1
|
Sun J, Liu Q, Peng F, Gu Y. Exploring new approach for resource utilization of crab shell waste: Optimized microwave torrefaction parameters and efficient self-desulfurization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123582. [PMID: 39642822 DOI: 10.1016/j.jenvman.2024.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Finding alternative energy sources and reducing the impact of waste on the environment are pressing global challenges. Crab shells possess the dual characteristics of a pollutant and a resource; therefore, transforming them into clean energy is an urgent issue that needs to be addressed for reducing environmental pollution. This study uses microwave torrefaction to treat crab shell waste efficiently and optimizes the torrefaction conditions through response surface methodology to rapid prepare derived fuel. At a microwave power of 2500 W, temperature of 225 °C, and a treatment duration of 11 min, the specific surface area of the crab shell derived fuel increased by 21.2%; furthermore, its high heating value increased from 14.41 to 18.18 MJ/kg and combustion and desulfurization performances improved considerably. As a proof-of-concept, these derived fuels were utilized as substitutes for fossil fuels and as desulfurization agents to capture SO2 in situ during coal combustion. Results indicated that after microwave torrefaction, the desulfurization capability of the crab shell derived fuel increased by 16.6%. At a derived fuel and coal blending ratio of 35%, SO2 emissions were reduced by 85.27%, with more desulfurization efficiency compared with conventional calcium-based dry desulfurization. To the best of our knowledge, this is the first report on using crab shell waste as derived fuel to achieve in situ SO2 capture. Given the low cost and renewability of crab shell, our study provides a promising strategy for the large-scale utilization of solid waste and its harmless disposal.
Collapse
Affiliation(s)
- Jianguo Sun
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qian Liu
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Fei Peng
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China; Hefei Intellectual Property Protection Center, Hefei, 230071, China
| | - Yonghua Gu
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China; Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Nanjing, 210036, China
| |
Collapse
|
2
|
Wu Q, Deng L, Lan T, Wang H, Wang K, Zhu H, Zhou Y, Guo W. Outstanding enhancement of caproate production with microwave pyrolyzed highly reductive biochar addition. BIORESOURCE TECHNOLOGY 2024; 413:131457. [PMID: 39284373 DOI: 10.1016/j.biortech.2024.131457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
The integration of biochar into microbial Chain Elongation (CE) proves to be an effective tool of producing high-value bio-based products. This study innovatively applied biochar fabricated under microwave irradiation with carbon fiber cloth assistance into CE system. Results highlighted that microwave biochar achieved maximal CE efficiency yielding 8 g COD/L, with 3-fold increase to the blank group devoid of any biochar. Microwave biochar also obtained the highest substrate utilization rate of 94 %, while conventional biochar group recorded 90 % and the blank group was of 74 %. Mechanistic insights revealed that the reductive surface properties facilitated CE performance, which is relevant to fostering dominant genera of Parabacteroides, Bacteroides, and Macellibacteroides. By metagenomics, microwave biochar up-regulated functional genes and enzymes involved in CE process including ethanol oxidation, the reverse β-oxidation pathway, and the fatty acid biosynthesis pathway. This study effectively facilitated caproate production by utilizing a new microwave biochar preparation strategy.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kaiming Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huacheng Zhu
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanping Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Jiang Z, Liang Y, Guo F, Wang Y, Li R, Tang A, Tu Y, Zhang X, Wang J, Li S, Kong L. Microwave-Assisted Pyrolysis-A New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review. CHEMSUSCHEM 2024; 17:e202400129. [PMID: 38773732 DOI: 10.1002/cssc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
The efficient utilization of organic solid waste resources can help reducing the consumption of conventional fossil fuels, mitigating environmental pollution, and achieving green sustainable development. Due to its dual nature of being both a resource and a source of pollution, it is crucial to implement suitable recycling technologies throughout the recycling and upgrading processes for plastics and biomass, which are organic solid wastes with complex mixture of components. The conventional pyrolysis and hydropyrolysis were summarized for recycling plastics and biomass into high-value fuels, chemicals, and materials. To enhance reaction efficiency and improve product selectivity, microwave-assisted pyrolysis was introduced to the upgrading of plastics and biomass through efficient energy supply especially with the aid of catalysts and microwave absorbers. This review provides a detail summary of microwave-assisted pyrolysis for plastics and biomass from the technical, applied, and mechanistic perspectives. Based on the recent technological advances, the future directions for the development of microwave-assisted pyrolysis technologies are predicted.
