1
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
2
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
3
|
Jo SY, Lim SH, Lee JY, Son J, Choi JI, Park SJ. Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review. Int J Biol Macromol 2024; 274:133157. [PMID: 38901504 DOI: 10.1016/j.ijbiomac.2024.133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are natural biopolyesters produced by microorganisms that represent one of the most promising candidates for the replacement of conventional plastics due to their complete biodegradability and advantageous material properties which can be modulated by varying their monomer composition. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has received particular research attention because it can be synthesized based on the same microbial platform developed for poly(3-hydroxybutyrate) [P(3HB)] without much modification, with as high productivity as P(3HB). It also offers more useful mechanical and thermal properties than P(3HB), which broaden its application as a biocompatible and biodegradable polyester. However, a significant commercial disadvantage of P(3HB-co-3HV) is its rather high production cost, thus many studies have investigated the economical synthesis of P(3HB-co-3HV) from structurally related and unrelated carbon sources in both wild-type and recombinant microbial strains. A large number of metabolic engineering strategies have also been proposed to tune the monomer composition of P(3HB-co-3HV) and thus its material properties. In this review, recent metabolic engineering strategies designed for enhanced production of P(3HB-co-3HV) are discussed, along with their current status, limitations, and future perspectives.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Fukala I, Kučera I. Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods. Molecules 2024; 29:2293. [PMID: 38792154 PMCID: PMC11124392 DOI: 10.3390/molecules29102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge. One potential solution is to modify heterotrophic PHA-producing strains to utilize alternative carbon sources. An alternative approach is to utilize methylotrophic or autotrophic strains. This article provides an overview of bacterial strains employed for PHA production, with a particular focus on those exhibiting the highest PHA content in dry cell mass. The strains are organized according to their carbon source utilization, encompassing autotrophy (utilizing CO2, CO) and methylotrophy (utilizing reduced single-carbon substrates) to heterotrophy (utilizing more traditional and alternative substrates).
Collapse
Affiliation(s)
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech Republic;
| |
Collapse
|
5
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
6
|
Hu Q, Sun S, Zhang Z, Liu W, Yi X, He H, Scrutton NS, Chen GQ. Ectoine hyperproduction by engineered Halomonas bluephagenesis. Metab Eng 2024; 82:238-249. [PMID: 38401747 DOI: 10.1016/j.ymben.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.
Collapse
Affiliation(s)
- Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- PhaBuilder Biotechnology Co. Ltd., Shunyi District, Beijing 101309, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Yoo Y, Young Kwon D, Jeon M, Lee J, Kwon H, Lee D, Seong Khim J, Choi YE, Kim JJ. Enhancing poly(3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance. BIORESOURCE TECHNOLOGY 2024; 394:130175. [PMID: 38086463 DOI: 10.1016/j.biortech.2023.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Polyhydroxyalkanoates (PHA) have emerged as a promising bio-compound in the industrial application due to their potential to replace conventional petroleum-based plastics with sustainable bioplastics. This study focuses on Halomonas sp. YJPS3-3, a halophilic bacterium, and presents a novel approach to enhance PHA production by exploiting its salt tolerance toward PHA biosynthesis. Through gamma irradiation-induced mutants with enhanced salt tolerance from 15% NaCl to 20% NaCl, mutant halo6 showing a significant 11% increase in PHA yield, was achieved. Moreover, the mutants displayed not only higher PHA content but also remarkable cell morphology with elongation. In addition, this research unravels the genetic determinants behind the elevated PHA content and identifies a corresponding shift in fatty acid composition favoring PHA accumulation. This novel mutant obtained from gamma irradiation with enhanced salt tolerance in halophilic bacteria opens up new avenues not only for the bioplastic industry but also for applications in the production of high-value metabolites.
Collapse
Affiliation(s)
- Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dae Young Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jaehoon Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Możejko‐Ciesielska J, Moraczewski K, Czaplicki S. Halomonas alkaliantarctica as a platform for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel-derived glycerol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13225. [PMID: 38146695 PMCID: PMC10866086 DOI: 10.1111/1758-2229.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by a wide range of microorganisms, including extremophiles. These unique microorganisms have gained interest in PHA production due to their ability to utilise low-cost carbon sources under extreme conditions. In this study, Halomonas alkaliantarctica was examined with regards to its potential to produce PHAs using crude glycerol from biodiesel industry as the only carbon source. We found that cell dry mass concentration was not dependent on the applying substrate concentration. Furthermore, our data confirmed that the analysed halophile was capable of metabolising crude glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer within 24 h of the cultivation without addition of any precursors. Moreover, crude glycerol concentration affects the repeat units content in the purified PHAs copolymers and their thermal properties. Nevertheless, a differential scanning calorimetric and thermogravimetric analysis showed that the analysed biopolyesters have properties suitable for various applications. Overall, this study described a promising approach for the valorisation of crude glycerol as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Możejko‐Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | | | - Sylwester Czaplicki
- Department of Plant Food Chemistry and ProcessingUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
10
|
Shahid S, Mosrati R, Corroler D, Amiel C, Gaillard JL. Bioconversion of glycerol into polyhydroxyalkanoates through an atypical metabolism shift using Priestia megaterium during fermentation processes: A statistical analysis of carbon and nitrogen source concentrations. Int J Biol Macromol 2024; 256:128116. [PMID: 37979765 DOI: 10.1016/j.ijbiomac.2023.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Polyhydroxyalkanoates (PHA) are bioplastics which are well known as intracellular energy storage compounds and are produced in a large number of prokaryotic species. These bio-based inclusions are biodegradable, biocompatible and environmental friendly. Industrial production of, short chain and medium chain length PHA, involves the use of microorganisms and their enzymes. Priestia megaterium previously known as Bacillus megaterium is a well-recognized bacterium for producing short chain length PHA. This study focuses to characterize this bacterium for the production of medium chain length PHA, and a novel blend of both types of monomers having enhanced properties and versatile applications. Statistical analyses and simulations were used to demonstrate that cell dry weight can be derived as a function of OD600 and PHA content. Optimization of growth conditions resulted in the maximum PHA production as: 0. 05 g. g-x. H-1, where the rate of PHA production was 0.28 g L-1. H-1 and PHA concentration was 4.94 g. L-1. This study also demonstrated FTIR to be a semi quantitative tool for PHA production. Moreover, conversion of scl-PHA to mcl-PHA with reference to time intermissions using GC-FID are shown.
