1
|
Blanco-Llamero C, García-García P, Señoráns FJ. Efficient Green Extraction of Nutraceutical Compounds from Nannochloropsis gaditana: A Comparative Electrospray Ionization LC-MS and GC-MS Analysis for Lipid Profiling. Foods 2024; 13:4117. [PMID: 39767059 PMCID: PMC11675803 DOI: 10.3390/foods13244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Microalgae have been described as a potential alternative source of a wide range of bioactive compounds, including polar lipids and carotenoids. Specifically, Nannochloropsis gaditana is described as producing large amounts of polar lipids, such as glycolipids and phospholipids. These natural active compounds serve as key ingredients for food, cosmetic, or nutraceutical applications. However, microalgae usually possess a rigid cell wall that complicates the extraction of these compounds. Thus, an ultrasound-assisted enzymatic pretreatment is necessary to efficiently extract bioactives from microalgae, and it was studied in this article. Pretreated biomass was extracted using different advanced and green methodologies and compared to traditional extraction. Furthermore, the analysis, characterization, and identification of valuable compounds using GC-MS and LC-MS analytical methods were also investigated. Interestingly, major results demonstrated the efficiency of the pretreatment, enriching polar lipids' distribution in all extracts produced no matter the extraction technique, although they presented differences in their concentration. Pressurized liquid extraction and microwave-assisted extraction were found to be the techniques with the highest yields, whereas ultrasound-assisted extraction achieved the highest percentage of glycolipids. In summary, green extraction techniques showed their effectiveness compared to traditional extraction.
Collapse
Affiliation(s)
| | | | - Francisco Javier Señoráns
- Healthy Lipids Group, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain (P.G.-G.)
| |
Collapse
|
2
|
Savić Gajić IM, Savić IM, Ivanovska AM, Vunduk JD, Mihalj IS, Svirčev ZB. Improvement of Alginate Extraction from Brown Seaweed ( Laminaria digitata L.) and Valorization of Its Remaining Ethanolic Fraction. Mar Drugs 2024; 22:280. [PMID: 38921591 PMCID: PMC11204654 DOI: 10.3390/md22060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 μg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 μg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.
Collapse
Affiliation(s)
- Ivana M. Savić Gajić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Ivan M. Savić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Aleksandra M. Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Jovana D. Vunduk
- Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Belgrade, Serbia;
| | - Ivana S. Mihalj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (I.S.M.); (Z.B.S.)
| | - Zorica B. Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (I.S.M.); (Z.B.S.)
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
3
|
Nazloo EK, Danesh M, Sarrafzadeh MH, Moheimani NR, Ennaceri H. Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171734. [PMID: 38508258 DOI: 10.1016/j.scitotenv.2024.171734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Botryococcus braunii has garnered significant attention in recent years due to its ability to produce high amounts of renewable hydrocarbons through photosynthesis. As the world shifts towards a greener future and seeks alternative sources of energy, the cultivation of B. braunii and the extraction of its hydrocarbons can potentially provide a viable solution. However, the development of a sustainable and cost-effective process for cultivating B. braunii is not without challenges. Compared to other microalgae, B. braunii grows very slowly, making it time-consuming and expensive to produce biomass. In response to these challenges, several efforts have been put into optimizing Botryococcus braunii cultivation systems to increase biomass growth and hydrocarbon production efficiency. This review presents a comparative analysis of different Botryococcus braunii cultivation systems, and the factors affecting the productivity of biomass and hydrocarbon in Botryococcus braunii are critically discussed. Attached microalgal growth offers several advantages that hold significant potential for enhancing the economic viability of microalgal fuels. Here, we propose that employing attached growth cultivation, coupled with the milking technique for hydrocarbon extraction, represents an efficient approach for generating renewable fuels from B. braunii. Nevertheless, further research is needed to ascertain the viability of large-scale implementation.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Moslem Danesh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Petroleum Drilling and Refining, Kurdistan Technical Institute Sulaimaniya, Iraq; Department of Biomedical Engineering, Qaiwan International University, Sulaimaniya, Iraq
