1
|
Wang K, Yan D, Chen X, Xu Z, Cao W, Li H. New insight to the enriched microorganisms driven by pollutant concentrations and types for industrial and domestic wastewater via distinguishing the municipal wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124789. [PMID: 39182810 DOI: 10.1016/j.envpol.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Enriched microbial communities and their metabolic function were investigated from the three wastewater treatment plants (WWTPs), which were CWWTP (coking wastewater), MWWTP1 (domestic wastewater), and MWWTP2 (mixed wastewater with domestic wastewater and effluent from various industrial WWTPs that contained the mentioned CWWTP). Pollutant types and concentrations differed among the three WWTPs and the reaction units in each WWTP. CWWTP had a higher TCN and phenol concentrations than the MWWTPs, however, in MWWTP2 no phenol was discovered but 0.72 mg/L TCN was found in its anaerobic unit. RDA results revealed that COD, TN, TP, TCN, NO3--N, and phenol were the main factors influencing the microbial communities (P < 0.05). CPCoA confirmed the microbial community difference driven by pollutant types and concentrations (65.1% of variance, P = 0.006). They provided diverse growth environments and ecological niches for microorganisms, shaping unique bacterial community in each WWTP, as: Thiobacillus, Tepidiphilus, Soehngenia, Diaphorobacter in CWWTP; Saccharibacteria, Acidovorax, Flavobacterium, Gp4 in MWWTP1; and Mesorhizobium, Terrimicrobium, Shinella, Oscillochloris in MWWTP2. Group comparative was analyzed and indicated that these unique bacteria exhibited statistically significant difference (P < 0.01) among the WWTPs, and they were the biomarkers in each WWTP respectively. Co-occurrence and coexclusion patterns of bacteria revealed that the most of dominant bacteria in each WWTP were assigned to different modules respectively, and these microorganisms had a closer positive relationship in each module. Consistent with the functional profile prediction, xenobiotics biodegradation and metabolism were higher in CWWTP (3.86%) than other WWTPs. The distinct functional bacteria metabolized particular xenobiotics via oxidoreductases, isomerases, lyases, transferases, decarboxylase, hydroxylase, and hydrolase in each unit or WWTP. These results provided the evidences to support the idea that the pollutant types and concentration put selection stress on microorganisms in the activated sludge, shaping the distinct microbial community structure and function.
Collapse
Affiliation(s)
- Kedan Wang
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Xiaolei Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zicong Xu
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Yang L, Chen C, Xu X, Wang XT, Xing D, Ren N, Lee DJ. Genome and metabolome analysis of Bacillus sp. Hex-HIT36: A newly screened functional microorganism for the degradation of 1-hexadecene in industrial wastewater. ENVIRONMENTAL RESEARCH 2024; 260:119594. [PMID: 39002630 DOI: 10.1016/j.envres.2024.119594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
1-Hexadecene has been detected at a level of mg/L in both influent and effluent of wastewater treatment plants situated in chemical/pharmaceutical industrial parks, which poses a potential threat to the environment. However, few reports are available on aerobic metabolic pathways and microorganisms involved in 1-Hexadecene degradation. In this study, a new strain of 1-Hexadecene-degrading bacteria, Bacillus sp. Hex-HIT36 (HIT36), was isolated from the activated sludge of a wastewater treatment plants located in an industrial park. The physicochemical properties and degradation efficacy of HIT36 were investigated. HIT36 was cultured on a medium containing 1-Hexadecene as a sole carbon source; it was found to remove ∼67% of total organic carbon as confirmed by mass spectrometric analysis of intermediate metabolites. Metabolomic and genomic analysis showed that HIT36 possesses various enzymes, namely, pyruvate dehydrogenase, dihydropolyhydroxyl dehydrogenase, and 2-oxoglutarate-2-oxoiron oxidoreductase (subunit alpha), which assist in the metabolization of readily available carbon source or long chain hydrocarbons present in the growth medium/vicinity. This suggests that HIT36 has efficient long-chain alkane degradation efficacy, and understanding the alkane degradation mechanism of this strain can help in developing technologies for the degradation of long-chain alkanes present in wastewater, thereby assisting in the bioremediation of environment.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China.
