1
|
Mohammadi M, Asvar Z, Solhjoo SP, Sarikhanikhorrami M, Abadi HG, Ghazizadeh S, Mahmoodi H, Habibolah NK, Moradi O, Kesharwani P, Amani AM, Sahebkar A. COVID-19 diagnosis on the basis of nanobiosensors' prompt interactivity: A holistic review. Pathol Res Pract 2024; 262:155565. [PMID: 39226801 DOI: 10.1016/j.prp.2024.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The fast spread and severe consequences of novel coronavirus disease 2019 (COVID-19) have once again underscored the critical necessity of early detection of viral infections. Several serology-based techniques, including as point-of-care assays and high-throughput enzyme immunoassays that support the diagnosis of COVID-19 are utilized in the detection and identification of coronaviruses. A rapid, precise, simple, affordable, and adaptable diagnostic tool is required for controlling COVID-19 as well as for outbreak management, since the calculation and monitoring of viral loads are crucial for predicting the infection stage and recovery time. Nowadays, the most popular method for diagnosing COVID-19 is reverse transcription polymerase chain reaction (RT-PCR) testing, and chest computed tomography (CT) scans are also used to determine the disease's phases. This is all because of the fact that RT-PCR method caries with itself a number of downsides comprising of being immovable, expensive, and laborious. RT-PCR has not well proven to be capable of detection on the very early infection stages. Nanomaterial-based diagnostics, together with traditional clinical procedures, have a lot of promise against COVID-19. It is worthy of attention that nanotechnology has the mainstay capacity for purposes of developing even more modern stratagems fighting COVID-19 by means of focusing on state-of-the-art diagnostics. What we have centered on in this review, is bringing out even more efficient detection techniques whereby nanobiosensors are employed so that we might obstruct any further development and spreading of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Pooria Solhjoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sarikhanikhorrami
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghader Abadi
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Kazerun, Kazerun, Iran
| | - Shirin Ghazizadeh
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Hassan Mahmoodi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Karbalaee Habibolah
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Omar Moradi
- Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ng E, Choi C, Wang SX. Longitudinal analysis of anti-SARS-CoV-2 neutralizing antibody (NAb) titers in vaccinees using a novel giant magnetoresistive (GMR) assay. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 387:133773. [PMID: 37056483 PMCID: PMC10072976 DOI: 10.1016/j.snb.2023.133773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has highlighted the need to monitor important correlates of immunity on a population-wide level. To this end, we have developed a competitive assay to assess neutralizing antibody (NAb) titer on the giant magnetoresistive (GMR) biosensor platform. We compared the clinical performance of our biosensor with established techniques such as Ortho's VITROS Anti-SARS-CoV-2 IgG Quantitative Antibody test. Results obtained between the VITROS test and the GMR assay showed correlation (r = -0.93). We then validated the assay with patient plasma samples that had been tested using focus reduction neutralization testing (FRNT). The results obtained from our GMR assay exhibit a previously identified trend of increased NAb titers 2 weeks post-vaccination. We further evaluated NAb titers 6 months post-vaccination and observed waning neutralizing antibody titers over that time in vaccinated patients. In addition, we calibrated our assay to an arbitrary unit (IU/mL) using World Health Organization (WHO) reference plasma provided by the National Institute of Biological Standards and Control (NIBSC). Our biosensor provides highly specific and sensitive results in serum and plasma with analytical, clinical, and point-of-care (POC) applications due to quick turnaround times on samples and the cost-effectiveness of the platform.
Collapse
Affiliation(s)
- Elaine Ng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Christopher Choi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Liang S, Sutham P, Wu K, Mallikarjunan K, Wang JP. Giant Magnetoresistance Biosensors for Food Safety Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155663. [PMID: 35957220 PMCID: PMC9371012 DOI: 10.3390/s22155663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/25/2023]
Abstract
Nowadays, the increasing number of foodborne disease outbreaks around the globe has aroused the wide attention of the food industry and regulators. During food production, processing, storage, and transportation, microorganisms may grow and secrete toxins as well as other harmful substances. These kinds of food contamination from microbiological and chemical sources can seriously endanger human health. The traditional detection methods such as cell culture and colony counting cannot meet the requirements of rapid detection due to some intrinsic shortcomings, such as being time-consuming, laborious, and requiring expensive instrumentation or a central laboratory. In the past decade, efforts have been made to develop rapid, sensitive, and easy-to-use detection platforms for on-site food safety regulation. Herein, we review one type of promising biosensing platform that may revolutionize the current food surveillance approaches, the giant magnetoresistance (GMR) biosensors. Benefiting from the advances of nanotechnology, hundreds to thousands of GMR biosensors can be integrated into a fingernail-sized area, allowing the higher throughput screening of food samples at a lower cost. In addition, combined with on-chip microfluidic channels and filtration function, this type of GMR biosensing system can be fully automatic, and less operator training is required. Furthermore, the compact-sized GMR biosensor platforms could be further extended to related food contamination and the field screening of other pathogen targets.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Phanatchakorn Sutham
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
de Olazarra AS, Cortade DL, Wang SX. From saliva to SNP: non-invasive, point-of-care genotyping for precision medicine applications using recombinase polymerase amplification and giant magnetoresistive nanosensors. LAB ON A CHIP 2022; 22:2131-2144. [PMID: 35537344 PMCID: PMC9156572 DOI: 10.1039/d2lc00233g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Genetic testing is considered a cornerstone of the precision medicine paradigm. Genotyping of single nucleotide polymorphisms (SNPs) has been shown to provide insights into several important issues, including therapy selection and drug responsiveness. However, a scarcity of widely deployable and cost-effective genotyping tools has limited the integration of precision medicine into routine clinical practice. The objective of our work was to develop a portable, cost-effective, and automated platform that performs SNP genotyping at the point-of-care (POC). Using recombinase polymerase amplification (RPA) and giant magnetoresistive (GMR) nanosensors, we present a highly automated and multiplexed point-of-care platform that utilizes direct saliva for the qualitative genotyping of four SNPs (rs4633, rs4680, rs4818, rs6269) along the catechol-O-methyltransferase gene (COMT), which is associated with the modulation of pain sensitivity and perioperative opioid use. Using this approach, we successfully amplify, detect, and genotype all four of the SNPs, demonstrating 100% accordance between the experimental results obtained using the automated RPA and GMR genotyping assay and the results obtained using a COMT PCR genotyping assay that was formerly validated using pyrosequencing. This automated, portable, and multiplexed RPA and GMR assay shows great promise as a solution for SNP genotyping at the POC and reinforces the broad applications of magnetic nanotechnology in biomedicine.
