1
|
Chen Y, Sun Y, Li Y, Wen Z, Peng X, He Y, Hou Y, Fan J, Zang G, Zhang Y. A wearable non-enzymatic sensor for continuous monitoring of glucose in human sweat. Talanta 2024; 278:126499. [PMID: 38968652 DOI: 10.1016/j.talanta.2024.126499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
To enhance personalized diabetes management, there is a critical need for non-invasive wearable electrochemical sensors made from flexible materials to enable continuous monitoring of sweat glucose levels. The main challenge lies in developing glucose sensors with superior electrochemical characteristics and high adaptability. Herein, we present a wearable sensor for non-enzymatic electrochemical glucose analysis. The sensor was synthesized using hydrothermal and one-pot preparation methods, incorporating gold nanoparticles (AuNPs) functionalized onto aminated multi-walled carbon nanotubes (AMWCNTs) as an efficient catalyst, and crosslinked with carboxylated styrene butadiene rubber (XSBR) and PEDOT:PSS. The sensors were then integrated onto screen-printed electrodes (SPEs) to create flexible glucose sensors (XSBR-PEDOT:PSS-AMWCNTs/AuNPs/SPE). Operating under neutral conditions, the sensor exhibits a linear range of 50 μmol/L to 600 μmol/L, with a limit of detection limit of 3.2 μmol/L (S/N = 3), enabling the detection of minute glucose concentrations. The flexible glucose sensor maintains functionality after 500 repetitions of bending at a 180° angle, without significant degradation in performance. Furthermore, the sensor exhibits exceptional stability, repeatability, and resistance to interference. Importantly, we successfully monitored changes in sweat glucose levels by applying screen-printed electrodes to human skin, with results consistent with normal physiological blood glucose fluctuations. This study details the fabrication of a wearable sensor characterized by ease of manufacture, remarkable flexibility, high sensitivity, and adaptability for non-invasive blood glucose monitoring through non-enzymatic electrochemical analysis. Thus, this streamlined fabrication process presents a novel approach for non-invasive, real-time blood glucose level monitoring.
Collapse
Affiliation(s)
- Yuhua Chen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yanghan Sun
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Li
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhuo Wen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Peng
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanke He
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanfang Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jingchuan Fan
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
3
|
Kandwal A, Sharma YD, Jasrotia R, Kit CC, Lakshmaiya N, Sillanpää M, Liu LW, Igbe T, Kumari A, Sharma R, Kumar S, Sungoum C. A comprehensive review on electromagnetic wave based non-invasive glucose monitoring in microwave frequencies. Heliyon 2024; 10:e37825. [PMID: 39323784 PMCID: PMC11422007 DOI: 10.1016/j.heliyon.2024.e37825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Diabetes is a chronic disease that affects millions of humans worldwide. This review article provides an analysis of the recent advancements in non-invasive blood glucose monitoring, detailing methods and techniques, with a special focus on Electromagnetic wave microwave glucose sensors. While optical, thermal, and electromagnetic techniques have been discussed, the primary emphasis is focussed on microwave frequency sensors due to their distinct advantages. Microwave sensors exhibit rapid response times, require minimal user intervention, and hold potential for continuous monitoring, renders them extremely potential for real-world applications. Additionally, their reduced susceptibility to physiological interferences further enhances their appeal. This review critically assesses the performance of microwave glucose sensors by considering factors such as accuracy, sensitivity, specificity, and user comfort. Moreover, it sheds light on the challenges and upcoming directions in the growth of microwave sensors, including the need for reduction and integration with wearable platforms. By concentrating on microwave sensors within the broader context of non-invasive glucose monitoring, this article aims to offer significant enlightenment that may drive further innovation in diabetes care.
