1
|
Ding Y, Feng H, Han J, Jiang W, Dong S, Cheng H, Wang M, Wang A. Effect of UV pretreatment on the source control of floR during subsequent biotreatment of florfenicol wastewater. Appl Microbiol Biotechnol 2024; 108:120. [PMID: 38212963 DOI: 10.1007/s00253-023-12826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
2
|
Wang N, Li S, Shi M, Ni N, Zhang X, Guo X, Lin H, Luo Y. Trajectory of antibiotic resistome response to antibiotics gradients: A comparative study from pharmaceutical and associated wastewater treatment plants to receiving river. WATER RESEARCH 2024; 266:122444. [PMID: 39298897 DOI: 10.1016/j.watres.2024.122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Pharmaceutical wastewater often contains significant levels of antibiotic residues, which continuously induce and promote antibiotic resistance during the sewage treatment process. However, the specific impact of antibiotics on the emergence of antibiotic resistance genes (ARGs), microbiomes, and mobile genetic elements (MGEs), as well as the dose-response relationship remain unclear. Herein, through metagenomic sequencing and analysis, we investigated the fate, transmission, and associated risk of ARGs over a ten-year period of exposure to a gradient of sulfonamide antibiotics at a pharmaceutical wastewater treatment plant (PWWTP), an associated wastewater treatment plant (WWTP), and the receiving river. Through abundance comparison and principal co-ordinates analysis (PCoA), our results revealed distinct ARG, microbiome, and MGE profiles across different antibiotic concentrations. Notably, there was a decreasing trend in the abundance of ARGs and MGEs as the antibiotic concentrations were attenuated (p < 0.05). Further partial least squares path modeling analysis, Procrustes analysis and network analysis indicated that variation in MGEs and microbiomes were the driving forces behind the distribution of ARGs. Based on these findings, we proposed an antibiotic-microbiome-MGE-ARG dissemination paradigm, in which integrons as key drivers were closely associated with prevalent ARGs such as sul1, sul2, and aadA. With a focus on human pathogenic bacteria and the associated health risks of ARGs, we conducted pathogen source analysis and calculated the antibiotic resistome risk index (ARRI). Our findings highlighted potential risks associated with the transition from PWWTP to WWTP, raising concerns regarding risk amplification due to the mixed treatment of antibiotic-laden industrial wastewater and domestic sewage. Overall, the results of our study provide valuable information for optimizing wastewater treatment practices to better manage antibiotic resistance.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuchang Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Mali Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ni Ni
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaohui Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xinyan Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Chen J, Su Z, Li F, Cao F, Xiong F, Jiang B, Xing Y, Wen D. The variation of resistome, mobilome and pathogen in domestic and industrial wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 193:109051. [PMID: 39418785 DOI: 10.1016/j.envint.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Wastewater treatment plants (WWTPs), including both domestic and industrial facilities, are key contributors to antibiotic resistance genes (ARGs) and human pathogens in the environment. However, the characteristics and dissemination mechanisms of ARGs in domestic (SD) and industrial (SI) wastewater treatment systems remain unclear, leading to uncertainties in risk assessment. Based on metagenomic analysis, we observed significant differences in the compositions of resistome (ARGs and metal resistance genes, MRGs), mobilome (mobile genetic elements, MGEs), and bacterial community between SD and SI. SI exhibited lower diversity of ARGs but higher abundance of MRGs compared to SD. The removal efficiency of resistome was lower in the SI than that in the SD. MGEs emerged as the primary driver of ARG dissemination in the WWTPs, followed by the bacterial community. Environmental conditions (physicochemical parameters, heavy metals, and antibiotics) indirectly influenced the variation of resistome. Significantly, environmental conditions and MGEs highly influenced the composition of resistome in the SI, while bacterial community more associated with resistome in the SD. Additionally, we identified 36 human bacterial pathogens as potential hosts of ARGs, MRGs, and MGEs in wastewater samples. This study provides new insights on the dissemination mechanisms and risk assessment of antimicrobial resistance in the different types of WWTPs.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Macrì M, Bonetta S, Di Cesare A, Sabatino R, Corno G, Catozzo M, Pignata C, Mecarelli E, Medana C, Carraro E, Bonetta S. Antibiotic resistance and pathogen spreading in a wastewater treatment plant designed for wastewater reuse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125051. [PMID: 39357555 DOI: 10.1016/j.envpol.2024.125051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Climate change significantly contributes to water scarcity in various regions worldwide. While wastewater reuse is a crucial strategy for mitigating water scarcity, it also carries potential risks for human health due to the presence of pathogenic and antibiotic resistant bacteria (ARB). Antibiotic resistance represents a Public Health concern and, according to the global action plan on antimicrobial resistance, wastewater role in selecting and spreading ARB must be monitored. Our aim was to assess the occurrence of ARB, antibiotic resistance genes (ARGs), and potential pathogenic bacteria throughout a wastewater treatment plant (WWTP) designed for water reuse. Furthermore, we aimed to evaluate potential association between ARB and ARGs with antibiotics and heavy metals. The results obtained revealed the presence of ARB, ARGs and pathogenic bacteria at every stage of the WWTP. Notably, the most prevalent ARB and ARG were sulfamethoxazole-resistant bacteria (up to 7.20 log CFU mL-1) and sulII gene (up to 5.91 log gene copies mL-1), respectively. The dominant pathogenic bacteria included Arcobacter, Flavobacterium and Aeromonas. Although the abundance of these elements significantly decreased during treatment (influent vs. effluent, p < 0.05), they were still present in the effluent designated for reuse. Additionally, significant correlations were observed between heavy metal concentrations (copper, nickel and selenium) and antibiotic resistance elements (ampicillin-resistant bacteria, tetracycline-resistant bacteria, ARB total abundance and sulII) (p < 0.05). These results underscore the importance of monitoring the role of WWTP in spreading antibiotic resistance, in line with the One Health approach. Additionally, our findings suggest the need of interventions to reduce human health risks associated with the reuse of wastewater for agricultural purposes.
Collapse
Affiliation(s)
- Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marta Catozzo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Enrica Mecarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 44, 10126, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 44, 10126, Torino, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
5
|
Lu C, Qin C, Zhao L, Ye H, Bai M, Sun Y, Li X, Weng L, Li Y. Overlooked interconversion between tetracyclines and their 4-epimers in soil and effects on soil resistome and bacterial community. ENVIRONMENT INTERNATIONAL 2024; 190:108941. [PMID: 39128374 DOI: 10.1016/j.envint.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.
Collapse
Affiliation(s)
- Chenxi Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Cheng Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, The Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Qu Y, Li P, Liu Y, Dai S, Xie Y, He Y. External carbon source as a viable tool for controlling antibiotics and antibiotic resistance genes (ARGs) in effluent: Influence on antibiotic removal and ARGs dissemination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121330. [PMID: 38833927 DOI: 10.1016/j.jenvman.2024.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Fluoroquinolone antibiotics and antibiotic resistance genes (ARGs) regarded as emerging contaminants were poorly removed in conventional wastewater treatment plants (WWTPs). Nitrogen-containing heterocyclic organics were found to be biodegraded through denitrification co-metabolism. The feasibility to enhance antibiotics removal efficiency in WWTPs through denitrification co-metabolism needs to be further verified. Meanwhile, due to significant correlation between ARGs profiles and nitrogen removal that was previously observed, the dissemination of ARGs during denitrification was worthy of in-depth understanding. Herein, the antibiotic removal and ARGs dissemination in denitrification co-metabolism condition were investigated with different denitrifying consortiums that acclimated under different conditions in terms of carbon source and the exposure of Ofloxacin (OFL). The results suggest that the removal of OFL can be enhanced by the denitrification co-metabolism. The tolerance to OFL is different among various denitrifying communities. For the denitrifying consortiums acclimated with methanol, long-term exposure to trace OFL (1 μg/L) could reduce the capabilities of removal and tolerance to OFL. On the contrary, those acclimated with sodium acetate (NaAc), the capabilities of removal and tolerance to OFL, were enhanced by long-term exposure to trace OFL. According to the quantitative determination to 384 target genes with high-throughput quantitative PCR, the abundance of ARGs in consortiums greatly increased when exposed to OFL at the concentration of comparable to sewage, which was also much larger than that acclimated with methanol. It can be confirmed and supported by DNA sequencing results that the antibiotic removal and the dissemination of ARGs were determined by microbial community that could be shaped with carbon source. These conclusions suggest that selecting the right external carbon source can be a useful strategy for WWTPs to control antibiotics and ARGs in the effluent. From a new perspective on mitigating ARGs dissemination, NaAc was not an appropriate carbon source.