Collapse
Affiliation(s)
| | - Dana Lee Cortade
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Yao C, Ng E, Wang SX. An automated and mobile magnetoresistive biosensor system for early hepatocellular carcinoma diagnosis. Biosens Bioelectron 2022; 202:113982. [PMID: 35033828 DOI: 10.1016/j.bios.2022.113982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Most patients, however, are not diagnosed until advanced stage because early HCC lesions generally cause no overt symptoms, and the presence of cirrhosis adds another layer of complexity. While early diagnosis enables more therapeutic options and greatly improves survival rates, it is difficult to achieve. In order to detect early stage HCC, high-risk patients need to frequently measure serum biomarkers such as alpha-fetoprotein (AFP), and gold standards for detection involve less accessible and costly tests. In this work, we present an automated and mobile magnetoresistive biosensor system that allows quick, easy, and accurate detection of a panel of HCC related biomarkers. We first discuss the underlying principles of the giant magnetoresistive (GMR) biosensor system and its unique advantages in early detection of HCC. We also describe the development of hardware, software, and the bioassay, and demonstrate that it can perform an automated assay in 28 min, providing both qualitative and quantitative results. The user only needs to manually add sample into a disposable cartridge and press a button on the smartphone app, without the need for direct interaction with reagent liquids, or lab skills such as pipetting. With its portability, high sensitivity, and ease-of-use, the presented biosensor system has the potential to empower both medical practitioners and patients to achieve early HCC diagnosis. Furthermore, the GMR biosensor platform can be adapted to detect other protein or DNA biomarkers beyond HCC, bringing the goals of accessible mobile health even closer to reality.
Collapse
Affiliation(s)
- Chengyang Yao
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States.
| | - Elaine Ng
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Development of nano-sensor and biosensor as an air pollution detection technique for the foreseeable future. COMPREHENSIVE ANALYTICAL CHEMISTRY 2022; 99:163-188. [PMCID: PMC9906420 DOI: 10.1016/bs.coac.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nowadays, the air quality control has become an important issue, especially after “COVID-19.” The air respiratory viruses cause a severe infection. The detection of airborne viruses and air contaminants is an urgent trend. The quality of a certain environment is based on the analysis of its indoor air. Thus, the design and production of rapid sensors for the control purposes are an urgent goal. This chapter should contribute to increase the scientific knowledge in the environmental fields, everyone that is exposed to air pollutants, occupational health services, medicine clinics, and work inspectors. This chapter aims also to support the readers with details about the relation between nanotechnology and air pollution control, and to link these issues to the eco-friendly nanomaterial production. The chapter provides an overview of information on diverse types of nanosensors and nanobiosensors, followed by a brief section on eco-friendly development of biomass-based nanomaterials.
Collapse
|
8
|
Lohcharoenkal W, Abbas Z, Rojanasakul Y. Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. BIOSENSORS 2021; 11:364. [PMID: 34677320 PMCID: PMC8533878 DOI: 10.3390/bios11100364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Collapse
Affiliation(s)
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
10
|
Abstract
Magnetoresistance (MR) is the variation of a material’s resistivity under the presence of external magnetic fields. Reading heads in hard disk drives (HDDs) are the most common applications of MR sensors. Since the discovery of giant magnetoresistance (GMR) in the 1980s and the application of GMR reading heads in the 1990s, the MR sensors lead to the rapid developments of the HDDs’ storage capacity. Nowadays, MR sensors are employed in magnetic storage, position sensing, current sensing, non-destructive monitoring, and biomedical sensing systems. MR sensors are used to transfer the variation of the target magnetic fields to other signals such as resistance change. This review illustrates the progress of developing nanoconstructed MR materials/structures. Meanwhile, it offers an overview of current trends regarding the applications of MR sensors. In addition, the challenges in designing/developing MR sensors with enhanced performance and cost-efficiency are discussed in this review.