Collapse
Affiliation(s)
- Abhishek Kandwal
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou 215400, China
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
| | - Yogeshwar Dutt Sharma
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
| | - Rohit Jasrotia
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
- Centre for Research Impact and Outcome, Chitkara University, Rajpura 140101, Punjab, India
| | - Chan Choon Kit
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- Faculty of Engineering, Shinawatra University, Pathumthani, 12160, Thailand
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, Uni-versity of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Louis Wy Liu
- Faculty of Engineering, Vietnamese German University, 75000, Viet Nam
| | - Tobore Igbe
- Center for Diabetes Technology, School of Medicine, University of Virginia, VA22903, USA
| | - Asha Kumari
- Department of Chemistry, Career Point University, Himachal Pradesh, 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Himachal Pradesh, 176041, India
| | - Suresh Kumar
- Department of Physics, MMU University, Ambala, Haryana, India
| | - Chongkol Sungoum
- Faculty of Engineering, Shinawatra University, Pathumthani, 12160, Thailand
| |
Collapse
|
4
|
Han F, Li J, Xiao P, Yang Y, Liu H, Wei Z, He Y, Xu F. Wearable smart contact lenses: A critical comparison of three physiological signals outputs for health monitoring. Biosens Bioelectron 2024; 257:116284. [PMID: 38657379 DOI: 10.1016/j.bios.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Pingping Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
5
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
6
|
Wu KY, Dave A, Carbonneau M, Tran SD. Smart Contact Lenses in Ophthalmology: Innovations, Applications, and Future Prospects. MICROMACHINES 2024; 15:856. [PMID: 39064367 PMCID: PMC11279085 DOI: 10.3390/mi15070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, and the transmission of ocular information. This review further applies new innovations to their emerging role in the diagnosis, monitoring, and management of various ocular conditions. Moreover, we explore the impact of technical innovations on the application of smart contact lenses in monitoring glaucoma, managing postoperative care, and dry eye syndrome, further elucidating the non-invasive nature of these devices in continuous ocular health monitoring. The therapeutic potential of smart contact lenses such as treatment through targeted drug delivery and the monitoring of inflammatory biomarkers is also highlighted. Despite promising advancements, the implementation of smart contact lenses faces technical, regulatory, and patient compliance challenges. This review synthesizes the recent advances to provide an outlook on the state of smart contact lens technology. Furthermore, we discuss future directions, focusing on potential technological enhancements and new applications within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Seo J, Kang J, Kim J, Han H, Park M, Shin M, Lee K. Smart Contact Lens for Colorimetric Visualization of Glucose Levels in the Body Fluid. ACS Biomater Sci Eng 2024; 10:4035-4045. [PMID: 38778794 DOI: 10.1021/acsbiomaterials.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jumi Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Hyeju Han
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, South Korea
| |
Collapse
|
8
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
9
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
10
|
Yang G, Hong J, Park SB. Wearable device for continuous sweat lactate monitoring in sports: a narrative review. Front Physiol 2024; 15:1376801. [PMID: 38638276 PMCID: PMC11025537 DOI: 10.3389/fphys.2024.1376801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
In sports science, the use of wearable technology has facilitated the development of new approaches for tracking and assessing athletes' performance. This narrative review rigorously explores the evolution and contemporary state of wearable devices specifically engineered for continuously monitoring lactate levels in sweat, an essential biomarker for appraising endurance performance. Lactate threshold tests have traditionally been integral in tailoring training intensity for athletes, but these tests have relied on invasive blood tests that are impractical outside a laboratory setting. The transition to noninvasive, real-time monitoring through wearable technology introduces an innovative approach, facilitating continuous assessment without the constraints inherent in traditional methodologies. We selected 34 products from a pool of 246 articles found through a meticulous search of articles published up to January 2024 in renowned databases: PubMed, Web of Science, and ScienceDirect. We used keywords such as "sweat lactate monitoring," "continuous lactate monitoring," and "wearable devices." The findings underscore the capabilities of noninvasive sweat lactate monitoring technologies to conduct long-term assessments over a broad range of 0-100 mM, providing a safer alternative with minimal infection risks. By enabling real-time evaluations of the lactate threshold (LT) and maximal lactate steady state (MLSS), these technologies offer athletes various device options tailored to their specific sports and preferences. This review explores the mechanisms of currently available lactate monitoring technologies, focusing on electrochemical sensors that have undergone extensive research and show promise for commercialization. These sensors employ amperometric reactions to quantify lactate levels and detect changes resulting from enzymatic activities. In contrast, colorimetric sensors offer a more straightforward and user-friendly approach by displaying lactate concentrations through color alterations. Despite significant advancements, the relationship between sweat lactate and blood lactate levels remains intricate owing to various factors such as environmental conditions and the lag between exercise initiation and sweating. Furthermore, there is a marked gap in research on sweat lactate compared to blood lactate across various sports disciplines. This review highlights the need for further research to address these shortcomings and substantiate the performance of lactate sweat monitoring technologies in a broader spectrum of sports environments. The tremendous potential of these technologies to supplant invasive blood lactate tests and pioneer new avenues for athlete management and performance optimization in real-world settings heralds a promising future for integrating sports science and wearable technology.
Collapse
Affiliation(s)
| | - Junggi Hong
- *Correspondence: Seung-Bo Park, ; Junggi Hong,
| | | |
Collapse
|
11
|
Chen CH, Liu SB, Chang SP. Performance Improvement of a ZnGa 2O 4 Extended-Gate Field-Effect Transistor pH Sensor. ACS OMEGA 2024; 9:15304-15310. [PMID: 38585084 PMCID: PMC10993268 DOI: 10.1021/acsomega.3c09965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
ZnGa2O4 sensing films were prepared using an RF magnetron sputtering system and connected to a commercial metal oxide semiconductor field-effect transistor (MOSFET) as the extended-gate field-effect transistor (EGFET) to detect pH values. Experimental parameters were adjusted by varying the oxygen flow rate in the process chamber to produce ZnGa2O4 sensing films with different oxygen ratios. These films were then treated in a furnace tube at an annealing temperature of 700 °C. The sensitivity and linearity of the constant current mode and the constant voltage mode were measured and analyzed in the pH range of 2-12. Under the deposition conditions with an oxygen ratio of 6%, the sensitivity reached 23.14 mV/pH and 33.49 μA/pH, with corresponding linearity values of 92.1 and 96.15%, respectively. Finally, the sensing performance of the ZnGa2O4 EGFET pH sensor with and without annealing processes was analyzed and compared.
