- Bárbara Olinda Nardis
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - José Romão Franca
- Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | | | - Jenaina Ribeiro Soares
- Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Carlos Alberto Silva
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Awasthi MK. Engineered biochar: A multifunctional material for energy and environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118831. [PMID: 35032603 DOI: 10.1016/j.envpol.2022.118831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a stable carbon-rich product loaded with upgraded properties obtained by thermal cracking of biomasses in an oxygen-free atmosphere. The pristine biochar is further modified to produce engineered biochar via various physical, mechanical, and chemical methods. The hasty advancement in engineered biochar synthesis via different technologies and their application in the field of energy and environment is a topical issue that required an up-to-date review. Therefore, this review deals with comprehensive and recent mechanistic approaches of engineered biochar synthesis and its further application in the field of energy and the environment. Synthesis and activation of engineered biochar via various methods has been deliberated in brief. Furthermore, this review systematically covered the impacts of engineered biochar amendment in the composting process, anaerobic digestion (AD), soil microbial community encouragement, and their enzymatic activities. Finally, this review provided a glimpse of the knowledge gaps and challenges associated with application of engineered biochar in various fields, which needs urgent attention in future research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
29
|
Zhou X, Lai C, Liu S, Li B, Qin L, Liu X, Yi H, Fu Y, Li L, Zhang M, Yan H, Wang J, Chen M, Zeng G. Activation of persulfate by swine bone derived biochar: Insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151059. [PMID: 34678361 DOI: 10.1016/j.scitotenv.2021.151059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, persulfate (PS) activation system has grown up as a primary branch of advanced oxidation processes, and biochar has been recognized as a potential nonmetal material in this field. However, few studies have focused on the corresponding relationship between actives sites on biochar and active species in AOPs. To pave this way, similar biochar (obtained from different pyrolysis temperature) with different functional structures were involved. In this study, biochar derived from swine bone (BBC) was applied in PS activation system to degrade acetaminophen (ACT). The results showed that both radical and non-radical pathway worked in the PS/BBCs systems, and the degradation rate (from 0.1042 to 0.4364 min-1) climbed with the increase of pyrolysis temperature (from 700 to 900 °C). To probe into the corresponding relationship between functional structure and active species, the effect of pyrolysis temperature on functional structure was analyzed. It came out that 1) defects could act as active sites for various active species; 2) persistent free radicals could do favor to the generation of 1O2 and O2-; 3) hydroxyapatite in swine bone only served as hard templet for the porous structure. ACT degradation process was measured by Liquid chromatograph-mass spectrometer, and Scendesmus obliquus was applied to investigate the toxicity of PS/BBCs system. It illustrated that the existence of SO4- mainly contributed to the generation of high toxic intermediates (such as biphenyl and diphenyl ether) in the PS/BBCs system. Furthermore, the enhancement of adsorption capacity would mitigate the toxicity of PS/BBCs systems to some extent.
Collapse
Affiliation(s)
- Xuerong Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jing Wang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
30
|
Zhu X, He M, Sun Y, Xu Z, Wan Z, Hou D, Alessi DS, Tsang DCW. Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127060. [PMID: 34530273 DOI: 10.1016/j.jhazmat.2021.127060] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The science-informed design of 'green' carbonaceous materials (e.g., biochar and activated carbon) with high removal capacity of recalcitrant organic contaminants (e.g., pharmaceuticals and personal care products (PPCPs)) is indispensable for promoting sustainable wastewater treatment. In this study, machine learning (ML) incorporating PPCPs and biochar properties as well as adsorption conditions were applied to build adsorption prediction models and explore the contributions of various biochar's inherent properties to their PPCPs adsorption capacity. The results demonstrated that the models developed by detailed biochar properties (e.g., surface functionality and hierarchical porous structure) from advanced microscopic and spectroscopic techniques were more accurate (i.e., the root-mean-square error decreased by 18-24%) than those by general information such as bulk elemental composition and total pore volume. The relative importance of surface carbon functionalities ranked in the order of C-O bond > CO bond > non-polar carbon for predicting the adsorption capacity. According to the partial dependence analysis, the average pore diameters of adsorbents that were larger than the maximum diameter of PPCPs molecules by 1.5-fold to 2.5-fold favored the PPCPs adsorption. This study reveals new insights into the adsorption of PPCPs and provides a comprehensive reference for the sustainable engineering of biochar adsorbents for PPCPs wastewater treatment.