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| |
Collapse
|
3
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Zheng Z, Liao C, Chen Y, Ming T, Jiao L, Kong F, Su X, Xu J. Revealing the functional potential of microbial community of activated sludge for treating tuna processing wastewater through metagenomic analysis. Front Microbiol 2024; 15:1430199. [PMID: 39101040 PMCID: PMC11294940 DOI: 10.3389/fmicb.2024.1430199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Reports regarding the composition and functions of microorganisms in activated sludge from wastewater treatment plants for treating tuna processing wastewater remains scarce, with prevailing studies focusing on municipal and industrial wastewater. This study delves into the efficiency and biological dynamics of activated sludge from tuna processing wastewater, particularly under conditions of high lipid content, for pollutant removal. Through metagenomic analysis, we dissected the structure of microbial community, and its relevant biological functions as well as pathways of nitrogen and lipid metabolism in activated sludge. The findings revealed the presence of 19 phyla, 1,880 genera, and 7,974 species, with Proteobacteria emerging as the predominant phylum. The study assessed the relative abundance of the core microorganisms involved in nitrogen removal, including Thauera sp. MZ1T and Alicycliphilus denitrificans K601, among others. Moreover, the results also suggested that a diverse array of fatty acid-degrading microbes, such as Thauera aminoaromatica and Cupriavidus necator H16, could thrive under lipid-rich conditions. This research can provide some referable information for insights into optimizing the operations of wastewater treatment and identify some potential microbial agents for nitrogen and fatty acid degradation.
Collapse
Affiliation(s)
- Zhangyi Zheng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Changyu Liao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yubin Chen
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Tinghong Ming
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Lefei Jiao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Fei Kong
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Huang H, Xie C, Xia Z, Sun Z, Chen Y, Gou M, Tang Y, Cui H, Wu X. Multi-omics association study of hexadecane degradation in haloarchaeal strain Halogranum rubrum RO2-11. ENVIRONMENTAL RESEARCH 2024; 252:118751. [PMID: 38522738 DOI: 10.1016/j.envres.2024.118751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal β-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.
Collapse
Affiliation(s)
- HeLang Huang
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China; Chengdu Surveying Geotechnical Research Institute Co. Ltd. of MCC, Chengdu, 610023, China.
| | - CaiYun Xie
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - ZiYuan Xia
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - ZhaoYong Sun
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - YaTing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Sichuan, 610207, China.
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - HengLin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - XiaoLei Wu
- College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Deng Y, Liu W, Thi NT, Di HJ, Lian Y, Yang J, A D, Qiu R. Exploring the efficiency of tide flow constructed wetlands for treating mariculture wastewater: A comprehensive study on antibiotic removal mechanism under salinity stress. WATER RESEARCH 2024; 258:121738. [PMID: 38749184 DOI: 10.1016/j.watres.2024.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic residues in aquaculture environment pose persistent threats to ecology and human health, exacerbated by salt-alkali mariculture wastewater. Yet, little is known about antibiotic removal in tidal flow constructed wetlands (TFCWs) under salinity stress, especially considering TFCW constitution, configuration, and influent water characteristics. Here, the removal performance and mechanism of different TFCWs for sulfonamide antibiotics (SAs: sulfadiazine, sulfamethazine, sulfamonomethoxine, and sulfamethoxazole) and trimethoprim (TMP) from mariculture wastewater (with low, medium, and high salinity) were evaluated alongside comparisons of environmental factors and microbial responses. Results showed substantial reduction in alkalinity (from 8.25-8.26 to 7.65-8.18), salinity (from 3.67-11.30 ppt to 3.20-10.79 ppt), and SAs concentrations (from 7.79-15.46 mg/L to 0.25-10.00 mg/L) for mariculture wastewater using TFCWs. Zeolite and yellow flag configurations exhibited superior performance in SAs removal from mariculture wastewater. Furthermore, the salt-alkali neutralization and oxygen transport capabilities of zeolite, along with the salt-alkali tolerance and biofilm formation characteristics of yellow flag, promoted the development of a biofilm in the rhizosphere dominated by oxidative stress tolerance and facultative anaerobic traits, thereby improving the TFCW microenvironment. Consequently, aerobic (Sulfuritalea and Enterobacter) and salt-tolerant (Pseudomonas) functional bacteria involved in antibiotic degradation were selectively enriched in the zeolite- and yellow flag-TFCWs, contributing to the effective biodegradation of SAs (achieving removal efficiency of 92-97 %). Besides, the high salt-alkali levels of mariculture wastewater and the strong oxygen-enriched capacity of the TFCWs not only enhanced the aerobic oxidation reaction of SAs, but also bidirectionally inhibited the substrate adsorption and anaerobic reduction process of TMP. These findings address a critical gap by investigating the efficacy of TFCWs in removing antibiotics from mariculture wastewater under various salinity conditions, providing essential insights for optimizing wetland design and improving wastewater management in mariculture environments.