Collapse
Affiliation(s)
- Chia-Hsun Chen
- Institute
of Electro-Optical and Material Science, National Formosa University, Yunlin 632301, Taiwan
| | - Shu-Bai Liu
- Department
of Electronic Engineering, National Kaohsiung
University of Science and Technology, Kaohsiung City 80778, Taiwan
| | - Sheng-Po Chang
- Department
of Microelectronics Engineering, National
Kaohsiung University of Science and Technology, Kaohsiung City 88157, Taiwan
| |
Collapse
|
12
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Liu X, Ye Y, Ge Y, Qu J, Liedberg B, Zhang Q, Wang Y. Smart Contact Lenses for Healthcare Monitoring and Therapy. ACS NANO 2024; 18:6817-6844. [PMID: 38407063 DOI: 10.1021/acsnano.3c12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The eye contains a wealth of physiological information and offers a suitable environment for noninvasive monitoring of diseases via smart contact lens sensors. Although extensive research efforts recently have been undertaken to develop smart contact lens sensors, they are still in an early stage of being utilized as an intelligent wearable sensing platform for monitoring various biophysical/chemical conditions. In this review, we provide a general introduction to smart contact lenses that have been developed for disease monitoring and therapy. First, different disease biomarkers available from the ocular environment are summarized, including both physical and chemical biomarkers, followed by the commonly used materials, manufacturing processes, and characteristics of contact lenses. Smart contact lenses for eye-drug delivery with advancing technologies to achieve more efficient treatments are then introduced as well as the latest developments for disease diagnosis. Finally, sensor communication technologies and smart contact lenses for antimicrobial and other emerging bioapplications are also discussed as well as the challenges and prospects of the future development of smart contact lenses.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
14
|
Quan K, Zeng Y, Zhang W, Li F, Li M, Qing Z, Wu L. One-step, reagent-free construction of nano-enzyme as visual and reusable biosensor for oxidase substrates. Anal Chim Acta 2024; 1285:342008. [PMID: 38057047 DOI: 10.1016/j.aca.2023.342008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The substrates of oxidase are biologically essential substances that are closely associated with human physiological health. However, current biosensing methods suffer from tough recyclability and undesired denaturation of enzyme due to impurity interference. Herein, we have developed a visual and reusable biosensor for detecting substrate using glucose oxidase (GOx) as a model oxidase. GOx was immobilized onto gold nanoparticles (AuNPs) at -20 °C in one step without additional reagents. The resulting nano-enzyme generated coloimetric signals by coupling with horseradish peroxidase (HRP) using TMB as the substrate. Our results demonstrated that the immobilized GOx exhibited satisfactory sensitivity (0.68 μM) for glucose detection and higher inherent stability than free GOx under harsh conditions, enabling reliable detection of glucose in complex fluids (colored beverages and saliva). Furthermore, the nano-enzyme retained 80 % activity even after four cycles of catalytic oxidation. This strategy constructs a universal biosensor for substrates with nano-enzyme which rely only on intrinsic cysteine within the oxidase while avoiding functional handle modification.
Collapse
Affiliation(s)
- Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Yuqing Zeng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Wenke Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Fengfeng Li
- Department of Oncology, The Affiliated Tengzhou Central People's Hospital of Xuzhou Medical University, Tengzhou, 277500, China
| | - Mengjiao Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Linlin Wu
- Department of Oncology, The Affiliated Tengzhou Central People's Hospital of Xuzhou Medical University, Tengzhou, 277500, China.
| |
Collapse
|
15
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Park S, Nam DY, Jeon HJ, Han JH, Jang D, Hwang J, Park YS, Han YG, Choy YB, Lee DY. Chromophoric cerium oxide nanoparticle-loaded sucking disk-type strip sensor for optical measurement of glucose in tear fluid. Biomater Res 2023; 27:135. [PMID: 38111009 PMCID: PMC10729336 DOI: 10.1186/s40824-023-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Noninvasive monitoring of tear glucose levels can be convenient for patients to manage their diabetes mellitus. However, there are issues with monitoring tear glucose levels, such as the invasiveness of some methods, the miniaturization, inaccuracy, or the high cost of wearable devices. To overcome the issues, we newly designed a sucking disk-type (SD) strip biosensor that can quickly suck tear fluid and contains cerium oxide nanoparticle (CNP) that causes a unique color change according to the glucose level of the tear without complicated electronic components. METHODS The SD strip biosensor composed of three distinct parts (tip, channel, and reaction chamber) was designed to contain the sensing paper, onto which tear fluid can be collected and delivered. The sensing paper treated with CNP/APTS (aminopropyltriethoxysilane) /GOx (glucose oxidase) was characterized. Then we carried out the reliability of the SD strip biosensor in the diabetic rabbit animals. We quantitatively analyzed the color values of the SD strip biosensor through the colorimetric analysis algorithm. RESULTS We contacted the inferior palpebral conjunctiva (IPC) of a diabetic rabbit eye using an SD strip biosensor to collect tears without eye irritation and successfully verified the performance and quantitative efficacy of the sensor. An image processing algorithm that can optimize measurement accuracy is developed for accurate color change measurement of SD strip biosensors. The validation tests show a good correlation between glucose concentrations measured in the tear and blood. CONCLUSION Our findings demonstrate that the CNP-embedded SD strip biosensor and the associated image processing can simply monitor tear glucose to manage diabetes mellitus.