Collapse
Affiliation(s)
- Xinzhe Zhu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Zhao J, Dai Y. Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9142-9152. [PMID: 34498178 DOI: 10.1007/s11356-021-16329-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Tetracycline (TC) is not easy to degrade in human or animal and can even be converted to more toxic substances. The overuse and wanton discharge of TC also caused serious problem of water pollution. This study investigated the removal of TC by biochar (BC) prepared from waste Auricularia auricula dregs and modified with NaOH by characterizing the pH and adsorption kinetics, and using isotherm models. Three BC samples were prepared and that produced using the highest concentration of NaOH (8 M) was more suitable for removing TC, where the adsorption amount was 26.65 mg/g. Pseudo-second order and Freundlich models both fitted well to the adsorption kinetics, and diffusion of the liquid film was considered the rate-controlling step. The multivariate mechanism involved electron interplay, H-bonding, and π-π electron donor-acceptor interactions. The results of this work can not only make the waste Auricularia auricula dregs resourceful, but also provide a new method for the removal of TC in wastewater, which is of great practical significance.
Collapse
Affiliation(s)
- Jiawei Zhao
- College of Engineering, Northeast Agricultural University, No. 600 Changjiang Road Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
32
|
A Comprehensive Insight on Adsorption of Polyaromatic Hydrocarbons, Chemical Oxygen Demand, Pharmaceuticals, and Chemical Dyes in Wastewaters Using Biowaste Carbonaceous Adsorbents. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9410266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent trends in adsorption of hazardous organic pollutants including Polyaromatic Hydrocarbons (PAHs), Chemical Oxygen Demand (COD), Pharmaceuticals, and Chemical Dyes in wastewater using carbonaceous materials such as activated carbon (AC) and biochar (BC) have been discussed in this paper. Utilization of biomass waste in the preparation of AC and BC has gained a lot of attention recently. This review outlines the techniques used for preparation, modification, characterization, and application of the above-mentioned materials in batch studies. The approaches towards understanding the adsorption mechanisms have also been discussed. It is observed that in the majority of the studies, high removal efficiencies were reported using biowaste adsorbents. Regarding the full potential of adsorption, varying values were obtained that are strongly influenced by the adsorbent preparation technique and adsorption method. In addition, most of the studies were concentrated on the kinetic, isotherm equilibrium, and thermodynamic aspects of adsorption, suggesting the dominant isotherm and kinetic models as Langmuir or Freundlich and pseudo-second-order models. Due to development in biosorbents, adsorption has been found to be increasingly economical. However, application of these adsorbents at commercial scale has not been adequately investigated and needs to be studied. Most of the studies have been conducted on synthetic solutions that do not completely represent the discharged effluents. This also needs attention in future studies.
Collapse
|
33
|
Sun Y, Zheng L, Zheng X, Xiao D, Yang Y, Zhang Z, Ai B, Sheng Z. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization. Front Chem 2022; 9:814647. [PMID: 35127654 PMCID: PMC8813774 DOI: 10.3389/fchem.2021.814647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Biochar is a low-cost adsorbent for sorptive removal of antibiotics from wastewater, but the adsorption efficiency needs to be improved. In this study, coconut-shell biochar was activated with KOH to improve the adsorption efficiency and magnetically modified with FeCl3 to enable recycling. The amount of KOH and the concentration of FeCl3 were optimized to reduce the pollution and production cost. The KOH-activated and FeCl3-magnetized biochar gave good sulfonamide antibiotic (SA) removal. The maximum adsorption capacities for sulfadiazine, sulfamethazine and sulfamethoxazole were 294.12, 400.00 and 454.55 mg g-1, respectively, i.e., five to seven times higher than those achieved with raw biochar. More than 80% of the adsorption capacity was retained after three consecutive adsorption-desorption cycles. A combination of scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopies, and magnetic hysteresis analysis showed that KOH activation increased the specific surface area, porosity, and number of oxygen-rich functional groups. Iron oxide particles, which were formed by FeCl3 magnetization, covered the biochar surface. The SAs were adsorbed on the modified biochar via hydrogen bonds between SA molecules and -OH/-COOH groups in the biochar. Investigation of the adsorption kinetics and isotherms showed that the adsorption process follows a pseudo-second-order kinetic model and a monolayer adsorption mechanism. The adsorption capacity at low pH was relatively high because of a combination of π+-π electron-donor-acceptor, charge-assisted hydrogen-bonding, electrostatic, and Lewis acid-base interactions, pore filling, van der Waals forces and hydrophobic interactions. The results of this study show that magnetically modified biochar has potential applications as an effective, recyclable adsorbent for antibiotic removal during wastewater treatment.