Collapse
Affiliation(s)
- Salma Shahid
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
| | - Ridha Mosrati
- Unité de Recherche ABTE, (Alimentation-Bioprocédés-Toxicologie-Environnements), EA 4651, Esplanade de la Paix, Université de Caen Normandie, 14032 Caen Cedex 5, France
| | - David Corroler
- Unité de Recherche ABTE, (Alimentation-Bioprocédés-Toxicologie-Environnements), EA 4651, Esplanade de la Paix, Université de Caen Normandie, 14032 Caen Cedex 5, France
| | - Caroline Amiel
- Unité de Recherche ABTE, (Alimentation-Bioprocédés-Toxicologie-Environnements), EA 4651, Esplanade de la Paix, Université de Caen Normandie, 14032 Caen Cedex 5, France
| | - Jean-Luc Gaillard
- Unité de Recherche ABTE, (Alimentation-Bioprocédés-Toxicologie-Environnements), EA 4651, Esplanade de la Paix, Université de Caen Normandie, 14032 Caen Cedex 5, France
| |
Collapse
|
11
|
Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Sci Rep 2023; 13:22289. [PMID: 38097607 PMCID: PMC10721877 DOI: 10.1038/s41598-023-47489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719, Olsztyn, Poland.
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10726, Olsztyn, Poland
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, India
| |
Collapse
|
12
|
Mušič B, Sever Škapin A. Degradation and Stabilization of Polymer Materials. Polymers (Basel) 2023; 15:4519. [PMID: 38231941 PMCID: PMC10707808 DOI: 10.3390/polym15234519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
The growing awareness of the consequences of climate change has prompted the formulation of policies and regulations to foster sustainability [...].
Collapse
Affiliation(s)
- Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
13
|
Możejko-Ciesielska J, Ray S, Sankhyan S. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Polymers (Basel) 2023; 15:4385. [PMID: 38006109 PMCID: PMC10674690 DOI: 10.3390/polym15224385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers with immense potential in addressing the global plastic pollution crisis and advancing sustainable bioplastics production. Among the various microbes known for PHA production, extremophilic bacteria possess unique capabilities to thrive under extreme conditions, making them attractive candidates for PHA synthesis. Furthermore, the utilization of renewable feedstocks for PHA production aligns with the growing demand for sustainable bioplastic alternatives. A diverse range of extremophilic bacteria, especially halophiles and thermophiles, has provided cost-competitive platforms for producing customized PHA polymers. Extremophilic bacteria offer unique advantages over mesophiles due to their contamination resistance, high cell density growth, and unique culture conditions. The current status of Halomonas spp. as a chassis further allows exploration of metabolic engineering approaches to overcome the challenges associated with current industrial biotechnology. This article especially focuses on extremophilic bacteria and explores recent advances in utilizing renewable feedstocks such as lignocellulosic biomass, agro-industrial residues, and waste streams for PHA production. The integration of biorefinery concepts and circular economy principles in PHA manufacturing is also examined. This review is an attempt to provide an understanding of renewable substrates as feedstocks and emerging trends in PHA production by extremophilic bacteria. It underscores the pivotal role of extremophiles and sustainable feedstock sources in advancing the feasibility and eco-friendliness of PHAs as a promising biopolymer alternative.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| | - Shivangi Sankhyan
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| |
Collapse
|
14
|
Zhang J, Yuan Y, Wang Z, Chen T. Metabolic engineering of Halomonas bluephagenesis for high-level mevalonate production from glucose and acetate mixture. Metab Eng 2023; 79:203-213. [PMID: 37657641 DOI: 10.1016/j.ymben.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Mevalonate (MVA) plays a crucial role as a building block for the biosynthesis of isoprenoids. In this study, we engineered Halomonas bluephagenesis to efficiently produce MVA. Firstly, by screening MVA synthetases from eight different species, the two efficient candidate modules, specifically NADPH-dependent mvaESEfa from Enterococcus faecalis and NADH-dependent mvaESLca from Lactobacillus casei, were integrated into the chromosome, leading to the construction of the H. bluephagenesis MVA11. Through the synergetic utilization of glucose and acetate as mixed carbon sources, MVA11 produced 11.2 g/L MVA with a yield of 0.45 g/g (glucose + acetic acid) in the shake flask. Subsequently, 10 beneficial genes out of 50 targets that could promote MVA production were identified using CRISPR interference. The simultaneous repression of rpoN (encoding RNA polymerase sigma-54 factor) and IldD (encoding L-lactate dehydrogenase) increased MVA titer (13.3 g/L) by 19.23% and yield (0.53 g/g (glucose + acetic acid)) by 17.78%, respectively. Furthermore, introducing the non-oxidative glycolysis (NOG) pathway into MVA11 enhanced MVA yield by 12.20%. Ultimately, by combining these strategies, the resultant H. bluephagenesis MVA13/pli-63 produced 13.9 g/L MVA in the shake flask, and the yield increased to 0.56 g/g (glucose + acetic acid), which was the highest reported so far. Under open fed-batch fermentation conditions, H. bluephagenesis MVA13/pli-63 produced 121 g/L of MVA with a yield of 0.42 g/g (glucose + acetic acid), representing the highest reported titer and yield in the bioreactor to date. This study demonstrates that H. bluephagenesis is one of the most favorable chassis for MVA production.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Yue Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China.