Collapse
Affiliation(s)
- Yining Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yuxue Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou, 730070, China
| | - Sha Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou, 730070, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
7
|
Luo L, Wang Z, Huang X, Gu JD, Yu C, Deng O. The fate of antibiotic resistance genes in wastewater containing microalgae treated by chlorination, ultra-violet, and Fenton reaction. WATER RESEARCH 2024; 254:121392. [PMID: 38430757 DOI: 10.1016/j.watres.2024.121392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation. Then, the treated wastewater was co-cultured with Chlorella vulgaris (representative of aquatic biota) to investigate the fate of discharged ARGs into the aquatic environment. The results demonstrated that chlorination (at a chlorine concentration of 15 mg/L) and Fenton (at pH 2.73, with 0.005 mol/L Fe2+ and 0.0025 mol/L H2O2) treatment showed higher efficacy in ARG removal (1.8 - 4.17 logs) than UV treatment (15 min) (1.29 - 3.87 logs). Moreover, chlorine at 15 mg/L and Fenton treatment effectively suppressed ARB regeneration while UV treatment for 15 min could not. Regardless of treatments tested in this study, the input of treated wastewater to the Chlorella system increased the number of ARGs and mobile genetic elements (MGEs), indicating the potential risk of ARG dissemination associated with WWTP discharge. Among the wastewater-Chlorella co-culture systems, chlorination resulted in less of an increase in the number of ARGs and MGEs compared to Fenton and UV treatment. When comparing the wastewater systems to the co-culture systems, it was observed that Chlorella vulgaris reduced the number of ARGs and MGEs in chlorination and UV-treated wastewater; however, Chlorella vulgaris promoted ARG survival in Fenton-treated water, suggesting that aquatic microalgae might act as a barrier to ARG dissemination. Overall, chlorination treatment not only effectively removes ARGs and inhibits ARB regeneration but also shows a lower risk of ARG dissemination. Therefore, chlorination is recommended for practical application in controlling the spread of discharged ARGs from WWTP effluent in natural aquatic environments.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou 515063, PR China
| | - Chenxiao Yu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
8
|
Chen T, Mo C, Yuan Y, Li S, Wu Y, Liao X, Yang Y. Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133789. [PMID: 38394893 DOI: 10.1016/j.jhazmat.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yilin Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yinbao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Wang S, Zhuang Y, Gao L, Huang H, Zhang X, Jia S, Shi P, Zhang XX. Deciphering the dynamics and driving mechanisms of high-risk antibiotic resistome in size-fractionated bacterial community during drinking water chlorination via metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133572. [PMID: 38280321 DOI: 10.1016/j.jhazmat.2024.133572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
To reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.005 copies/cell (cpc), bacitracin and chloramphenicol resistance types were major contributors. Furthermore, chlorination significantly increased the relative abundance of mobile genetic elements (MGEs) in the free-living fraction, while decreasing it in the particle-associated fraction. During chlorination, size-fractionated bacterial communities varied considerably. Multiple statistical analyses highlighted the pivotal role of the bacterial community in altering high-risk ARGs in both the free-living and particle-associated fractions, while MGEs had a more pronounced impact on high-risk ARGs in the free-living fraction. Specifically, the enrichment of pathogenic hosts, such as Comamonas and Pseudomonas, led to an increase in the abundance of high-risk ARGs. Concurrently, MGEs exhibited significant correlations with high-risk ARGs, indicating the potential of horizontal transfer of high-risk ARGs. These findings provide novel insights for mitigating antibiotic resistance risk by considering different bacterial fractions and respective risk ranks in drinking water.
Collapse
Affiliation(s)
- Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongbin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
C SK, Khanal S, Joshi TP, Khadka D, Tuladhar R, Joshi DR. Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123155. [PMID: 38114055 DOI: 10.1016/j.envpol.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored blaNDM-1 (76.0%), followed by blaOXA (36.0%) and blaKPC (20.0%) genes. Hospital wastewater majorly contributed to the presence of blaNDM-1, blaKPC, and blaOXA along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each blaNDM-1 & blaOXA and blaKPC & blaOXA occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.
Collapse
Affiliation(s)
- Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Deegendra Khadka
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal.
| |
Collapse
|
11
|
Cui X, Liu Y, Wei T, Zhou Y. Response of antibiotic resistance genes expression and distribution on extracellular polymeric substances and microbial community in membrane biofilm during greywater treatment. BIORESOURCE TECHNOLOGY 2024; 393:130146. [PMID: 38049021 DOI: 10.1016/j.biortech.2023.130146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
This study evaluated how organic loading affects antibiotic resistance genes (ARGs) expression and distribution in the membrane biofilm. Organic surface loading rate of 4.65 g chemical oxygen demand (COD)/m2·d achieved the maximum biofilm thickness, concentration and linear alkylbenzene sulfonate (LAS) removal ratio of 136.9 ± 4.7 μm, 5.4 ± 0.1 g VSS/m2 and 99.4 %, respectively. Extracellular polymeric substances (EPS), EPS-attached LAS, and ARGs gradually increased in the membrane air inlet, middle and air outlet. AGRs and Intl1 were abundant in biofilm. LAS promoted EPS secretion, biofilm growth and ARGs proliferation. EPS, protein and carbohydrate were significantly correlated with most of biofilm ARGs, but not corrected with liquid-based ARGs. Microbial community structure impacted ARGs proliferation and transfer in the system. The findings indicated that EPS and microbial community play a crucial role in ARGs proliferation, spread and distribution, which lay the foundation for front-end control of ARGs during biofilm-based wastewater treatment.
Collapse
Affiliation(s)
- Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Zhang L, Adyari B, Hou L, Yang X, Gad M, Wang Y, Ma C, Sun Q, Tang Q, Zhang Y, Yu CP, Hu A. Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168193. [PMID: 37914134 DOI: 10.1016/j.scitotenv.2023.168193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Wastewater treatment plants (WWTPs) are the hotspots for the spread of antibiotic resistance genes (ARGs) into the environment. Nevertheless, a comprehensive assessment of the city-level and short-term daily (inter-day) variations of ARG profiles in the whole process (influent-INF, activated sludge-AS and effluent-EF) of WWTPs is still lacking. Here, 285 ARGs and ten mobile gene elements were monitored in seven WWTPs in Xiamen for seven days via high-throughput qPCR. The average daily load of ARGs to WWTPs was about 1.32 × 1020 copies/d, and a total of 1.56 × 1018 copies/d was discharged to the environment across the entire city. Stochastic processes were the main force determining the assembly of ARG communities during sampling campaign, with their relative importance ranked in the order of INF > EFF > AS. There're little daily variations in ARG richness, abundance, β-diversity composition as well as assembly mechanisms. The results of SourceTracker, variation partitioning analysis, and hierarchical partitioning analysis indicated that bacteria and ARGs from upstream treatment processes played an increasingly dominant role in shaping ARG communities in AS and EFF, respectively, suggesting the importance of mass-immigration of bacteria and ARGs from the source on ARG transport in wastewater treatment processes. This emphasizes the need to revise the way we mitigate ARG contamination but focus on the source of ARGs in urban wastewater.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Wanyan R, Pan M, Mai Z, Xiong X, Wang S, Han Q, Yu Q, Wang G, Wu S, Li H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167068. [PMID: 37714353 DOI: 10.1016/j.scitotenv.2023.167068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.