Collapse
Affiliation(s)
- Sijin Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong Yeon Nam
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hee-Jae Jeon
- Department of Mechanical and Biomedical Engineering, Kangwon National University, 1 Gangwondaehak-Gil, Chuncheon, 24341, Republic of Korea
| | - Jae Hoon Han
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Dawon Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Juil Hwang
- Department of Physics, College of Natural Sciences, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Yeong-Seo Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, 1 Gangwondaehak-Gil, Chuncheon, 24341, Republic of Korea
| | - Young-Geun Han
- Department of Physics, College of Natural Sciences, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Young Bin Choy
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST) and Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
18
|
Ioniță M, Vlăsceanu GM, Toader AG, Manole M. Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions. J Pers Med 2023; 13:1571. [PMID: 38003886 PMCID: PMC10672201 DOI: 10.3390/jpm13111571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
In the advent of an increasingly aging population and due to the popularity of electronic devices, ocular conditions have become more prevalent. In the world of medicine, accomplishing eye medication administration has always been a difficult task. Despite the fact that there are many commercial eye drops, most of them have important limitations, due to quick clearance mechanisms and ocular barrers. One solution with tremendous potential is the contact lens used as a medication delivery vehicle to bypass this constraint. Therapeutic contact lenses for ocular medication delivery have attracted a lot of attention because they have the potential to improve ocular bioavailability and patient compliance, both with minimal side effects. However, it is essential not to compromise essential features such as water content, optical transparency, and modulus to attain positive in vitro and in vivo outcomes with respect to a sustained drug delivery profile from impregnated contact lenses. Aside from difficulties like drug stability and burst release, the changing of lens physico-chemical features caused by therapeutic or non-therapeutic components can limit the commercialization potential of pharmaceutical-loaded lenses. Research has progressed towards bioinspired techniques and smart materials, to improve the efficacy of drug-eluting contact lenses. The bioinspired method uses polymeric materials, and a specialized molecule-recognition technique called molecular imprinting or a stimuli-responsive system to improve biocompatibility and support the drug delivery efficacy of drug-eluting contact lenses. This review encompasses strategies of material design, lens manufacturing and drug impregnation under the current auspices of ophthalmic therapies and projects an outlook onto future opportunities in the field of eye condition management by means of an active principle-eluting contact lens.
Collapse
Affiliation(s)
- Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, 061344 Bucharest, Romania
| | - George Mihail Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alin Georgian Toader
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Marius Manole
- Department of Prosthetics and Dental Materials, Faculty of Dentistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
19
|
Han HH, Kim SK, Kim SJ, Choi I, Mok JW, Joo CK, Shin S, Hahn SK. Long-term stable wireless smart contact lens for robust digital diabetes diagnosis. Biomaterials 2023; 302:122315. [PMID: 37689048 DOI: 10.1016/j.biomaterials.2023.122315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Wearable devices for digital continuous glucose monitoring (CGM) have attracted great attention as a new paradigm medical device for diabetes management. However, the relatively inaccurate performance and instability of CGM devices have limited their wide applications in the clinic. Here, we developed hyaluronate (HA) modified Au@Pt bimetallic electrodes for long-term accurate and robust CGM of smart contact lens. After glucose oxidation reaction, the bimetallic electrodes facilitated the rapid decomposition of hydrogen peroxide and charge transfer for robust CGM. The passivation of Au@Pt bimetallic electrode with branch-type thiolated HA prevented the dissolution of Au electrode by chloride ions in tears. In diabetic and normal rabbits, the smart contact lens with HA-Au@Pt bimetallic electrodes enabled the high correlation (ρ = 0.88) CGM with 98.6% clinically acceptable data for 3 weeks. Taken together, we could confirm the feasibility of our smart contact lens for long-term CGM for further clinical development.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Su-Kyung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, South Korea
| | - Sangbaie Shin
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea.