| |
Collapse
|
15
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
16
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
17
|
Che L, Jin W, Zhou X, Han W, Chen Y, Chen C, Jiang G. Current status and future perspectives on the biological production of polyhydroxyalkanoates. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Che
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wenbiao Jin
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Xu Zhou
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wei Han
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Yidi Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
18
|
Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 369:128323. [PMID: 36400275 DOI: 10.1016/j.biortech.2022.128323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
19
|
Esposito FP, Vecchiato V, Buonocore C, Tedesco P, Noble B, Basnett P, de Pascale D. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. BIORESOURCE TECHNOLOGY 2023; 368:128287. [PMID: 36368485 DOI: 10.1016/j.biortech.2022.128287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The production and disposal of plastics from limited fossil reserves, has prompted research for greener and sustainable alternatives. Polyhydroxyalkanoates (PHAs) are biocompatible, biodegradable, and thermoprocessable polyester produced by microbes. PHAs found several applications but their use is limited due to high production cost and low yields. Herein, for the first time, the isolation and characterization of Pseudohalocynthiibacter aestuariivivens P96, a marine bacterium able to produce surprising amount of PHAs is reported. In the best growth condition P96 was able to reach a maximum production of 4.73 g/L, corresponding to the 87 % of total cell dry-weight. Using scanning and transmission microscopy, lab-scale fermentation, spectroscopic techniques, and genome analysis, the production of thermoprocessable polymer Polyhydroxybutyrate P(3HB), a PHAs class, endowed with mechanical and thermal properties comparable to that of petroleum-based plastics was confirmed. This study represents a milestone toward the use of this unexplored marine bacterium for P(3HB) production.
Collapse
Affiliation(s)
- Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Vittoria Vecchiato
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Brendon Noble
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Pooja Basnett
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy.
| |
Collapse
|
20
|
Liu Y, Zhao W, Wang S, Huo K, Chen Y, Guo H, Wang S, Liu R, Yang C. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9. Int J Biol Macromol 2022; 223:240-251. [PMID: 36347367 DOI: 10.1016/j.ijbiomac.2022.10.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Microbial production of bioplastics polyhydroxyalkanoates (PHA) has opened new avenues to resolve "white pollution" caused by petroleum-based plastics. PHAs consisting of short- and medium-chain-length monomers, designated as SCL-co-MCL PHAs, exhibit much better thermal and mechanical properties than PHA homopolymers. In this study, a halophilic bacterium Halomonas cupida J9 was isolated from highly saline wastewater and proven to produce SCL-co-MCL PHA consisting of 3-hydroxybutyrate (3HB) and 3-hydroxydodecanoate (3HDD) from glucose and glycerol. Whole-genome sequencing and functional annotation suggest that H. cupida J9 may possess three putative PHA biosynthesis pathways and a class I PHA synthase (PhaCJ9). Interestingly, the purified His6-tagged PhaCJ9 from E. coli BL21 (DE3) showed polymerizing activity towards 3HDD-CoA and a phaCJ9-deficient mutant was unable to produce PHA, which indicated that a low-substrate-specificity PhaCJ9 was exclusively responsible for PHA polymerization in H. cupida J9. Docking simulation demonstrated higher binding affinity between 3HB-CoA and PhaCJ9 and identified the key residues involved in hydrogen bonds formation between 3-hydroxyacyl-CoA and PhaCJ9. Furthermore, His489 was identified by site-specific mutagenesis as the key residue for the interaction of 3HDD-CoA with PhaCJ9. Finally, PHA was produced by H. cupida J9 from glucose and glycerol in shake flasks and a 5-L fermentor under unsterile conditions. The open fermentation mode makes this strain a promising candidate for low-cost production of SCL-co-MCL PHAs. Especially, the low-specificity PhaCJ9 has great potential to be engineered for an enlarged substrate range to synthesize tailor-made novel SCL-co-MCL PHAs.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
21
|
Geng P, Ma A, Wei X, Chen X, Yin J, Hu F, Zhuang X, Song M, Zhuang G. Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119531. [PMID: 35623572 DOI: 10.1016/j.envpol.2022.119531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Numerous onshore oil production wells currently exist, and the petroleum hydrocarbon contamination of the surrounding soil caused by oil production wells is not well understood. Moreover, the impact of the distribution of the total petroleum hydrocarbons (TPH) in the soil on the microbiota requires further investigation. Accordingly, in this study, the distribution of petroleum hydrocarbons in the soils around oil production wells was investigated, and their alteration of the microbiota was revealed. The results revealed that in the horizontal direction, the heavily TPH-contaminated soils were mainly distributed within a circle with a radius of 200 cm centered on the oil production well; and in the vertical direction, the heavily TPH-contaminated soils were distributed within the 0-50 cm soil layer. A significant positive correlation was found between the microbial abundance and the TPH concentration in the soil with relatively low total carbon contents. Heavy TPH contamination (TPH concentration of >3000 mg/kg) significantly reduced the microbial diversity and altered the microbiota compared with the light TPH contamination (TPH concentration of around 1000 mg/kg). In the heavily TPH-contaminated soils, the relative abundances of the Proteobacteria and Bacteroides increased significantly; the network complexity among the soil microorganisms decreased; and the co-occurrence patterns were altered. In summary, the results of this study have reference value in the remediation of soils around oil production wells and provide guidance for the construction of microbial remediation systems for petroleum contamination.