Collapse
Affiliation(s)
- Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
14
|
Tong T, Tong J, Xue K, Li Y, Yu J, Wei Y. Microbial community structure and functional prediction in five full-scale industrial park wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166529. [PMID: 37625722 DOI: 10.1016/j.scitotenv.2023.166529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The development of industrial parks has become an important global trend contributing significantly to economic and industrial growth. However, this growth comes at a cost, as the treatment of multisource industrial wastewater generated in these parks can be difficult owing to its complex composition. Microorganisms play a critical role in pollutant removal during industrial park wastewater treatment. Therefore, our study focused on the microbial communities in five full-scale industrial park wastewater treatment plants (WWTPs) with similar treatment processes and capacities. The results showed that denitrifying bacteria were dominant in almost every process section of all the plants, with heterotrophic denitrification being the main pathway. Moreover, autotrophic sulfur denitrification and methane oxidation denitrification may contribute to total nitrogen (TN) removal. In plants where the influent had low levels of COD and TN, dominant bacteria included oligotrophic microorganisms like Prosthecobacter (2.88 % ~ 10.02 %) and hgcI_clade (2.05 % ~ 9.49 %). Heavy metal metabolizing microorganisms, such as Norank_f__PHOS-HE36 (3.96 % ~ 5.36 %) and Sediminibacterium (1.86 % ~ 5.34 %), were prevalent in oxidation ditch and secondary settling tanks in certain plants. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that microbial communities in the regulation and hydrolysis tanks exhibited higher potential activity in the nitrogen (N) and sulfur (S) cycles than those in the oxidation ditch. Sulfate/sulfite reduction was common in most plants, whereas the potential occurrence of sulfide compounds and thiosulfate oxidation tended to be higher in plants with a relatively high sulfate concentration and low COD content in their influent. Our study provides a new understanding of the microbial community in full-scale industrial park WWTPs and highlights the critical role of microorganisms in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Tujun Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; China Energy Conservation and Environmental Protection Group, Beijing 100082, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Keni Xue
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanan Li
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiangze Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
16
|
Wang Z, Fu L, Gu JD, Deng S, Huang C, Luo L. The factors controlling antibiotic resistance genes in different treatment processes of mainstream full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165815. [PMID: 37506903 DOI: 10.1016/j.scitotenv.2023.165815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The alteration of antibiotic resistance genes (ARGs) in wastewater has been less studied in wastewater treatment plants (WWTPs), making it difficult to assess ARGs' spreading risk comprehensively. Therefore, this study investigated the distribution and reduction of ARGs in the main process (Anaerobic-Anoxic-Oxic with Membrane Bio-Reactor (A2/O + MBR), Oxidation Ditch with sedimentation (OD), and Cyclic Activated Sludge System (CASS) with sedimentation) and disinfection process (Ultra-violet and Chlorination) of full-scale WWTPs. The wastewater was sampled before and after the different main process and disinfection process; then, the diversity and abundance of ARGs and mobile genetic genes (MGEs, helping the horizontal transfer of ARGs) in wastewater of different treatment stages were determined by a real-time high-throughput quantitative PCR (HT-qPCR) system. It was found that similar influents would result in similar ARGs in wastewater samples, independent of the treatment processes used. The main process could effectively reduce the abundance of ARGs and MGEs by 1.80-2.12 and 1.46-2.18 logarithm units, respectively. The main factors affecting ARGs were mainly wastewater quality index, especially COD, and MGEs like transposase and insertion sequences which were significantly associated with 66 and 48 subtypes of ARGs, respectively. Moreover, disinfection was more effective than the main process in inactivating antibiotic resistance bacteria (ARB), and the removal rate of ARB by disinfection reached 43.53 %-100 %. However, there are still risks of ARB regeneration (up to 4.22 log units) in the effluent of WWTPs. In the future, nutrient removal and disinfection process improvement is necessary to benefit ARG and ARB removal.
Collapse
Affiliation(s)
- Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, PR China
| | - Li Fu
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, PR China
| | - Chengyi Huang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, PR China.
| |
Collapse
|
17
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
18
|
Tan H, Wang L, Chen Y, Li X, Zhou H, Wang Z, Tan Z. Deciphering antibiotic resistome variations during nitrogen removal process transition under mixed antibiotics stress: Assembly process and driving factors. BIORESOURCE TECHNOLOGY 2023; 391:129943. [PMID: 39492537 DOI: 10.1016/j.biortech.2023.129943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Antibiotic resistome, which encompasses all types of antibiotic resistance genes (ARGs) in a given environment, has received increasing attention in research on different wastewater treatment processes. However, the variation in antibiotic resistome during the transition from the full nitrification-denitrification to the shortcut nitrification-denitrification process remains unclear. In this study, a total of 269 targeted gene subtypes were identified, along with 108 genes were consistently present in all samples. The introduction of mixed antibioticsrapidly increased the abundance of corresponding and non-corresponding ARGs, as well as that of mobile genetic elements.The variations in of the antibiotic resistome were primarily driven by dissolved oxygen and nitrite accumulation rate. Moreover, 34 bacterial genera were identified as potential ARG hosts, with most denitrifiers considered as potential antibiotic-resistant bacteria, including Branchymonas, Rhodobacter, and Thauera. This study provides a method for controlling antibiotic resistance by regulating the changes in environmental variables and bacterial communities.
Collapse
Affiliation(s)
- Hao Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lin Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Xin Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Zhigang Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 610041 Chengdu, China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China.
| |
Collapse
|
19
|
Sambaza SS, Naicker N. Contribution of wastewater to antimicrobial resistance: A review article. J Glob Antimicrob Resist 2023; 34:23-29. [PMID: 37285914 DOI: 10.1016/j.jgar.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global challenge that has raised concern globally, owing to its detrimental effects on the health and economy of countries. The ever-growing threat of AMR and sources of AMR are still being investigated. Wastewater plays an important role as a habitat for bacteria and an environment conducive to gene transfer. The primary aim of this review was to highlight the contribution of wastewater to AMR. METHODS Evidence of AMR in wastewater was drawn from literature published in the last 10 years, from 2012 to 2022. RESULTS Wastewater from agricultural practices, pharmaceutical manufacturing plants, and hospital effluents was established to promote AMR. Furthermore, stress factors such as the presence of antibiotics, heavy metals, pH, and temperature initiate and propagate AMR in bacteria living in wastewater. AMR in bacteria from wastewater was established to be either natural or acquired. Wastewater treatment techniques such as membrane filtration, coagulation, adsorption, and advanced oxidation processes have been used to remove resistant bacteria with varying success levels. CONCLUSION Wastewater is a major contributor to AMR, and an understanding of its role in AMR is necessary to find a lasting solution. In this regard, the spread of AMR in wastewater should be considered a threat that requires a strategy to stop further damage.
Collapse
Affiliation(s)
| | - Nisha Naicker
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa; Epidemiology and Surveillance, National Institute for Occupational Health, National Health Laboratory Services, Braamfontein, South Africa
| |
Collapse
|
20
|
Leão I, Khalifa L, Gallois N, Vaz-Moreira I, Klümper U, Youdkes D, Palmony S, Dagai L, Berendonk TU, Merlin C, Manaia CM, Cytryn E. Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Appl Environ Microbiol 2023; 89:e0017023. [PMID: 37199629 PMCID: PMC10304787 DOI: 10.1128/aem.00170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL-1, respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater.
Collapse
Affiliation(s)
- Inês Leão
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Daniel Youdkes
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | | | | | | | | | - Célia M. Manaia
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| |
Collapse
|
21
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Ma J, Ji Y, Fu Z, Yan X, Xu P, Li J, Liu L, Bi P, Zhu L, Xu B, He Q. Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of aeration time. BIORESOURCE TECHNOLOGY 2023:129312. [PMID: 37307956 DOI: 10.1016/j.biortech.2023.129312] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal process (AOA-SNDPR) is a promising technology for enhanced biological wastewater treatment and in situ sludge reduction. Herein, the effects of aeration time (90, 75, 60, 45, and 30 min, respectively) on AOA-SNDPR were evaluated including simultaneous nutrients removal, sludge characteristics, and microbial community evolution, where the role of a denitrifying glycogen accumulating organisms, Candidatus_Competibacter, was re-explored given its overwhelming dominance. Results revealed that nitrogen removal was more vulnerable, and a moderate aeration period of 45-60 min mostly favored nutrients removal. Low observed sludge yields (Yobs) were obtained with decreased aeration (as low as 0.02 g MLSS/g COD), while MLVSS/MLSS got increased. The dominance of Candidatus_Competibacter was proven to be the key to endogenous denitrifying and in situ sludge reduction. This study would aid the more carbon- and energy-efficient aeration strategy for AOA-SNDPR systems treating low-strength municipal wastewater.