Collapse
Affiliation(s)
- Yangyang Deng
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wen Liu
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Nguyen Thuong Thi
- Asia-Japan Research Institute, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647 Christchurch, New Zealand
| | - Yingli Lian
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong Haid Group CO., Ltd, Guangzhou, 511450, China
| | - Jiewen Yang
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Dan A
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647 Christchurch, New Zealand.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Zhang X, Huang C, Sui W, Wu X, Zhang X. Irons differently modulate bacterial guilds for leading to varied efficiencies in simultaneous nitrification and denitrification (SND) within four aerobic bioreactors. CHEMOSPHERE 2024; 358:142216. [PMID: 38705403 DOI: 10.1016/j.chemosphere.2024.142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengli Huang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weikang Sui
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Muhammad R, Boothman C, Song H, Lloyd JR, van Dongen BE. Assessing the impacts of oil contamination on microbial communities in a Niger Delta soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171813. [PMID: 38513868 DOI: 10.1016/j.scitotenv.2024.171813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Oil spills are a global challenge, contaminating the environment with organics and metals known to elicit toxic effects. Ecosystems within Nigeria's Niger Delta have suffered from prolonged severe spills for many decades but the level of impact on the soil microbial community structure and the potential for contaminant bioremediation remains unclear. Here, we assessed the extent/impact of an oil spill in this area 6 months after the accident on both the soil microbial community/diversity and the distribution of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDGNα) genes, responsible for encoding enzymes involved in the degradation of PAHs, across the impacted area. Analyses confirmed the presence of oil contamination, including metals such as Cr and Ni, across the whole impacted area and at depth. The contamination impacted on the microbial community composition, resulting in a lower diversity in all contaminated soils. Gamma-, Delta-, Alpha- proteobacteria and Acidobacteriia dominated 16S rRNA gene sequences across the contaminated area, while Ktedonobacteria dominated the non-contaminated soils. The PAH-RHDαGN genes were only detected in the contaminated area, highlighting a clear relationship with the oil contamination/hydrocarbon metabolism. Correlation analysis indicated significant positive relationships between the oil contaminants (organics, Cr and Ni), PAH-RHDαGN gene, and the presence of bacteria/archaea such as Anaerolinea, Spirochaetia Bacteroidia Thermoplasmata, Methanomicrobia, and Methanobacteria indicating that the oil contamination not only impacted the microbial community/diversity present, but that the microbes across the impacted area and at depth were potentially playing an important role in degrading the oil contamination present. These findings provide new insights on the level of oil contamination remaining 6 months after an oil spill, its impacts on indigenous soil microbial communities and their potential for in situ bioremediation within a Niger Delta's ecosystem. It highlights the strength of using a cross-disciplinary approach to assess the extent of oil pollution in a single study.
Collapse
Affiliation(s)
- Rakiya Muhammad
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Christopher Boothman
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Hokyung Song
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK.
| |
Collapse
|
9
|
Zhang R, Ye Z, Guo X, Yang Y, Li G. Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical-polluted groundwater. ENVIRONMENT INTERNATIONAL 2024; 188:108755. [PMID: 38772206 DOI: 10.1016/j.envint.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The rapid advance in shotgun metagenome sequencing has enabled us to identify uncultivated functional microorganisms in polluted environments. While aerobic petrochemical-degrading pathways have been extensively studied, the anaerobic mechanisms remain less explored. Here, we conducted a study at a petrochemical-polluted groundwater site in Henan Province, Central China. A total of twelve groundwater monitoring wells were installed to collect groundwater samples. Benzene appeared to be the predominant pollutant, detected in 10 out of 12 samples, with concentrations ranging from 1.4 μg/L to 5,280 μg/L. Due to the low aquifer permeability, pollutant migration occurred slowly, resulting in relatively low benzene concentrations downstream within the heavily polluted area. Deep metagenome sequencing revealed Proteobacteria as the dominant phylum, accounting for over 63 % of total abundances. Microbial α-diversity was low in heavily polluted samples, with community compositions substantially differing from those in lightly polluted samples. dmpK encoding the phenol/toluene 2-monooxygenase was detected across all samples, while the dioxygenase bedC1 was not detected, suggesting that aerobic benzene degradation might occur through monooxygenation. Sequence assembly and binning yielded 350 high-quality metagenome-assembled genomes (MAGs), with 30 MAGs harboring functional genes associated with aerobic or anaerobic benzene degradation. About 80 % of MAGs harboring functional genes associated with anaerobic benzene degradation remained taxonomically unclassified at the genus level, suggesting that our current database coverage of anaerobic benzene-degrading microorganisms is very limited. Furthermore, two genes integral to anaerobic benzene metabolism, i.e, benzoyl-CoA reductase (bamB) and glutaryl-CoA dehydrogenase (acd), were not annotated by metagenome functional analyses but were identified within the MAGs, signifying the importance of integrating both contig-based and MAG-based approaches. Together, our efforts of functional annotation and metagenome binning generate a robust blueprint of microbial functional potentials in petrochemical-polluted groundwater, which is crucial for designing proficient bioremediation strategies.
