1
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
2
|
Zeng L, Yang S, Chen Q, Fu W, Wu M, Oleszczuk P, Pan B, Xing B. The critical role of electron donating rate of pyrogenic carbon in mediating the degradation of phenols in the aquatic environment. WATER RESEARCH 2024; 265:122217. [PMID: 39128335 DOI: 10.1016/j.watres.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Phenols are the widely detected contaminants in the aquatic environment. Pyrogenic carbon (PyC) can mediate phenols degradation, but the specific properties of PyC or phenols influencing this reaction remain unknown. The present study investigated the kinetic process and mechanism of removal of various phenols by different PyC in aqueous phase system. To avoid the impact of the accumulated degradation byproducts on the overall reaction, we conducted a short-term experiment, quantified adsorption and degradation, and obtained reaction rate constants using a two-compartment first-order kinetics model. The adsorption rate constants (ka) of phenols by PyC were 10-220 times higher than degradation rate constants (kd), and they were positively correlated. Interestingly, no correlation was found between kd and common PyC properties, including functional groups, electron transfer capacities, and surface properties. Phenols were primarily attacked by •OH in the adsorbed phase. But neither the instantly trapped •OH, nor the accumulated •OH could explain phenol degradation. Chemical redox titration revealed that the electron transfer parameters, such as the electron donating rate constant (kED) of PyC, correlated well with kd (r>0.87, P < 0.05) of phenols. Analysis of 13 phenols showed that Egap and ELUMO negatively correlated with their kd, confirming the importance of the electronic properties of phenols to their degradation kinetics. This study highlights the importance of PyC electron transfer kinetics parameters for phenols degradation and manipulation of PyC electron transfer rate may accelerate organic pollutant removal, which contributes to a deeper understanding of the environmental behavior and application of PyC systems.
Collapse
Affiliation(s)
- Liang Zeng
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Sizhe Yang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Quan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China.
| | - Wang Fu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
3
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. In situ activation of peroxymonosulfate with bioelectricity for sulfamethoxazole sustainable removal. ENVIRONMENTAL RESEARCH 2024; 257:119294. [PMID: 38823609 DOI: 10.1016/j.envres.2024.119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Conventional electrochemical activation of peroxymonosulfate (PMS) is not very cost-effective and practical by the excessive input of energy. The electricity generated by photosynthetic microalgae fuel cells (MFCs) is utilized to activate PMS, which would achieve the combination of green bioelectricity and advanced oxidation processes for sustainable pollutants degradation. In this study, a novel dual-chamber of MFCs was constructed by using microalgae as anode electron donor and PMS as cathode electron acceptor, which was operating under both close-circuit and open-circuit conditions. Under close-circuit condition, 1-12 mM PMS in cathode was successfully in situ activated, where 32.00%-99.83% of SMX was removed within 24 h, which was about 1.21-1.78 times of that in the open-circuit of MFCs. Meanwhile, a significant increase in bioelectricity generation in MFCs was observed after the accumulation of microalgae biomass (4.65-5.37 mg/L), which was attributed to the efficient electron separation and transfer. Furthermore, the electrochemical analysis demonstrated that SMX or its products were functioned as electronic shuttles, facilitating the electrochemical reaction and altering the electrical capacitance. The quenching experiments and voltage output results reflected that complex active radical (SO4⋅-, ⋅OH, and 1O2) were involved in SMX removal. Seven degradation products of SMX were detected and S-N bond cleavage was the main degradation pathway. Predicted toxicity values calculated by ECOSAR program showed that all the products were less toxic or nontoxic. Finally, the density functional theory (DFT) calculations revealed that the O and N atoms on SMX were more susceptible to electrophilic reactions, which were more vulnerable to be attacked by reactive species. This study provided new insights into the activation of PMS by bioelectricity for SMX degradation, proposing the mechanisms for PMS activation and degradation sites of SMX.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
4
|
Mamani Ramos Y, Huamán Castilla NL, Colque Ayma EJ, Mamani Condori N, Campos Quiróz CN, Vilca FZ. Divergent effects of azithromycin on purple corn (Zea mays L.) cultivation: Impact on biomass and antioxidant compounds. PLoS One 2024; 19:e0307548. [PMID: 39172948 PMCID: PMC11340972 DOI: 10.1371/journal.pone.0307548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
The present study assessed the impact of using irrigation water contaminated with Azithromycin (AZM) residues on the biomass and antioxidant compounds of purple corn; for this purpose, the plants were cultivated under ambient conditions, and the substrate used consisted of soil free from AZM residues, mixed with compost in a ratio of 1:1 (v/v). The experiment was completely randomized with four replications, with treatments of 0, 1, 10, and 100 μg/L of AZM. The results indicate that the presence of AZM in irrigation water at doses of 1 and 10 μg/L increases the weight of dry aboveground biomass, while at an amount of 100 μg/L, it decreases. Likewise, this study reveals that by increasing the concentration of AZM from 1 to 10 μg/L, total polyphenols and monomeric anthocyanins double, in contrast, with an increase to 100 μg/L, these decrease by 44 and 53%, respectively. It has been demonstrated that purple corn exposed to the antibiotic AZM at low doses has a notable antioxidant function in terms of DPPH and ORAC. The content of flavonols, phenolic acids, and flavanols increases by 57, 28, and 83%, respectively, when the AZM concentration is from 1 to 10 μg/L. However, with an increase to 100 μg/L, these compounds decrease by 17, 40, and 42%, respectively. On the other hand, stem length, root length, and dry weight of root biomass are not significantly affected by the presence of AZM in irrigation water.