| |
Collapse
|
20
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
21
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
22
|
Yuan W, Zhao F, Liu X, Xu J. Development of corneal contact lens materials and current clinical application of contact lenses: A review. Biointerphases 2023; 18:050801. [PMID: 37756594 DOI: 10.1116/6.0002618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Xiaoyu Liu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| | - Jun Xu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| |
Collapse
|
23
|
Khaleque MA, Hossain MI, Ali MR, Bacchu MS, Saad Aly MA, Khan MZH. Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Adv 2023; 13:22973-22997. [PMID: 37529357 PMCID: PMC10387826 DOI: 10.1039/d3ra03440b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, there has been a rapid increase in demand for wearable sensors, particularly these tracking the surroundings, fitness, and health of people. Thus, selective detection in human body fluid is a demand for a smart lifestyle by quick monitoring of electrolytes, drugs, toxins, metabolites and biomolecules, proteins, and the immune system. In this review, these parameters along with the main features of the latest and mostly cited research work on nanostructured wearable electrochemical and biosensors are surveyed. This study aims to help researchers and engineers choose the most suitable selective and sensitive sensor. Wearable sensors have broad and effective sensing platforms, such as contact lenses, Google Glass, skin-patch, mouth gourds, smartwatches, underwear, wristbands, and others. For increasing sensor reliability, additional advancements in electrochemical and biosensor precision, stability in uncontrolled environments, and reproducible sample conveyance are necessary. In addition, the optimistic future of wearable electrochemical sensors in fields, such as remote and customized healthcare and well-being is discussed. Overall, wearable electrochemical and biosensing technologies hold great promise for improving personal healthcare and monitoring performance with the potential to have a significant impact on daily lives. These technologies enable real-time body sensing and the communication of comprehensive physiological information.
Collapse
Affiliation(s)
- M A Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M I Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M R Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M S Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University Shenzhen Guangdong 518055 China
| | - M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| |
Collapse
|
24
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
25
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
26
|
Brinkmann C, Bloch W, Mutinati GC. ELSAH (electronic smart patch system for wireless monitoring of molecular biomarkers for healthcare and wellbeing): definition of possible use cases. Front Bioeng Biotechnol 2023; 11:1166857. [PMID: 37251564 PMCID: PMC10211345 DOI: 10.3389/fbioe.2023.1166857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
The ELSAH (electronic smart patch system for wireless monitoring of molecular biomarkers for healthcare and wellbeing) project has received funding from EU's Horizon 2020 research and innovation program (grant agreement no. 825549). Its aim is to develop a wearable smart patch-based microneedle sensor system that can simultaneously measure several biomarkers in users' dermal interstitial fluid. This system could have several use cases based on continuous glucose and lactate monitoring: early detection of (pre-) diabetes mellitus, increasing physical performance through optimal carbohydrate intake, achieving a healthier lifestyle through behavioral changes based on the interpretation of glucose data, performance diagnostics (lactate threshold test), control of optimal training intensities corresponding with certain lactate levels, or warning of diseases/health threats, such as the metabolic syndrome or sepsis associated with increased lactate levels. The ELSAH patch system has a high potential of increasing health and wellbeing in users.
Collapse
Affiliation(s)
- Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- Department of Fitness and Health, IST University of Applied Sciences, Düsseldorf, Germany
| | - Wilhelm Bloch
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Giorgio C. Mutinati
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
| |
Collapse
|
27
|
Li Z, Wu R, Chen K, Gu W, Zhang YHP, Zhu Z. Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. Biosens Bioelectron 2023; 223:115019. [PMID: 36563525 DOI: 10.1016/j.bios.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Recent advances in enzymatic biofuel cells (EBFCs) have resulted in great progress in health monitoring and supplying power to medical applications, such as drug delivery. On the other hand, to enhance the electric field-assisted transdermal permeation for facial mask application, an external power source is usually required. Herein, we attempted to combine an EBFC with a facial mask so that the microcurrent generated can boost the transdermal permeability of target molecules in the facial mask essence. When screen-printed onto a polypropylene-based non-woven fabric, the three-layered flexible EBFC could produce a voltage of ∼0.4 V and a maximum power density of 23.3 μW cm-2, leading to an approximately 2-3-fold increase in permeated nicotinamide, arbutin, and aspirin levels within 15 min compared to non-iontophoretic transdermal drug delivery. Both cell viability and animal experiments further demonstrated that the EBFC-powered iontophoresis worked well in living animals with good biocompatibility. These results suggest that the EBFC-powered iontophoretic facial mask can effectively improve the permeation of drugs and holds a promise for the possible cosmetic application.
Collapse
Affiliation(s)
- Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ke Chen
- Tianjin University of Science and Technology, No.9 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 100049, China
| | - Wei Gu
- Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Yi-Heng Pj Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
28
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
29
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
30
|
Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. NANOSCALE 2023; 15:3079-3105. [PMID: 36723394 DOI: 10.1039/d2nr05447g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical sensors worn on the body could make possible the continuous, noninvasive, and accurate monitoring of vital human signals, which is necessary for remote health monitoring and telemedicine. Attractive for creating high-performance, wearable chemical sensors are atomically thin materials with intriguing physical features, abundant chemistry, and high surface-to-volume ratios. These advantages allow for appropriate material-analyte interactions, resulting in a high level of sensitivity even at trace analyte concentrations. Previous review articles covered the material and device elements of 2D material-based wearable devices extensively. In contrast, little research has addressed the existing state, future outlook, and promise of 2D materials for wearable chemical sensors. We provide an overview of recent advances in 2D-material-based wearable chemical sensors to overcome this deficiency. The structure design, manufacturing techniques, and mechanisms of 2D material-based wearable chemical sensors will be evaluated, as well as their applicability in human health monitoring. Importantly, we present a thorough review of the current state of the art and the technological gaps that would enable the future design and nanomanufacturing of 2D materials and wearable chemical sensors. Finally, we explore the challenges and opportunities associated with designing and implementing 2D wearable chemical sensors.