Collapse
Affiliation(s)
- Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhencheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Hidalgo-Martinez K, Giachini AJ, Schneider M, Soriano A, Baessa MP, Martins LF, de Oliveira VM. Shifts in structure and dynamics of the soil microbiome in biofuel/fuel blend-affected areas triggered by different bioremediation treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33663-33684. [PMID: 38687451 DOI: 10.1007/s11356-024-33304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The use of biofuels has grown in the last decades as a consequence of the direct environmental impacts of fossil fuel use. Elucidating structure, diversity, species interactions, and assembly mechanisms of microbiomes is crucial for understanding the influence of environmental disturbances. However, little is known about how contamination with biofuel/petrofuel blends alters the soil microbiome. Here, we studied the dynamics in the soil microbiome structure and composition of four field areas under long-term contamination with biofuel/fossil fuel blends (ethanol 10% and gasoline 90%-E10; ethanol 25% and gasoline 75%-E25; soybean biodiesel 20% and diesel 80%-B20) submitted to different bioremediation treatments along a temporal gradient. Soil microbiomes from biodiesel-polluted areas exhibited higher richness and diversity index values and more complex microbial communities than ethanol-polluted areas. Additionally, monitored natural attenuation B20-polluted areas were less affected by perturbations caused by bioremediation treatments. As a consequence, once biostimulation was applied, the degradation was slower compared with areas previously actively treated. In soils with low diversity and richness, the impact of bioremediation treatments on the microbiomes was greater, and as a result, the hydrocarbon degradation extent was higher. The network analysis showed that all abundant keystone taxa corresponded to well-known degraders, suggesting that the abundant species are core targets for biostimulation in soil remediation processes. Altogether, these findings showed that the knowledge gained through the study of microbiomes in contaminated areas may help design and conduct optimized bioremediation approaches, paving the way for future rationalized and efficient pollutant mitigation strategies.
Collapse
Affiliation(s)
- Kelly Hidalgo-Martinez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil.
- Programa de Pós-Graduação de Genética E Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil.
| | - Admir José Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Marcio Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Adriana Soriano
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Marcus Paulus Baessa
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Luiz Fernando Martins
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil
| |
Collapse
|
11
|
Xin Q, Saborimanesh N, Ridenour C, Farooqi H. Fate, behaviour and microbial response of diluted bitumen and conventional crude spills in a simulated warm freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123224. [PMID: 38159633 DOI: 10.1016/j.envpol.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| |
Collapse
|
12
|
Chen J, Liang J, Li C, Dai J, Mai W, Wei Y. An enriched ammonia-oxidizing microbiota enables high removal efficiency of ammonia in antibiotic production wastewater. CHEMOSPHERE 2023; 310:136854. [PMID: 36243093 DOI: 10.1016/j.chemosphere.2022.136854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
High ammonia concentration hinders the efficient treatment of antibiotic production wastewater (APW). Developing effective ammonia oxidation wastewater treatment strategies is an ideal approach for facilitating APW treatment. Compared with traditional nitrification strategies, the partial nitrification process is more eco-friendly, less energy-intensive, and less excess sludge. The primary limiting factor of the partial nitrification process is increasing ammonia-oxidizing bacteria (AOB) while decreasing nitrite-oxidizing bacteria (NOB). In this study, an efficient AOB microbiota (named AF2) was obtained via enrichment of an aerobic activated sludge (AS0) collected from a pharmaceutical wastewater treatment plant. After a 52-day enrichment of AS0 in 250 mL flasks, the microbiota AE1 with 69.18% Nitrosomonas microorganisms was obtained. Subsequent scaled-up cultivation in a 10 L fermenter led to the AF2 microbiota with 59.22% Nitrosomonas. Low concentration of free ammonia (FA, < 42.01 mg L-1) had a negligible effect on the activity of AF2, and the nitrite-nitrogen accumulation rate (NAR) of AF2 was 98% when FA concentration was 42.01 mg L-1. The specific ammonia oxidation rates (SAORs) at 30 °C and 15 °C were 3.64 kg NH4+-N·kg MLVSS-1·d-1 and 1.43 kg NH4+-N·kg MLVSS-1·d-1 (MLVSS: mixed liquor volatile suspended solids). The SAOR was 0.52 kg NH4+-N·kg MLVSS-1·d-1 when the NaCl concentration was increased from 0 to 20 g L-1, showing that AF2 functioning was stable in a high-level salt environment. The ammonia oxidation performance of AF2 was verified by treating abamectin and lincomycin production wastewater. The NARs of AF2 used for abamectin and lincomycin production wastewater treatment were >90% and the SAORs were 2.39 kg NH4+-N·kg MLVSS-1·d-1 and 0.54 kg NH4+-N·kg MLVSS-1·d-1, respectively, which was higher than the traditional biological denitrification process. In summary, AF2 was effective for APW treatment via enhanced ammonia removal efficiency, demonstrating great potential for future industrial wastewater treatment.