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
4
|
Patel A, Rantzos C, Krikigianni E, Rova U, Christakopoulos P, Matsakas L. A bioprocess engineering approach for the production of hydrocarbons and fatty acids from green microalga under high cobalt concentration as the feedstock of high-grade biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:64. [PMID: 38730294 PMCID: PMC11636930 DOI: 10.1186/s13068-024-02512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Botryococcus braunii, a colonial green microalga which is well-known for its capacity to synthesize hydrocarbons, has significant promise as a long-term source of feedstock for the generation of biofuels. However, cultivating and scaling up B. braunii using conventional aqua-suspended cultivation systems remains a challenge. In this study, we optimized medium components and light intensity to enhance lipid and hydrocarbon production in a multi-cultivator airlift photobioreactor. BBM 3N medium with 200 μmol/m2/s light intensity and a 16 h light-8 h dark regimen yielded the highest biomass productivity (110.00 ± 2.88 mg/L/day), as well as the highest lipid and hydrocarbon content. Cultivation in a flat-panel bioreactor resulted in significantly higher biomass productivity (129.11 ± 2.74 mg/L/day), lipid productivity (32.21 ± 1.31 mg/L/day), and hydrocarbon productivity (28.98 ± 2.08 mg/L/day) compared to cultivation in Erlenmeyer flasks and open 20-L raceway pond. It also exhibited 20.15 ± 1.03% of protein content including elevated levels of chlorophyll a, chlorophyll b, and carotenoids. This work is noteworthy since it is the first to describe fatty acid and hydrocarbon profiles of B. braunii during cobalt treatment. The study demonstrated that high cobalt concentrations (up to 5 mg/L of cobalt nitrate) during Botryococcus culture affected hydrocarbon synthesis, resulting in high amounts of n-alkadienes and trienes as well as lipids with elevated monounsaturated fatty acids concentration. Furthermore, pyrolysis experiments on microalgal green biomass and de-oiled biomass revealed the lipid and hydrocarbon compounds generated by the thermal degradation of B. braunii that facilitate extra economical value to this system.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
5
|
Vanleenhove B, Xu L, De Meester S, Raes K. Impact of Stabilization Technology on the Extraction Yield and Functionality of Macroconstituents from Biomass: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37329514 DOI: 10.1021/acs.jafc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biomass contains different macroconstituents (polysaccharides, lipids, and proteins) with nutritional and functional properties. However, after harvest or processing, stabilization of biomass is necessary to preserve the macroconstituents from degradation by microbial growth and enzymatic reactions. Because these stabilization methods affect the structure of the biomass, extraction of valuable macroconstituents can be impacted. Literature, in general, focuses on either stabilization or extraction, but systematic information on the interlinkage between these processes has rarely been reported. This review summarizes recent research on physical, biological, and chemical stabilization methods on macroconstituent extraction yields and functionalities. Often, freeze drying as a stabilization method resulted in a good extraction yield and functionality, independent of the macroconstituent. Less documented treatments, such as microwave drying, infrared drying, and ultrasound stabilization, result in better yields compared to conventional physical treatments. Biological and chemical treatments were rarely performed but could be promising as stabilization methods before performing an extraction step.