Collapse
|
11
|
Nesvet JC, Antilla KA, Pancirer DS, Lozano AX, Preiss JS, Ma W, Fu A, Park SM, Gambhir SS, Fan AC, Neal JW, Padda SK, Das M, Li T, Wakelee HA, Wang SX. Giant Magnetoresistive Nanosensor Analysis of Circulating Tumor DNA Epidermal Growth Factor Receptor Mutations for Diagnosis and Therapy Response Monitoring. Clin Chem 2021; 67:534-542. [PMID: 33393992 DOI: 10.1093/clinchem/hvaa307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Liquid biopsy circulating tumor DNA (ctDNA) mutational analysis holds great promises for precision medicine targeted therapy and more effective cancer management. However, its wide adoption is hampered by high cost and long turnaround time of sequencing assays, or by inadequate analytical sensitivity of existing portable nucleic acid tests to mutant allelic fraction in ctDNA. METHODS We developed a ctDNA Epidermal Growth Factor Receptor (EGFR) mutational assay using giant magnetoresistive (GMR) nanosensors. This assay was validated in 36 plasma samples of non-small cell lung cancer patients with known EGFR mutations. We assessed therapy response through follow-up blood draws, determined concordance between the GMR assay and radiographic response, and ascertained progression-free survival of patients. RESULTS The GMR assay achieved analytical sensitivities of 0.01% mutant allelic fraction. In clinical samples, the assay had 87.5% sensitivity (95% CI = 64.0-97.8%) for Exon19 deletion and 90% sensitivity (95% CI = 69.9-98.2%) for L858R mutation with 100% specificity; our assay detected T790M resistance with 96.3% specificity (95% CI = 81.7-99.8%) with 100% sensitivity. After 2 weeks of therapy, 10 patients showed disappearance of ctDNA by GMR (predicted responders), whereas 3 patients did not (predicted nonresponders). These predictions were 100% concordant with radiographic response. Kaplan-Meier analysis showed responders had significantly (P < 0.0001) longer PFS compared to nonresponders (N/A vs. 12 weeks, respectively). CONCLUSIONS The GMR assay has high diagnostic sensitivity and specificity and is well suited for detecting EGFR mutations at diagnosis and noninvasively monitoring treatment response at the point-of-care.
Collapse
Affiliation(s)
- Jared C Nesvet
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Katie A Antilla
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Danielle S Pancirer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander X Lozano
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jordan S Preiss
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Weijie Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Seung-Min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alice C Fan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sukhmani K Padda
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Department of Medicine, Palo Alto, CA, USA
| | - Tianhong Li
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Heather A Wakelee
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Ng E, Le AK, Nguyen MH, Wang SX. Early Multiplexed Detection of Cirrhosis using Giant Magnetoresistive Biosensors with Protein Biomarkers. ACS Sens 2020; 5:3049-3057. [PMID: 32896123 DOI: 10.1021/acssensors.0c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis is one of the leading causes of death in adults worldwide. It is highly prevalent in developing countries and is growing in prevalence in developed countries mostly because of chronic liver diseases, such as chronic hepatitis B and C and alcoholic and nonalcoholic fatty liver disease. However, the prevalence of cirrhosis may be highly underestimated because early stages are asymptomatic and current early detection methods are inadequate. Here, we evaluate the potential of a set of novel cirrhotic protein biomarkers, including soluble intercellular adhesion molecule-1 and mac-2 binding protein glycosylation isomer, for early detection of cirrhosis in a multiplexed assay using our giant magnetoresistive (GMR) sensor arrays. We evaluated the diagnostic performance of the biomarkers, individually and in combination, using multivariate logistic regression and random forest in a blinded proof-of-concept retrospective case-controlled study. The biomarkers in combination exhibited high diagnostic performance in both logistic regression and random forest models, with an area under the curve of 0.98 (0.94-1.00). In addition, the combination of biomarkers resulted in a high sensitivity of 0.97 (0.95-1.00) and a high specificity of 1.00. We showed that the diagnostic performance of our novel set of cirrhotic protein biomarkers on our multiplexed GMR sensor arrays is higher than the performance of currently used clinical biomarkers and factors (i.e., age, sex, alanine aminotransferase, aspartate aminotransferase, etc.). With this combination of novel biomarkers and GMR technology, we could potentially boost the diagnostic power of early cirrhosis detection.
Collapse
Affiliation(s)
- Elaine Ng
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - An K. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California 94305, United States
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California 94305, United States
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Ren C, Bayin Q, Feng S, Fu Y, Ma X, Guo J. Biomarkers detection with magnetoresistance-based sensors. Biosens Bioelectron 2020; 165:112340. [PMID: 32729483 DOI: 10.1016/j.bios.2020.112340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Biosensing platforms for detecting and quantifying biomarkers have played an important role in the past decade. Among them, platforms based on magnetoresistance (MR) sensing technology are attractive. The resistance value of the material changes with the externally applied magnetic field is the core mechanism of MR sensing technology. A typical MR-based sensor has the characteristics of cost-effective, simple operation, high compactness, and high sensitivity. Moreover, using magnetic nanoparticles (MNPs) as labels, MR-based sensors have the ability to overcome the high background noise of complex samples, so they are particularly suitable for point-of-care testing (POCT). However, the problem still exists. How to obtain high-throughput, that is, multiple detections of biomarkers in MR-based sensors, thereby improving detection efficiency and reducing the burden on patients is an important issue in future work. This paper reviews three MR-based detection technologies for the detection of biomarkers, i.e., anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), and tunneling magnetoresistance (TMR). Based on these three common technologies, different typical applications that include biomedical diagnosis, food safety, and environmental monitoring are presented. Furthermore, the existing MR-based detection method is better expanded to make it more in line with present detection needs by combining different advanced technologies including microfluidics, Microelectromechanical systems (MEMS), and Immunochromatographic test strips (ICTS). And then, a brief discussion of current challenges and perspectives of MR-based sensors are pointed out.