Collapse
Affiliation(s)
- Ruifang Zhang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jing Jiang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- The Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Kim JH, Choi H, Park CS, Yim HS, Kim D, Lee S, Lee Y. Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection. BIOSENSORS 2023; 13:248. [PMID: 36832014 PMCID: PMC9954471 DOI: 10.3390/bios13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
A diboronic acid anthracene-based fluorescent system for detecting blood glucose could be used for 180 days. However, there has not yet been a boronic acid immobilized electrode to selectively detect glucose in a signal-increased way. Considering malfunctions of sensors at high sugar levels, the electrochemical signal should be increased proportionally to the glucose concentration. Therefore, we synthesized a new diboronic acid derivative and fabricated the derivative-immobilized electrodes for the selective detection of glucose. We performed cyclic voltammetry and electrochemical impedance spectroscopy with an Fe(CN)63-/4- redox pair for detecting glucose in the range of 0-500 mg/dL. The analysis revealed increased electron-transfer kinetics such as increased peak current and decreased semicircle radius of Nyquist plots as the glucose concentration increased. The cyclic voltammetry and impedance spectroscopy showed that the linear detection range of glucose was 40 to 500 mg/dL with limits of detection of 31.2 mg/dL and 21.5 mg/dL, respectively. We applied the fabricated electrode to detect glucose in artificial sweat and obtained 90% of the performance of the electrodes in PBS. Cyclic voltammetry measurements of other sugars such as galactose, fructose, and mannitol also showed linear increased peak currents proportional to the concentrations of the tested sugars. However, the slopes of the sugars were lower than that of glucose, indicating selectivity for glucose. These results proved the newly synthesized diboronic acid is a promising synthetic receptor for developing a long-term usable electrochemical sensor system.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| | - Hongsik Choi
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| | - Chul-Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| | - Heung-Seop Yim
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| | - Dongguk Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea
- Department of Biomedical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Sungmin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| | - Yeonkeong Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chumbok-ro, Dong-Gu, Daegu 41061, Republic of Korea
| |
Collapse
|
32
|
Abstract
ABSTRACT Contact lenses are a safe and effective method for correction of refractive error and worn by an estimated 45 million Americans. Because of the widespread availability and commercial popularity of contact lenses, it is not well appreciated by the public that contact lenses are U.S. Food and Drug Administration (FDA)-regulated medical devices. Contact lenses are marketed in numerous hard and soft materials that have been improved over decades, worn in daily or extended wear, and replaced in range of schedules from daily to yearly or longer. Lens materials and wear and care regimens have impact on the risks of contact lens-related corneal inflammatory events and microbial keratitis. This article reviews contact lens safety, with specific focus on the correction of refractive error in healthy eyes.
Collapse
|
33
|
Zhu H, Yang H, Zhan L, Chen Y, Wang J, Xu F. Hydrogel-Based Smart Contact Lens for Highly Sensitive Wireless Intraocular Pressure Monitoring. ACS Sens 2022; 7:3014-3022. [PMID: 36260093 DOI: 10.1021/acssensors.2c01299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Real-time intraocular pressure (IOP) monitoring plays a crucial role in glaucoma diagnosis and treatment. The wireless smart contact lens based on a flexible inductor-capacitor-resistor (LCR) sensor is chip-free and battery-free, demonstrating excellent application potential for physiological signal monitoring. To promote the use of LCR contact lenses for clinical IOP monitoring, reliable, comfortable contact lens materials should be used and excellent sensitivity needs to be realized. Here, we propose a method for producing hydrogel-based smart contact lenses for wireless IOP monitoring that uses the conformal stacking technique, solving the problems of swelling of the hydrogel and spherical integration of the pyramid-microstructured dielectric elastomer. The IOP of the in vitro porcine eye is successfully monitored owing to the high sensitivity of the spherical pyramid-microstructured capacitive pressure sensor and the hydrogel substrate. In addition, a glasses-integrated impedance-matching tunable reader for remote signal measurement is realized by enhancing the signal amplitude and increasing the reading distance, improving the portability of the signal measurement equipment. With the above improved designs, the wireless contact lens system has application potential for clinical IOP monitoring and shows substantial promise for next-generation daily ocular health management.
Collapse
Affiliation(s)
- Hengtian Zhu
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Huan Yang
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Liuwei Zhan
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Ye Chen
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Fei Xu
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| |
Collapse
|
34
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
35
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
36
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
37
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
38
|
Xu J, Tao X, Liu X, Yang L. Wearable Eye Patch Biosensor for Noninvasive and Simultaneous Detection of Multiple Biomarkers in Human Tears. Anal Chem 2022; 94:8659-8667. [DOI: 10.1021/acs.analchem.2c00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jia Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Xiaoqin Tao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Xiaoxuan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| |
Collapse
|
39
|
Abstract
![]()
Personalized and
point-of-care (POC) diagnoses are critical for
ocular physiology and disease diagnosis. Real-time monitoring and
continuous sampling abilities of tear fluid and user-friendliness
have become the key characteristics for the applied ophthalmic techniques.