Collapse
Affiliation(s)
- Baptiste Vanleenhove
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Lin Xu
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Steven De Meester
- Department of Green Chemistry, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| |
Collapse
|
6
|
Matos D, Almeida SFP, Marques PAAP, Pinto S, Figueira E. Effects of Graphene Oxide Nanosheets in Freshwater Biofilms. Molecules 2023; 28:4577. [PMID: 37375132 DOI: 10.3390/molecules28124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Graphene oxide (GO) properties make it a promising material for graphene-based applications in areas such as biomedicine, agriculture, and the environment. Thus, its production is expected to increase, reaching hundreds of tons every year. One GO final destination is freshwater bodies, possibly affecting the communities of these systems. To clarify the effect that GO may impose in freshwater communities, a fluvial biofilm scraped from submerged river stones was exposed to a range (0.1 to 20 mg/L) of GO concentrations during 96 h. With this approach, we hypothesized that GO can: (1) cause mechanical damage and morphological changes in cell biofilms; (2) interfere with the absorption of light by biofilms; (3) and generate oxidative stress, causing oxidative damage and inducing biochemical and physiological alterations. Our results showed that GO did not inflict mechanical damage. Instead, a positive effect is proposed, linked to the ability of GO to bind cations and increase the micronutrient availability to biofilms. High concentrations of GO increased photosynthetic pigment (chlorophyll a, b, and c, and carotenoids) content as a strategy to capture the available light more effectively as a response to the shading effect. A significant increase in the enzymatic (SOD and GSTs activity) and low molecular weight (lipids and carotenoids) antioxidant response was observed, that efficiently reduced oxidative stress effects, reducing the level of peroxidation, and preserving membrane integrity. Being complex entities, biofilms are more similar to environmental communities and may provide more accurate information to evaluate the impact of GO in aquatic systems.
Collapse
Affiliation(s)
- Diana Matos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salomé F P Almeida
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- Department of Mechanics, University of Aveiro, 3810-193 Aveiro, Portugal
- TEMA, Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, de Oliveira LH, Wan Azelee NI, Meili L, Rangasamy G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. CHEMOSPHERE 2023; 319:138003. [PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
Collapse
Affiliation(s)
- Hilman Ibnu Mahdi
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.
| | - Nurfadhila Nasya Ramlee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - José Leandro da Silva Duarte
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| | - Faisal Amir
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan; Department of Mechanical Engineering, Universitas Mercu Buana (UMB), Jl. Raya, RT.4/RW.1, Meruya Sel., Kec. Kembangan, Jakarta, Daerah Khusus Ibukota Jakarta, 11650, Indonesia
| | - Leonardo Hadlich de Oliveira
- Laboratory of Adsorption and Ion Exchange (LATI), Chemical Engineering Department (DEQ), State University of Maringá, Maringá (UEM), 5790 Colombo Avenue, Zone 7, 87020-900, Maringá, PR, Brazil
| | - Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), UTM Skudai, 81310, Skudai Johor Bahru, Johor, Malaysia.
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Lourival Melo Mota Avenue, Tabuleiro Dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Fang Y, Liu Y, Zhang J. Mechanisms for the increase in lipid production in cyanobacteria during the degradation of antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121171. [PMID: 36736559 DOI: 10.1016/j.envpol.2023.121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the responses of cell density, photosynthesis activity, dry cell weight, lipid productivity, proteome and metabolome in two non-toxic cyanobacterial species (Synechococcus sp. and Chroococcus sp.) exposed to two frequently detected antibiotics (sulfamethoxazole and ofloxacin) at test concentrations of 0.2-20.0 μg L-1 in a 4-day culture period. Upregulated antioxidant enzymes and oxidoreductases contributed to antibiotic biodegradation in Synechococcus sp.; whereas, upregulated carotenoid protein contributed to antibiotic biodegradation in Chroococcus sp. The 4-day removal efficiencies of sulfamethoxazole and ofloxacin by cyanobacteria were 35.98-66.23% and 33.01-61.92%, respectively. In cyanobacteria, each antibiotic induced hormetic responses, such as increase in cell density, dry cell weight, and photosynthetic activity; upregulation of photosynthesis-related proteins; and elevation of lipid expression by up to 2.05-fold. Under antibiotic stress, the two cyanobacterial species preferred to store energy in the form of lipids rather than ATP, with fructose-bisphosphate aldolase playing an essential role in lipid synthesis. The downregulation of lipid transporters also facilitated lipid accumulation in Synechococcus sp. In general, the two non-toxic cyanobacterial species achieved a good combination of lipid deposition and antibiotic treatment performance, especially in Chroococcus sp. exposed to sulfamethoxazole.