Collapse
Affiliation(s)
- Chunhui Ren
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qiaoge Bayin
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
14
|
Wu D, Voldman J. An integrated model for bead-based immunoassays. Biosens Bioelectron 2020; 154:112070. [PMID: 32056966 DOI: 10.1016/j.bios.2020.112070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022]
Abstract
Bead-based immunoassays have shown great promise for rapid and sensitive protein quantification. However, there still lacks holistic understanding of assay performance that can inform assay design and optimization. In this paper, we present an integrated mathematical model for surface coverage bead-based assays. This model examines the building blocks of surface coverage assays, including heterogeneous binding of analyte molecules on bead or sensor surfaces, attachment of bead labels to sensor surfaces, and generation of electrochemical current by bead labels. To demonstrate and validate this model, we analyze a semi-homogeneous bead-based electronic enzyme-linked immunosorbent assay and find that experimental results agree with various model predictions. We show that the model can provide design guidance for choice of various assay parameters including bead size, bead number, antibody affinity and assay time, and provide a perspective to reconcile the performance of various implementations of surface coverage assays.
Collapse
Affiliation(s)
- Dan Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Gnaim R, Sheviryov J, Golberg A, Ames G, Oziel M, González CA. Label-Free cDNA Detection Based on Radiofrequency Scattering Parameters: A New Approach for an Inexpensive Gene Sensor. J Med Device 2020. [DOI: 10.1115/1.4045909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A new gene detection technique that is fast, inexpensive, and easy-to-use is urgently needed in hospitals, clinics, and laboratories without access to expensive equipments. The lack of a practical, minimally invasive, and economical method constitutes the main impediment to the promotion of genetic medicine in developing countries. Radiofrequency scattering parameters are an inexpensive gene sensor potentially capable of noninvasively identifying biological materials. They represent a quantitative value for the electromagnetic reflection/transmission characteristics of certain molecular markers in a given frequency domain. The S21 parameter is the difference between the signal received and that transmitted. The aim of this study is to evaluate the S21 transmittance parameters (magnitude and phase) as an indirect impedance measurement for detecting the label-free complementary deoxyribonucleic acid (cDNA) amplification of the 16S ribosomal subunit gene. S21 values showed differences associated with distinct cDNA concentrations. Hence, this technique could possibly facilitate the design of an inexpensive, label-free, and easy-to-use gene sensor.
Collapse
Affiliation(s)
- Rima Gnaim
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Triangle Regional Research and Development Center, Kfar Qari' 30075, Israel; Porter School, Tel Aviv University, Room 214, Ramat Aviv 69978, Israel
| | - Julia Sheviryov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Porter School, Room 214, Ramat Aviv 69978, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Porter School, Room 215, Ramat Aviv 69978, Israel
| | - Gerardo Ames
- Centro de Investigación en Instrumentación e Imagenología Médica (Ci3M), Universidad Autónoma Metropolitana—Iztapalapa, CDMX 09340, Mexico; Centro de Investigación en Instrumentación e Imagenología Médica (Ci3M), Avenue San Rafael Atlixco 186, Leyes de Reforma 1ra Secc 09340, México
| | - Moshe Oziel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - César A. González
- Instituto Politécnico Nacional-Escuela Superior de Medicina, CDMX 11340, México; Plan de San Luis esq. Díaz Mirón, Col. Casco de Santo Tomas, CDMX 11300, México
| |
Collapse
|
16
|
Calais T, Valdivia y Alvarado P. Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab4f9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Advances in Magnetoresistive Biosensors. MICROMACHINES 2019; 11:mi11010034. [PMID: 31888076 PMCID: PMC7019276 DOI: 10.3390/mi11010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Magnetoresistance (MR) based biosensors are considered promising candidates for the detection of magnetic nanoparticles (MNPs) as biomarkers and the biomagnetic fields. MR biosensors have been widely used in the detection of proteins, DNAs, as well as the mapping of cardiovascular and brain signals. In this review, we firstly introduce three different MR devices from the fundamental perspectives, followed by the fabrication and surface modification of the MR sensors. The sensitivity of the MR sensors can be improved by optimizing the sensing geometry, engineering the magnetic bioassays on the sensor surface, and integrating the sensors with magnetic flux concentrators and microfluidic channels. Different kinds of MR-based bioassays are also introduced. Subsequently, the research on MR biosensors for the detection of protein biomarkers and genotyping is reviewed. As a more recent application, brain mapping based on MR sensors is summarized in a separate section with the discussion of both the potential benefits and challenges in this new field. Finally, the integration of MR biosensors with flexible substrates is reviewed, with the emphasis on the fabrication techniques to obtain highly shapeable devices while maintaining comparable performance to their rigid counterparts.