Collapse
Affiliation(s)
- Ying Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Haikou Key Laboratory of Banana Biology, Haikou, China
| |
Collapse
|
34
|
Tang Y, Li Y, Zhan L, Wu D, Zhang S, Pang R, Xie B. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150158. [PMID: 34537708 DOI: 10.1016/j.scitotenv.2021.150158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 05/11/2023]
Abstract
Using current wastewater treatment technologies, it can be challenging to remove the emerging contaminants (ECs) present in kitchen wastewater (KW) of complex compositions and high organic content. In this study, biochar, derived from straw, was modified as an adsorbent to remove ECs such as bisphenol A (BPA), tetracycline (TC) and ofloxacin (OFL) from a complex KW system. An alkali-modified biochar, having larger specific surface areas and stronger hydrophobicity, was found to exhibit a higher adsorption capacity, with more than 95% of the target ECs being removed. Indeed, in a static operation mode, the alkali-modified biochar had maximum adsorption capacities of 71.43, 101.01 and 54.05 mg/g for BPA, TC, and OFL, respectively. The adsorption kinetics and isotherms models indicated that the adsorption process was controlled by chemisorption, as well as the monolayer adsorption of contaminants onto the external and internal surfaces of the alkali-modified biochar. The adsorption of TC and OFL was significantly affected by the initial pH values of KW. However, the presence of different environmental factors (COD, NH4+ and PO43-) had little effects on the adsorption of the contaminants. The alkali-modified biochar was further tested in a fixed-bed column where the maximum dynamic adsorption capacities for BPA and OFL were 55 and 45 mg/g, representing about 75% and 83% of the static saturated adsorption capacities. These findings can be of major significance for the application of alkali-modified biochar in the removal of ECs from complex KW systems.
Collapse
Affiliation(s)
- Ye Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ye Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lu Zhan
- Shanghai Jiaotong University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Suhua Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
35
|
Shen R, Lu J, Yao Z, Zhao L, Wu Y. The hydrochar activation and biocrude upgrading from hydrothermal treatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:125914. [PMID: 34530252 DOI: 10.1016/j.biortech.2021.125914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The production of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass is getting increasing attention, but the quality of hydrochar and biocrude need further improvement before utilization. Many attempts have been carried out on the hydrochar activation and biocrude upgrading. However, different methods play different roles on the property of hydrochar and biocrude, this topic received scant attention in recent review papers. Therefore, the influence of different activation methods on hydrochar property, and the potential application of hydrochar were summarized in this study. Meanwhile, the research progress on biocrude upgrading is reported. Besides, the techno-economic analysis of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass are also discussed. Finally, the research needs and future directions on hydrochar activation and biocrude upgrading were proposed. This paper could provide insights for further studies on the utilization of hydrochar and biocrude.
Collapse
Affiliation(s)
- Ruixia Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Mu Y, He W, Ma H. Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity. BIORESOURCE TECHNOLOGY 2021; 342:126001. [PMID: 34592612 DOI: 10.1016/j.biortech.2021.126001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
A tea residue-based biochar, Fe-BCK0.5-VB6, was obtained by pyrolysis with KOH activation and alkalization with vitamin B6, to develop the mesopore structure and functionalized surface to improve the adsorption performance on tetracycline (TC). An increased specific surface area of 455 m2·g-1 and expanded mesopore volume of 0.138 cm3·g-1 for Fe-BCK0.5-VB6, were observed. The Avrami-fractional order kinetics and Langmuir isotherm models best fitted the experimental data, indicating the characteristics of multiple kinetic stages and monolayer of TC adsorption process. Several possible interactions, including acid-base reaction, pore filling, electrostatic interactions, π-π interactions, and hydrogen bonding forces, were participated in the attachment of TC. This novel mesoporous biochar with enhanced surface alkalinity is expected with a viable future role as an efficient adsorbent in the remedies of acidic antibiotics wastewater pollution.