Collapse
Affiliation(s)
- Jiamin Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jiawei Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Chenjing Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jihua Dai
- Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Wenning Mai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, PR China.
| |
Collapse
|
13
|
Gholami M, Ghaneian MT, Teimouri F, Ehrampoush MH, Nadoushan AJ, Jambarsang S, Mahvi AH. Indigenous bacteria as an alternative for promoting recycled paper and cardboard mill wastewater treatment. Sci Rep 2022; 12:16767. [PMID: 36203004 PMCID: PMC9537506 DOI: 10.1038/s41598-022-21362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 12/07/2022] Open
Abstract
The present study aimed to investigate indigenous bacteria possibility in recycled paper and cardboard mill (RPCM) wastewater treatment through the isolation and identification of full-scale RPCM indigenous bacteria. The molecular characterization of the isolated bacteria was performed by 16S rRNA gene sequencing. Klebsiella pneumoniae AT-1 (MZ599583), Citrobacter freundii AT-4 (OK178569), and Bacillus subtilis AT-5 (MZ323975) were dominant strains used for RPCM wastewater bioremediation experiments. Under optimal conditions, the maximum values of chemical oxygen demand (COD) and color biodegradation by C. freundii AT-4 were 79.54% and 43.81% after 10 days of incubation, respectively. In the case of B. subtilis strain AT-5 and K. pneumoniae AT-1, the maximum values of COD and color biodegradation were 70.08%, 45.96%, 71.26%, and 32.06%, respectively. The results from optimal conditions regarding efficiency were higher in comparison with the efficiency obtained from the oxidation ditch treatment unit in full-scale RPCM-WWTP. Therefore, the present study introduces the isolated indigenous bacteria strains as a promising candidate for improving the RPCM-WWTP efficiency using bioremediation.
Collapse
Affiliation(s)
- Maryam Gholami
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahimeh Teimouri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Environmental Science and Technology Research Center, Department of Environmental Health- Radiation Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbasali Jafari Nadoushan
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Hossein Mahvi
- Center for Water Quality Research (CWQR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran. .,Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yan Z, Li A, Shim H, Wang D, Cheng S, Wang Y, Li M. Effect of ozone pretreatment on biogranulation with partial nitritation - Anammox two stages for nitrogen removal from mature landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115470. [PMID: 35751269 DOI: 10.1016/j.jenvman.2022.115470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the extremely low C/N ratio, high concentration of ammonia nitrogen and refractory organic matter of mature landfill leachate (MLL), appropriate processes should be selected to effectively remove nitrogen and reduce disposal costs. Partial nitritation (PN) and anaerobic ammonia oxidation (AMX) have been used as the main nitrogen removal processes for MLL, and the sludge granulation in PN and AMX processes could contribute to high biological activity, good sedimentation performance, and stable resistance to toxicity. In this study, the O3-PN-AMX biogranules process was selected to effectively remove nitrogen from MLL without carbon addition and pH adjustment. Without uneconomical NH4+-N oxidation and wasting the alkalinity of MLL, ozone pretreatment achieved color removal, decreased humic- and fulvic-like acid substances, and alleviated the MLL toxicity on ammonia oxidizers. In addition, the ozonation of MLL could shorten the start-up time and improve the treatment efficiency and biogranules stability of PN and AMX processes. Efficient and stable nitritation was achieved in PN reactor without strict dissolved oxygen (DO) control, which was attributed to the unique structure of granular sludge, ozone pretreatment, and alternating inhibition of free ammonia and free nitric acid on nitrite oxidizers. Through the application of ozone pretreatment and granular sludge, the nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) of the O3-PN-AMX biogranules process reached 0.39 kg/m3/day and 85%, respectively, for the undiluted MLL treatment. This study might provide a novel and effective operation strategy of combined process for the efficient, economical, and stable nitrogen removal from MLL.