Collapse
|
18
|
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnology 2018; 16:95. [PMID: 30466465 PMCID: PMC6249933 DOI: 10.1186/s12951-018-0419-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
The need and desire to understand the environment, especially the quality of one's local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens.
Collapse
Affiliation(s)
- Marjorie R. Willner
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| |
Collapse
|
19
|
Kim K, Hall DA, Yao C, Lee JR, Ooi CC, Bechstein DJB, Guo Y, Wang SX. Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling. Sci Rep 2018; 8:16493. [PMID: 30405155 PMCID: PMC6220270 DOI: 10.1038/s41598-018-34720-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Kyunglok Kim
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States
| | - Chengyang Yao
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Chin C Ooi
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Daniel J B Bechstein
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yue Guo
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
20
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
21
|
Sun X, Feng Z, Zhi S, Lei C, Zhang D, Zhou Y. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting. Sci Rep 2017; 7:12967. [PMID: 29021533 PMCID: PMC5636843 DOI: 10.1038/s41598-017-13389-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
We report an innovative integrated microfluidic platform based on micro-fluxgate and micro-coils for trapping and detecting magnetic beads. A micro-spiral coil fabricated by microfabrication technology is used to trap the magnetic beads, and the micro-fluxgate is employed to detect the weak magnetic field induced by the trapped magnetic beads. The fabrication process of the magnetic bead trapping system using a micro-coil is highly compatible with that of the micro-fluxgate sensor, making fabrication of this integrated microfluidic system convenient and efficient. It is observed that the magnetic bead trapping ratio increases as the number of magnetic beads is increased with a flow rate of 5 to 16.5 μL·min−1. Samples spiked with different concentrations of magnetic beads can be distinguished clearly using the micro-fluxgate sensor in this microfluidic system. In this study, the results demonstrate that the microfluidic system traps and detects magnetic beads efficiently and is a promising candidate for biomarker capture and detection.
Collapse
Affiliation(s)
- Xuecheng Sun
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Zhu Feng
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Shaotao Zhi
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Chong Lei
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Di Zhang
- Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Yong Zhou
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
22
|
Giant Magnetoresistive Biosensors for Time-Domain Magnetorelaxometry: A Theoretical Investigation and Progress Toward an Immunoassay. Sci Rep 2017; 7:45493. [PMID: 28374833 PMCID: PMC5379630 DOI: 10.1038/srep45493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Magnetorelaxometry (MRX) is a promising new biosensing technique for point-of-care diagnostics. Historically, magnetic sensors have been primarily used to monitor the stray field of magnetic nanoparticles bound to analytes of interest for immunoassays and flow cytometers. In MRX, the magnetic nanoparticles (MNPs) are first magnetized and then the temporal response is monitored after removing the magnetic field. This new sensing modality is insensitive to the magnetic field homogeneity making it more amenable to low-power portable applications. In this work, we systematically investigated time-domain MRX by measuring the signal dependence on the applied field, magnetization time, and magnetic core size. The extracted characteristic times varied for different magnetic MNPs, exhibiting unique magnetic signatures. We also measured the signal contribution based on the MNP location and correlated the coverage with measured signal amplitude. Lastly, we demonstrated, for the first time, a GMR-based time-domain MRX bioassay. This approach validates the feasibility of immunoassays using GMR-based MRX and provides an alternative platform for point-of-care diagnostics.
Collapse
|
23
|
Magnetic impedance biosensor: A review. Biosens Bioelectron 2017; 90:418-435. [DOI: 10.1016/j.bios.2016.10.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/15/2023]
|
24
|
Gooneratne CP, Kodzius R, Li F, Foulds IG, Kosel J. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization. SENSORS 2016; 16:s16091369. [PMID: 27571084 PMCID: PMC5038647 DOI: 10.3390/s16091369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.
Collapse
Affiliation(s)
- Chinthaka P Gooneratne
- Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Rimantas Kodzius
- Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Fuquan Li
- Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Ian G Foulds
- Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Jürgen Kosel
- Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
25
|
Ficko BW, NDong C, Giacometti P, Griswold KE, Diamond SG. A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells. IEEE Trans Biomed Eng 2016; 64:972-979. [PMID: 27352362 DOI: 10.1109/tbme.2016.2584241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. METHOD This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 μg/ml and five concentrations of cells from 50 to 400 000 count per ml. RESULTS A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 μg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. CONCLUSION Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. SIGNIFICANCE Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.
Collapse
|
26
|
Ferromagnetic Multilayers: Magnetoresistance, Magnetic Anisotropy, and Beyond. MAGNETOCHEMISTRY 2016. [DOI: 10.3390/magnetochemistry2020022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Reeves DB, Shi Y, Weaver JB. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 2016; 11:e0150856. [PMID: 26959493 PMCID: PMC4784917 DOI: 10.1371/journal.pone.0150856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles' size distribution and moment and the applied field's amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter.
Collapse
Affiliation(s)
- Daniel B. Reeves
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
- * E-mail:
| | - Yipeng Shi
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
| | - John B. Weaver
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
- Department of Radiology, Geisel School of Medicine, Hanover, NH, 03755 United States of America
| |
Collapse
|
28
|
Zhang J, Wu DZ, Cai SX, Chen M, Xia YK, Wu F, Chen JH. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosens Bioelectron 2016; 75:452-7. [DOI: 10.1016/j.bios.2015.09.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
|
29
|
Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens Bioelectron 2016; 75:166-80. [DOI: 10.1016/j.bios.2015.08.032] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/30/2023]
|
30
|
Liébana S, Brandão D, Cortés P, Campoy S, Alegret S, Pividori MI. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles. Anal Chim Acta 2015; 904:1-9. [PMID: 26724759 DOI: 10.1016/j.aca.2015.09.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 11/17/2022]
Abstract
A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms.