Collapse
Affiliation(s)
- Pengxue Geng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoxia Wei
- Drilling and Production Technology Research Institute, PetroChina Qinghai Oil Field, Dunhuang, 736202, China
| | - Xianke Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jun Yin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Futang Hu
- Drilling and Production Technology Research Institute, PetroChina Qinghai Oil Field, Dunhuang, 736202, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maoyong Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Thomas CM, Kumar D, Scheel RA, Ramarao B, Nomura CT. Production of Medium Chain Length polyhydroxyalkanoate copolymers from agro-industrial waste streams. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Erkorkmaz BA, Kırtel O, Abaramak G, Nikerel E, Öner ET. UV and Chemically Induced Halomonas smyrnensis Mutants for Enhanced Levan Productivity. J Biotechnol 2022; 356:19-29. [PMID: 35914617 DOI: 10.1016/j.jbiotec.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Halomonas smyrnensis AAD6T is a moderately halophilic bacterium proven to be a powerful biotechnological tool with its ability to accumulate valuable biopolymers such as levan and poly(3-hydroxybutyrate) (PHB). Levan is a fructose homopolymer with β-2,6 fructofuranosidic linkages on the polymer backbone, and its distinctive applications in various industries such as food, pharmaceutical, medical, and chemical have been well-defined. On the other hand, PHB is a promising raw material to produce biodegradable plastics. Although it was shown in our previous studies that H. smyrnensis AAD6T exhibits one of the highest conversion yields of sucrose to levan reported to date, novel strategies are required to overcome high costs of levan production. In this study, we aimed at increasing levan productivity of H. smyrnensis AAD6T cultures using random mutagenesis techniques combined (i.e., ethyl methanesulfate treatment and/or ultraviolet irradiation). After several consecutive treatments, mutant strains BAE2, BAE5 and BAE6 were selected as efficient levan producers, as BAE2 standing out as the most efficient one not only in sucrose utilization and levan production rates, but also in final PHB concentrations. The mutants' whole genome sequences were analysed to determine the mutations occurred. Several mutations in genes related to central carbon metabolism and osmoregulation were found. Our results suggest that random mutagenesis can be a facile and efficient strategy to enhance the performance of extremophiles in adverse conditions.
Collapse
Affiliation(s)
- Burak Adnan Erkorkmaz
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Onur Kırtel
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Gülbahar Abaramak
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey.
| |
Collapse
|
24
|
Zhang L, Jiang Z, Tsui TH, Loh KC, Dai Y, Tong YW. A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Front Bioeng Biotechnol 2022; 10:946085. [PMID: 35928944 PMCID: PMC9343952 DOI: 10.3389/fbioe.2022.946085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In the context of a circular economy, bioplastic production using biodegradable materials such as poly(3-hydroxybutyrate) (PHB) has been proposed as a promising solution to fundamentally solve the disposal issue of plastic waste. PHB production techniques through fermentation of PHB-accumulating microbes such as Cupriavidus necator have been revolutionized over the past several years with the development of new strategies such as metabolic engineering. This review comprehensively summarizes the latest PHB production technologies via Cupriavidus necator fermentation. The mechanism of the biosynthesis pathway for PHB production was first assessed. PHB production efficiencies of common carbon sources, including food waste, lignocellulosic materials, glycerol, and carbon dioxide, were then summarized and critically analyzed. The key findings in enhancing strategies for PHB production in recent years, including pre-treatment methods, nutrient limitations, feeding optimization strategies, and metabolism engineering strategies, were summarized. Furthermore, technical challenges and future prospects of strategies for enhanced production efficiencies of PHB were also highlighted. Based on the overview of the current enhancing technologies, more pilot-scale and larger-scale tests are essential for future implementation of enhancing strategies in full-scale biogas plants. Critical analyses of various enhancing strategies would facilitate the establishment of more sustainable microbial fermentation systems for better waste management and greater efficiency of PHB production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Zicheng Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Kai-Chee Loh
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- *Correspondence: Yen Wah Tong,
| |
Collapse
|
25
|
Boccalon E, Gorrasi G. Functional bioplastics from food residual: Potentiality and safety issues. Compr Rev Food Sci Food Saf 2022; 21:3177-3204. [PMID: 35768940 DOI: 10.1111/1541-4337.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Plastic pollution and food waste are two global issues with much in common. Plastic containers were introduced as a practical and easy remedy to improve food preservation and reduce the risk of creating waste, but ironically, to address one problem, another has been made worse. The spread of single-use containers has dramatically increased the amount of plastic that has to be discarded, and the most urgent task is now to find a solution to what has become part of the problem. An innovative way around it consists of promoting the valorization of food residues by turning them into novel materials for packaging. Although the results are promising, the aim of completely replacing plastics with biodegradable materials still seems far from being achieved. This review illustrates the main strategies adopted thus far to produce new bioplastic materials and composites from waste resources and focuses on the pros and cons of the food recovery process to look for the aspects that represent an obstacle to the development of the circular food economy on an industrial scale.