Collapse
Affiliation(s)
- Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Liang Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
23
|
Qi Z, Jin S, Guo X, Tong H, Ren N, You S. Distribution and transmission of β-lactamase resistance genes in meal-to-milk chain on dairy farm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121831. [PMID: 37209898 DOI: 10.1016/j.envpol.2023.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Antibiotics have been widely used in animal husbandry, which leads to high risk of food-borne transfer of antibiotic resistance genes (ARGs). The present study investigated the distribution of β-lactamase resistance genes (β-RGs) on dairy farm in the Songnen Plain of western Heilongjiang Province, China, to provide mechanistic insights into food-borne transmission of β-RGs through "meal-to-milk" chain under practically relevant circumstances. The results demonstrated that the abundance of β-RGs (91%) was much higher than that of other ARGs in the livestock farms. The blaTEM exhibited the content as high as 94.55% among all ARGs, and higher than 98% blaTEM was detected in meal, water and milk sample. The metagenomic taxonomy analysis indicated that the blaTEM should be carried by tnpA-04 (7.04%) and tnpA-03 (1.48%) hosted in Pseudomonas genus (15.36%) and Pantoea (29.02%) genus. Both tnpA-04 and tnpA-03 in the milk sample were identified to be the key mobile genetic elements (MGEs) responsible for transferring blaTEM along the "meal-manure-soil-surface water-milk" chain. The ARGs transfer across ecological boundaries underscored the need to evaluate potential dissemination of high-risk Proteobacteria and Bacteroidetes carried by humans and animals. They were capable of producing expanded-spectrum β-lactamases (ESBLs) and destroying commonly used antibiotics, leading to possible risk of food-borne horizontal transmission of ARGs. This study not only has important environmental implications for identifying the pathway for ARGs transfer, but also highlights the demand for appropriate policy toward safe regulation of dairy farm and husbandry products.
Collapse
Affiliation(s)
- Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, PR China
| | - Shuhan Jin
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, PR China
| | - Xiaorui Guo
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, PR China
| | - Hailong Tong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
24
|
Chau KK, Goodall T, Bowes M, Easterbrook K, Brett H, Hughes J, Crook D, Read D, Walker A, Stoesser N. High-resolution characterization of short-term temporal variability in the taxonomic and resistome composition of wastewater influent. Microb Genom 2023; 9:mgen000983. [PMID: 37145848 PMCID: PMC10272859 DOI: 10.1099/mgen.0.000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 05/06/2023] Open
Abstract
Wastewater-based epidemiology (WBE) for population-level surveillance of antimicrobial resistance (AMR) is gaining significant traction, but the impact of wastewater sampling methods on results is unclear. In this study, we characterized taxonomic and resistome differences between single-timepoint-grab and 24 h composites of wastewater influent from a large UK-based wastewater treatment work [WWTW (population equivalent: 223 435)]. We autosampled hourly influent grab samples (n=72) over three consecutive weekdays, and prepared additional 24 h composites (n=3) from respective grabs. For taxonomic profiling, metagenomic DNA was extracted from all samples and 16S rRNA gene sequencing was performed. One composite and six grabs from day 1 underwent metagenomic sequencing for metagenomic dissimilarity estimation and resistome profiling. Taxonomic abundances of phyla varied significantly across hourly grab samples but followed a repeating diurnal pattern for all 3 days. Hierarchical clustering grouped grab samples into four time periods dissimilar in both 16S rRNA gene-based profiles and metagenomic distances. 24H-composites resembled mean daily phyla abundances and showed low variability of taxonomic profiles. Of the 122 AMR gene families (AGFs) identified across all day 1 samples, single grab samples identified a median of six (IQR: 5-8) AGFs not seen in the composite. However, 36/36 of these hits were at lateral coverage <0.5 (median: 0.19; interquartile range: 0.16-0.22) and potential false positives. Conversely, the 24H-composite identified three AGFs not seen in any grab with higher lateral coverage (0.82; 0.55-0.84). Additionally, several clinically significant human AGFs (bla VIM, bla IMP, bla KPC) were intermittently or completely missed by grab sampling but captured by the 24 h composite. Wastewater influent undergoes significant taxonomic and resistome changes on short timescales potentially affecting interpretation of results based on sampling strategy. Grab samples are more convenient and potentially capture low-prevalence/transient targets but are less comprehensive and temporally variable. Therefore, we recommend 24H-composite sampling where feasible. Further validation and optimization of WBE methods is vital for its development into a robust AMR surveillance approach.
Collapse
Affiliation(s)
- Kevin K. Chau
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, UK
| | - T. Goodall
- UK Centre for Ecology & Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
| | - M. Bowes
- UK Centre for Ecology & Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
| | - K. Easterbrook
- Thames Water, Clearwater Court, Vastern Road, Reading, RG1 8DB, UK
| | - H. Brett
- Thames Water, Clearwater Court, Vastern Road, Reading, RG1 8DB, UK
| | - J. Hughes
- Thames Water, Clearwater Court, Vastern Road, Reading, RG1 8DB, UK
| | - D.W. Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, UK
- Department of Microbiology/Infectious diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, The Joint Research Office, Second Floor, OUH Cowley, Unipart House Business Centre, Garsington Road, Oxford, OX4 2PG, UK
| | - D.S. Read
- UK Centre for Ecology & Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
| | - A.S. Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, The Joint Research Office, Second Floor, OUH Cowley, Unipart House Business Centre, Garsington Road, Oxford, OX4 2PG, UK
| | - N. Stoesser
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford in partnership with Public Health England, Oxford, UK
- Department of Microbiology/Infectious diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, The Joint Research Office, Second Floor, OUH Cowley, Unipart House Business Centre, Garsington Road, Oxford, OX4 2PG, UK
| |
Collapse
|
25
|
Liang Z, Yao J, Ma H, Peng W, Xia X, Chen Y. A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33767-33779. [PMID: 36495431 DOI: 10.1007/s11356-022-24591-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Bacterial community structure of activated sludge directly affects the stable operation of WWTPS, and these bacterial communities may carry a variety of antibiotic resistance genes (ARGs), which is a threat to the public health. This study employed 16S rRNA gene sequencing and metagenomic sequencing to investigate the bacterial community composition and the ARGs in a sludge bulking oxidation ditch-denitrification filter WWTP in a cold region. The results showed that Trichococcus (20.34%), Blautia (7.72%), and Faecalibacterium (3.64%) were the main bacterial genera in the influent. The relative abundances of norank_f_Saprospiraceae and Candidatus_Microthrix reached 10.24% and 8.40%, respectively, in bulking sludge, and those of norank_f_Saprospiraceae and Candidatus_Microthrix decreased to 6.56 and 7.10% after the anaerobic tank, indicating that the anaerobic tank had an inhibitory effect on filamentous bacteria. After 20 mJ/cm2 UV disinfection, about 540 bacterial genera, such as Romboutsia (7.99%), Rhodoferax (7.98%), and Thermomonas (4.13%), could still be detected in the effluent. The ARGs were 345.11 ppm in the influent and 11.20 ppm in the effluent; 17 subtypes, such as sul1, msrE, aadA5, ErmF, and tet(A), could be detected throughout the entire process. These ARG subtypes were persistent ARGs with a high health risk. Network analysis indicated that the changes in filamentous bacteria norank_f_Saprospiraceae abundance mainly contributed to the abundance shift of MexB, and Acinetobacter mainly increased the abundance of drfA1. These results above will provide theoretical support for the sludge bulking and ARGs controls of WWTPs in cold regions.
Collapse
Affiliation(s)
- Zenghui Liang
- College of Ecology and Environment, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, 830017, China
| | - Junqin Yao
- College of Ecology and Environment, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, 830017, China.
| | - Huiying Ma
- College of Ecology and Environment, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, 830017, China
| | - Wei Peng
- College of Architectural Engineering, Xinjiang University, Urumqi, 830017, China
| | - Xueliang Xia
- Second Wastewater Treatment Plant of Changji, Changji, 831100, China
| | - Yinguang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
26
|
Abudureheman M, Ailijiang N, Mamat A, Feng Y, He C, Pu M. Enhanced biodegradation of fluoroquinolones and the changes of bacterial communities and antibiotic-resistant genes under intermittent electrical stimulation. ENVIRONMENTAL RESEARCH 2023; 219:115127. [PMID: 36549493 DOI: 10.1016/j.envres.2022.115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
In this study, an anaerobic-aerobic coupling system under intermittent electrical stimulation was used to improve the biodegradation of synthetic wastewater containing fluoroquinolones (FQs). The effect of electrical stimulation on FQ removal performance is more pronounced with appropriate voltage and hydraulic retention time. In addition, the combination of anaerobic-anodic and aerobic-cathodic chambers is more conducive to improving the removal efficiency of FQs. Under 0.9 V, the removal efficiencies of ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were significantly improved in the anaerobic-anodic and aerobic-cathodic system. The contribution of the anaerobic/aerobic anodic chambers to FQ removal was greater than that of the anaerobic/aerobic cathodic chambers. Electrical stimulation selectively enriched electroactive bacteria related to biodegradation (Desulfovibrio and Terrimonas), antibiotic-resistant bacteria (Atopobium and Neochlamydia), and nitrifying bacteria (SM1A02 and Reyranella). This study indicated the potential effectiveness of intermittent electrical stimulation in treating fluoroquinolone-containing wastewater in a biofilm reactor. However, electrical stimulation led to an increase in mobile genetic elements , induced horizontal gene transfer and enriched resistant bacteria, which accelerated the spread of antibiotic-resistant genes (ARGs) in the system, indicating that the diffusion of ARGs remains a challenge.