Collapse
Affiliation(s)
- Susana Liébana
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Delfina Brandão
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - Salvador Alegret
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain
| | - María Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra), Spain.
| |
Collapse
|
31
|
Bridle H, Balharry D, Gaiser B, Johnston H. Exploitation of Nanotechnology for the Monitoring of Waterborne Pathogens: State-of-the-Art and Future Research Priorities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10762-77. [PMID: 26301863 DOI: 10.1021/acs.est.5b01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Contaminated drinking water is one of the most important environmental contributors to the human disease burden. Monitoring of water for the presence of pathogens is an essential part of ensuring drinking water safety. In order to assess water quality it is essential to have methods available to sample and detect the type, level and viability of pathogens in water which are effective, cheap, quick, sensitive, and where possible high throughput. Nanotechnology has the potential to drastically improve the monitoring of waterborne pathogens when compared to conventional approaches. To date, there have been no reviews that outline the applications of nanotechnology in this area despite increasing exploitation of nanotechnology for this purpose. This review is therefore the first overview of the state-of-the-art in the application of nanotechnology to waterborne pathogen sampling and detection schemes. Research in this field has been centered on the use of engineered nanomaterials. The effectiveness and limitations of nanomaterial-based approaches is outlined. A future outlook of the advances that are likely to emerge in this area, as well as recommendations for areas of further research are provided.
Collapse
Affiliation(s)
- Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Riccarton, Edinburgh, EH14 4AS, United Kingdom
| | - Dominique Balharry
- School of Life Sciences, Heriot-Watt University , Riccarton, Edinburgh, EH14 4AS, United Kingdom
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh , Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Birgit Gaiser
- School of Life Sciences, Heriot-Watt University , Riccarton, Edinburgh, EH14 4AS, United Kingdom
| | - Helinor Johnston
- School of Life Sciences, Heriot-Watt University , Riccarton, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
32
|
Zhang J, Wu D, Chen Q, Chen M, Xia Y, Cai S, Zhang X, Wu F, Chen J. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling. Analyst 2015; 140:5082-9. [DOI: 10.1039/c5an01042j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe a novel label-free fluorescence method for microRNA-21 (miR-21) detection based on terbium (Tb3+) and duplex-specific nuclease (DSN) assisted target recycling.
Collapse
Affiliation(s)
- Jing Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology
- and College of Life Sciences
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Dongzhi Wu
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - QiuXiang Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Mei Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Yaokun Xia
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Shuxian Cai
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Xi Zhang
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Fang Wu
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|
33
|
Zhang J, Chen L, Tse WH, Bi R, Chen L. Inorganic Nanoparticles: Engineering for Biomedical Applications. IEEE NANOTECHNOLOGY MAGAZINE 2014. [DOI: 10.1109/mnano.2014.2355277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Gu H, Guo J, Yan X, Wei H, Zhang X, Liu J, Huang Y, Wei S, Guo Z. Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.05.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 2014; 4:5716. [PMID: 25043673 PMCID: PMC4104391 DOI: 10.1038/srep05716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based detection system capable of stable and convenient connection, and real-time measurement. Five different types of MNPs with sizes ranging from 10 to 100 nm were investigated for GMR biosensing. The experiments were accomplished with the aid of DNA hybridization and detection architecture on GMR sensor surface. We found that different MNPs markedly affected the final detection signal, depending on their characteristics of magnetic moment, size, and surface-based binding ability, etc. This work may provide a useful guidance in selecting or preparing MNPs to enhance the sensitivity of GMR biosensors, and eventually lead to a versatile and portable device for molecular diagnostics.
Collapse
|
36
|
Issadore D, Park YI, Shao H, Min C, Lee K, Liong M, Weissleder R, Lee H. Magnetic sensing technology for molecular analyses. LAB ON A CHIP 2014; 14:2385-97. [PMID: 24887807 PMCID: PMC4098149 DOI: 10.1039/c4lc00314d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification and yet achieves a high signal-to-background contrast. Moreover, magnetic sensors are also well-suited for miniaturization to match the size of biological targets, which enables sensitive detection of rare cells and small amounts of molecular markers. We herein summarize recent advances in magnetic sensing technologies, with an emphasis on clinical applications in point-of-care settings. Key components of sensors, including magnetic nanomaterials, labeling strategies and magnetometry, are reviewed.
Collapse
Affiliation(s)
- D. Issadore
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Y. I. Park
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - H. Shao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - C. Min
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - K. Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - M. Liong
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - R. Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114
| | - H. Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
37
|
van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ. Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review. LAB ON A CHIP 2014; 14:1966-86. [PMID: 24806093 DOI: 10.1039/c3lc51454d] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for point-of-care in vitro diagnostic testing. To fulfill medical needs, the tests should be rapid, sensitive, quantitative, and miniaturizable, and need to integrate all steps from sample-in to result-out. Here, we review the use of magnetic particles actuated by magnetic fields to perform the different process steps that are required for integrated lab-on-chip diagnostic assays. We discuss the use of magnetic particles to mix fluids, to capture specific analytes, to concentrate analytes, to transfer analytes from one solution to another, to label analytes, to perform stringency and washing steps, and to probe biophysical properties of the analytes, distinguishing methodologies with fluid flow and without fluid flow (stationary microfluidics). Our review focuses on efforts to combine and integrate different magnetically actuated assay steps, with the vision that it will become possible in the future to realize integrated lab-on-chip biosensing assays in which all assay process steps are controlled and optimized by magnetic forces.