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Fatty acids profile of Mastigocladus laminosus Cohn ex Kichner isolated from Algerian hot springs as a biofuel feedstock. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Li S, Li X, Ho SH. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. CHEMOSPHERE 2022; 291:132863. [PMID: 34774903 DOI: 10.1016/j.chemosphere.2021.132863] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The boost of the greenhouse gases (GHGs, largely carbon dioxide - CO2) emissions owing to anthropogenic activity is one of the biggest global threats. Bio-CO2 emission reduction has received more and more attention as an environmentally sustainable approach. Microalgae are very popular in this regard because of excellent speed of growth, low costs of production, and resistance to extreme environments. Besides, most microalgae can undergo photosynthesis, where the CO2 and solar energy can be converted into sugar, and subsequently become biomass, providing a renewable and promising biofuel strategy with a few outstanding benefits. This review focuses on presenting CO2 sequestration by microalgae towards wastewater treatment and biodiesel production. First, the CO2 fixation mechanism by microalgae viz., sequestration and assimilation of CO2 in green microalgae as well as cyanobacteria were introduced. Besides, factors affecting CO2 sequestration in microalgae, containing microalgae species and cultivation conditions, such as light condition, photobioreactor, configuration, pH, CO2 concentration, temperature, and medium composition, were then comprehensively discussed. Special attention was given to the production of biodiesel as third-generation biofuel from various wastewater (CO2 biofixation), including processing steps of biodiesel production by microalgae, biodiesel production from wastewater, and improved methods. Furthermore, current life cycle assessment (LCA) and techno-economic analysis (TEA) used in biodiesel production were discussed. Finally, the research challenges and specific prospects were considered. Taken together, this review provides useful and updated information to facilitate the development of microalgal "green chemistry" and "environmental sustainability".
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
12
|
Shahid A, Siddiqui AJ, Musharraf SG, Liu CG, Malik S, Syafiuddin A, Boopathy R, Tarbiah NI, Gull M, Mehmood MA. Untargeted metabolomics of the alkaliphilic cyanobacterium Plectonema terebrans elucidated novel stress-responsive metabolic modulations. J Proteomics 2022; 252:104447. [PMID: 34890867 DOI: 10.1016/j.jprot.2021.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Alkaliphilic cyanobacteria are suitable candidates to study the effect of alkaline wastewater cultivation on molecular metabolic responses. In the present study, the impact of wastewater, alkalinity, and alkaline wastewater cultivation was studied on the biomass production, biochemical composition, and the alkalinity responsive molecular mechanism through metabolomics. The results suggested a 1.29 to 1.44-fold higher biomass production along with improved lipid, carbohydrate, and pigment production under alkaline wastewater cultivation. The metabolomics analysis showed 1.2-fold and 5.54-fold increase in the indole-acetic acid and phytoene biosynthesis which contributed to overall enhanced cell differentiation and photo-protectiveness. Furthermore, lower levels of Ribulose-1,5-bisphosphate (RuBP), and higher levels of 2-phosphoglycerate and 3-phosphoglycerate suggested the efficient fixation of CO2 into biomass, and storage compounds including polysaccharides, lipids, and sterols. Interestingly, except L-histidine and L-phenylalanine, all the metabolites related to protein biosynthesis were downregulated in response to wastewater and alkaline wastewater cultivation. The cells protected themselves from alkalinity and nutrient stress by improving the biosynthesis of sterols, non-toxic antioxidants, and osmo-protectants. Alkaline wastewater cultivation regulated the activation of carbon concentration mechanism (CCM), glycolysis, fatty-acid biosynthesis, and shikimate pathway. The data revealed the importance of alkaline wastewater cultivation for improved CO2 fixation, wastewater treatment, and producing valuable bioproducts including phytoene, Lyso PC 18:0, and sterols. These metabolic pathways could be future targets of metabolic engineering for improving biomass and metabolite production. SIGNIFICANCE: Alkalinity is an imperative factor, responsible for the contamination control and biochemical regulation in cyanobactera, especially during the wastewater cultivation. Currently, understanding of alkaline wastewater responsive molecular mechanism is lacking and most of the studies are focused on transcriptomics of model organisms for this purpose. In this study, untargeted metabolomics was employed to analyze the impact of wastewater and alkaline wastewater on the growth, CO2 assimilation, nutrient uptake, and associated metabolic modulations of the alkaliphilic cyanobacterium Plectonema terebrans BERC10. Results unveiled that alkaline wastewater cultivation regulated the activation of carbon concentration mechanism (CCM), glycolysis, fatty-acid biosynthesis, and shikimate pathway. It indicated the feasibility of alkaline wastewater as promising low-cost media for cyanobacterium cultivation. The identified stress-responsive pathways could be future genetic targets for strain improvement.