Collapse
Affiliation(s)
- Yoselin Mamani Ramos
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Nils Leander Huamán Castilla
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua, Perú
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú, Universidad Nacional de Moquegua, Moquegua, Perú
| | - Elvis Jack Colque Ayma
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Noemi Mamani Condori
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Clara Nely Campos Quiróz
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Franz Zirena Vilca
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| |
Collapse
|
5
|
Kumar V, Sharma P, Pasrija R, Chakraborty P, Basheer T, Thomas J, Sehgal SS, Gupta M, Muzammil K. Engineered lignocellulosic based biochar to remove endocrine-disrupting chemicals: Assessment of binding mechanism. CHEMOSPHERE 2024; 362:142584. [PMID: 38866332 DOI: 10.1016/j.chemosphere.2024.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The safety and health of aquatic organisms and humans are threatened by the increasing presence of pollutants in the environment. Endocrine disrupting chemicals are common pollutants which affect the function of endocrine and causes adverse effects on human health. These chemicals can disrupt metabolic processes by interacting with hormone receptors upon consumptions by humans or aquatic species. Several studies have reported the presence of endocrine disrupting chemicals in waterbodies, food, air and soil. These chemicals are associated with increasing occurrence of obesity, metabolic disorders, reproductive abnormalities, autism, cancer, epigenetic variation and cardiovascular risk. Conventional treatment processes are expensive, not environment friendly and unable to achieve complete removal of these harmful chemicals. In recent years, biochar from different sources has gained a considerable interest due to their adsorption efficiency with porous structure and large surface areas. biochar derived from lignocellulosic biomass are widely used as sustainable catalysts in soil remediation, carbon sequestration, removal of organic and inorganic pollutants and wastewater treatment. This review conceptualizes the production techniques of biochar from lignocellulosic biomass and explores the functionalization and interaction of biochar with endocrine-disrupting chemicals. This review also identifies the further needs of research. Overall, the environmental and health risks of endocrine-disrupting chemicals can be dealt with by biochar produced from lignocellulosic biomass as a sustainable and prominent approach.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, JAIN (Deemed to be University), Whitefield, Bangalore, 560066, Karnataka, India.
| | - Thazeem Basheer
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Mundur, Palakkad, 678592, Kerala, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| | - Manish Gupta
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
6
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
7
|
Li S, Zhang T, Zheng H, Dong X, Leong YK, Chang JS. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171885. [PMID: 38527540 DOI: 10.1016/j.scitotenv.2024.171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
8
|
Zhang Y, He R, Sun Y, Zhao J, Zhang X, Wang J, Bildyukevich AV. Influence of microplastics and environmentally persistent free radicals on the ability of biochar components to promote degradation of antibiotics by activated peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123827. [PMID: 38574947 DOI: 10.1016/j.envpol.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) in sludge can affect the ability of biochar-activated peroxymonosulfate (PMS) to degrade antibiotics. In this work, biochar was prepared by mixing sludge and polystyrene (PS) through hydrothermal carbonization (HTC) and high-temperature pyrolysis processes. The resulting biochar was used to activate PMS to degrade ofloxacin (OFX), levofloxacin (LEV), and pefloxacin (PFX). The addition of PS significantly enhanced the ability of biochar/PMS to degrade antibiotics and the levels of environmentally persistent free radicals (EPFRs, 4.59 × 1020 spin/g) due to the decomposition of PS. The addition of PS resulted in a slight decrease in the specific surface area of biochar (2-3 m2/g on average), but a significant increase in the concentration of EPFRs increased the removal efficiency. The activation of PMS by biochar is dominated by free radicals, accounting for about 70%, in which SO4•- and •OH contribute the most and O2•- the least. However, 1O2 contributes 15-20% to the degradation of antibiotics in non-free radical processes. Overall, the process of biochar/PMS degradation of antibiotics is mainly dominated by free radicals, and the effect of non-free radicals is not obvious. Both hydrochar and pyrocarbon samples showed good hydrophilicity, and this property should improve the ability of active sites on biochar to degrade antibiotics. In the HTC process, PS can decompose during hydrochar preparation, with a maximum reduction value of 40.09%. The three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) and total organic carbon (TOC) results show that the protein content in sludge plays a major role in reducing PS, with little effect of polysaccharide and SiO2. There are six to seven degradation intermediates of quinolone antibiotics, which are eventually degraded into CO2, H2O, and inorganic substances. The regeneration experiment showed good reusability of hydrochar and pyrocarbon, further demonstrating the suitability of biochar for the degradation of antibiotics.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Yutai Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jiqin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 220072, Minsk, Surganov str. 13, Belarus.
| |
Collapse
|
9
|
Li Z, Chen S, Liu L, Qian D, Yuan M, Yu J, Chen Z, Yang J, Su X, Hu J, Hou H. Formation mechanism of persistent free radicals during pyrolysis of Fenton-conditioned sewage sludge: Influence of NOM and iron. WATER RESEARCH 2024; 254:121376. [PMID: 38489852 DOI: 10.1016/j.watres.2024.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
The present study provided an innovative insight into the formation mechanism of persistent free radicals (PFRs) during the pyrolysis of Fenton-conditioned sludge. Fenton conditioners simultaneously improve the dewatering performance of sewage sludge and catalyze the pyrolysis of sewage sludge for the formation of PFRs. In this process, PFRs with a total number of spins of 9.533×1019 spins/g DS could be generated by pyrolysis of Fenton-conditioned sludge at 400°C. The direct thermal decomposition of natural organic matter (NOM) fractions contributed to the formation of carbon-centered radicals, while the Maillard reaction produced phenols precursors. Additionally, the reaction between aromatic proteins and iron played a crucial role in the formation of phenoxyl or semiquinone-type radicals. Kinetics analysis using discrete distributed activation energy model (DAEM) demonstrated that the average activation energy for pyrolysis was reduced from 178.28 kJ/mol for raw sludge to 164.53 KJ/mol for Fenton conditioned sludge. The reaction factor (fi) indicated that the primary reaction in Fenton-conditioned sludge comprised of 27 parallel first-order reactions, resulting from pyrolysis cleavage of the NOM fractions, the Maillard reaction, and iron catalysis. These findings are significant for understanding the formation process of PFRs from NOM in Fenton-conditioned sludge and provide valuable insight for controlling PFRs formation in practical applications.