Collapse
Affiliation(s)
- Zhicheng Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Fenfen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Ruikai Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Aoyi Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Youjing Tu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xingyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Lingzhao Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
4
|
Kwiatkowski M. An analysis of the textural properties of activated carbons obtained from biomass via the LBET, NLDFT and QSDFT methods. Sci Rep 2024; 14:26472. [PMID: 39488547 PMCID: PMC11531491 DOI: 10.1038/s41598-024-76297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
This article presents the unique research results of the comprehensive analysis of the porous structure of activated carbons obtained from biomass waste materials from the wood industry during activation in an air atmosphere. The porous structure was analysed on the basis of nitrogen and argon adsorption isotherms via complementary multi-method analysis, i.e. the new numerical clustering-based adsorption analysis, the non-local density functional theory and the quenched solid density functional theory methods. The analytical results for the prepared activated carbons were compared with analogous results obtained for commercial activated carbon. On the basis of the conducted studies it has been determined that the new numerical clustering-based adsorption analysis method gives credible and valuable information on the textural properties of activated carbons which are in strict correlation and mutually complement with the results of the analysis with the use of the quenched solid density functional theory method. The research results obtained in this paper, it has also been shown that from waste materials of the wood industry, in a relatively cheap and cleaner production process, it is possible not only to obtain carbonaceous materials almost comparable to commercial activated carbon, but also to manage the waste in accordance with the principles of a closed-loop economy and sustainable development. The paper pays also attention to the often overlooked economic and ecological aspects, which should nevertheless be taken into account when comparing different adsorbents, rather than their textural properties alone.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Faculty of Energy and Fuels, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, 30-059, Poland.
| |
Collapse
|
5
|
Li G, Wang Z, Zuo L, Zhang T, Xiao W, Yang T, Tursunov O, Zhao N, Zhou Y. Regulating phenol tar in pyrolysis of lignocellulosic biomass: Product characteristics and conversion mechanisms. BIORESOURCE TECHNOLOGY 2024; 409:131259. [PMID: 39137860 DOI: 10.1016/j.biortech.2024.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
The utilization of biomass pyrolysis is a crucial approach for sustainable development. This study used the typical biomass of pine (PI), rice husk (RH), and corn straw (ST) as feedstocks to evaluate the pyrolysis mechanisms, features and conversion mechanisms of the phenol tar product. The phenolic gaseous products were more trailing in ST, which mostly concentrated around 320-500 °C. Primary phenol tar is produced from lignin through the homolytic cleavage of β-O and α-O, and C-C bond breakage, primarily occurring before 550 °C. As the degree of aromatization increases, the oxygenates progressively deoxygenate, and the primary tar demethoxylates to form secondary tar as the temperature increases. The pyrolysis of cellulose produces H radicals, which aid the transformation of lignin into phenol tar. This study can provide a theoretical basis for biomass pyrolysis to select the appropriate process parameters to improve the quality of bio-oil and regulate phenol tar products.
Collapse
Affiliation(s)
- Gang Li
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Zihan Wang
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Longling Zuo
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Tong Zhang
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Wenbo Xiao
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Tenglun Yang
- School of Computing and Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing 10048, PR China
| | - Obid Tursunov
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100107, PR China; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 39 Kari Niyazov, 100000 Tashkent, Uzbekistan
| | - Nan Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, He'nan Province, 450001, PR China.