Collapse
Affiliation(s)
- Yongkang Mu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China
| | - Wenyan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China.
| |
Collapse
|
37
|
Kozyatnyk I, Oesterle P, Wurzer C, Mašek O, Jansson S. Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstocks. BIORESOURCE TECHNOLOGY 2021; 340:125561. [PMID: 34332442 DOI: 10.1016/j.biortech.2021.125561] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Adsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity. The most hydrophilic CECs studied, caffeine and chloramphenicol, displayed the highest adsorption (22.8 and 11.3 mg g-1) onto activated wheat straw biochar which had the highest ash content of the studied adsorbents (20 wt%). Adsorption of bisphenol A and triclosan, both relatively hydrophobic substances, was highest (31.6 and 30.2 mg g-1) onto activated biochar from softwood, which displayed a well-developed mesoporosity and low ash content.
Collapse
Affiliation(s)
- Ivan Kozyatnyk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Pierre Oesterle
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, EH9 3FF Edinburgh, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, EH9 3FF Edinburgh, UK
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
38
|
Dai L, Lu Q, Zhou H, Shen F, Liu Z, Zhu W, Huang H. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126547. [PMID: 34246863 DOI: 10.1016/j.jhazmat.2021.126547] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Biochar has attracted increasing attention in water pollution control, attributed to its various merits, e.g., tunable physico-chemical properties. The oxygenated functional groups (OFGs) on biochar are key active sites for removing pollutants from water through interfacial adsorption/redox reaction. However, there is still a lack of comprehensive knowledge and perspective on tuning OFGs on biochar for enhanced performance in water pollution control. Here, this review highlighted the mechanisms of biochar OFGs in water pollution control, analyzed the strategies and mechanisms for tuning OFGs on biochar, and investigated the performances of biochars with tuned OFGs in removing inorganic/organic pollutants via adsorption/redox reactions. Specifically, strategies for tuning OFGs on biochar are far more than the well-recognized ex-situ oxidation of pristine biochar. These strategies include in-situ low temperature preservation of hydroxyl and carboxyl, in-/ex-situ oxidation of biochar, and in-/ex-situ grafting of carboxyl on biochar via cycloaddition/acylation reaction. The resultant biochars showed enhanced performances in adsorption (mainly mediated by hydroxyl, carboxyl and ketone through surface complexation, H-bonding, and electrostatic attraction) and redox reaction (mainly mediated by redox-active hydroxyl and ketone). Finally, this review presented future directions on developing biochar with specially tuned surface OFGs as a sustainable high-performance adsorbent/carbocatalyst for water pollution control.
Collapse
Affiliation(s)
- Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| | - Qian Lu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Haiqin Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
39
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
40
|
Zhang X, Li Y, Wu M, Pang Y, Hao Z, Hu M, Qiu R, Chen Z. Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: Kinetics, mechanism and column adsorption. BIORESOURCE TECHNOLOGY 2021; 320:124264. [PMID: 33130541 DOI: 10.1016/j.biortech.2020.124264] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
A Fe/Mn oxides loaded biochar (FeMn-BC) was prepared to enhance the adsorption of tetracycline (TC). γ-Fe2O3 and MnO2 were assigned to the Fe and Mn oxides, respectively. The enhanced adsorption of TC was dominated by the loaded γ-Fe2O3 and MnO2. According to Akaike-Information-Criteria evaluation, Elovich kinetic and Langmuir isotherm models could best describe the adsorption with a maximum capacity of 14.24 mg/g. During adsorption process, the γ-Fe2O3 and MnO2 hydrolyzed into hydroxides (FeOOH and MnOOH) which acted as bases to complex with TC2- ion under alkaline condition (pH = 11). After the adsorption, the concentrations of leached Fe and Mn could meet the requirements PRC standards GB13456-2012 and GB8978-1996, respectively. The FeMn-BC had ~24% on TC removal (initial concentration of 20 mg/L) after four-cycles regeneration. The FeMn-BC was also available for TC adsorptions in column tests and actual wastewater.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China.