Collapse
Affiliation(s)
- Mukadasi Abudureheman
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China.
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, PR China
| | - Yuran Feng
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| |
Collapse
|
27
|
Raza S, Kang KH, Shin J, Shin SG, Chun J, Cho HU, Shin J, Kim YM. Variations in antibiotic resistance genes and microbial community in sludges passing through biological nutrient removal and anaerobic digestion processes in municipal wastewater treatment plants. CHEMOSPHERE 2023; 313:137362. [PMID: 36427585 DOI: 10.1016/j.chemosphere.2022.137362] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial resistance (AMR) represents a relentless, silent pandemic. Contributing to this are wastewater treatment plants (WWTPs), a potential source of antibiotic resistance genes' (ARGs) transmission to the environment, threatening public health. The presence of ARGs in pathogenic bacteria and their release into the environment by WWTPs threatens the public health. The current study investigated changes in ARGs' abundance in biological nutrient removal (BNR) processes and anaerobic digestion (AD) reactors of two WWTPs. Also, microbial community structure, which is known to shape the distribution and abundance of ARGs, was also analyzed. The relative abundance of eight ARGs (tetX, tetA, tetM, TEM, sul1, sul2, ermB and qnrD) was quantified as ARGs' copies/16 S rRNA gene copies using quantitative polymerase chain reaction (qPCR). Microbial community composition was assessed by 16 S rRNA microbiome sequencing analysis. TetX was prevalent among the eight ARGs, followed by TEM and sul1. However, its abundance was decreased in the AD sludges compared to BNR sludges. Proteobacteria was the major bacterial phylum found in all the sludge samples, while Arcobacter, 12up and Acidovorax were the predominant genera. Acinetobacter and Flavobacterium were significantly more abundant in the BNR sludges, while 12up and Aeromonas were predominant in AD sludges. Principal component analysis (PCA) revealed a clear difference in dominant ARGs and bacteria between the sludges in the processes of BNR and AD of the two WWTPs. Clinically relevant bacterial genera, Klebsiella and Enterococcus, found in both the BNR and AD sludges, were significantly correlated with the tetX gene. Throughout this study, the relationship between microbial communities and specific ARGs was revealed, illustrating that the composition of the microbial community could play a vital role in the abundance of ARGs. These results will better inform future studies aimed at controlling the spread of ARGs and their potential hosts from WWTPs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National UniversityJinju, Gyeongnam, 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National UniversityJinju, Gyeongnam, 52828, Republic of Korea; Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jihyun Chun
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, 53064, Republic of Korea
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, 53064, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea; Bio Resource Center, Institute for Advanced Engineering, Yongin, Gyeonggi-do, 17180, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
28
|
Jia S, Gao X, Zhang Y, Shi P, Wang C, Zhou Q, Ye L, Zhang XX. Tertiary Wastewater Treatment Processes Can Be a Double-Edged Sword for Water Quality Improvement in View of Mitigating Antimicrobial Resistance and Pathogenicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:509-519. [PMID: 36538014 DOI: 10.1021/acs.est.2c06168] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite the high removal efficiency for chemical pollutants by tertiary wastewater treatment processes (TWTPs), there is no definite conclusion in terms of microbial risk mitigation yet. This study utilized metagenomic approaches to reveal the alterations of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), their co-occurrence, and potential hosts during multiple TWTPs. Results showed that the TWTPs reduced chemical pollutants in wastewater, but the denitrifying biofilter (DB) significantly increased the absolute abundances of selected antibiotic-resistant bacteria and ARGs, and simultaneously elevated the relative abundances of ARGs and VFGs through the enrichment of multidrug resistance and offensive genes, respectively. Moreover, the co-occurrence of ARGs and VFGs (e.g., bacA-tapW, mexF-adeG) was only identified after the DB treatment and all carried by Pseudomonas. Then, the ultraviolet and constructed wetland treatment showed good complementarity for microbial risk reduction through mitigating antibiotic resistance and pathogenicity. Network and binning analyses showed that the shift of key operational taxonomic units affiliating to Pseudomonas and Acinetobacter may contribute to the dynamic changes of ARGs and VFGs during the TWTPs. Overall, this study sheds new light on how the TWTPs affect the antibiotic resistome and VFG profiles and what TWTPs should be selected for microbial risk mitigation.
Collapse
Affiliation(s)
- Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Hamad MTMH, El-Sesy ME. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. BIORESOUR BIOPROCESS 2023; 10:1. [PMID: 38647790 PMCID: PMC10992136 DOI: 10.1186/s40643-022-00616-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023] Open
Abstract
In the twenty-first century, water contamination with pharmaceutical residues is becoming a global phenomenon and a threat. Antibiotic residues and antibiotic resistance genes (ARGs) are recognized as new emerging water pollutants because they can negatively affect aquatic ecosystems and human health, thereby posing a complex environmental problem. These nano-adsorbents of the next generation can remove these pollutants at low concentrations. This study focuses on the chemical synthesis of copper oxide nanoparticles (CuONPs) and nano-zero-valent iron (nZVI) used as nano-adsorbents for levofloxacin removal from water samples and antibiotic-resistant genes. The CuONPs and nZVI are initially characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The levofloxacin adsorption isotherm on the CuONPS and nZVI shows the best fit with the Langmuir isotherm model, exhibiting correlation coefficients (R2) of 0.993 and 0.999, respectively. The adsorption activities of CuONPS and nZVI were fitted to a pseudo-second-order kinetic model with correlation coefficients (R2) of 0.983 and 0.994, respectively. The maximum levofloxacin removal capacity was observed at (89%), (84%), (89%), (88%) and (71.6) at pH 7 and adsorbent dose(0.06 mg/L), initial LEV concentration (1 mg/L), temperature 25 °C, and contact time 120 min for CuONPs. Removal efficiency was (91%), (90.6%), (91%), (89%), and (80%), at pH 7, adsorbent dose(0.06), initial LEV concentration (1 mg/L), temperature 35 °C, and contact time 120 min. The levofloxacin adsorption is an exothermic process for nZVI and CuONPs, according to thermodynamic analysis. A thermodynamic analysis indicated that each adsorption process is spontaneous. Several genera, including clinically pathogenic bacteria (e.g., Acinetobacter_baumannii, Helicobacter_pylori, Escherichia_coli, Pseudomonas_aeruginosa, Clostridium_beijerinckii, Escherichia/Shigella_coli, Helicobacter_cetorum, Lactobacillus_gasseri, Bacillus_cereus, Deinococcus_radiodurans, Rhodobacter_sphaeroides, Propionibacterium_acnes, and Bacteroides_vulgatus) were relatively abundant in hospital wastewater. Furthermore, 37 antibiotic resistance genes (ARGs) were quantified in hospital wastewater. The results demonstrated that 95.01% of nZVI and 91.4% of CuONPs are effective adsorbents for removing antibiotic-resistant bacteria from hospital effluent. The synthesized nZVI and CuONPs have excellent reusability and can be considered cost effective and eco-friendly adsorbents.
Collapse
Affiliation(s)
| | - Marwa E El-Sesy
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt
| |
Collapse
|
30
|
Tarek MH, Garner E. A proposed framework for the identification of indicator genes for monitoring antibiotic resistance in wastewater: Insights from metagenomic sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158698. [PMID: 36108825 DOI: 10.1016/j.scitotenv.2022.158698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is one of the greatest threats to global human and animal health of our time. Municipal wastewater has been identified as a hotspot of antibiotic resistance contamination to water bodies. However, there are numerous potential antibiotic resistant pathogens and their associated antibiotic resistance genes (ARGs), making it difficult to implement routine monitoring that addresses the breadth of the problem. The objective of this study was to identify candidate indicator ARGs for monitoring antibiotic resistance in wastewater and receiving water bodies. We developed a framework to identify indicator ARGs that incorporated clinical relevance, abundance in wastewater, geographic ubiquity, environmental relevance, ARG mobility, associations with mobile genetic elements, and the availability of quantitative analytical methods. To identify indicator ARGs, published metagenomic sequencing data from 191 wastewater samples originating from 64 countries across the world were obtained from online public repositories. Through ARG annotation and network analysis, this framework revealed 56 candidate indicator ARGs distributed across four modules of strongly correlated ARGs, with one ARG from each module (oqxA, ermB, sul1, and mexE) proposed as a minimally redundant monitoring target. The results of this study provide the basis for antibiotic resistance surveillance and monitoring framework in wastewater and contaminated waterways.