Collapse
Affiliation(s)
- Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Jie Yu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Zhuqi Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Liu X, Chen Z, Lu S, Shi X, Qu F, Cheng D, Wei W, Shon HK, Ni BJ. Persistent free radicals on biochar for its catalytic capability: A review. WATER RESEARCH 2024; 250:120999. [PMID: 38118258 DOI: 10.1016/j.watres.2023.120999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Qu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Jiang X, Liu J, Han X, Wang F, Zhang D, Fan P, Yi W. Amino-grafted Biochar as a Novel Photocatalyst for degradation of high concentration dye. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119989. [PMID: 38215595 DOI: 10.1016/j.jenvman.2023.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic degradation of organic pollution by biochar was a sustainable strategy for waste water remediation, nevertheless, it still suffers drawbacks like low efficiency due to the poor photocatalytic properties of pristine biochar. Herein, amino groups were grafted on the edge sites/defects of biochar by Friedel-Crafts acylation to enhance the degradation of high concentration dye solutions. The results suggested that the amino groups played an important role in imparting photocatalytic properties to biochar. Owing to the strong Lewis basicity and electron-donating ability of amino groups, their interaction with oxygen-containing functional groups/aromatic structures in biochar was improved, which enhanced the electron exchange ability of biochar under visible light irradiation, resulting in excellent degradation performances of high concentration RhB (∼10 times faster than ungrafted biochar). In this work, amino-grafted garlic peel biochar delivered a new idea for the future direction of biochar-based photocatalysis in wastewater remediation.
Collapse
Affiliation(s)
- Xuya Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Jianbiao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Fang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Deli Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Penglei Fan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Weiming Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China.
| |
Collapse
|
12
|
Chen A, Wang H, Zhan X, Gong K, Xie W, Liang W, Zhang W, Peng C. Applications and synergistic degradation mechanisms of nZVI-modified biochar for the remediation of organic polluted soil and water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168548. [PMID: 37989392 DOI: 10.1016/j.scitotenv.2023.168548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Increasing organic pollution in soil and water has garnered considerable attention in recent years. Nano zero-valent iron-modified biochar (nZVI/BC) has been proven to remediate the contaminated environment effectively due to its abundant active sites and unique reducing properties. This paper provides a comprehensive overview of the application of nZVI/BC in organic polluted environmental remediation and its mechanisms. Firstly, the review introduced primary synthetic methods of nZVI/BC, including in-situ synthesis (carbothermal reduction and green synthesis) and post-modification (liquid-phase reduction and ball milling). Secondly, the application effects of nZVI/BC were discussed in remediating soil and water polluted by antibiotics, pesticides, polycyclic aromatic hydrocarbons (PAHs), and dyes. Thirdly, this review explored the mechanisms of the adsorption and chemical degradation of nZVI/BC, and synergistic degradation mechanisms of nZVI/BC-AOPs and nZVI/BC-Microbial interactions. Fourth, the factors that influence the removal of organic pollutants using nZVI/BC were summarized, encompassing synthesis conditions (raw materials, pyrolysis temperature and aging of nZVI/BC) and external factors (reagent dosage, pH, and coexisting substances). Finally, this review proposed future challenges for the application of nZVI/BC in environmental remediation. This review offers valuable insights for advancing technology in the degradation of organic pollutants using nZVI/BC and promoting its on-site application.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Wang M, Wang C, Yang J, Liu X, Xie B, Ren P, Kong X, Fu Y. Biochar induces different responses of intracellular and extracellular antibiotic resistance genes and suppresses horizontal transfer during lincomycin fermentation dregs composting. BIORESOURCE TECHNOLOGY 2024; 394:130227. [PMID: 38135225 DOI: 10.1016/j.biortech.2023.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
This study aims to indicate the influence of biochar on extracellular and intracellular ARGs (e/iARGs) variation and proliferation during lincomycin fermentation dregs (LFDs) compost. Biochar addition made iARGs keep reducing but eARGs increase to the maximum at the middle thermophilic phase and reduce at the end of the compost. Compared to control 3.15-log and 5.42-log reduction of iARGs and eARGs were observed, respectively. Biochar addition, bacterial community, and MGEs were the major contributors to iARGs and eARGs removal, with the contribution percentages of 38.4%, 31.0%, 23.7%, and 27.2%, 29.1%, and 34.9%, respectively. Moreover, biochar significantly inhibited eARGs transformation and RP4 plasmid conjugative transfer among E. coli DH5α and Pseudomonas aeruginosa HLS-6. The underlying mechanism involved in broken cell membranes of bacteria, and altered expression of oxidative stress genes and save our souls (SOS) response-related genes. The results indicated that biochar addition in composting could limit the dissemination of ARGs.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peng Ren
- Laoshan Laboratory, Qingdao 266061, China
| | - Xiaowei Kong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yunxia Fu
- Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources, Qingdao 266100, China; Qingdao Geo-Engineering Surveying Institute (Qingdao Geological Exploration Development Bureau), Qingdao 266100, China
| |
Collapse
|
14
|