| | - Yaru Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Mengru Wu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Yao Pang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Zhenbing Hao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| |
Collapse
|
41
|
Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J Colloid Interface Sci 2020; 587:271-278. [PMID: 33360900 DOI: 10.1016/j.jcis.2020.12.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022]
Abstract
In this study, two different kinds of pharmaceutical sludge activated by NaOH were used to prepare biochar. The characteristics of biochar prepared by impregnation method and dry mixing method were analyzed, including N2 adsorption-desorption isotherms, surface functional group analysis and micromorphological observation. The results showed that the biochar prepared by impregnation method had more micropores, while that prepared by dry mixing activation method had more mesopores. The adsorption reaction of tetracycline on the two different kind of biochar was investigated. Several important factors such as solution initial pH, tetracycline concentration and reaction time on adsorption reaction were investigated. The results show that both kinds of biochar have high tetracycline adsorption efficiency and excellent pH adaptability. The biochar manufactured by dry mixing activation method had better adsorption performance (379.78 mg/g, 25 °C). Regeneration experiments showed that the adsorbent had stable performance in absorbing tetracycline. Direct dry mixing activation method is a simple and effective method used to prepare porous biochar, which can be used for the resourceful utilization of pharmaceutical sludge. This work provides extensive information on the use of biochar derived from pharmaceutical sludge for the removal of TC from hospital and pharmaceutical production wastewater.
Collapse
|
42
|
Yu H, Gu L, Chen L, Wen H, Zhang D, Tao H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. BIORESOURCE TECHNOLOGY 2020; 316:123971. [PMID: 32777718 DOI: 10.1016/j.biortech.2020.123971] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
A novel adsorbent derived from grapefruit peel (GP) based biochar (GPBC) was synthesized by combined carbonization of GP and subsequent activation by GP extracts. Compared to biochar without extracts activation, the technique granted GPBC-20 (with 1:20 of solid-solution ratio) more abundant surface functional groups, which exerts the adsorbent superior performance for tetracycline (TC) adsorption (37.92 mg/g v.s. 16.64 mg/g). The adsorption kinetics, isotherms and thermodynamics models were further used to evaluate the adsorption behavior of GPBC. The enhanced adsorption was analyzed by characterization of fresh and used GPBC, revealing that the adsorption mechanism was comprised of pore filling, charge interaction and chemical bonding. The comprehensive investigation of using agricultural waste extracts as activator to prepare its raw materials-based adsorbents may be of great significance for enhanced resource utilization.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Lu Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai University of International Business and Economics, Shanghai 201620, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
43
|
Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 312:123614. [PMID: 32517889 DOI: 10.1016/j.biortech.2020.123614] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
Biochar is a carbon-rich product obtained from the thermo-chemical conversion of biomass. Studying the evolution properties of biochar by in-situ modification or post-modification is of great significance for improving the utilisation value of lignocellulosic biomass. In this paper, the production methods of biochar are reviewed. The effects of the biomass feedstock characteristics, production processes, reaction conditions (temperature, heating rate, etc.) as well as in-situ activation, heteroatomic doping, and functional group modification on the physical and chemical properties of biochar are compared. Based on its unique physicochemical properties, recent research advances with respect to the use of biochar in pollutant adsorbents, catalysts, and energy storage are reviewed. The relationship between biochar structure and its application are also revealed. It is suggested that a more effective control of biochar structure and its corresponding properties should be further investigated to develop a variety of biochar for targeted applications.
Collapse
Affiliation(s)
- Yunchao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bo Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
44
|
Ma Z, Du W, Yan Z, Chen X, Wang Y, Mao Z. Removal of Phloridzin by Chitosan-Modified Biochar Prepared from Apple Branches. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1786696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiting Ma
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wenyan Du
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhubing Yan
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yanfang Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
45