Collapse
Affiliation(s)
- Zhenyu Yan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Danyang Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuexing Wang
- Shenzhen Shenshui Ecological & Environmental Technology Co., Ltd., Shenzhen, 518048, China
| | - Ming Li
- Engelbart (Beijing) Eco-Tech Co., Ltd., Beijing, 101300, China
| |
Collapse
|
15
|
Deodorization of the off-gas from livestock manure aerobic composting tank using biotrickling filters and its mechanism. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Sharma P, Singh SP. Identification and profiling of microbial community from industrial sludge. Arch Microbiol 2022; 204:234. [PMID: 35362813 DOI: 10.1007/s00203-022-02831-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
The purpose of this study is to identify microbial communities in pulp and paper industry sludge and their metagenomic profiling on the basis of; phylum, class, order, family, genus and species level. Results revealed that the dominant phyla in 16S rRNA Illumina Miseq analysis inside sludge were Anaerolinea, Pseudomonas, Clostridia, Bacteriodia, Gammaproteobacteria, Spirochetia, Deltaproteobacteria, Spirochaetaceae, Prolixibacteraceae and some unknown microbial strains are also dominant. Metagenomics is a molecular biology-based technology that uses bioinformatics to evaluate huge gene sequences extracted from environmental samples to assess the composition and function of microbiota. The results of metabarcoding of the V3-V4 16S rRNA regions acquired from paired-end Illumina MiSeq sequencing were used to analyze bacterial communities and structure. The present work demonstrates the potential approach to sludge treatment in the open environment via the naturally adapted microorganism, which could be an essential addition to the disposal site. In summary, these investigations indicate that the indigenous microbial community is an acceptable bioresource for remediation or detoxification following secondary treatment. This research aims at understanding the structure of microbial communities and their diversity (%) in highly contaminated sludge to perform in situ bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, 226 025, Uttar Pradesh, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
17
|
Xu H, Tian B, Shi W, Tian J, Wang W, Qin M. Maturation of the oral microbiota during primary teeth eruption: a longitudinal, preliminary study. J Oral Microbiol 2022; 14:2051352. [PMID: 35309409 PMCID: PMC8933015 DOI: 10.1080/20002297.2022.2051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction Oral microbiota that established in the early years of life may influence the child’s oral health in the long term. Until now, no consensus is reached about whether the development of the oral microbiota is more related with age increase or more with teeth eruption. Objective To analyze the microbiota development of both saliva and supragingival plaque during the gradual eruption of primary teeth in caries-free infants and toddlers. Methods Saliva and plaque samples were collected at five and four dentition states, respectively, and were identified by bacterial 16S rRNA gene sequencing. Results During the longitudinal observation, the saliva ecosystem seemed more complex and dynamic than the plaque, with larger bacteria quantity and more significantly varied species over time. About 70% of the initial colonized OTUs in plaque persisted until the completion of the primary dentition. Transient bacteria were mostly detected in the early saliva and plaque microbiota, which came from the environment and other sites of the human body. Microbial diversity in both saliva and plaque varied greatly from pre-dentition to full eruption of eight anterior teeth, but not during the eruption of primary molars. Conclusion Oral bacterial development follows an ordered sequence during the primary teeth eruption. ‘Fully eruption of all primary anterior teeth’ is a critical stage in this process.
Collapse
Affiliation(s)
- He Xu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| | - Bijun Tian
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| | - Weihua Shi
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| | - Jing Tian
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| | - Wenjun Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, Hebei Province, China
| |
Collapse
|
18
|
Zhu Y, Yang S, Wang W, Meng L, Guo J. Applications of Sponge Iron and Effects of Organic Carbon Source on Sulfate-Reducing Ammonium Oxidation Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042283. [PMID: 35206470 PMCID: PMC8872479 DOI: 10.3390/ijerph19042283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
The typical characteristics of wastewater produced from seafood, chemical, textile, and paper industries are that it contains ammonia, sulfate, and a certain amount of chemical oxygen demand (COD). The sulfate-reducing ammonium oxidation process is a biochemical reaction that allows both ammonia and sulfate removal, but its low growth rate and harsh reaction conditions limit its practical application. Due to the adsorption properties of the iron sponge and its robust structure, it provides a suitable living environment for microorganisms. To reduce the negative impact on the environment, we employed 4.8 kg of sponge iron in a 2.0 dm3 anaerobic sequencing batch reactor (ASBR). We investigated the effects of the type and concentration of carbon sources on the performance of the sulfate-reducing ammonium oxidation (SRAO) process. The results demonstrated that during a start-up period of 90 days, the average ammonium removal efficiency and the sulfate conversion efficiency of the reactor containing the sponge iron were 4.42% and 8.37% higher than those of the reactor without the sponge iron. The addition of the sponge iron shortens the start-up time of this greenhouse gas-free denitrification process and reduces future costs in practical applications. The removal of total nitrogen (TN) significantly increased after adding organic carbon sources and then declined sharply, while the most considerable reduction of ammonium removal efficiency from 98.4% to 30.5% was observed with adding phenol. The performance of the group employing glucose as the carbon source was recovered on the 28th day, with the average ammonium removal efficiency increasing from 49.03% to 83.5%. The results of this simulation study will help the rapid start-up of SRAO in the water treatment industry and can precisely guide the application of the SRAO process for wastewater containing different organic carbon sources.