Collapse
Affiliation(s)
- Elisa Boccalon
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| |
Collapse
|
26
|
Musilova J, Kourilova X, Pernicova I, Bezdicek M, Lengerova M, Obruca S, Sedlar K. Novel thermophilic polyhydroxyalkanoates producing strain Aneurinibacillus thermoaerophilus CCM 8960. Appl Microbiol Biotechnol 2022; 106:4669-4681. [PMID: 35759037 DOI: 10.1007/s00253-022-12039-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Aneurinibacillus thermoaerophilus CCM 8960 is a thermophilic bacterium isolated from compost in Brno. The bacterium accumulates polyhydroxyalkanoates (PHAs), a biodegradable and renewable alternative to petrochemical polymers. The bacterium reveals several features that make it a very interesting candidate for the industrial production of PHA. At first, due to its thermophilic character, the bacterium can be utilized in agreement with the concept of next-generation industrial biotechnology (NGIB), which relies on extremophiles. Second, the bacterium is capable of producing PHA copolymers containing a very high portion of 4-hydroxybutyrate (4HB). Such materials possess unique properties and can be advantageously used in multiple applications, including but not limited to medicine and healthcare. Therefore, this work focuses on the in-depth characterization of A. thermoaerophilus CCM 8960. In particular, we sequenced and assembled the genome of the bacterium and identified its most important genetic features, such as the presence of plasmids, prophages, CRISPR arrays, antibiotic-resistant genes, and restriction-modification (R-M) systems, which might be crucial for the development of genome editing tools. Furthermore, we focused on genes directly involved in PHA metabolism. We also experimentally studied the kinetics of glycerol and 1,4-butanediol (1,4BD) utilization as well as biomass growth and PHA production during cultivation. Based on these data, we constructed a metabolic model to reveal metabolic fluxes and nodes of glycerol and 1,4BD concerning their incorporation into the poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) structure. KEY POINTS: • Aneurinibacillus sp. H1 was identified as Aneurinibacillus thermoaerophilus. • PHA metabolism pathway with associated genes was presented. • Unique monomer composition of produced PHAs was reported.
Collapse
Affiliation(s)
- Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Martina Lengerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.
- Department of Informatics, Institute of Bioinformatics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
27
|
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers (Basel) 2022; 14:polym14101990. [PMID: 35631874 PMCID: PMC9143980 DOI: 10.3390/polym14101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate—P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Collapse
|
28
|
Novackova I, Kourilova X, Mrazova K, Sedlacek P, Kalina M, Krzyzanek V, Koller M, Obruca S. Combination of Hypotonic Lysis and Application of Detergent for Isolation of Polyhydroxyalkanoates from Extremophiles. Polymers (Basel) 2022; 14:polym14091761. [PMID: 35566928 PMCID: PMC9104112 DOI: 10.3390/polym14091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Production of polyhydroxyalkanoates (PHA), microbial biopolyesters, employing extremophilic microorganisms is a very promising concept relying on robustness of such organisms against microbial contamination, which provides numerous economic and technological benefits. In this work, we took advantage of the natural susceptibility of halophilic and thermophilic PHA producers to hypotonic lysis and we developed a simple and robust approach enabling effective isolation of PHA materials from microbial cells. The method is based on the exposition of microbial cells to hypotonic conditions induced by the diluted solution of sodium dodecyl sulfate (SDS) at elevated temperatures. Such conditions lead to disruption of the cells and release of PHA granules. Moreover, SDS, apart from its cell-disruptive function, also solubilizes hydrophobic components, which would otherwise contaminate PHA materials. The purity of obtained materials, as well as the yields of recovery, reach high values (values of purity higher than 99 wt.%, yields close to 1). Furthermore, we also focused on the removal of SDS from wastewater. The simple, inexpensive, and safe technique is based on the precipitation of SDS in the presence of KCl. The precipitate can be simply removed by decantation or centrifugation. Moreover, there is also the possibility to regenerate the SDS, which would substantially improve the economic feasibility of the process.