Zhang R, Zimmerman AR, Zhang R, Li P, Zheng Y, Gao B. Persistent free radicals generated from a range of biochars and their physiological effects on wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168260. [PMID: 37918750 DOI: 10.1016/j.scitotenv.2023.168260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a promising soil conditioner and environmental remediation material. However, the amount, type, and environmental effect and risk of persistent free radicals (PFRs) associated with biochar need to be better understood. Thus, this study characterized PFRs in a range of biochar types and their effects on the growth and oxidative stress of wheat seedlings. Among the biochars prepared by pyrolysis of different types of biomass at 500 °C, the concentrations of PFRs in cow dung and egg shell biochar were the highest and the lowest, respectively. They both increased with artificial weathering treatment but decreased with aging. The dominant types of biochar PFRs were transformed from carbon-centered to oxygen and carbon/oxygen-centered free radicals with weathering. The amount and type of biochar PFRs in mixtures of biochar and soil varied with soil type and biochar dose. After 30 d incubation in different soil-biochar mixtures, measures of wheat plant germination and growth and antioxidant enzyme activity showed increases at lower biochar doses but decreases at higher doses. Catalase activity was 38.1 % greater at 20 g·kg-1 biochar dosage and 25.2 % less at 80 g·kg-1 dosage, on average. In contrast, leaf malondialdehyde content and staining by Evans Blue, both indicators of plant cell membrane damage, generally increased with increasing biochar dosages. Finally, soil hydrolase enzyme activity also displayed an inverted U-shaped dose response. The toxicity indicators showed an increasing trend with higher PFR concentrations in the soil-biochar combinations. While these findings provide evidence for significant potential agricultural and ecological risks associated with the application of biochar due to PFRs damage, it also points to ways that these risks could be mediated such as through biochar dosage restrictions and pre-aging. This study provides new insights into the potential toxicological mechanism and ecological risks associated with the application of biochar in agricultural and environmental settings.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ruiling Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yue Zheng
- Tianjin TianBinTongSheng Environmental Technology Co., Ltd, Tianjin 300199, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
15
|
Wang C, Holm PE, Andersen ML, Thygesen LG, Nielsen UG, Hansen HCB. Phosphorus doped cyanobacterial biochar catalyzes efficient persulfate oxidation of the antibiotic norfloxacin. BIORESOURCE TECHNOLOGY 2023; 388:129785. [PMID: 37722544 DOI: 10.1016/j.biortech.2023.129785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
In this study, cyanobacterial biochars (CBs) enriched/doped with non-metallic elements were prepared by pyrolysis of biomass amended with different N, S, and P containing compounds. Their catalytic reactivity was tested for persulfate oxidation of the antibiotic norfloxacin (NOR). N and S doping failed to improve CB catalytic reactivity, while P doping increased reactivity 5 times compared with un-doped biochar. Biochars produced with organic phosphorus dopants showed the highest reactivity. Post-acid-washing improved catalytic reactivity. In particular, 950 ℃ acid-washed triphenyl-phosphate doped CB showed the largest degradation rate and reached 79% NOR mineralization in 2 h. Main attributes for P-doped CBs high reactivity were large specific surface areas (up to 655 m2/g), high adsorption, high C-P-O content, graphitic P and non-radical degradation pathway (electron transfer). This study demonstrates a new way to reuse waste biomass by producing efficient P-doped metal-free biochars and presents a basic framework for designing carbon-based catalysts for organic pollutant degradation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Mogens Larsen Andersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Chen Y, Zhao M, Li Y, Liu Y, Chen L, Jiang H, Li H, Chen Y, Yan H, Hou S, Jiang L. Regulation of tourmaline-mediated Fenton-like system by biochar: Free radical pathway to non-free radical pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118497. [PMID: 37413726 DOI: 10.1016/j.jenvman.2023.118497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
The heterogeneous Fenton-like systems induced by Fe-containing minerals have been largely applied for the degradation of organic pollutants. However, few studies have been conducted on biochar (BC) as an additive to Fenton-like systems mediated by iron-containing minerals. In this study, the addition of BC prepared at different temperatures was found to significantly enhance the degradation of contaminants in the tourmaline-mediated Fenton-like system (TM/H2O2) using Rhodamine B (RhB) as the target contaminant. Furthermore, the hydrochloric acid-modified BC prepared at 700 °C (BC700(HCl)) could achieve complete degradation of high concentrations of RhB in the BC700(HCl)/TM/H2O2 system. Free radical quenching experiments showed that TM/H2O2 system removed contaminants mainly mediated by the free radical pathway. After adding BC, the removal of contaminants is mainly mediated by the non-free radical pathway in BC700(HCl)/TM/H2O2 system which was confirmed by the Electron paramagnetic resonance (EPR) experiments and electrochemical impedance spectroscopy (EIS). In addition, BC700(HCl) had broad feasibility in the degradation of other organic pollutants (Methylene Blue (MB) 100%, Methyl Orange (MO) 100%, and tetracycline (TC) 91.47%) in the tourmaline-mediated Fenton-like system. Possible pathways for the degradation of RhB by the BC700(HCl)/TM/H2O2 system were also proposed.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
17
|
Zeng Q, Yang L, Zhang Q, Cai T, Wang Y, Cao Y, Lv J, Xiong Z, Wu S, Oh R. Shaddock peels derived multilayer biochar with embedded CoO@Co nanoparticles for peroxymonosulfate based wastewater treatment. CHEMOSPHERE 2023; 325:138398. [PMID: 36921774 DOI: 10.1016/j.chemosphere.2023.138398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The utilization of bio-wastes, such as shaddock peels, is of great significance for sustainable development. Combined with the potential of peroxymonosulfate (PMS) based advanced oxidation process (AOP) in wastewater treatment, a highly efficient functional catalyst, derived from shaddock peels biochar (SPC) and embedded with CoO@Co nanoparticles, i.e. Co-SPC-x(y), was prepared using a facile impregnation-calcination method and used for refractory organics degradation with PMS. The decoration amount of Co and annealing temperature were optimized, and the effects of various reaction factors were investigated. The results indicated that the optimized sample of Co-SPC-10 (900) consisted of multilayer biochar with curly edges and highly dispersed CoO@Co nanoparticles in the range of 20-200 nm, which is in cubic metallic Co and CoO. Moreover, it also possessed a specific surface area of 248.6 m2/g, and exhibited excellent PMS activation ability with ∼100% chlortetracycline hydrochloride (CTC) removal ratio within only 12 min of operation. The Co-SPC-10 (900)/PMS system showed relatively high tolerance for HPO42-, NO3- and SO42-, while the Cl- and HA had considerable effects on it. Mechanism exploration results revealed that both radical and non-radical pathways existed in the Co-SPC-10 (900)/PMS system, in which the multilayered biochar functioned as an electron transfer carrier to facilitate the continuous cycle of Co2+/Co3+ in the CoO@Co nanoparticles by reacting with the absorbed CTC and PMS, resulting in the production of •OH, SO4•-, O2•- and 1O2. Additionally, the Co-SPC-10 (900) also showed good stability and catalytic oxidation performance for various refractory organics.