Collapse
Affiliation(s)
- Alexander van Reenen
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Koets M, van Ommering K, Wang L, Testori E, Evers TH, Prins MWJ. Influence of dsDNA fragment length on particle binding in an evanescent field biosensing system. Analyst 2014; 139:1672-7. [PMID: 24534803 DOI: 10.1039/c3an01999c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Particle labels are widely used in affinity-based biosensing due to the high detection signal per label, the high stability, and the convenient biofunctionalization of particles. In this paper we address the question how the time-course of particle binding and the resulting signals depend on the length of captured target molecules. As a model system we used fragments of dsDNA with lengths of 105 bp (36 nm), 290 bp (99 nm) and 590 bp (201 nm), detected in an evanescent-field optomagnetic biosensing system. On both ends the fragments were provided with small-molecule tags to allow binding of the fragments to protein-coated particles and to the capture molecules at the sensor surface. For isolated single particles bound to the surface, we observe that the optical scattering signal per particle depends only weakly on the fragment length, which we attribute to the pivoting motion that allows the particles to get closer to the surface. Our data show a strong influence of the fragment length on the particle binding: the binding rate of particles to the sensor surface is an order of magnitude higher for the longest dsDNA fragments compared to the smallest fragment studied in this paper. We attribute the enhanced binding rate to the length and motional freedom of the fragments. These results generate a new dimension for the design of assays and systems in particle-based biosensing.
Collapse
Affiliation(s)
- Marjo Koets
- Philips Research Europe, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Park SJ, Min J, Hu QZ, Jang CH. Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3162-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Chen YT, Liu YC, Fang WF, Huang CJ, Fan SK, Chen WJ, Chang WT, Huang CH, Yang JT. DNA diagnosis in a microseparator based on particle aggregation. Biosens Bioelectron 2013; 50:8-13. [PMID: 23827371 DOI: 10.1016/j.bios.2013.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/27/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
A novel aggregation-based biosensing method to achieve detection of oligonucleotides in a pinched-flow fractionation (PFF) microseparator was developed. Employing functionalized polystyrene microspheres, this method is capable of the direct detection of the concentration of a specific DNA sequence. The label-free target DNA hybridizes with probe DNA of two kinds on the surface of the microspheres and causes the formation of an aggregate, thus increasing the average size of the aggregate particles. On introducing the sample into a PFF microseparator, the aggregate particles locate at a specific position depending on the size of the aggregate. Through a multi-outlet asymmetric PFF microseparator, the aggregate particles become separated according to outlets. Because the size of the aggregate particles is proportional to the concentration of the target DNA, a rapid quantitative analysis is achievable with an optical microscope. A biological dose-response curve with concentration in a dynamic range 0.33-10nM has been achieved; the limit of detection is between 33 and 330 pM. The specificity of the method and the potential to detect single-nucleotide polymorphism (SNP) of known concentration were examined. The method features simple, direct and cheap detection, with a prospect of detecting other biochemical samples with distinct aggregation behavior, such as heavy-metal ions, bacteria and proteins.
Collapse
Affiliation(s)
- Yu-Tzu Chen
- Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang YW, Ugaz VM. Smartphone-based detection of unlabeled DNA via electrochemical dissolution. Analyst 2013; 138:2522-6. [PMID: 23476923 DOI: 10.1039/c3an36875k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe a novel approach that enables unlabeled biomolecules and chemical analytes to be detected using ordinary smartphone optics. Electrochemical reactivity of chromium, ordinarily considered detrimental, is harnessed here to generate a signature that can be easily seen by monitoring electrode dissolution under ordinary white-light illumination. The simplicity and robustness of this approach eliminates the need for labeling and/or pre-programming with specific receptors (e.g., oligonucleotide probes), making it feasible to greatly expand availability of a host of assays where detection complexity is a limiting constraint.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
| | | |
Collapse
|
43
|
Eickenberg B, Meyer J, Helmich L, Kappe D, Auge A, Weddemann A, Wittbracht F, Hütten A. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface. BIOSENSORS-BASEL 2013; 3:327-40. [PMID: 25586262 PMCID: PMC4263578 DOI: 10.3390/bios3030327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022]
Abstract
Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.