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, Varjani S, Liu Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137662. [PMID: 32325595 DOI: 10.1016/j.scitotenv.2020.137662] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Removal of tetracycline antibiotics (TCs) by biochar adsorption is emerging as a cost-effective and environmentally friendly strategy. This study developed a novel pomelo peel derived biochar, which was prepared at 400 °C (BC-400) and 600 °C (BC-600) under nitrogen conditions. To enhance the adsorption capacity, BC-400 was further activated by KOH at 600 °C with a KOH: BC-400 ratio of 4:1. The activated biochar (BC-KOH) displayed a much larger surface area (2457.37 m2/g) and total pore volume (1.14 cm3/g) than BC-400 and BC-600. High adsorption capacity of BC-KOH was achieved for removing tetracycline (476.19 mg/g), oxytetracycline (407.5 mg/g) and chlortetracycline (555.56 mg/g) simultaneously at 313.15 K, which was comparable with other biochars derived from agricultural wastes reported previously. The adsorption data could be fitted by the pseudo-second-order kinetic model and Langmuir isotherm model successfully. The initial solution pH indicated the potential influence of TCs adsorption capacity on BC-KOH. These results suggest that pore filling, electrostatic interaction and π-π interactions between the adsorbent and adsorbate may constitute the main adsorption mechanism. BC-KOH can be used as a potential adsorbent for removing TCs from swine wastewater effectively, cheaply and in an environmentally friendly way.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
46
|
Xi J, Li H, Xi J, Tan S, Zheng J, Tan Z. Preparation of high porosity biochar materials by template method: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20675-20684. [PMID: 32277413 DOI: 10.1007/s11356-020-08593-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Biochar plays an important role in soil improvement, pollutant removal, and nitrogen reduction. The excellent adsorption performance of biochar is closely related to its pore structure. Therefore, this paper combines a large amount of literatures to investigate the principle and method of preparing carbon materials by using the template method, and the idea of preparing high porosity biochar by template method was proposed. The results show that: (1) The specific surface area of the carbon materials prepared by the template method is more than 400 m2 g-1, and the total pore volume is more than 0.3 cm3 g-1, which is much higher than the biochar materials prepared under the traditional high temperature anoxic pyrolysis. (2) Compared with the hard template method, a soft template method with simple operation, low toxicity of the compound, and low cost is selected. (3) The lignin, which is also a hydrophilic carbon source similar to phenolic resin, can be used as an ideal carbon precursor. (4) In the selection of templating agents, the specific surface area and total pore volume of carbon materials prepared by using F127 as a template are relatively large, showing more excellent pore size performance. (5) Finally, the idea of using template method to prepare high porosity biochar is proposed: lignin extracted from straw material is used as precursor, block polymer F127 is used as template, an appropriate amount of a cross-linking agent and a solvent is added, and finally the target biochar material is prepared by pyrolysis carbonization.
Collapse
Affiliation(s)
- Jingen Xi
- Environment and Plant Protection Institute, CATAS/Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, People's Republic of China
| | - Hui Li
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Jiamin Xi
- Agricultural Product Processing Research Institute,CATAS, Zhanjiang, 524001, Guangdong, People's Republic of China
| | - Shibei Tan
- Environment and Plant Protection Institute, CATAS/Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, People's Republic of China
| | - Jinlong Zheng
- Environment and Plant Protection Institute, CATAS/Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Haikou, 571101, Hainan, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1 Lion Hill Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
47
|
Huang H, Niu Z, Shi R, Tang J, Lv L, Wang J, Fan Y. Thermal oxidation activation of hydrochar for tetracycline adsorption: the role of oxygen concentration and temperature. BIORESOURCE TECHNOLOGY 2020; 306:123096. [PMID: 32172087 DOI: 10.1016/j.biortech.2020.123096] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Poplar hydrochar (RHC) was activated by thermal oxidation (TA-O) in air at 300 °C (O300) and in air + N2 (0.5% O2) at 500 and 700 °C (O500 and O700), respectively, and in N2 at 300-700 °C (N300-N700) as control. Samples characterized by various methods were used to analyze their effect on tetracycline adsorption. The results showed that TA-O greatly increased adsorption capacity qe, 100 (mg·g-1, C0 = 100 mg·L-1) from 6.29 for RHC to 33.32, 96.23 and 60.90 for O300, O500 and O700, respectively. The O300 increased carboxyl and aromaticity whereas little influenced on porosity. The O500, with the highest SBET and Smicro, enhanced adsorption probably by micropore filling and π-π interactions. The O700 fused micropore into mesopore but decreased the SBET, Smicro and qe, 100. Thus, thermal oxidation at 500 °C and 0.5% O2 is recommended for hydrochar activation to absorb tetracycline.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an 716000, Shaanxi, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Ruru Shi
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lei Lv
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an 716000, Shaanxi, China
| | - Jian Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an 716000, Shaanxi, China
| | - Yimo Fan
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
| |
Collapse
|
48
|