Collapse
Affiliation(s)
- Mehedi Hasan Tarek
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States of America
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States of America.
| |
Collapse
|
31
|
Liu L, Zhang Y, Chen H, Teng Y. Fate of resistome components and characteristics of microbial communities in constructed wetlands and their receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157226. [PMID: 35809723 DOI: 10.1016/j.scitotenv.2022.157226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
32
|
Leroy-Freitas D, Machado EC, Torres-Franco AF, Dias MF, Leal CD, Araújo JC. Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156773. [PMID: 35724791 DOI: 10.1016/j.scitotenv.2022.156773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.
Collapse
Affiliation(s)
- D Leroy-Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - E C Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - A F Torres-Franco
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil; Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - M F Dias
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - C D Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - J C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil.
| |
Collapse
|
33
|
Tian L, Li Q, Cai X, Wang Y, Wang Y, Mao Y. Dynamic distribution and potential transmission of antibiotic resistance genes in activated sludge. Appl Microbiol Biotechnol 2022; 106:6785-6797. [DOI: 10.1007/s00253-022-12162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
34
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
35
|
Ferreira C, Abreu-Silva J, Manaia CM. The balance between treatment efficiency and receptor quality determines wastewater impacts on the dissemination of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128933. [PMID: 35460999 DOI: 10.1016/j.jhazmat.2022.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
This study investigated the balance between treatment efficiency and impact caused by urban wastewater treatment plants (UWTPs) on the dissemination of antibiotic resistance. Four full-scale UWTPs (PT1-PT4) and the receiving river were sampled over four campaigns. The 16 S rRNA gene, two mobile genetic elements (MGEs), eight antibiotic resistance genes (ARGs), and culturable bacteria were monitored over different treatment stages and in hospital effluent. The bacterial and antibiotic resistance load was not significantly different in the inflow of the four UWTPs (p > 0.01). Biological treatment promoted ARGs reduction values up to 2.5 log-units/mL, while UV (PT1, PT2) or sand filtration/ozonation (PT3) led to removal values < 0.6 log-units/mL. The final effluent of PT3, with the highest removal rates and significantly lower ARGs abundance, was not significantly different from the receiving water body. Emerging ARGs (e.g., blaVIM, blaOXA-48, and blaKPC) were sporadically detected in the river, although more frequent downstream. Hospital effluent might contribute for the occurrence of some, but not all these ARGs in the river. A major conclusion was that the impact of the UWTPs on the river was not only determined by treatment efficiency and final effluent quality, but also by the background contamination of the river and/or dilution rate.
Collapse
Affiliation(s)
- Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Abreu-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
36
|
Zhang K, Yang S, Luo H, Chen J, An X, Chen W, Zhang X. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration. CHEMOSPHERE 2022; 299:134376. [PMID: 35358555 DOI: 10.1016/j.chemosphere.2022.134376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In view of the difficulty in denitrification of low C/N ratio wastewater, electrochemical technology with multiple electrodes and tidal flow method via siphon aeration were used to enhance the denitrification process. At the same time, because of the low phosphorus removal efficiency in traditional activated sludge process, the constructed wetland and microbial fuel cell (CW-MFC) reactor with dewatered alum sludge (DAS) as substrate were constructed. In addition, the REDOX conditions of the reactor were changed by siphon, which significantly improved the removal efficiency of N and P and the energy recovery capacity of the reactor. In the 172 d, the Tidal Flow Constructed Wetland-Microbial Fuel Cell (TF CW-MFC) had the highest removal efficiency of COD and total nitrogen (TN), which were 97.4% and 83.4%, respectively. Although the removal rate of total phosphorus (TP) by TF CW-MFC was lower than artificial aeration, it can still reached 89.0%. The removal effect of aromatic protein substances in water was also significant. The amount of electrons generated by the artificial aeration anode and the amount of oxygen generated by the cathode were not enough to match. The voltage of TF CW-MFC was significantly higher than artificial aeration, around 350 mV, and the maximum power density was 98.16 mW m-3. In addition, MFC had an inhibitory effect on CW methane emissions. The analysis of the microbial community structure showed that most of the dominant bacteria of TF CW-MFC belonged to the Proteobacteria, Actinobacteria and Chloroflexi. These results showed that the TF CW-MFC technology as a zero-energy oxygen supply mode had high efficiency in the treatment of low C/N ratio wastewater and also had the environmental effect of reducing methane emissions. This study suggests that this green wastewater treatment technology has potential application value.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China.
| | - Siqiao Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Xiaochan An
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Xiaoxiao Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| |
Collapse
|
37
|
Liu L, Yu X, Wu D, Su J. Antibiotic resistance gene profile in aerobic granular reactor under antibiotic stress: Can eukaryotic microalgae act as inhibiting factor? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119221. [PMID: 35358636 DOI: 10.1016/j.envpol.2022.119221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance gene (ARG) pollution is critical environmental problem, and horizontal gene transfer acts as a driving evolutionary force. In theory, due to the phylogenetic distance between eukaryotes and prokaryotes, eukaryotic microalgae can be a natural barrier that plays a negative role in ARG transfer among the symbiotic bacteria to decrease ARG abundance in sludge during wastewater treatment. However, this hypothesis is far from proven and needs to be tested experimentally, so this study investigated the influence of eukaryote microalgae (Scenedesmus) on the ARG profile of symbiotic bacteria based on aerobic granular reactor. The results indicated that Scenedesmus symbiosis could affect ARG diversity of bacteria, and the detected numbers of ARG in aerobic granular sludge (AG) group and algae-bacteria granular consortia (AAG) group were 45-53 and 44-47, respectively. In terms of relative abundance, after target microalgae symbiosis, the total abundance of ARGs significantly decreased from 1.17 × 10°, 2.69 × 10° and 1.36 × 10-1 to 6.53 × 10-1, 9.64 × 10-1 and 1.04 × 10-1 in the systems with the addition of streptomycin, azithromycin and vancomycin, respectively (P < 0.05), yet there was no significant difference between AG and AAG under the stress of ampicillin, sulfamethazine and tetracycline (P > 0.05). Redundancy analysis showed that the eukaryotic microalgae were significant factor explaining the change in ARG relative abundance (P < 0.05), which contributed 15.3% of ARG variation. Furthermore, the results show that, except for the tetracycline treatment system, the total relative abundances of MGEs in the AAG under the stress of the other five antibiotics were 3.54 × 10-2-7.13 × 10-1, which were all significantly lower than those in the AG (8.38 × 10-2-1.59 × 10°). There was a more significant positive correlation relationship between ARGs and mobile genetic elements (MGEs) than that between ARGs and dominated bacteria.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Yu
- Key Laboratory of Urban Pollutant Conversion, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daizhuo Wu
- Key Laboratory of Urban Pollutant Conversion, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Su
- Key Laboratory of Urban Pollutant Conversion, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
38
|
Ping Q, Zhang Z, Ma L, Yan T, Wang L, Li Y. The prevalence and removal of antibiotic resistance genes in full-scale wastewater treatment plants: Bacterial host, influencing factors and correlation with nitrogen metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154154. [PMID: 35245555 DOI: 10.1016/j.scitotenv.2022.154154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the prevalence of antibiotic resistance genes (ARGs) in the influent, effluent, and waste activated sludge (WAS) of eight full-scale municipal wastewater treatment plants (WWTPs) in Shanghai, China. A comprehensive understanding of the correlation between various influencing factors (characteristics of wastewater and WAS, antibiotics, metals, mobile genetic elements) and ARGs was explored. Among the eight full-scale WWTPs, the Unitank process was inefficient in removing typical ARGs compared with continuous-flow anaerobic-anoxic-aerobic and oxidation ditch processes. Antibiotic was identified as the most influential factor affecting the occurrence of ARGs in wastewater, followed by flow rate and nutrients. Positive correlations were observed between antibiotics and their corresponding ARGs in the influent, while this correlation disappeared in the WAS. Class I integron, wastewater characteristics (nitrogen and flow rate), antibiotics (ofloxacin, sulfamethazine, and erythromycin), metals (Mg, Al, Fe, and Mn) were identified as crucial factors comprehensively affecting the distribution of ARGs in WAS. Dissimilatory nitrate reduction profoundly influenced the fate of ARGs during wastewater treatment processes, and K04561 (norB), K02567 (napA), K00262 (gdhA), K00284 (gltS) were identified as the most significant genes in the nitrogen metabolism pathway (ko00910). This study provides a new perspective for comprehensively understanding the occurrence and dissemination of ARGs in WWTPs.