Collapse
Affiliation(s)
- Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; KENTECH Institute of Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, South Korea.
| | - Liu Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China.
| | - Yumei Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yuhan Cao
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Suqing Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Rena Oh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
18
|
Pei X, Li T, He Y, Wong PK, Zeng G, Tang Y, Jia X, Peng X. Adsorbed copper on urea modified activated biochar catalyzed H 2O 2 for oxidative degradation of sulfadiazine:Degradation mechanism and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118196. [PMID: 37209646 DOI: 10.1016/j.jenvman.2023.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The combined pollution of heavy metals and organic compounds usually occurs simultaneously and induces high toxicity. The technology of simultaneous removal of combined pollution is lacking and the removal mechanism is not clear. Sulfadiazine (SD), a widely used antibiotic, was used as a model contaminant. Urea modified sludge-based biochar (USBC) was prepared and used to catalyze H2O2 to remove the combined pollution of Cu2+ and sulfadiazine (SD) without causing secondary pollution. After 2 h, the removal rates of SD and Cu2+ were 100 and 64.8%, respectively. Cu2+ adsorbed on the surface of USBC accelerated the activation of H2O2 by the USBC catalyzed by CO bond to produce hydroxyl radical (•OH) and single oxygen (1O2) to degrade SD. Twenty-three intermediate products were detected, most of which were completely decomposed into CO2 and H2O. The toxicity was significantly reduced in the combined polluted system. This study highlights the potential of the low-cost technology based on sludge reuse and its inherent significance in reducing the toxic risk of combined pollution in the environment.
Collapse
Affiliation(s)
- Xiangyang Pei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Yellow River Engineering Consulting Co., Ltd, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoqu Zeng
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Zhang Y, He R, Zhao J, Zhang X, Bildyukevich AV. Effect of aged biochar after microbial fermentation on antibiotics removal: Key roles of microplastics and environmentally persistent free radicals. BIORESOURCE TECHNOLOGY 2023; 374:128779. [PMID: 36828217 DOI: 10.1016/j.biortech.2023.128779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
For the first time, biochar was prepared by changing the polystyrene (PS) content in sludge, and the efficiency of antibiotics removal by biochar was evaluated after fermentation aging. Fermentation aging affects the efficiency of antibiotics removal by reducing the specific surface area and active sites of biochar. The antibiotics removal efficiency of different types of biochar after aging decreased by 5.95%-13.59%. Owing to the biotoxicity of biochar, the relative abundance of most communities decreased during fermentation, whereas Anaerolineae still increased (14.29% to 33.05% or 33.02%). However, controlled experiments confirmed that biochar was much less toxic to Scenedesmus obliquus than to antibiotics, with concentrations of 11.09 × 105 cells/mL and 0.188 × 105 cells/mL, respectively. With the positive effect of environmentally persistent free radicals (EPFRs) considered, increasing the PS content in sludge facilitated the removal of antibiotics by biochar. This study assesses the stability of biochar in removing antibiotics after long-term microbial aging.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 220072, Minsk, Surganov str. 13, Belarus
| |
Collapse
|
20
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Zhang Y, He R, Zhao J. Removal mechanism of tetracycline-Cr(Ⅵ) combined pollutants by different S-doped sludge biochars: Role of environmentally persistent free radicals. CHEMOSPHERE 2023; 317:137856. [PMID: 36642135 DOI: 10.1016/j.chemosphere.2023.137856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this work, by using sodium thiosulfate as the S source, S-doped biochars were prepared to remove tetracycline/hexavalent chromium (TC-Cr (Ⅵ)) combined pollutants in aqueous solutions. The concentration of environmentally persistent free radicals (EPFRs) was used to directly determine the degradation of TC and the reduction of Cr (Ⅵ). The concentration of EPFRs in S-doped hydrothermal + pyrocarbon (S-HPBC) (3.64 × 1019 spins/g) was greater than that of S-doped hydrochar (S-HBC) (5.64 × 1018 spins/g) and S-doped pyrocarbon (S-PBC) (6.53 × 1018 spins/g). The increase in EPFRs concentration after S doping was positively correlated with the number of defect structures. In the TC-Cr (Ⅵ) system, the reduction efficiency of Cr (Ⅵ) decreased due to competition for electrons, while the TC degradation efficiency remained high. This was likely because Cr (Ⅵ) reduction promoted the degradation of TC. In addition, de-complexation was the primary factor for the removal of TC-Cr (Ⅵ), and some ROS were consumed during this process. The thiophene groups (-C-S-C-) that formed after S-doping of biochar were the main functional groups involved in the catalytic degradation of TC. In the radical pathway, SO4•- and •OH provided the greatest contribution to the degradation of TC, while 1O2 contributed the most to TC degradation via a non-radical pathway. The regeneration experiment confirmed that S-doped biochar could be reused and maintained a high pollutant removal efficiency. S-HPBC is a promising modified biochar material for removing mixed pollutants.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
22
|
Wang C, Wang Y, Yan S, Li Y, Zhang P, Ren P, Wang M, Kuang S. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 367:128253. [PMID: 36334868 DOI: 10.1016/j.biortech.2022.128253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting.