Collapse
Affiliation(s)
- Bernhard Eickenberg
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Judith Meyer
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Lars Helmich
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Daniel Kappe
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Alexander Auge
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Alexander Weddemann
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Frank Wittbracht
- Faculty of Arts and Sciences, Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | - Andreas Hütten
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
44
|
Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. NANOSCALE 2013; 5:7664-7684. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great promise in biomedical applications. In this review, we summarize the recent advances in the design and fabrication of core-shell and hetero-structured SPIONs and further outline some exciting developments and progresses of these multifunctional SPIONs for diagnosis, multimodality imaging, therapy, and biophotonics.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | | | | |
Collapse
|
45
|
Zhang J, Wu X, Yang W, Chen J, Fu F. Ultra-sensitive electrochemical detection of single nucleotide polymorphisms based on an electrically controllable magnetic gold electrode. Chem Commun (Camb) 2013; 49:996-8. [DOI: 10.1039/c2cc37783g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Ranzoni A, Sidjabat H, Cooper MA. Nanoparticle sample preparation and mass spectrometry for rapid diagnosis of microbial infections. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Gu H, Zhang X, Wei H, Huang Y, Wei S, Guo Z. An overview of the magnetoresistance phenomenon in molecular systems. Chem Soc Rev 2013; 42:5907-43. [DOI: 10.1039/c3cs60074b] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Orlov AV, Khodakova JA, Nikitin MP, Shepelyakovskaya AO, Brovko FA, Laman AG, Grishin EV, Nikitin PI. Magnetic Immunoassay for Detection of Staphylococcal Toxins in Complex Media. Anal Chem 2012; 85:1154-63. [DOI: 10.1021/ac303075b] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey V. Orlov
- A. M. Prokhorov General Physics
Institute, Russian Academy of Sciences,
38 Vavilova St. Moscow 119991 Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Julia A. Khodakova
- A. M. Prokhorov General Physics
Institute, Russian Academy of Sciences,
38 Vavilova St. Moscow 119991 Russia
| | - Maxim P. Nikitin
- A. M. Prokhorov General Physics
Institute, Russian Academy of Sciences,
38 Vavilova St. Moscow 119991 Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna O. Shepelyakovskaya
- Pushchino
Branch of Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Fedor A. Brovko
- Pushchino
Branch of Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander G. Laman
- Pushchino
Branch of Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Evgeny V. Grishin
- Shemyakin-Ovchinnikov Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr I. Nikitin
- A. M. Prokhorov General Physics
Institute, Russian Academy of Sciences,
38 Vavilova St. Moscow 119991 Russia
| |
Collapse
|
49
|
Poiata A, Creanga DE, Nadejde C, Fifere N, Airinei A. Chemically modified nanoparticles surface for sensing bacterial loading--experimental study based on fluorescence stimulation by iron ions. Bioelectrochemistry 2012. [PMID: 23186558 DOI: 10.1016/j.bioelechem.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The influence of iron ions supplied from magnetite nanoparticles with chemically modified surface on Pseudomonas aeruginosa germ was aimed--with experimental and theoretical approach of the intensity of the fluorescent signal emitted by the pyoverdine like siderophores. As the coated magnetic nanoparticles could function as probes, the possibility of designing a chemical device was considered based on the sensing of iron reduction from Fe(3+) into the more soluble Fe(2+), for detecting various levels of contamination (10 ÷ 10(8) cell/ml) of biological specimens and environmental samples. The proposed mathematical model estimated the fluorescence intensity due to siderophore synthesized by Pseudomonas, considering that the parameter describing the ion-bacteria interaction depends differently on the cell density for different magnetite nanoparticle coatings: linear dependence was found in the case of sodium oleate coating while power function was revealed for tetramethyl ammonium coating of magnetite nanocores, in both cases magnetite suspension being supplied in the same concentration (0.1 μl/ml). The calculated values of fluorescence intensity fitted the experimental data corresponding to magnetite supplied bacteria with graph slopes close to the unit and correlation coefficients of 0.999 and 0.996, while for the control samples, where that parameter was zeroed, correlation coefficient was found of 0.999.
Collapse
Affiliation(s)
- Antoniea Poiata
- Faculty of Pharmacy, Grigore T. Popa Medicine and Pharmacy University, 16 University St., Iasi, Romania
| | | | | | | | | |
Collapse
|
50
|
Zhang J, Zhang X, Yang G, Chen J, Wang S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Biosens Bioelectron 2012; 41:704-9. [PMID: 23089328 DOI: 10.1016/j.bios.2012.09.053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/13/2012] [Accepted: 09/25/2012] [Indexed: 01/19/2023]
Abstract
On the basis of Tb(3+), structure-switching aptamer and magnetic beads (MBs), a signal-on fluorescent aptasensor was developed for the label-free determination of OTA in wheat. Initially, the specific sequence of the anti-OTA aptamer labeled with a biotin group, was attached to streptavidin-modified MBs. Two single-stranded signal probes were added and naturally hybridized with anti-OTA aptamer to form the duplex structure in the solution. Due to the fact that single-stranded oligonucleotides can greatly enhance the emission of Tb(3+) in solution but duplexes do not, through magnetic separation, the supernatant liquid of the above solution contained no single-stranded DNA and cannot increase the emission of Tb(3+). While upon OTA addition, it will bind with aptamer to form OTA-aptamer G-quadruplex while releasing two single-stranded signal probes. Through magnetic separation, the released single-stranded signal probes left in the supernatant liquid can dramatically increase the fluorescent intensity of Tb(3+). By employing the above strategy, this aptasensor can detect as low as 20 pg/mL OTA with high specificity. To the best of our knowledge, the proposed aptasensor is the first attempt to use the fluorescent characteristics of Tb(3+) for OTA detection, which may represent a promising path toward routine quality control of food safety.
Collapse
Affiliation(s)
- Jing Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | |
Collapse
|