| | - Yuguang Zhou
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100107, PR China; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 39 Kari Niyazov, 100000 Tashkent, Uzbekistan
| |
Collapse
|
6
|
Ibitoye SE, Loha C, Mahamood RM, Jen TC, Alam M, Sarkar I, Das P, Akinlabi ET. An overview of biochar production techniques and application in iron and steel industries. BIORESOUR BIOPROCESS 2024; 11:65. [PMID: 38960979 PMCID: PMC11222365 DOI: 10.1186/s40643-024-00779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Integrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass. This review examines biochar production methods and their potential applications across various aspects of the iron and steel industries (ISI). The technical, economic, and sustainable implications of integrating biochar into the ISI were explored. Slow pyrolysis and hydrothermal carbonization are the most efficient methods for higher biochar yield (25-90%). Biochar has several advantages- higher heating value (30-32 MJ/kg), more porosity (58.22%), and significantly larger surface area (113 m2/g) compared to coal and coke. However, the presence of biochar often reduces fluidity in a coal-biochar mixture. The findings highlighted that biochar production and implementation in ISI often come with higher costs, primarily due to the higher expense of substitute fuels compared to traditional fossil fuels. The economic viability and societal desirability of biochar are highly uncertain and vary significantly based on factors such as location, feedstock type, production scale, and biochar pricing, among others. Furthermore, biomass and biochar supply chain is another important factor which determines its large scale implementation. Despite these challenges, there are opportunities to reduce emissions from BF-BOF operations by utilizing biochar technologies. Overall, the present study explored integrating diverse biochar production methods into the ISI aiming to contribute to the ongoing research on sustainable manufacturing practices, underscoring their significance in shaping a more environmentally conscious future.
Collapse
Affiliation(s)
- Segun E Ibitoye
- Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
- School of Engineering, Woxsen University, Kamkole Village, Sadasivpet, Sangareddy District, Hyderabad, Telangana, 502345, India.
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India.
| | - Chanchal Loha
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Rasheedat M Mahamood
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
| | - Meraj Alam
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Ishita Sarkar
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Partha Das
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Esther T Akinlabi
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
7
|
Lin J, Xu Z, Zhang Q, Cao Y, Mašek O, Lei H, Tsang DCW. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. BIORESOURCE TECHNOLOGY 2024; 393:130085. [PMID: 37993065 DOI: 10.1016/j.biortech.2023.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
To customize biochar suitable for efficient adsorption of benzene derivatives, this study presents programmed microwave pyrolysis to produce hydrophobic porous biochar with low-dose ferric chloride. Designated control of the ramping rates in the carbonization stage and the temperatures in the activation stage were conducive to enlarging the specific surface area. Iron species, including amorphous iron minerals, could create small-scale hotspots during microwave pyrolysis to promote microporous structure development. Compared with conventional pyrolysis, programmed microwave pyrolysis could increase the specific surface area from 288.6 m2 g-1 to 455.9 m2 g-1 with a short heating time (15 min vs. 2 h) under 650 °C. Engineered biochar exhibited higher adsorption capacity for benzene and toluene (136.6 and 94.6 mg g-1), and lower adsorption capacity for water vapour (6.2 mg g-1). These findings provide an innovative design of engineered biochar for the adsorption of volatile organic compounds in the environment.
Collapse
Affiliation(s)
- Junhao Lin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Tsai WT, Kuo LA, Tsai CH, Huang HL, Yang RY, Tsai JH. Production of Porous Biochar from Cow Dung Using Microwave Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7667. [PMID: 38138813 PMCID: PMC10744617 DOI: 10.3390/ma16247667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
To valorize livestock manure, the present study investigated the production of biochar from cow dung (CD) by microwave pyrolysis. The pore properties and chemical characteristics of CD and CD-based biochar products were found to correlate with the process parameters like microwave power (300-1000 W) and residence time (5-20 min). The findings indicated that CD is an excellent biomass based on the richness of lignocellulosic constituents from the results of proximate analysis and thermogravimetric analysis (TGA). Higher calorific values were obtained at mild microwave conditions, giving the maximal enhancement factor 139% in comparison with the calorific value of CD (18.97 MJ/kg). Also, it can be concluded that the biochar product obtained at 800 W for a holding time of 5 min had the maximal BET surface area of 127 m2/g and total pore volume of 0.104 cm3/g, which were microporous and mesoporous in the nitrogen adsorption-desorption adsorption analysis. On the other hand, the CD-based biochar contained oxygen-containing functional groups and inorganic minerals based on the spectroscopic analyses by Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS), thus featuring to be prone to hydrophilicity in aqueous solutions.