Hameed R, Lei C, Lin D. Adsorption of organic contaminants on biochar colloids: effects of pyrolysis temperature and particle size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18412-18422. [PMID: 32189203 DOI: 10.1007/s11356-020-08291-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Biochar (BC) colloids attract increasing interest due to their unique environmental behavior and potential risks. However, the interaction between BC colloids and organic contaminants that may affect their fates in the environment has not been substantially studied. Herein, adsorption and desorption of phenanthrene (PHN), atrazine (ATZ), and oxytetracycline (OTC) by a series of BC colloids derived from bulk rice straw BC samples with 6 pyrolysis temperatures (200-700 °C), and 3 particle sizes (250 nm, 500 nm, and 1 μm) were investigated. Regardless of pyrolysis temperature, BC colloids from a given sized bulk BC had a comparable size, being 30 ± 6, 70 ± 18, and 140 ± 15 nm corresponding to the three sized bulk BCs, respectively. The adsorption kinetics curves were well explained by the pseudo-second-order model, and pore diffusion was the primary rate-determining step. Both Freundlich and Langmuir models well fitted the adsorption isotherms. With increasing pyrolysis temperature or decreasing particle size of bulk BC, the specific surface area and pore volumes of the derived BC colloids increased, the kinetics model fitted adsorption rates (k2) of the three organics by the BC colloids all largely decreased, and the Langmuir model fitted adsorption capacities (Qmax) increased. The highest Qmax was obtained by BC colloids from the smallest (250 nm) bulk BC with the highest pyrolysis temperature (700 °C), being 212 μmol g-1 for PHN, 815 μmol g-1 for ATZ, and 72.4 μmol g-1 for OTC. The adsorption was reversible for PHN and ATZ, while significant desorption hysteresis was observed for OTC on BC colloids with middle pyrolysis temperatures (300-500 °C). The underlying mechanisms including hydrophobic interaction, π-π electron donor-acceptor interaction, molecular size effect, and irreversible reactions were discussed to explain the difference in the adsorption and desorption behaviors. The findings increased our understanding of the environmental fate and risk of BC.
Collapse
Affiliation(s)
- Rashida Hameed
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Lei
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Zhang Z, Ding C, Li Y, Ke H, Cheng G. Efficient removal of tetracycline hydrochloride from aqueous solution by mesoporous cage MOF-818. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2514-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Del Bubba M, Anichini B, Bakari Z, Bruzzoniti MC, Camisa R, Caprini C, Checchini L, Fibbi D, El Ghadraoui A, Liguori F, Orlandini S. Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135217. [PMID: 31810702 DOI: 10.1016/j.scitotenv.2019.135217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
Three biochars were produced using sawdust from waste biomass, via a simple pyrolysis thermal conversion at 450, 650, and 850 °C (BC450, BC650, and BC850), without any activation process. These materials, together with vegetal and mineral commercial activated carbons (VAC and MAC), were characterized for their elemental composition, Brunauer-Emmett-Teller surface area, t-plot microporosity and Barrett-Joyner-Halenda mesoporosity. Moreover, iodine, phenol and methylene blue porosity indexes were measured. The materials were also evaluated for their pH of the point of zero charge, as well as near-surface chemical composition and surface functionality by means of X-ray photoelectron and Fourier-transform infrared spectroscopy. Ash content, water-extractable metals and polycyclic aromatic hydrocarbons (PAHs) were also determined. BC650 showed a much higher surface area (319 m2 g-1) compared to BC450 (102 m2 g-1), as well as an increase in aromatization and the residual presence of functional polar groups. BC850 exhibited a loss of polar and aromatic groups, with the dominance of graphitic carbon and the highest value of surface area (419 m2 g-1). Biochars comply with the EN 12915-1/2009 limits for metal and PAH release in water treatment. Biochars and MAC were tested using Langmuir and Freundlich isotherms for the sorption in real effluent wastewater of a mixture of 14 branched ethoxylated 4-t-octyl and 4-nonylphenols, as well as 4-t-octyl and 4-nonylphenol, the latter representing persistent, endocrine disrupting contaminants, widespread in the effluents from wastewater treatment plants and listed as priority/priority hazardous substances in the Directive 2013/39/EU. Biochars showed a lower sorption efficiency compared to MAC. The best performance was found for BC650 towards the alkylphenols (9-13 times less efficient than the MAC). Considering the lower market price of biochar compared to MAC (estimated as at least 16 times less expensive by a small market survey), the former can be considered more competitive than the latter.
Collapse
Affiliation(s)
- Massimo Del Bubba
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy.
| | | | - Zaineb Bakari
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy; National Engineering School of Sfax, Route de la Soukra km 4 3038 Sfax, Tunisia
| | | | | | - Claudia Caprini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | - Leonardo Checchini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | | | - Ayoub El Ghadraoui
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Liguori
- Institute for the Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), Via Madonna del Piano 10 - 50019 Sesto Fiorentino, Florence, Italy
| | - Serena Orlandini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 - 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|