Collapse
Affiliation(s)
- Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tingting Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
39
|
Pattis I, Weaver L, Burgess S, Ussher JE, Dyet K. Antimicrobial Resistance in New Zealand-A One Health Perspective. Antibiotics (Basel) 2022; 11:antibiotics11060778. [PMID: 35740184 PMCID: PMC9220317 DOI: 10.3390/antibiotics11060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal and, often less acknowledged, environmental health. This complex issue requires a multisectoral One Health approach to address the interconnectedness of humans, animals and the natural environment. The prevalence of AMR in these reservoirs varies widely among countries and thus often requires a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are relatively well-monitored and -understood, with high human use of antimicrobials and the frequency of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing animals. AMR in New Zealand’s environment is little understood, and the role of the natural environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular focus on environmental AMR. We aimed to identify knowledge gaps to help develop research strategies, especially towards mitigating AMR in the environment, the often-neglected part of the One Health triad.
Collapse
Affiliation(s)
- Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Sara Burgess
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| |
Collapse
|
40
|
Zhang K, Wang T, Chen J, Guo J, Luo H, Chen W, Mo Y, Wei Z, Huang X. The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103981. [PMID: 35247696 DOI: 10.1016/j.jconhyd.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The fate and removal efficiency of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in livestock wastewater by microbial fuel cell (MFC) was evaluated by High-throughput quantitative PCR. The results showed that 137 ARGs and 9 MGEs were detected in untreated livestock wastewater. The ARG number of macrolide-lincosamide-streptogramin group B (MLSB), tetracycline and sulfonamide were relatively higher. Throughout the treatment process, the number and abundance of ARGs and MGEs significantly decreased. The relative abundance of tetracycline, sulfonamide and chloramphenicol resistance genes showed the most obvious decreasing trend, and the relative abundance of MGEs decreased by 75% (from 0.012 copies/16S rRNA copies to 0.003 copies/16S rRNA copies). However, the absolute abundance of beta-lactamase resistance genes slightly increased. The operation process of MFC produces selective pressure on microorganisms, and Actinobacteria were predominant and had the ability to decompose antibiotics. The COD removal rate and TN removal rate of livestock wastewater were 67.81% and 62.09%, and the maximum power density and coulomb efficiency (CE) reached 11.49% and 38.40% respectively. This study demonstrated that although the removal of COD and TN by MFC was limited, MFC was quite effective in reducing the risk of antibiotic toxicity and horizontal gene transfer.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Tingting Wang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China.
| | - Jingyue Guo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - You Mo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Zhaolan Wei
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Xiuzhong Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| |
Collapse
|
41
|
Zhang K, Li K, Xin R, Han Y, Guo Z, Zou W, Wei W, Cui X, Zhang Z, Zhang Y. Antibiotic resistomes in water supply reservoirs sediments of central China: main biotic drivers and distribution pattern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37712-37721. [PMID: 35066838 DOI: 10.1007/s11356-021-18095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Water supply reservoirs form one of the critical drinking water resources. Their water quality directly affects human health. However, reservoir sediments have not received adequate attention in antibiotic resistance genes (ARGs) dissemination, though they reflect long-term ARGs contamination of water supply reservoirs. Moreover, the physicochemical parameters in water supply reservoir sediments are generally better than those in the other media. Thus, the main ARGs biotic drivers of the media would demonstrate their unique characteristics. In this study, sediment samples were collected from 10 water supply reservoirs in central China, and the antibiotic resistomes were determined with the metagenomic method. As revealed from the results, 174 ARGs (18 ARG types) were detected in the reservoir sediment. Besides, multidrug-, sulfonamide-, and vancomycin-ARGs were the dominant ARGs in the sediment samples. The macrolide-resistant Microcystis was prevalent (100% detection frequency with 0.35% average percentage) in reservoir sediments and posed potential risks to human health. Furthermore, the results of the Mantel test and VPA demonstrated that mobile genetic elements (MGEs) were the more essential biotic drivers in ARG contents of reservoir sediments rather than the bacteria community.
Collapse
Affiliation(s)
- Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China.
| | - Kuangjia Li
- Development Research Center, Ministry of Water Resources of People's Republic of China, Beijing, 100032, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ya Han
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Ziwei Guo
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Wei Zou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Normal University, Henan, 453007, China
| | - Wei Wei
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Xiangchao Cui
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Zhongshuai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, No.237, Nanhu Road, Shihe District, Xinyang, 464000, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No.38, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
| |
Collapse
|
42
|
Newton K, Gonzalez E, Pitre FE, Brereton NJB. Microbial community origin and fate through a rural wastewater treatment plant. Environ Microbiol 2022; 24:2516-2542. [PMID: 35466495 DOI: 10.1111/1462-2920.16025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterised. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge, and post-treatment effluent were characterised. From 3,163 Exact Sequence Variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially humans-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kymberly Newton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Emmanuel Gonzalez
- Canadian Center for Computational Genomics, Department of Human Genetics, McGill University, Montréal, H3A 1A4, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| |
Collapse
|
43
|
Chau KK, Barker L, Budgell EP, Vihta KD, Sims N, Kasprzyk-Hordern B, Harriss E, Crook DW, Read DS, Walker AS, Stoesser N. Systematic review of wastewater surveillance of antimicrobial resistance in human populations. ENVIRONMENT INTERNATIONAL 2022; 162:107171. [PMID: 35290866 PMCID: PMC8960996 DOI: 10.1016/j.envint.2022.107171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We systematically reviewed studies using wastewater for AMR surveillance in human populations, to determine: (i) evidence of concordance between wastewater-human AMR prevalence estimates, and (ii) methodological approaches which optimised identifying such an association, and which could be recommended as standard. We used Lin's concordance correlation coefficient (CCC) to quantify concordance between AMR prevalence estimates in wastewater and human compartments (where CCC = 1 reflects perfect concordance), and logistic regression to identify study features (e.g. sampling methods) associated with high agreement studies (defined as >70% of within-study wastewater-human AMR prevalence comparisons within ±10%). RESULTS Of 8,867 records and 441 full-text methods reviewed, 33 studies were included. AMR prevalence data was extractable from 24 studies conducting phenotypic-only (n = 7), genotypic-only (n = 1) or combined (n = 16) AMR detection. Overall concordance of wastewater-human AMR prevalence estimates was reasonably high for both phenotypic (CCC = 0.85 [95% CI 0.8-0.89]) and genotypic approaches (CCC = 0.88 (95% CI 0.84-0.9)) despite diverse study designs, bacterial species investigated and phenotypic/genotypic targets. No significant relationships between methodological approaches and high agreement studies were identified using logistic regression; however, this was limited by inconsistent reporting of study features, significant heterogeneity in approaches and limited sample size. Based on a secondary, descriptive synthesis, studies conducting composite sampling of wastewater influent, longitudinal sampling >12 months, and time-/location-matched sampling of wastewater and human compartments generally had higher agreement. CONCLUSION Wastewater-based surveillance of AMR appears promising, with high overall concordance between wastewater and human AMR prevalence estimates in studies irrespective of heterogenous approaches. However, our review suggests future work would benefit from: time-/location-matched sampling of wastewater and human populations, composite sampling of influent, and sampling >12 months for longitudinal studies. Further research and clear and consistent reporting of study methods is required to identify optimal practice.