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Li-An Kuo
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (L.-A.K.); (J.-H.T.)
| | - Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsiang-Lan Huang
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Ru-Yuan Yang
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Jen-Hsiung Tsai
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (L.-A.K.); (J.-H.T.)
| |
Collapse
|
9
|
Kang K, Hu Y, Khan I, He S, Fetahi P. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 390:129786. [PMID: 37758029 DOI: 10.1016/j.biortech.2023.129786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Magnetic biochar (MBC) is a novel bio-carbon material with both desired properties as adsorbent and magnetic characteristics. This review provides an up-to-date summary and discussion on the latest development of MBC, which covers the progress on its synthesis, application, and techno-economic analysis. The review indicates that the direct hydrothermal synthesis has been catching more research attention to produce MBC due to its mild reaction conditions. Instead of the Fe-loaded MBC, there is a trend of using Mn for the magnetization. For the MBC application, how to improve its adsorption performance for water decontamination, ideally to match that of the biochar (BC) or activated carbon, is important. In addition, more studies on the environmental impacts of MBC and life-cycle assessment decoding the process optimization options are necessary. This review will provide valuable references for the development of MBC and MBC-based materials for wastewater treatment.
Collapse
Affiliation(s)
- Kang Kang
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown PE C1A 4P3, Prince Edward Island, Canada
| | - Iltaf Khan
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Sophie He
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Pedram Fetahi
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada.
| |
Collapse
|
10
|
Yu H, Jang JY, Nam IH, Jo H, Yim GJ, Song H, Cho DW. Carbon dioxide-assisted thermochemical conversion of magnetically harvested harmful algae into syngas and metal biochar. BIORESOURCE TECHNOLOGY 2023; 387:129705. [PMID: 37611813 DOI: 10.1016/j.biortech.2023.129705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With rising of harmful algae blooming and toxin exposure, practical utilization of harmful algae has been developed. This work aimed to magnetically harvest Microcystis aeruginosa (MA) using iron oxides and investigate the feasibility of algae/iron oxides mixture as feedstock in pyrolytic platform to produce syngas and metal biochar. Carbon dioxide (CO2) was used as a feeding gas to enhance the production efficiency of syngas and also functioned pH controller for better MA harvesting and toxin removal. CO2 support brought multiple benefits: magnetite (Fe3O4) and maghemite (γ-Fe2O3) recovered MA in a relatively short period of time (∼1 min), the recovered biomass generated 34-fold increased carbon monoxide, and metal biochar adsorbed higher amount of toxin from MA (2.8-fold). Pyrolytic utilization of harmful algae supported by CO2 and iron oxides could be one of promising techniques for evolution of metal biochar to remove toxin, while efficiently recover biomass and enhance syngas production.
Collapse
Affiliation(s)
- Hyeonjung Yu
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Jeong-Yun Jang
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - In-Hyun Nam
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hwanju Jo
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Gil-Jae Yim
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong-Wan Cho
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea.
| |
Collapse
|
11
|
Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, Ng HS, Ge S. A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122451. [PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
Collapse
Affiliation(s)
- Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shanxi 710048, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
13
|
Almalki AS, Alhadhrami A, Alsanie WF, Kamarudin SK, Pugalenthi A. Catalytic co-pyrolysis of plastic pyrolyzed and biooil over Ni-modified ZSM-5 hierarchical structures. ENVIRONMENTAL RESEARCH 2023; 240:117518. [PMID: 39491105 DOI: 10.1016/j.envres.2023.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Hierarchical designing of (10 wt% - 70 wt%) nickel over HZSM-5 zeolite was done using wet-impregnation method. The material formation was established by XRD, BET, TPD and TEM studies. Optimization of reaction parameters for mixture of LDPE derived oil and waste cooking oil was found to be 450 °C, 4.6 h-1, 1:1, and 2nd h. The oxygenated and aliphatic molecules from catalytic co-pyrolysis were effectively transformed, resulting in an elevated selectivity to BTX (as high as 29.7%) and an increased relative selectivity of aromatics to the highest of 97.3%. Despite the comparatively short carbon chains of LBF components, activating the co-pyrolysis products with Ni/HZSM-5 (50 wt %) was found to be helpful in improving subsequent aromatization reactions with biomass pyrolysis intermediates. This work offers a new technique for the co-utilization of abundant biooil and most unused PPL with additional value, which helps to produce renewable chemicals while lowering environmental pollution.