Collapse
Affiliation(s)
- Ayesha Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Sana Malik
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Achmad Syafiuddin
- Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | | | - Munazza Gull
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
13
|
Danouche M, El Ghachtouli N, Aasfar A, Bennis I, El Arroussi H. Pb(II)-phycoremediation mechanism using Scenedesmus obliquus: cells physicochemical properties and metabolomic profiling. Heliyon 2022; 8:e08967. [PMID: 35243087 PMCID: PMC8866896 DOI: 10.1016/j.heliyon.2022.e08967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 01/23/2023] Open
Abstract
This study highlights the mechanisms of Pb(II)-phycoremediation using the Pb(II) tolerant strain of Scenedesmus obliquus. First, monitoring of cell growth kinetics in control and Pb(II)-doped medium revealed significant growth inhibition, while the analyses through flow cytometry and Zetasizer revealed no difference in cell viability and size. Residual weights of control and Pb(II)-loaded cells assessed by thermogravimetric analysis were 31.34% and 57.8%, respectively, indicating the uptake of Pb(II) into S. obliquus cells. Next, the use of chemical extraction to distinguish between the intracellular and extracellular uptake indicated the involvement of both biosorption (85.5%) and bioaccumulation (14.5%) mechanisms. Biosorption interaction of Pb(II) ions and the cell wall was confirmed using SEM-EDX, FTIR, zeta potential, zero-charge pH, and contact angle analyses. Besides, the biochemical characterization of control and Pb(II)-loaded cells revealed that the bioaccumulation of Pb(II) induces significant increases in the carotenoids and lipids content, while it decreases in the chlorophyll, carbohydrates, and proteins content. Finally, the metabolomic analysis indicated an increase in the relative abundance of fatty acid methyl esters, alkanes, aromatic compounds, and sterols. However, the alkenes and monounsaturated fatty acids decreased. Such metabolic adjustment may represent an adaptive strategy that prevents high Pb(II)-bioaccumulation in cellular compartments.