Collapse
Affiliation(s)
- Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Katerina Mrazova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Martin Koller
- Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
29
|
Khatami K, Perez-Zabaleta M, Cetecioglu Z. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114337. [PMID: 34972045 DOI: 10.1016/j.jenvman.2021.114337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Polyhydroxyalkanoates (PHAs), as bio-based plastics, promise a transition from petroleum products to green and sustainable alternatives. However, their commercial production is yet impeded by high production costs. In this study, we assessed synthetic culture in mono and co-culture modes for bacterial PHA production. It was demonstrated that volatile fatty acids (VFAs) derived from food waste and primary sludge are cheap carbon sources for maintaining high production yields in the synthetic cultures. The maximum obtained PHA was 77.54 ± 5.67% of cell dried weight (CDW) (1.723 g/L) from Cupriavidus necator and 54.9 ± 3.66% of CDW (1.088 g/L) from Burkholderia cepacia. The acquired results are comparable to those in literature using sugar substrates. Comparatively, lower PHA productions were obtained from the co-cultivations ranging between 36-45 CDW% (0.39-0.48 g/L). Meanwhile, the 3-hydroxyvalerate content in the biopolymers were increased up to 21%.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
30
|
Argiz L, Correa-Galeote D, Val Del Río Á, Mosquera-Corral A, González-Cabaleiro R. Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150761. [PMID: 34624285 DOI: 10.1016/j.scitotenv.2021.150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The lipid fraction of the effluents generated in several food-processing activities can be transformed into polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs), through open culture biotechnologies. Although competition between storing and non-storing populations in mixed microbial cultures (MMCs) has been widely studied, the right selective environment allowing for the robust enrichment of a community when different types of accumulators coexist is still not clear. In this research, comprehensive metabolic analyses of PHA and TAG synthesis and degradation, and concomitant respiration of external carbon, were used to understand and explain the changes observed in a laboratory-scale bioreactor fed with the lipid-rich fraction (mainly oleic acid) of a wastewater stream produced in the fish-canning industry. It was concluded that the mode of oxygen, carbon, and nitrogen supply determines the enrichment of the culture in specific populations, and hence the type of intracellular compounds preferentially accumulated. Coupled carbon and nitrogen feeding regime mainly selects for TAG producers whereas uncoupled feeding leads to PHA or TAG production function of the rate of carbon supply under specific aeration rates and feast and famine phases lengths.
Collapse
Affiliation(s)
- Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - David Correa-Galeote
- Department of Microbiology and Institute of Water Research, Universidad de Granada, Granada, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Rebeca González-Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
31
|
Wang Z, Zheng Y, Ji M, Zhang X, Wang H, Chen Y, Wu Q, Chen GQ. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb Biotechnol 2022; 15:1586-1597. [PMID: 34978757 PMCID: PMC9049619 DOI: 10.1111/1751-7915.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023] Open
Abstract
Bacterial outer membrane (OM) is a self‐protective and permeable barrier, while having many non‐negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3‐hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84‐folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ‐butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3‐hydroxybutyrate‐co‐23mol%4‐hydroxybutyrate) (P(3HB‐co‐23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB‐co‐4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ‐butyrolactone. In a 7‐l bioreactor fed‐batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB‐co‐26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengke Ji
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
33
|
Tamang P, Nogueira R. Valorisation of waste cooking oil using mixed culture into short- and medium-chain length polyhydroxyalkanoates: Effect of concentration, temperature and ammonium. J Biotechnol 2021; 342:92-101. [PMID: 34688787 DOI: 10.1016/j.jbiotec.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
The production of polyhydroxyalkanoates (PHAs) from waste cooking oil (WCO) by a mixed culture was investigated in the present study at increasing WCO concentrations, temperature and ammonium availability. The PHA production was done in two steps: in the first step, a mixed culture was enriched in PHA-accumulating bacteria from activated sludge in a sequencing batch reactor operated in a feast-famine mode and in the second step the PHA accumulation by the enriched mixed culture was assessed in a batch reactor. In the enrichment step, two substrates, WCO and nonanoic acid were used for enrichment and in the PHA accumulation step only WCO was used. It was not possible to enrich a mixed culture in PHA-accumulating bacteria using WCO as substrate due to the development of filamentous bacteria causing foam formation and bulking in the reactor. However, our results showed that the mixed culture continuously fed with nonanoic acid was enriched in PHA-accumulating bacteria. This enriched culture accumulated both scl- and mcl-PHA using WCO as substrate. The maximum PHA accumulation capacity of this mixed culture from WCO was 38.2% cdw. Increasing the temperature (30-40 ℃) or WCO concentrations (5-20 g/l) increased the PHA accumulation capacity of the mixed culture and the ratios of scl-PHA to mcl-PHA. The presence of ammonium increased PHA accumulation (21.9% cdw) compared to the complete absence of ammonium (5.8% cdw). The thermal characterization of the PHA exhibited the advantageous properties of both scl- and mcl-PHA, i.e., higher melting temperature (152-172 ℃) similar to scl-PHA and a lower degree of crystallinity (12%) similar to mcl-PHA. This is the first study to report the potential of open mixed culture to produce scl- and mcl-PHA from WCO and thus contributing to the understanding of sustainable polymer production.