Collapse
Affiliation(s)
- Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yafei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yingchun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Zhang
- Heilongjiang Lianshun Biotechnology Co. Ltd., Qitaihe 154264, China
| | - Peng Ren
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
23
|
Zhang Y, Zhao J. Comparison of different S-doped biochar materials to activate peroxymonosulfate for efficient degradation of antibiotics. CHEMOSPHERE 2022; 308:136442. [PMID: 36126742 DOI: 10.1016/j.chemosphere.2022.136442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The goal of this work was to elucidate the ability of biochar materials prepared by different methods to degrade antibiotics by activating peroxymonosulfate (PMS). S atom was doped into biochar using diphenyl disulfide (DD), sodium thiosulfate (ST), and thiourea (TU) as S precursors. The different doped materials were used to activate PMS and tested for the ability to degrade tetracycline hydrochloride, sulfadiazine sodium salt, and levofloxacin hydrochloride. The average degradation efficiencies of DD-doped hydrothermal + pyrocarbon (DD-HPBC), TU-doped hydrothermal + pyrocarbon (TU-HPBC), and ST-doped hydrothermal + pyrocarbon (ST-HPBC) were 83.76%, 86.74%, and 93.60%, respectively, all higher than the degradation efficiency of the undoped material. When sodium thiosulfate-doped pyrocarbon (ST-PBC), hydrochar (ST-HBC), and hydrothermal + pyrocarbon (ST-HPBC) were used to activate PMS, the highest degradation efficiencies were achieved, with average rates of 71.59%, 78.22% and 97.20%, respectively. ST-HPBC exhibited the highest concentration of environmentally persistent free radicals (EPFRs), 9.47 × 1018 spin/g, among all biochar materials. Given this high concentration of EPFRs, use of ST-HPBC to activate PMS resulted in a very high rate of antibiotic degradation, and the concentration of EPFRs was positively correlated with the degradation efficiency. Increase of specific surface area, the thiophene S (-C-S-C-) ratio, and concentration of EPFRs in S-doped biochars promoted the degradation of antibiotics. For PMS activated by biochar, reactive oxygen species (ROS) degraded antibiotics in the order of sulfate radical (SO4•-) > singlet oxygen (1O2) > hydroxyl radical (•OH) > superoxide radical (•O2-). This work provides new insight into the application of S-doped sludge biochar materials.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
24
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
25
|
Wang Q, Xiao P. Self-synthesized heterogeneous CuFe2O4-MoS2@BC composite as an activator of peroxymonosulfate for the oxidative degradation of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Khachatryan L, Barekati-Goudarzi M, Asatryan R, Ozarowski A, Boldor D, Lomnicki SM, Cormier SA. Metal-Free Biomass-Derived Environmentally Persistent Free Radicals (Bio-EPFRs) from Lignin Pyrolysis. ACS OMEGA 2022; 7:30241-30249. [PMID: 36061701 PMCID: PMC9434622 DOI: 10.1021/acsomega.2c03381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
To assess contribution of the radicals formed from biomass burning, our recent findings toward the formation of resonantly stabilized persistent radicals from hydrolytic lignin pyrolysis in a metal-free environment are presented in detail. Such radicals have particularly been identified during fast pyrolysis of lignin dispersed into the gas phase in a flow reactor. The trapped radicals were analyzed by X-band electron paramagnetic resonance (EPR) and high-frequency (HF) EPR spectroscopy. To conceptualize available data, the metal-free biogenic bulky stable radicals with extended conjugated backbones are suggested to categorize as a new type of metal-free environmentally persistent free radicals (EPFRs) (bio-EPFRs). They can be originated not only from lignin/biomass pyrolysis but also during various thermal processes in combustion reactors and media, including tobacco smoke, anthropogenic sources and wildfires (forest/bushfires), and so on. The persistency of bio-EPFRs from lignin gas-phase pyrolysis was outlined with the evaluated lifetime of two groups of radicals being 33 and 143 h, respectively. The experimental results from pyrolysis of coniferyl alcohol as a model compound of lignin in the same fast flow reactor, along with our detailed potential energy surface analyses using high-level DFT and ab initio methods toward decomposition of a few other model compounds reported earlier, provide a mechanistic view on the formation of C- and O-centered radicals during lignin gas-phase pyrolysis. The preliminary measurements using HF-EPR spectroscopy also support the existence of O-centered radicals in the radical mixtures from pyrolysis of lignin possessing a high g value (2.0048).
Collapse
Affiliation(s)
- Lavrent Khachatryan
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Rubik Asatryan
- Department
of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Florida, Tallahassee 32310, United States
| | - Dorin Boldor
- Department
of Biological and Agricultural Engineering, LSU AgCenter and LSU A&M College, Baton Rouge, Louisiana 70803, United States
| | - Slawomir M. Lomnicki
- Department
of Environmental Sciences, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department
of Biological Sciences, LSU Superfund Research
Program and Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|
27
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
28
|
Li M, Li P, Zhou Q, Lee SLJ. A Mini Review on Persulfate Activation by Sustainable Biochar for the Removal of Antibiotics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5832. [PMID: 36079215 PMCID: PMC9456675 DOI: 10.3390/ma15175832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in water bodies poses ecological risks to aquatic organisms and humans and is a global environmental issue. Persulfate-based advanced oxidation processes (PS-AOPs) are efficient for the removal of antibiotics. Sustainable biochar materials have emerged as potential candidates as persulfates (Peroxymonosulfate (PMS) and Peroxydisulfate (PDS)) activation catalysts to degrade antibiotics. In this review, the feasibility of pristine biochar and modified biochar (non-metal heteroatom-doped biochar and metal-loaded biochar) for the removal of antibiotics in PS-AOPs is evaluated through a critical analysis of recent research. The removal performances of biochar materials, the underlying mechanisms, and active sites involved in the reactions are studied. Lastly, sustainability considerations for future biochar research, including Sustainable Development Goals, technical feasibility, toxicity assessment, economic and life cycle assessment, are discussed to promote the large-scale application of biochar/PS technology. This is in line with the global trends in ensuring sustainable production.