Collapse
Affiliation(s)
- M. Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - N. El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - A. Aasfar
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - I. Bennis
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - H. El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
14
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
15
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
16
|
Wang Q, Oshita K, Takaoka M, Shiota K. Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae. BIORESOURCE TECHNOLOGY 2021; 329:124892. [PMID: 33676356 DOI: 10.1016/j.biortech.2021.124892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Subcritical dimethyl ether, a green solvent, was used to extract lipids from microalgae. The effect of the water content on the process was firstly investigated. Secondly, microalgal samples were subjected to five cell disruptions, and the effects on raw lipid and fatty acid methyl ester, and its profile were evaluated. Among them, heating, microwave, and ultrasonic treatments greatly improved extraction. Mechanism analysis revealed the improvements by the three treatments were due to increased cell wall permeability rather than to complete cell disruption. After the extraction, microalgal cells with lipid being well-extracted were shriveled with extensive surface folds, indicating a loss of intracellular substances, but the cell structure was undamaged. As for dewatering performance, extraction process removed almost all of the free water but left bound water. Finally, the potential of the residues after lipid extraction to serve as solid fuel was evaluated by combustion characteristics and heating value calculation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| |
Collapse
|
17
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
18
|
Fal S, Benhima R, El Mernissi N, Kasmi Y, Smouni A, El Arroussi H. Microalgae as promising source for integrated wastewater treatment and biodiesel production. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:34-46. [PMID: 34000939 DOI: 10.1080/15226514.2021.1920572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microalgae have been studied for their potential of wastewater treatment as well as a promising source for biodiesel production. This study investigates the potential of microalgae to remove nutrients from domestic wastewater (DWW) while producing lipids-rich biomass for biodiesel production. Eight microalgae were cultivated in (DWW) to evaluate their nutrients removal capacity and biomass production. Total phosphorus (TP) of DWW reduced from 2 mg L-1 to 0.02 mg L-1 with the treatment efficiency of 99.15% and the highest performance was noted in Chlamydomonas reinhardtii (C. reinhardtii). For total nitrogen (TN), treatment efficiency climbed to 99.07%. It is reduced from 18.35 to 0.17 mg L-1 recorded in C. reinhardtii and Chlorella pyrenoidosa (C. pyrenoidosa). On the other hand, all microalgae showed a high lipids-rich biomass in wastewater compared to BG11. The highest lipid content was 36.93% noted in Chlorella sorokiniana (C. sorokiniana). Fatty acids methyl ester (FAME) profiles showed a high content of palmitic C16:0, oleic C18:1 and stearic acids C18:0 in studied microalgae strains. In summary, microalgae envisage its potential application in integrated wastewater treatment and biodiesel production. In perspective, the authors focus on the validation of this bioprocess in pilot scale. Furthermore, the use of microalgae for other applications such CO2 biosequestration and added value products. Novelty statement: The present study investigates the potential of Moroccan microalgae as candidates to wastewater remediation and high biomass production with high lipid rate for biodiesel production.
Collapse
Affiliation(s)
- Soufiane Fal
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Redouane Benhima
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
| | - Najib El Mernissi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
| | - Yassin Kasmi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
| | - Abdelaziz Smouni
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
- Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
19
|
Wang X, Dou X, Wu J, Meng F. Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system. ENVIRONMENTAL RESEARCH 2021; 195:110873. [PMID: 33582131 DOI: 10.1016/j.envres.2021.110873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Microalgal cultivation in municipal wastewater treatment plants (WWTPs) can realize the coupling of wastewater treatment and microalgae energy utilization, however, the residual antibiotics in effluents from WWTPs affect the growth of microalgae. In this study, green alga (Scenedesmus obliquus) cells were inoculated into the effluents to ascertain the attenuation pathways of erythromycin (ERY) and the biochemical responses of microalga in a microalga-effluent system. Results showed that hydrolysis, photolysis, and biodegradation (including bioadsorption) cause the attenuation of ERY in a microalga-effluent system, and the biodegradation (including bioadsorption) has the greatest removal rate (reaching a maximum of 57.87%), followed by hydrolysis (reaching a maximum of 34.13%), and photolysis (less than 5%) after five days. The photosynthetic pigment contents in cells of microalga decreased the most (by 35.66% for chlorophyll a), and the production of ROS was stimulated (by 33.75%) after five-day exposure to ERY at an initial concentration of 100 μg/L. Meanwhile, the activity of ribulose-1,5-biphosphate carboxylase (RuBPCase) decreased by 55.65%, and the activity of acetyl-CoA carboxylase (ACCase) increased by 55.65%. The ROS level, photosynthetic pigment content, and RuBPCase activity were extremely significantly correlated with each other (P < 0.01), indicating that exposure to ERY changed those biochemical responses related to the rate of photosynthesis of microalga, inhibiting the growth thereof. On the other hand, exposure to ERY increased lipid production by microalga through the induced ACCase activity.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiang Dou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
20
|
Gil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, Barceló D, Núñez-Delicado E, Gabaldón JA. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143613. [PMID: 33218814 DOI: 10.1016/j.scitotenv.2020.143613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluates the removal capacity of microalgae photobioreactors of environmental pollutants present in wastewater from the dry riverbed El Albujón, as a way to minimize the eutrophication process of the Mar Menor. Particularly, the capacity of four autochthonous microalgae consortia collected from different locations of the salty lagoon to remove emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), nitrates, and phosphates, was evaluated. Among the four microalgae consortia, consortium 1 was the best in terms of biomass productivity (0.11 g L-1 d-1) and specific growth rate (0.14 d-1), providing 100% removal of emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), and a maximal reduction and consumption of macronutrients, especially nitrates and phosphates, reaching levels below 28 mg L-1, that is, a decrease of 89.90 and 99.70% of nitrates and phosphates, respectively. Therefore, this consortium (Monoraphidium sp., Desmodesmus subspicatus, Nannochloris sp.) could be selected as a green filter for successful large-scale applications. This study is the first one that combines the successful removal of herbicides, ibuprofen and adenosine as emerging contaminants, and nitrate removal.