Collapse
Affiliation(s)
- Pravesh Tamang
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| | - Regina Nogueira
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
34
|
Liu H, Kumar V, Jia L, Sarsaiya S, Kumar D, Juneja A, Zhang Z, Sindhu R, Binod P, Bhatia SK, Awasthi MK. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. CHEMOSPHERE 2021; 284:131427. [PMID: 34323796 DOI: 10.1016/j.chemosphere.2021.131427] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Apple pomace, the residue which is left out after processing of apple serves as a potential carbon source for the production of biopolymer, PHA (poly-hydroxyalkanoates). It is rich in carbohydrates, fibers and polyphenols. Utilization of these waste resources has dual societal benefit-waste management and conversion of waste to an eco-friendly biopolymer. This will lower the overall economics of the process. A major limitation for the commercialization of biopolymer in comparison with petroleum derived polymer is the high cost. This article gives an overview of valorization of apple pomace for the production of biopolymer, various strategies adopted, limitations as well as future perspectives.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Linjing Jia
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL, 61801, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
35
|
Zubkov IN, Nepomnyshchiy AP, Kondratyev VD, Sorokoumov PN, Sivak KV, Ramsay ES, Shishlyannikov SM. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J Microbiol 2021; 59:1104-1111. [PMID: 34697784 DOI: 10.1007/s12275-021-1214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell's state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.
Collapse
Affiliation(s)
- Ilya N Zubkov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia.
| | - Anatoly P Nepomnyshchiy
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Vadim D Kondratyev
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Pavel N Sorokoumov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Konstantin V Sivak
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Edward S Ramsay
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Sergey M Shishlyannikov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| |
Collapse
|
36
|
Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis. Bioengineering (Basel) 2021; 8:bioengineering8100141. [PMID: 34677214 PMCID: PMC8533406 DOI: 10.3390/bioengineering8100141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.
Collapse
|
37
|
Wang Z, Qin Q, Zheng Y, Li F, Zhao Y, Chen GQ. Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties. Metab Eng 2021; 67:53-66. [PMID: 34098101 DOI: 10.1016/j.ymben.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Bacterial outer membrane (OM), an asymmetric lipid bilayer functioning as a self-protective barrier with reduced permeability for Gram-negative bacteria, yet wasting nutrients and energy to synthesize, has not been studied for its effect on bioproduction. Here we construct several OM-defected halophile Halomonas bluephagenesis strains to investigate the effects of OM on bioproduction. We achieve enhanced chassis properties of H. bluephagenesis based on positive cellular properties among several OM-defected strains. The OM-defected H. bluephagenesis WZY09 demonstrates better adaptation to lower salinity, increasing 28%, 30% and 12% on dry cell mass (DCM), poly(3-hydroxybutyrate) (PHB) accumulation and glucose to PHB conversion rate, respectively, including enlarged cell sizes and 21-folds reduced endotoxin. Interestingly, a poly(3-hydroxybutyrate-co-21mol%4-hydroxybutyrate) (P(3HB-co-21mol%4HB)) is produced by H. bluephagenesis WZY09 derivate WZY249, increasing 60% and 260% on polyhydroxyalkanoate (PHA) production and 4HB content, respectively. Furthermore, increased electroporation efficiency, more sensitive isopropyl β-D-1-thio-galactopyranoside (IPTG) induction, better oxygen uptake, enhanced antibiotics sensitivity and ectoine secretion due to better membrane permeability are observed if OM defected, demonstrating significant OM defection impacts for further metabolic engineering, synthetic biology studies and industrial applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qin Qin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fajin Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiqing Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
38
|
What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers (Basel) 2021; 13:polym13111731. [PMID: 34073198 PMCID: PMC8199472 DOI: 10.3390/polym13111731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The rising global consumption and industrialization has resulted in increased food processing demand. Food industry generates a tremendous amount of waste which causes serious environmental issues. These problems have forced us to create strategies that will help to reduce the volume of waste and the contamination to the environment. Waste from food industries has great potential as substrates for value-added bioproducts. Among them, polyhydroxyalkanaotes (PHAs) have received considerable attention in recent years due to their comparable characteristics to common plastics. These biodegradable polyesters are produced by microorganisms during fermentation processes utilizing various carbon sources. Scale-up of PHA production is limited due to the cost of the carbon source metabolized by the microorganisms. Therefore, there is a growing need for the development of novel microbial processes using inexpensive carbon sources. Such substrates could be waste generated by the food industry and food service. The use of industrial waste streams for PHAs biosynthesis could transform PHA production into cheaper and more environmentally friendly bioprocess. This review collates in detail recent developments in the biosynthesis of various types of PHAs produced using waste derived from agrofood industries. Challenges associated with this production bioprocess were described, and new ways to overcome them were proposed.