Collapse
Affiliation(s)
| | - A Alhadhrami
- Department of Chemistry, Faculty of Science, Taif University, Taif, 21974, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Siti Kartom Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Department of Chemical Engineering, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - A Pugalenthi
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
14
|
Núñez-Delgado A, Varjani S, Zhou Y, López-Ramón V, Zhang Z, Sánchez-Polo M, Race M. Soil science and environmental research. ENVIRONMENTAL RESEARCH 2023; 227:115737. [PMID: 36972776 DOI: 10.1016/j.envres.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As indicated in the call for papers posted for this Special Issue, Soil Science deals with various environmental compartments, so it is closely related to Environmental Research. It is clear that synergisms and collaboration are keys to reach the most fruitful relations among different sciences and scientists, and especially in all that focused on the Environment. In this line, considering Soil Science, Environmental Research, and the multiple and complex eventual combinations involving them, could give new highly interesting works focused on any of the specific subjects covered, as well as on relations among these sciences. The main objective should be going further in positive interactions that could help in protecting the Environment, proposing solutions to face hazards that are drastically threatening our planet. In view of that, the Editors of this Special Issue invited researchers to submit high-quality manuscripts including new experimental data, as well as scientifically founded discussion and reflections on the matter. The VSI has received 171 submissions, with 27% of them being accepted after peer-review. The Editors think that the papers included in this VSI have high scientific value and provide scientific knowledge on the field. In this editorial piece the Editors include comments and reflections on the papers published in the SI.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. Santiago de Compostela, Engineering Polytech. School, Campus Univ. s/n, 27002, Lugo, Spain.
| | - Sunita Varjani
- Gujarat Pollution Control Board, 7, Rameshwar Co. Op. H. Soc., Near Aavkar Hall, Maninagar, Ahmedabad, 380 008, Gujarat, India
| | - Yaoyu Zhou
- College of Resources and Environment, Changsha, Hunan Agricultural University, 410128, Hunan Province, China
| | | | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Manuel Sánchez-Polo
- Fac. Pharmacy, University of Granada, Campus Univ. de Cartuja, s/n, 18071, Granada, Spain
| | - Marco Race
- Dept. Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043, Cassino, Italy
| |
Collapse
|
15
|
Allende S, Brodie G, Jacob MV. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. ENVIRONMENTAL RESEARCH 2023; 226:115619. [PMID: 36906271 DOI: 10.1016/j.envres.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The agricultural industry faces a permanent increase in waste generation, which is associated with the fast-growing population. Due to the environmental hazards, there is a paramount demand for generating electricity and value-added products from renewable sources. The selection of the conversion method is crucial to develop an eco-friendly, efficient and economically viable energy application. This manuscript investigates the influencing factors that affect the quality and yield of the biochar, bio-oil and biogas during the microwave pyrolysis process, evaluating the biomass nature and diverse combinations of operating conditions. The by-product yield depends on the intrinsic physicochemical properties of biomass. Feedstock with high lignin content is favourable for biochar production, and the breakdown of cellulose and hemicellulose leads to higher syngas formation. Biomass with high volatile matter concentration promotes the generation of bio-oil and biogas. The pyrolysis system's conditions of input power, microwave heating suspector, vacuum, reaction temperature, and the processing chamber geometry were influence factors for optimising the energy recovery. Increased input power and microwave susceptor addition lead to high heating rates, which were beneficial for biogas production, but the excess pyrolysis temperature induce a reduction of bio-oil yield.