Collapse
Affiliation(s)
- A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, E-30100 Espinardo, Spain
| | - M A Pedreño
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - S Montoro-García
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - M Tárraga-Martínez
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - P Iglesias
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - F Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - J A Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain.
| |
Collapse
|
21
|
Zheng S, Chen S, Zou S, Yan Y, Gao G, He M, Wang C, Chen H, Wang Q. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. BIORESOURCE TECHNOLOGY 2021; 321:124428. [PMID: 33272824 DOI: 10.1016/j.biortech.2020.124428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Pyropia-processing wastewater (PPW) contains diverse organic nutrients and causes environmental pollution. To explore the nutrient removal efficiency and growth performance of Chlorella sp. on PPW, the cultures were conducted in different culture substrates. Results showed that, after 7 days of incubation, the removal rates of total nitrogen (TN), total phosphorus (TP) and phycobiliprotein (PP) all reached more than 90% by cultivating Chlorella sp. C2 and C. sorokiniana F-275 in PPW. The chemical oxygen demand (COD) removal efficiencies could be over 50%. Meanwhile, the increments of biomass in two tested Chlorella strains were 1.39 and 4.89 times higher than those of BG11 and BBM substrates and the increases in lipid productivity were 1.34 and 10.18- fold, respectively. The C18:3 fatty acid proportions were markedly reduced by 27.89% and 29.10%. These results suggest that Chlorella sp. could efficiently reduce various nutrients in PPW and simultaneously accumulate higher biomass with higher biodiesel characteristics.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shanyi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yiwen Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Khan MJ, Bawra N, Verma A, Kumar V, Pugazhendhi A, Joshi KB, Vinayak V. Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells. BIORESOURCE TECHNOLOGY 2021; 319:124129. [PMID: 32977098 DOI: 10.1016/j.biortech.2020.124129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
The present study underlines the application of centrifugal force and pulse electric field techniques along with its comparison to resonance energy to harvest lipid from a fixed number of Pinnularia saprophila cells. Sulpho phospho vanillin method for lipid, and analysis of cells via microscopy was done. It was found that a centrifugal force of 11110×g for 15 min allowed ~3.39% lipid to ooze out with 2.5% cell destruction. Alternatively, when same numbers of diatom cells were subjected to pulse electric field at 110 kV/27 mA for 10 µs, maximum lipid production of 2.86% with 21.19% cell death was observed. It was perceived that diatom cells in a micro resonating micro fluidic chamber for 20 min harvested 4.4% of lipid with 11.16% of cell death. However, microfluidic device needs to be scaled up using cheaper material instead of silicon wafer, to be an efficient technique to milk lipid from diatoms.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Nisha Bawra
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Aayush Verma
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Vikas Kumar
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour University, Sagar, MP 470003, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour University, Sagar, MP 470003, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
23
|
Beccaria M, Siqueira ALM, Maniquet A, Giusti P, Piparo M, Stefanuto PH, Focant JF. Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples. J Sep Sci 2020; 44:115-134. [PMID: 33185940 DOI: 10.1002/jssc.202000907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022]
Abstract
A wide variety of biomass, from triglycerides to lignocellulosic-based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom-containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi-dimensional gas chromatography, both heart-cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi-volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography-mass spectrometry-based techniques, mainly focusing in the period 2011-early 2020. Particular emphasis has been devoted to the multi-dimensional gas chromatography-mass spectrometry techniques, for the isolation and characterization of the oxygen-containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.