Collapse
|
39
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
40
|
Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Nebesářová J, Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 2021; 9:909. [PMID: 33923216 PMCID: PMC8146576 DOI: 10.3390/microorganisms9050909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Collapse
Affiliation(s)
- Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Iva Pernicová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Jana Nebesářová
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| |
Collapse
|
41
|
Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, Chang JS, Show PL. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:87. [PMID: 33827663 PMCID: PMC8028083 DOI: 10.1186/s13068-021-01939-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chih-Kai Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan, 320 Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan Malaysia
| | - Shir Reen Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407 Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407 Taiwan
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| |
Collapse
|
42
|
Obulisamy PK, Mehariya S. Polyhydroxyalkanoates from extremophiles: A review. BIORESOURCE TECHNOLOGY 2021; 325:124653. [PMID: 33465644 DOI: 10.1016/j.biortech.2020.124653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are group monomers/heteropolymers that are biodegradable and widely used in biomedical applications. They are considered as alternatives to fossil derived polymers and accumulated by microbes including extremophilic archaea as energy storage inclusions under nutrient limitations. The use of extremophilic archaea for PHA production is an economically viable option for conventional aerobic processes, but less is known about their pathways and PHA accumulation capacities. This review summarized: (a) specific adaptive mechanisms towards extreme environments by extremophiles and specific role of PHAs; (b) understanding of PHA synthesis/metabolism in archaea and specific functional genes; (c) genetic engineering and process engineering approaches required for high-rate PHA production using extremophilic archaea. To conclude, the future studies are suggested to understand the membrane lipids and PHAs accumulation to explain the adaptation mechanism of extremophiles and exploiting it for commercial production of PHAs.
Collapse
Affiliation(s)
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Italy
| |
Collapse
|
43
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
44
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
45
|
Dutt Tripathi A, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Khosravi Darani K. Production of polyhydroxyalkanoates using dairy processing waste - A review. BIORESOURCE TECHNOLOGY 2021; 326:124735. [PMID: 33508643 DOI: 10.1016/j.biortech.2021.124735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.
Collapse
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Fataneh Hashempour-Baltork
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran
| | - Ladan Rashidi
- Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Kianoush Khosravi Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
46
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
47
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
48
|
Yadav B, Chavan S, Atmakuri A, Tyagi RD, Drogui P. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development. BIORESOURCE TECHNOLOGY 2020; 317:124006. [PMID: 32889176 DOI: 10.1016/j.biortech.2020.124006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The economy of the polyhydroxyalkanoate (PHA) production process could be supported by utilising the different by-products released simultaneously during its production. Among these, proteins are present in high concentrations in liquid stream which are released after the cell disruption along with PHA granules. These microbial proteins can be used as animal feed, adhesive material and in manufacturing of bioplastics. The recycling of the protein containing liquid stream also serves as a promising approach to maintain circular bioeconomy in the route. For this aim, it is important to obtain good yield and limit the drawbacks of protein recovery processes and associated costs. The review focuses on recycling of the liquid stream generated during acid/thermal-alkali treatment for PHA production that would close the gap in linear economy and attain circularity in the process. Examples to recover proteins from other industrial waste streams along with their applications have also been discussed.
Collapse
Affiliation(s)
- Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Anusha Atmakuri
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
49
|
Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, Koller M, Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. BIORESOURCE TECHNOLOGY 2020; 315:123885. [PMID: 32721829 DOI: 10.1016/j.biortech.2020.123885] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.
Collapse
Affiliation(s)
- Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
50
|
Alsafadi D, Ibrahim MI, Alamry KA, Hussein MA, Mansour A. Utilizing the crop waste of date palm fruit to biosynthesize polyhydroxyalkanoate bioplastics with favorable properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139716. [PMID: 32526568 DOI: 10.1016/j.scitotenv.2020.139716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 05/12/2023]
Abstract
Polyhydroxyalkanoate (PHA), a family of biodegradable and renewable biopolymers that could potentially play a significant role in bioeconomy. In this study we investigated the potential of date waste (DW) biomass as feedstock to produce PHA by the halophilic archaeon Haloferax mediterranei. The concentration of essential trace elements for H. mediterranei cells during growth and PHA biopolymer accumulation was optimized. A maximum cell dry mass of (CDM) (12.8 g L-1) and PHA concentration of (3.20 g L-1) were achieved in DW extract media that was not supplemented with trace elements, indicating that DW is a promising source for trace elements. The cultivation was scaled-up to fed-batch bioreactor fermentations under non-sterile conditions and resulted in CDM and PHA content of 18.0 g L-1 and 25%, respectively. The produced PHA was confirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with high 3-hydroxyvalerate (3 HV) content of 18.0 mol%. This 3 HV molar percent was achieved without the addition of expensive precursors. The PHBV is of high molecular weight (746.0 kDa) and narrow polydispersity (PDI = 1.5), and displayed reduced melting at 148.1 °C. The X-ray diffraction (XRD) analysis showed that the PHBV has amorphous nature which increases the degradation rates and workability of the biopolymer. The isotopic ratio 13C/12C (δ 13C) for PHBV was found to be - 19.1‰, which indicated that H. mediterranei prefers lighter bonds to break and uses the lighter atoms for the biosynthesis of PHBV.
Collapse
Affiliation(s)
- Diya Alsafadi
- Biocatalysis and Biosynthesis Research Unit, Foundational Science Research Division, Royal Scientific Society, Amman 11941, Jordan.
| | - Mohammad I Ibrahim
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aya Mansour
- Biocatalysis and Biosynthesis Research Unit, Foundational Science Research Division, Royal Scientific Society, Amman 11941, Jordan
| |
Collapse
|