Collapse
|
19
|
Sjøholm KK, Dechesne A, Lyon D, Saunders DMV, Birch H, Mayer P. Linking biodegradation kinetics, microbial composition and test temperature - Testing 40 petroleum hydrocarbons using inocula collected in winter and summer. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:152-160. [PMID: 34985480 DOI: 10.1039/d1em00319d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many factors affect the biodegradation kinetics of chemicals in test systems and the environment. Empirical knowledge is needed on how much test temperature, inoculum, test substances and co-substrates influence the biodegradation kinetics and microbial composition in the test. Water was sampled from the Gudenaa river in winter (2.7 °C) and summer (17 °C) (microbial inoculum) and combined with an aqueous stock solution of >40 petroleum hydrocarbons prepared by passive dosing. This resulted in low-concentration test systems that were incubated for 30 days at 2.7, 12 and 20 °C. Primary biodegradation kinetics, based on substrate depletion relative to abiotic controls, were determined with automated Solid Phase Microextraction coupled to GC/MS. Biodegradation kinetics were remarkably similar for summer and winter inocula when tested at the same temperature, except when cooling summer inoculum to 2.7 °C which delayed degradation relative to winter inoculum. Amplicon sequencing was applied to determine shifts in the microbial composition between season and during incubations: (1) the microbial composition of summer and winter inocula were remarkably similar, (2) the incubation and the incubation temperature had both a clear impact on the microbial composition and (3) the effect of adding >40 petroleum hydrocarbons at low test concentrations was limited but resulted in some proliferation of the known petroleum hydrocarbon degraders Nevskia and Sulfuritalea. Overall, biodegradation kinetics and its temperature dependency were very similar for winter and summer inoculum, whereas the microbial composition was more affected by incubation and test temperature compared to the addition of test chemicals at low concentrations.
Collapse
Affiliation(s)
- Karina Knudsmark Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - David M V Saunders
- Concawe, B-1160 Brussels, Belgium
- Shell Health, Shell International B.V., 2596 HR The Hague, The Netherlands
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
21
|
Han T, Zheng J, Han Y, Xu X, Li M, Schwarz C, Zhu L. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148145. [PMID: 34119788 DOI: 10.1016/j.scitotenv.2021.148145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Microorganisms in activated sludge are widely recognized for their roles in wastewater treatment. However, previous studies were mainly concerned with the diversity and driving factors of microbial communities within domestic wastewater treatment, and those of domestic wastewater treatment systems mixed with industrial wastewater are poorly understood. In this research, three different full-scale aerobic activated sludge (AS) wastewater treatment systems fed with municipal, textile-dyeing, and mixed wastewater, respectively, were monitored over the operation course of three months. 16S rRNA amplicon sequencing analysis revealed that the microbial communities in textile-dyeing wastewater activated sludge (AS) exhibited significantly lower richness and diversity (p < 0.01, Adonis) compared to those fed with municipal wastewater. In contrast, textile-dyeing derived AS selectively enriched microbial taxa with aromatic degradation and denitrification potentials. Further, FARPROTAX and metabolomics indicated the inhibition of 72.5% metabolic functions (p < 0.01) in AS from the system fed with textile-dyeing wastewater, including the pathways of pentose phosphate metabolism, purine metabolism, and glycerophospholipid metabolism. Overall, this study corroborates textile-dyeing wastewater is a novel microbial niche and could suppress sludge performance by inhibiting microbial activity and metabolism, raising concerns on AS-based systems for industrial wastewater treatment.