Fluorescence technologies, as one of the most popular methods that
can fulfill the requirements of clinical ophthalmic applications for
optical sensing, have been raised and applied for tear sensing and
diagnostic platforms in recent decades. Wearable sensors in this case
have been increasingly developed for ocular diagnosis. Contact lenses,
as one of the commercialized and popular tools for ocular dysfunction,
have been developed as a platform for fluorescence sensing in tears
diagnostics and real-time monitoring. Numbers of biochemical analytes
have been examined through developed fluorescent contact lens sensors,
including pH values, electrolytes, glucose, and enzymes. These sensors
have been proven for monitoring ocular conditions, enhancing and detecting
medical treatments, and tracking efficiency of related ophthalmic
surgeries at POC settings. This review summarizes the applied ophthalmic
fluorescence sensing technologies in tears for ocular diagnosis and
monitoring. In addition, the cooperation of fabricated fluorescent
sensor with mobile phone readout devices for diagnosing ocular diseases
with specific biomarkers continuously is also discussed. Further perspectives
for the developments and applications of fluorescent ocular sensing
and diagnosing technologies are also provided.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| |
Collapse
|
40
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
41
|
Alhaddad AY, Aly H, Gad H, Al-Ali A, Sadasivuni KK, Cabibihan JJ, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022; 10:876672. [PMID: 35646863 PMCID: PMC9135106 DOI: 10.3389/fbioe.2022.876672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is characterized by elevated blood glucose levels, however patients with diabetes may also develop hypoglycemia due to treatment. There is an increasing demand for non-invasive blood glucose monitoring and trends detection amongst people with diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive sensors for blood glucose monitoring have witnessed considerable advances. This review is an update on recent contributions utilizing novel sensing technologies over the past five years which include electrocardiogram, electromagnetic, bioimpedance, photoplethysmography, and acceleration measures as well as bodily fluid glucose sensors to monitor glucose and trend detection. We also review methods that use machine learning algorithms to predict blood glucose trends, especially for high risk events such as hypoglycemia. Convolutional and recurrent neural networks, support vector machines, and decision trees are examples of such machine learning algorithms. Finally, we address the key limitations and challenges of these studies and provide recommendations for future work.
Collapse
Affiliation(s)
- Ahmad Yaser Alhaddad
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Hussein Aly
- KINDI Center for Computing Research, Qatar University, Doha, Qatar
| | - Hoda Gad
- Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Abdulaziz Al-Ali
- KINDI Center for Computing Research, Qatar University, Doha, Qatar
| | | | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | | |
Collapse
|
42
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
43
|
Xie M, Yao G, Zhang T, Wang Q, Mo X, Dong Q, Lou W, Lu F, Pan T, Gao M, Jiang D, Zhao K, Lin Y. Multifunctional flexible contact lens for eye health monitoring using inorganic magnetic oxide nanosheets. J Nanobiotechnology 2022; 20:202. [PMID: 35477463 PMCID: PMC9044588 DOI: 10.1186/s12951-022-01415-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
As a non-invasive innovative diagnosis platform, advanced flexible contact lenses can dynamically monitor vital ocular indicators, spot abnormalities and provide biofeedback guidance for real-time diagnosis and rehabilitation tracking of chronic eye diseases. However, most of the state-of-the-art reported contact lenses either can only monitor a single indicator at a time or realize multifunctional integration based on multiple materials. Herein, we developed a flexible multifunctional contact lens based on inorganic γ-Fe2O3@NiO magnetic oxide nanosheets, which can be attached conformally and seamlessly to the eyeball to simultaneously monitor glucose level in tears, eyeball movement, and intraocular pressure. The optimized contact lens has a reliable glucose detection limit (0.43 μmol), superior eye movement measurement accuracy (95.27%) and high intraocular pressure sensitivity (0.17 MHz mmHg− 1). This work presents a concept in the biochemical and biophysical integrated sensing of ocular signals using contact lens via an innovative material, and provides a personalized and efficient way for health management.