Collapse
Affiliation(s)
- Marco Beccaria
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Anna Luiza Mendes Siqueira
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Adrien Maniquet
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre Giusti
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Marco Piparo
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
CRISPR/Cas technology promotes the various application of Dunaliella salina system. Appl Microbiol Biotechnol 2020; 104:8621-8630. [PMID: 32918585 DOI: 10.1007/s00253-020-10892-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Dunaliella salina (D. salina) has been widely applied in various fields because of its inherent advantages, such as the study of halotolerant mechanism, wastewater treatment, recombinant proteins expression, biofuel production, preparation of natural materials, and others. However, owing to the existence of low yield or in the laboratory exploration stage, D. salina system has been greatly restricted for practical production of various components. In past decade, significant progresses have been achieved for research of D. salina in these fields. Among them, D. salina as a novel expression system demonstrated a bright prospect, especially for large-scale production of foreign proteins, like the vaccines, antibodies, and other therapeutic proteins. Due to the low efficiency, application of traditional regulation tools is also greatly limited for exploration of D. salina system. The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system offers a precise editing tool to overcome the obstacles of D. salina system. This review not only comprehensively summarizes the recent progresses of D. salina in domain of gene engineering but also gives a deep analysis of problems and deficiencies in different fields of D. salina. Moreover, further prospects of CRISPR/Cas system and its significant challenges have been discussed in various aspects of D. salina. It provides a great referencing value for speeding up the maturity of D. salina system, and also supplies practical guiding significance to expand the new application fields for D. salina. KEY POINTS: • The review provides recent research progresses of various applications of D. salina. • The problems and deficiencies in different fields of D. salina were deeply analyzed. • The further prospects of CRISPR/Cas technology in D. salina system were predicted. • CRISPR/Cas system will promote the new application fields and maturity for D. salina.
Collapse
|
25
|
Cheng J, Guo H, Qiu Y, Zhang Z, Mao Y, Qian L, Yang W, Park JY. Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. BIORESOURCE TECHNOLOGY 2020; 312:123607. [PMID: 32504947 DOI: 10.1016/j.biortech.2020.123607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Switchable solvent N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was proposed to extract lipids from wet Nannochloropsis oceanica with a 5% higher extraction efficiency than chloroform-methanol. It was found that TEPDA acted mainly as an organic solvent to soften and dissolve lipids, while a small amount of TEPDA was dissociated into tertiary amine ion, i.e.,(C2H5)2N-(CH2)3-NH+(C2H5)2. This cation acted as a surfactant to promote cell disruption and lipid separation. With moisture increasing from 0 to 84 wt%, more TEPDA was dissociated into cationic surfactant to induce local rearrangement of phospholipid bilayers in cell membranes through electrostatic interaction, resulting in the fractal dimension of disrupted cells increased from 1.49 to 1.66. Accordingly, the yield of fatty acid methyl ester (FAME) through transesterification of lipids extracted with TEPDA increased by 9%, while FAME yield from lipids extracted with chloroform and n-hexane decreased by 41% and 65%, respectively.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yi Qiu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Yeon Park
- Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| |
Collapse
|
26
|
An assessment of heterotrophy and mixotrophy in Scenedesmus and its utilization in wastewater treatment. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Qu W, Loke Show P, Hasunuma T, Ho SH. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. BIORESOURCE TECHNOLOGY 2020; 305:123072. [PMID: 32163881 DOI: 10.1016/j.biortech.2020.123072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
Collapse
Affiliation(s)
- Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|