Collapse
Affiliation(s)
- Taixing Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
22
|
Ohore OE, Zhang S, Guo S, Manirakiza B, Addo FG, Zhang W. The fate of tetracycline in vegetated mesocosmic wetlands and its impact on the water quality and epiphytic microbes. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126148. [PMID: 34229400 DOI: 10.1016/j.jhazmat.2021.126148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
The fate of antibiotics and their impact on antibiotic resistance genes (ARGs) and microbial communities are far from clear in wetlands. The fate and impact of tetracycline (TC) on the nutrient degradation of wetlands and epiphytic microbes were investigated. This study showed that after TC spiking, 99.7% of TC were removed from the surface water of wetlands containing Vallisneria spiralis within 4 days post-treatment. TC spiking impaired the nutrient removal capacity and disrupted epiphytic microbial community structure while enhancing the abundance of 11 ARGs subtypes, including tetracycline resistance genes, tetX, tetM, tetO, tetQ, tetS, and tet36. TC decreased bacterial biodiversity but amplified the relative abundance of Proteobacteria and Firmicutes by 4% and 61%, respectively, and increased eukaryotic diversity. 16 metabolic pathways including Carbohydrate, Energy, Amino acid, 'cofactor and vitamins' metabolisms were significantly (p < 0.01) increased in TC treatment. Phylogenetic, functional prediction analysis indicated that Flavobacterium was positively related with xenobiotics, cell motility, 'terpenoids and polyketides' metabolism but negatively related to nucleotide metabolism, while Rhodobacter showed a reverse trend but positively related with nucleotide and 'glycan biosynthesis' and metabolism. These data highlighted that TC has negative impacts on epiphytic microbial community and nutrients removal in wetlands.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Wenzjun Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Zhou H, Chen C, Zhou S, Bu K, Li P, Lin X, Jiang L, Zhang C. Performance and microbial community analysis of a bio-contact oxidation reactor during the treatment of low-COD and high-salinity oilfield produced water. BIORESOURCE TECHNOLOGY 2021; 335:125267. [PMID: 33992912 DOI: 10.1016/j.biortech.2021.125267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The multistage bio-contact oxidation reactor (BCOR) is a widely used biological strategy to treat wastewater, however, little is known about the performance and microbial community information of BCOR during the treatment of low-COD and high-salinity oilfield produced water. In this study, the performance of a multistage BCOR in treating produced water was investigated. The result suggested the BCOR could efficiently remove COD, BOD5, NH4+-N, and oil pollutants. Besides, high-throughput sequencing analysis revealed that oil content was the main variable in shaping the community structure. The highest total relative abundance of potential pollutants degraders in first BCOR stage suggested significant role of this stage in pollutants removal. In addition, the correlation analysis disclosed the key functional genera during the degradation process, including Rhodobacter, Citreibacter, and Roseovarius. Moreover, network analysis revealed that the microbial taxa within same module had strong ecological linkages and specific functions.
Collapse
Affiliation(s)
- Hanghai Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunlei Chen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Shaoxiong Zhou
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Kuiyong Bu
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Xiaoyun Lin
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
24
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
25
|
Ailijiang N, Chang J, Liang P, Zhang X, Huang X. Impact of electrical stimulation modes on the degradation of refractory phenolics and the analysis of microbial communities in an anaerobic-aerobic-coupled upflow bioelectrochemical reactor. BIORESOURCE TECHNOLOGY 2021; 320:124371. [PMID: 33186803 DOI: 10.1016/j.biortech.2020.124371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
An electrically stimulated anaerobic-aerobic coupled system was developed to improve the biodegradation of refractory phenolics. Expected 4-nitrophenol, 2, 4-dinitrophenol, and COD removals in the system with aerobic cathodic and anaerobic anodic chambers were approximately 53.7%, 45.4%, 22.3% (intermittent mode) and 37.9%, 19.8%, 17.3% (continuous mode) higher than that in the control system (26.0 ± 6.4%, 30.7 ± 7.1%, 49.8 ± 3.0%). 2, 4-dichlorophenol removal in the system with aerobic anodic and anaerobic cathodic chambers was approximately 28.5% higher than that in the control system (71.4 ± 5.7%). The contribution of the aerobic cathodic/anodic chambers to the removal of phenolic compounds was higher than that of the anaerobic cathodic/anodic chambers. The species related to phenolic biodegradation (Rhodococcus, Achromobacter, PSB-M-3, and Sphingobium) were enriched in the cathodic and anodic chambers of the system. These results showed that intermittent electrical stimulation could be a potential alternative for the efficient degradation of refractory phenolics.
Collapse
Affiliation(s)
- Nuerla Ailijiang
- Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 830046, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiali Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|