Collapse
Affiliation(s)
- Maowen Xie
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China. .,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China. .,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| | - Tianyao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Xiaoyi Mo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qiwei Dong
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Wenhao Lou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Fang Lu
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangning Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China. .,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China. .,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
44
|
Vavrinsky E, Esfahani NE, Hausner M, Kuzma A, Rezo V, Donoval M, Kosnacova H. The Current State of Optical Sensors in Medical Wearables. BIOSENSORS 2022; 12:217. [PMID: 35448277 PMCID: PMC9029995 DOI: 10.3390/bios12040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 05/04/2023]
Abstract
Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological properties, immunity to electromagnetic interference, electrical safety, simple miniaturization, the ability to capture volumes of nanometers, and non-invasive examination. In addition, they are cheap and resistant to water and corrosion. The use of optical sensors can bring better methods of continuous diagnostics in the comfort of the home and the development of telemedicine in the 21st century. This article offers a large overview of optical wearable methods and their modern use with an insight into the future years of technology in this field.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Niloofar Ebrahimzadeh Esfahani
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Michal Hausner
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Vratislav Rezo
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Helena Kosnacova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
45
|
Elsherif M, Moreddu R, Alam F, Salih AE, Ahmed I, Butt H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front Med (Lausanne) 2022; 9:858784. [PMID: 35445050 PMCID: PMC9013844 DOI: 10.3389/fmed.2022.858784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is a chronic disease requiring a careful management to prevent its collateral complications, such as cardiovascular and Alzheimer's diseases, retinopathy, nephropathy, foot and hearing impairment, and neuropathy. Self-monitoring of blood glucose at point-of-care settings is an established practice for diabetic patients. However, current technologies for glucose monitoring are invasive, costly, and only provide single snapshots for a widely varying parameter. On the other hand, tears are a source of physiological information that mirror the health state of an individual by expressing different concentrations of metabolites, enzymes, vitamins, salts, and proteins. Therefore, the eyes may be exploited as a sensing site with substantial diagnostic potential. Contact lens sensors represent a viable route for targeting minimally-invasive monitoring of disease onset and progression. Particularly, glucose concentration in tears may be used as a surrogate to estimate blood glucose levels. Extensive research efforts recently have been devoted to develop smart contact lenses for continual glucose detection. The latest advances in the field are reviewed herein. Sensing technologies are described, compared, and the associated challenges are critically discussed.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- *Correspondence: Mohamed Elsherif
| | | | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- Haider Butt
| |
Collapse
|
46
|
Algov I, Feiertag A, Shikler R, Alfonta L. Sensitive enzymatic determination of neurotransmitters in artificial sweat. Biosens Bioelectron 2022; 210:114264. [DOI: 10.1016/j.bios.2022.114264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
|
47
|
Elashery SE, Attia NF, Oh H. Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni (II) ions detection in biological and environmental samples. Anal Chim Acta 2022; 1197:339518. [DOI: 10.1016/j.aca.2022.339518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
48
|
Nitrobenzoic acid-functionalized gold nanoparticles: DET promoter of multicopper oxidases and electrocatalyst for NAD-dependent glucose dehydrogenase. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Mishra A, Basu S, Aminabhavi TM. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:945-970. [PMID: 35170319 DOI: 10.1021/acsabm.1c01289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is a physiological and metabolic disorder affecting millions of people worldwide, associated with global morbidity, mortality, and financial expenses. Long-term complications can be avoided by frequent, continuous self-monitoring of blood glucose. Therefore, this review summarizes the current state-of-art glycemic control regimes involving measurement approaches and basic concepts. Following an introduction to the significance of continuous glucose sensing, we have tracked the evolution of glucose monitoring devices from minimally invasive to non-invasive methods to present an overview of the spectrum of continuous glucose monitoring (CGM) technologies. The conveniences, accuracy, and cost-effectiveness of the real-time CGM systems (rt-CGMs) are the factors considered for discussion. Transdermal biosensing and drug delivery routes have recently emerged as an innovative approach to substitute hypodermal needles. This work reviews skin-patchable glucose monitoring sensors for the first time, providing specifics of all the major findings in the past 6 years. Skin patch sensors and their progressive form, i.e., microneedle (MN) array sensory and delivery systems, are elaborated, covering self-powered, enzymatic, and non-enzymatic devices. The critical aspects reviewed are material design and assembly techniques focusing on flexibility, sensitivity, selectivity, biocompatibility, and user-end comfort. The review highlights the advantages of patchable MNs' multi-sensor technology designed to maintain precise blood glucose levels and administer diabetes drugs or insulin through a "sense and act" feedback loop. Subsequently, the limitations and potential challenges encountered from the MN array as rt-CGMs are listed. Furthermore, the current statuses of working prototype glucose-responsive "closed-loop" insulin delivery systems are discussed. Finally, the expected future developments and outlooks in clinical applications are discussed.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Amit Mishra
- Department of Chemical Engineering, Inha University, Incheon 22212, South Korea
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| |
Collapse
|
50
|
Chen W, Wang Z, Wang L, Chen X. Smart Chemical Engineering-Based Lightweight and Miniaturized Attachable Systems for Advanced Drug Delivery and Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106701. [PMID: 34643302 DOI: 10.1002/adma.202106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Smart attachable systems have attracted much attention owing to their capabilities in terms of body performance evaluation, disease diagnostics, and drug delivery. Recent advances in chemical and engineering techniques provide many opportunities to improve device fabrication and applications owing to the advantages of being lightweight and easy to control as well as their battery absence and functional diversity. This review highlights the latest developments in the field of chemical engineering-based lightweight and miniaturized attachable systems, which are mainly inspired by the natural world. Their applications for real-time monitoring, point-of-care sampling, biomarker detection, and controlled release are discussed thoroughly with respect to specific products/prototypes. The perspectives of the field, including persistence guarantee, burden reduction, and personality improvement, are also discussed. It is believed that chemical engineering-based lightweight and miniaturized attachable systems have good potential in both clinical and industrial fields, indicating a large potential to improve human lives in the near future.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|