Collapse
Affiliation(s)
- Mengxue Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qi Zhou
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
29
|
Shao B, Liu Z, Tang L, Liu Y, Liang Q, Wu T, Pan Y, Zhang X, Tan X, Yu J. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129067. [PMID: 35650729 DOI: 10.1016/j.jhazmat.2022.129067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance genes (ARGs) pollution has been considered as one of the most significant emerging environmental and health challenges in the 21st century, many efforts have been paid to control the proliferation and dissemination of ARGs in the environment. Among them, the biochar performs a positive effect in reducing the abundance of ARGs during different environmental governance processes and has shown great application prospects in controlling the ARGs. Although there are increasing studies on employing biochar to control ARGs, there is still a lack of review paper on this hotspot. In this review, firstly, the applications of biochar to control ARGs in different environmental governance processes were summarized. Secondly, the processes and mechanisms of ARGs removal promoted by biochar were proposed and discussed. Then, the effects of biochar properties on ARGs removal were highlighted. Finally, the future prospects and challenges of using biochar to control ARGs were proposed. It is hoped that this review could provide some new guidance for the further research of this field.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
30
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
31
|
Wang Y, Gu X, Huang Y, Ding Z, Chen Y, Hu X. Insight into biomass feedstock on formation of biochar-bound environmentally persistent free radicals under different pyrolysis temperatures. RSC Adv 2022; 12:19318-19326. [PMID: 35865560 PMCID: PMC9251640 DOI: 10.1039/d2ra03052g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health. Therefore, comprehending the formation and characteristics of EPFRs in biochars is important for their further applications. In this study, the woody lignocellulosic biomass (wood chips, pine needle and barks), non-woody lignocellulosic biomass (rice husk, corn stover, and duckweed), and non-lignocellulosic biomass (anaerobically digested sludge) were selected as biomass feedstock to prepare biochars under different pyrolysis temperatures (200–700 °C). The impact of biomass feedstock on formation of biochar-bound EPFRs was systematically compared. Elemental compositions and atomic ratios of H/C and O/C varied greatly among different biomass feedstocks and the subsequently resulting biochars. EPFRs in biochars derived from the studied lignocellulosic biomass have similar levels of spin concentrations (1018–1019 spins per g) except for lower EPFRs in biochars under 200 and 700 °C; however, sludge-based biochars, a typical non-lignocellulosic-biomass-based biochar, have much lower EPFRs (1016 spins per g) than lignocellulosic-biomass-based biochars under all the studied pyrolysis temperatures. Values of g factors ranged from 2.0025 to 2.0042 and line width was in the range of 2.15–11.3 for EPFRs in the resulting biochars. Spin concentrations of biochar-bound EPFRs increased with the increasing pyrolysis temperatures from 200 to 500 °C, and then decreased rapidly from 500 to 700 °C and oxygen-centered radicals shifted to carbon-centered radicals with the increasing pyrolysis temperatures from 200 to 700 °C for all the studied biomass feedstock. 300–500 °C was the appropriate pyrolysis temperature range for higher levels of spin concentrations of biochar-bound EPFRs. Moreover, EPFRs' concentrations had significantly positive correlation with C contents and weak or none correlation with contents of transition metals. Overall, different types of biomass feedstock have significant impact on the formation of EPFRs in the resulting biochars. Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health.![]()
Collapse
Affiliation(s)
- Yu Wang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Xinfeng Gu
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yue Huang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yijun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| |
Collapse
|
32
|
Adsorption and oxidation of ciprofloxacin by a novel layered double hydroxides modified sludge biochar. J Colloid Interface Sci 2022; 625:596-605. [PMID: 35764041 DOI: 10.1016/j.jcis.2022.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022]
Abstract
In this study, biochar derived from municipal sludge (SBC) was modified by CoFe-Layered double hydroxides (CoFe-LDH), and used as adsorbent and oxidant for the removal of ciprofloxacin (CIP) for the first time. Under the optimal conditions, the CIP removal rate is increased by 24% compared with the single SBC, while the removal rates of total organic carbon and total nitrogen in the modified one are increased by 24% and 27%, respectively. Mechanism investigation suggested that the specific surface area and adsorption sites of modified biochar increased, and more CIP was adsorbed to the composite surface and then oxidized by more environmental persistent free radicals contained in the CoFe-LDH@SBC, when the adsorbed CIP molecules was oxidized and degraded, the adsorption sites can be freed and thus new CIP could be adsorbed to the CoFe-LDH@SBC. In addition, the plausible degradation pathways of CIP were proposed according to high-performance liquid chromatography-mass spectrometry and density functional theory calculation. It not only reveals that CoFe-LDH@SBC has the high ability of adsorption and oxidation for CIP removal but also sheds novel insight into the application of biochar.
Collapse
|
33
|
Zhang Y, Xu M, He R, Zhao J, Kang W, Lv J. Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: Key role of environmentally persistent free radicals. CHEMOSPHERE 2022; 294:133737. [PMID: 35090846 DOI: 10.1016/j.chemosphere.2022.133737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Because of the increasingly widespread contamination of antibiotics, the preparation of biochar by heteroatom doping to further improve the catalytic degradation efficiency of antibiotics has become a major focus of research. In this study, N-doped (NBC), S-doped (SBC), and NS-doped (NSBC) moso bamboo biochar were obtained at preparation temperatures of 300-700 °C. The concentration of environmentally persistent free radicals (EPFRs) in all biochars peaked when the preparation temperature was 500 °C: 2.45 × 1019 spins·g-1 (BC), 9.23 × 1019 spins·g-1 (NBC), 6.10 × 1019 spins·g-1 (SBC), and 4.36 × 1019 spins·g-1 (NSBC). After heteroatom doping, EPFR species were more abundant, and the distribution of three types of EPFRs (oxygen-centered (g > 2.0040), carbon-centered (g < 2.0030), and carbon-centered radicals with oxygen atom free radicals (2.0030 < g < 2.0040) varied with the preparation temperature. In the process of antibiotic degradation, both NBC and SBC increased the degradation rate of antibiotics, whereas NSBC reduced the degradation rate. Compared with the degradation rate of antibiotics of biochar (79.86%), the degradation rate of antibiotics by NBC, SBC, and NSBC via PMS activation was 92.23%, 88.86%, and 70.97% on average in 30 min, respectively. The greatest contributors to the catalytic degradation were SO4•-, followed by 1O2, •OH, and O2•-. EPFRs and 1O2 might be the main contributors to the free radical and non-free radical pathways. The enhancement of EPFRs following the N doping or S doping of biochar is the key factor underlying PMS activation. Therefore, changes in the structure of biochar can better activate PMS to produce reactive oxygen species-degrading antibiotics. The mineralization rate of antibiotics by BC, NBC, SBC, and NSBC was 42.12%, 47.06%, 44.99%, and 39.01%, respectively. This means that a small portion of the antibiotics was completely decomposed into CO2, H2O, and inorganic substances after degradation. Cyclic experiments showed that heteroatom-doped biochar had higher reusability, and the degradation rate decreased less than 15%.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Mengqi Xu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Wei Kang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jinghua Lv