Collapse
Affiliation(s)
- K K Chau
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - L Barker
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - E P Budgell
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - K D Vihta
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - N Sims
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom.
| | - B Kasprzyk-Hordern
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom.
| | - E Harriss
- Bodleian Healthcare Libraries, University of Oxford, Oxford OX3 9DU, United Kingdom.
| | - D W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - D S Read
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, United Kingdom.
| | - A S Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, United Kingdom.
| | - N Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
44
|
Bacterial Hosts and Genetic Characteristics of Antibiotic Resistance Genes in Wastewater Treatment Plants of Xinjiang (China) Revealed by Metagenomics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance genes (ARGs) pose a widespread concern for human health and wastewater treatment plants (WWTPs) are considered to be a major source of ARG transmission. In this paper, the potential hosts and genetic characteristics of ARGs in the influent, activated sludge and effluent of WWTPs in Xinjiang were studied by metagenomics. Bacitracin resistance gene (bacA), beta-lactamase gene (class A beta-lactamase), multidrug resistance genes (mexD, qacEdelta1), and sulfonamide resistance genes (sul1, and sul2) are persistent antibiotic resistance genes (PARGs). The potential hosts of ARGs were mainly pathogens, with Escherichia coli (12.9%), Acinetobacter johnsonii (8.94%), and Klebsiella pneumoniae (5.30%) accounting for the highest proportions. Chromosomal sequences and plasmid sequences accounted for 42.0% and 22.6% of ARG-carrying contigs (ACCs) in the influent, respectively. Meanwhile, the effluent contained 58.3% of ACCs in plasmids and 8.30% in chromosomes. Bacitracin resistance genes and multidrug resistance genes were mainly carried by chromosomes, while resistance genes for macrolide–lincosamide–streptogramin (MLS), vancomycin, sulfonamide, beta-lactam, tetracycline, chloramphenicol, and aminoglycoside were mainly carried by plasmids. ICEPae690-sul1-qacEdelta1 and ICEPmiChn3-sul2 were stable coexistence structures and heighten the transfer potential of ARGs in the environment. This study provided a clearer picture of host bacterial sources and genetic context of ARGs in the environment.
Collapse
|
45
|
Yu Q, Yang J, Su W, Li T, Feng T, Li H. Heavy metals and microbiome are negligible drivers than mobile genetic elements in determining particle-attached and free-living resistomes in the Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127564. [PMID: 34736202 DOI: 10.1016/j.jhazmat.2021.127564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Suspended particles in water can shelter both microorganisms and contaminants. However, the emerging pollutants antibiotic resistance genes (ARGs) in free-living (FL) or particle-attached (PA) bacteria in aquatic environments are less explored. In this study, we compared the free-living and particle-attached ARGs during four seasons in the Yellow River using high-throughput quantitative PCR techniques and 16S rRNA gene sequencing. Our results demonstrated that both the free-living water and particles were dominated by tetracycline and beta-lactamase resistance genes. The PA-ARGs had a higher absolute abundance than FL-ARGs in the Yellow River, regardless of the season. Both PA-ARGs and FL-ARGs had the highest absolute abundance and diversity during winter. Mobile genetic elements (MGEs) were the dominant driver for both size-fractionated ARGs. However, the microbiome had less influence on PA-ARG profiles than the FL-ARG profiles, while the effects of the heavy metals on ARGs were negligible. The community assembly of both FL-ARG and PA-ARG can be explained by neutral processes. Several opportunistic pathogens (e.g., Escherichia coli) associated with human health exhibited a higher relative abundance in the particles than during a free-living lifestyle. Parts of these pathogens were potential ARG hosts. As such, it is important to monitor the ARGs and opportunistic pathogens from size-fractionated bacteria and develop targeted strategies to manage ARG dissemination and opportunistic pathogens to ensure public health.
Collapse
Affiliation(s)
- Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Dai D, Brown C, Bürgmann H, Larsson DGJ, Nambi I, Zhang T, Flach CF, Pruden A, Vikesland PJ. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. MICROBIOME 2022; 10:20. [PMID: 35093160 PMCID: PMC8801152 DOI: 10.1186/s40168-021-01216-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND There is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents. RESULTS The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75-90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs. Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids or co-located with other mobile genetic elements (MGEs)). The abundance of plasmid-associated ARGs decreased at four of five WWTPs (from 40-73 to 31-68%), and ARGs co-located with transposable, integrative, and conjugative element hallmark genes showed similar trends. Most ARG-associated elements decreased 0.35-13.52% while integrative and transposable elements displayed slight increases at two WWTPs (1.4-2.4%). While resistome and taxonomic compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal ARG dissemination. CONCLUSIONS Overall, our results suggest that the activated sludge process acted as a barrier against the proliferation of most ARGs, while those that persisted or increased warrant further attention. Video abstract.
Collapse
Affiliation(s)
- Dongjuan Dai
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Helmut Bürgmann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - D G Joakim Larsson
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Indumathi Nambi
- Department of Civil Engineering, Indian Institute of Technology, Madras, India
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Carl-Fredrik Flach
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
47
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission. BMC Public Health 2022; 22:145. [PMID: 35057793 PMCID: PMC8781043 DOI: 10.1186/s12889-022-12527-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTBC) consists of causative agents of both human and animal tuberculosis and is responsible for over 10 million annual infections globally. Infections occur mainly through airborne transmission, however, there are possible indirect transmissions through a faecal-oral route which is poorly reported. This faecal-oral transmission could be through the occurrence of the microbe in environments such as wastewater. This manuscript, therefore, reviews the source and fate of MTBC in the wastewater environment, including the current methods in use and the possible risks of infections. RESULTS The reviewed literature indicates that about 20% of patients with pulmonary TB may have extra-pulmonary manifestations such as GITB, resulting in shedding in feaces and urine. This could potentially be the reason for the detection of MTBC in wastewater. MTBC concentrations of up to 5.5 × 105 (±3.9 × 105) copies/L of untreated wastewater have been reported. Studies have indicated that wastewater may provide these bacteria with the required nutrients for their growth and could potentially result in environmental transmission. However, 98.6 (± 2.7) %, removal during wastewater treatment, through physical-chemical decantation (primary treatment) and biofiltration (secondary treatment) has been reported. Despite these reports, several studies observed the presence of MTBC in treated wastewater via both culture-dependent and molecular techniques. CONCLUSION The detection of viable MTBC cells in either treated or untreated wastewater, highlights the potential risks of infection for wastewater workers and communities close to these wastewater treatment plants. The generation of aerosols during wastewater treatment could be the main route of transmission. Additionally, direct exposure to the wastewater containing MTBC could potentially contribute to indirect transmissions which may lead to pulmonary or extra-pulmonary infections. This calls for the implementation of risk reduction measures aimed at protecting the exposed populations.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
48
|
Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150141. [PMID: 34509832 DOI: 10.1016/j.scitotenv.2021.150141] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
49
|
Dai X, Wang X, Gu J, Bao J, Wang J, Guo H, Yu J, Zhao W, Lei L. Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113734. [PMID: 34649327 DOI: 10.1016/j.jenvman.2021.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.
Collapse
Affiliation(s)
- Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
50
|
Hu Y, Jin L, Zhao Y, Jiang L, Yao S, Zhou W, Lin K, Cui C. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148152. [PMID: 34118673 DOI: 10.1016/j.scitotenv.2021.148152] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 05/17/2023]
Abstract
The extensive pollution of antibiotics and antibiotic resistance genes (ARGs) in drinking water has aroused worldwide concern. Successive monitoring of these pollutants has noteworthy significance for drinking water safety. Accordingly, this study conducted successive monitoring of antibiotics and ARGs from 2015 to 2017 in a drinking water source in East China. The total antibiotic concentration ranged from 19.68 ng/L to 497.00 ng/L, and decreased slightly from 2015 to 2017. Eighteen out of forty-one ARG subtypes showing resistance to six antibiotic classes and one class I integrase gene intI1, were detected in the drinking water source at concentrations ranging from 6.5 × 104 copies/mL to 1.6 × 106 copies/mL. Importantly, the total ARG concentration increased on an annual basis from 2015 to 2017 with an average annual increment of 0.25 orders of magnitude, which was mainly attributed to the increase in specific ARG subtypes, such as sul1, sul2, sul3, tetA, qnrB, and ermB. Most ARGs was positively correlated with the intI1 genes (r = 0.47-0.55, P < 0.01). Furthermore, the variation of antibiotics and ARGs appeared to be related to the water indices, particularly of the values of COD, BOD5, NO2-N (P < 0.05). This study provides basic data on antibiotic and ARG pollution in the studied drinking water source. Importantly, the findings expound that although the residual antibiotics in this drinking water source decreased slightly from 2015 to 2017, while its biological effect, the antibiotic resistance, increased annually, which give a warning of the antibiotic resistance pollution in the drinking water source.
Collapse
Affiliation(s)
- Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China
| | - Lei Jin
- National Engineering Research Center of Urban Water Resources, Shanghai 200082, China
| | - Yi Zhao
- Pudong New Area Hydrology and Water Sources Administration Shanghai, Shanghai 200000, China
| | - Lei Jiang
- National Engineering Research Center of Urban Water Resources, Shanghai 200082, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China
| | - Wang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|