Collapse
Affiliation(s)
- Scarlett Allende
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Graham Brodie
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
16
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
17
|
Kumar V, Sharma N, Umesh M, Selvaraj M, Al-Shehri BM, Chakraborty P, Duhan L, Sharma S, Pasrija R, Awasthi MK, Lakkaboyana SR, Andler R, Bhatnagar A, Maitra SS. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. BIORESOURCE TECHNOLOGY 2022; 362:127790. [PMID: 35973569 DOI: 10.1016/j.biortech.2022.127790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/27/2023]
Abstract
Modernization and industrialization has undoubtedly revolutionized the food and agro-industrial sector leading to the drastic increase in their productivity and marketing thereby accelerating the amount of agro-industrial food waste generated. In the past few decades the potential of these agro-industrial food waste to serve as bio refineries for the extraction of commercially viable products like organic acids, biochemical and biofuels was largely discussed and explored over the conventional method of disposing in landfills. The sustainable development of such strategies largely depends on understanding the techno economic challenges and planning for future strategies to overcome these hurdles. This review work presents a comprehensive outlook on the complex nature of agro-industrial food waste and pretreatment methods for their valorization into commercially viable products along with the challenges in the commercialization of food waste bio refineries that need critical attention to popularize the concept of circular bio economy.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Neha Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed To Be) University, Bengaluru, Karnataka, India
| | - Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Punjab, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Siva Ramakrishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | | |
Collapse
|
18
|
Seo JY, Tokmurzin D, Lee D, Lee SH, Seo MW, Park YK. Production of biochar from crop residues and its application for biofuel production processes - An overview. BIORESOURCE TECHNOLOGY 2022; 361:127740. [PMID: 35934249 DOI: 10.1016/j.biortech.2022.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A sustainable carbon-neutral society is imperative for future generations, and biochars and biofuels are inevitable choice to achieve this goal. Crop residues (CR) such as sugarcane bagasse, corn stover, and rice husk are promising sustainable resources as a feedstock for biochars and biofuels. Extensive research has been conducted on CR-based biochar production not only in environmental remediation areas but also in application for biofuel production. Here, the distribution and resource potential of major crop residues are presented. The production of CR-biochar and its applications in biofuel production processes, focusing on the latest research are discussed. Finally, the challenges and areas of opportunity for future research in terms of CR supply, CR-biochar production, and CR-biochar utilization for biofuel production are proposed. Compared with other literature reviews, this study can serve as a guide for the establishment of sustainable, economical, commercial CR-based biorefineries.
Collapse
Affiliation(s)
- Jung Yoon Seo
- National Climate Technology Center, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Brewer’s Spent Grain Biochar: Grinding Method Matters. Mol Vis 2022. [DOI: 10.3390/c8030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work is based on the principle of biomass waste valorization. Brewer’s spent grains (BSG) come from breweries as by-products. Their huge amount of production on an industrial scale should focus our attention on their valorization, which creates challenges as well as opportunities. One way to valorize BSG by-products is to convert them into biochar, a functional material with multiple potential applications. With an emphasis on sustainable development and the circular economy, in this work, we focused on a comparative study of the different mechanical processes of BSG grinding and their effect on the resulting biochar formed after pyrolysis. Home appliances such as blenders, coffee mills, and mortar and pestles were used for this purpose. FESEM images confirmed the successful creation of five different morphologies from the same BSG under the same pyrolysis conditions. Interestingly, a novel Chinese tea leaf egg-like biochar was also formed. It was found that a series of physical pretreatments of the biomass resulted in the reduced roughness of the biochar surface, i.e., they became smoother, thus negatively affecting the quality of the biochar. XRD revealed that the biomass physical treatments were also reflected in the crystallinity of some biochar. Via a Raman study, we witnessed the effect of mechanical pressure on the biomass for affecting the biochar features through pressure-induced modifications of the biomass’s internal structure. This induced enhanced biochar graphitization. This is a good example of the role of mechanochemistry. DSC revealed the thermochemical transformation of the five samples to be exothermic reactions. This study opens up an interesting possibility for the synthesis of biochar with controlled morphology, crystallinity, degree of graphitization, and heat capacity.
Collapse
|