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
34
|
Ye Y, Li Y, Wang J, Yuan S, Xu X, Zhang X, Zhou J, Wang B, Ma X. Generation of Environmentally Persistent Free Radicals on Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3265-3275. [PMID: 35245423 DOI: 10.1021/acs.langmuir.1c03491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been recognized as one of the important emerging contaminants with biological toxicity, environmental persistence, and global mobility. Previous studies have identified the catalytic role of surface metal oxides in EPFRs formation and illustrated the metal-dependence of EPFRs by studying on various metal oxide nanoparticles and single crystals. However, there is still lack of an understanding on the formation of EPFRs from the point of view of metal sites. Various factors (e.g., crystalline phases and surface species) of metal oxides are regarded to contribute to the generation of EPFRs, which present profound difficulties for scientists to tease apart the impact of metal type. Herein, a laboratory investigation, in terms of the acidity and oxidation strength of metal cations, was conducted by selecting metal-variable isostructural metal-organic frameworks as material platforms. Specifically, we evaluated EPFRs generation on MIL-100(M) (M = Al, Cr, Fe) from chlorine-substituted phenol vapor and catechol under thermal conditions. It is found that high Lewis acidity of metal sites is crucial for capturing the above two phenolic precursors, activating the O-H bond and promoting EPFRs formation. Radical species with half-life as long as 70 days were generated on MIL-100 rich in 5-fold coordinated Al3+ sites. The unpaired electron spin density donation was further confirmed by using 27Al solid-state nuclear magnetic resonance spectroscopy. Despite their higher oxidation power than Al3+, the exposed Cr3+ and Fe3+ sites show undetectable catalytic activity for the formation of EPFRs, because of their insufficient Lewis acidity. Our results suggest that the surface species rather than Lewis acid sites may be a major contributor to the formation of EPFRs on metal oxides like Fe2O3.
Collapse
Affiliation(s)
- Yuqing Ye
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuan Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jie Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojun Xu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xinning Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojie Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
35
|
Wang W, Chen M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J Colloid Interface Sci 2022; 613:57-70. [PMID: 35032777 DOI: 10.1016/j.jcis.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen doping could improve the catalytic performance of carbon materials, in which the nitrogen configuration could be used as active sites for peroxymonosulfate (PMS) activation. Herein, this paper studied how to turn waste to "treasure" by agriculture waste pomelo peel to prepare nitrogen-doped biochar and successfully applied it to advanced oxidation field. The effects of the sodium bicarbonate (NaHCO3), melamine, and pyrolysis temperature on the catalytic activity of biochar for the removal of sulfamethoxazole (SMX) were investigated. The optimized nitrogen-doped biochar (C-N-M 1:3:4) possessed high specific surface area (SSA, 738 m2/g) and high level of nitrogen doping (nitrogen content 13.54 at%). Accordingly, it exhibited great catalytic performance for PMS activation to remove SMX antibiotic, and 95% of SMX was removed within 30 min. High catalytic activity of C-N-M 1:3:4 was attributed to rich defects, carbonyl group, high content of graphitic N and pyrrolic N, and large SSA, in which non-radical oxidation process based on singlet oxygen (1O2) and electron transfer contributed to the SMX degradation. The prepared nitrogen-doped biochar possessed high stability and reusability and the removal efficiency of SMX still reached 80% after four cycles. Additionally, the phytotoxicity assay indicated that the toxicity of degradation intermediates was obviously decreased in the PMS/ C-N-M 1:3:4 system.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
36
|
Zhang Y, Xu M, Liang S, Feng Z, Zhao J. Mechanism of persulfate activation by biochar for the catalytic degradation of antibiotics: Synergistic effects of environmentally persistent free radicals and the defective structure of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148707. [PMID: 34214814 DOI: 10.1016/j.scitotenv.2021.148707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The abuse of antibiotics threatens the water environment and human health. Green treatment method is needed to degrade antibiotics such as biochar. Few studies have examined the environmentally persistent free radicals (EPFRs) and defective structure of biochar during the biochar-mediated catalytic degradation of antibiotics. In this study, biochar prepared from poplar and pine sawdust was used to activate peroxymonosulfate (PMS) to generate instant radicals (SO4•- and •OH) and degrade tetracycline (TC), chlortetracycline (CTC) and doxycycline (DOX). The preparation temperatures ranged from 300 °C to 900 °C. EPFRs were the main activator of PMS at 300-500 °C, and the defective structure of biochar was the main activator at 800-900 °C. The concentrations of EPFRs ranged from 1.75 × 1018 spins/g to 6.44 × 1018 spins/g. According to the electron paramagnetic resonance (EPR) parameter (g-factor), the main types of EPFRs were carbon-centered radicals (g1 < 2.0030) or carbon-centered radicals with oxygen atoms (2.0030 < g2 < 2.0040). Optimization of the degradation experiment revealed that the removal rate of antibiotics peaked when the preparation temperature was 500 °C and 900 °C. In the biochar/PMS system, the antibiotics removal rate of 90% was achieved in 40 min with an average apparent rate constant (kobs) of 0.0588 min-1. Analysis of the mechanism revealed that the free radical pathway (EPFRs and defective structure) can effectively activate PMS to generate SO4•- and •OH. However, control experiments suggested that the non-free radical pathway (singlet oxygen) had little effect on antibiotic degradation. After five cycles, the removal rate of antibiotics by biochar was still greater than 70%, indicating that biochar retains a high degradation ability. These results indicate that optimizing the preparation conditions can effectively expand the application range of the biochar/PMS system and improve the degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Mengqi Xu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Shengxu Liang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Ziyan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|