1
|
Han B, Zhang X, Wang Y, Wang W, Wang B, Li S, Wang H, Yan Y, Han J, Wang C, Wang C. Real-time detection of isoprene marker gas based on micro-integrated chromatography system with GOQDs-modified μGC column and metal oxide gas detector. NANOTECHNOLOGY 2023; 34:455501. [PMID: 37536300 DOI: 10.1088/1361-6528/aced10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Isoprene is a typical physiological marker that can be used to screen for chronic liver disease. This work developed a portable micro-integrated chromatography analysis system based on micro-electromechanical system technology, nanomaterials technology and embedded microcontroller technology. The system integrated components such as graphene oxide quantum dots modified semi-packed microcolumn, In2O3nanoflower (NF) gas-sensitive detector and 3D printed miniature solenoid valve group. The effectiveness of the separation effect of the micro-integrated system was verified by gas mixture test; the laws of the influence of carrier gas pressure and column temperature on the chromatographic separation performance, respectively, were investigated, and the working conditions (column temperature 90 °C and carrier gas pressure 7.5 kPa) for system testing were determined. The percentages of relative standard deviation of the peak areas and retention times obtained for the separated gases were in the range of 0.95%-6.06%, indicating the good reproducibility of the system. Meanwhile, the microintegrated system could detect isoprene down to 50 ppb at small injection volume (1 ml). The system response increased with increasing isoprene concentration and was linearly correlated with isoprene concentration (R2= 0.986), indicating that the system was expected to be used for trace detection of isoprene, a marker gas for liver disease, in the future.
Collapse
Affiliation(s)
- Baoqing Han
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Xinyu Zhang
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Wenjuan Wang
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Benben Wang
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Shuai Li
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Hairong Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yuefei Yan
- Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, People's Republic of China
| | - Jiusheng Han
- Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, People's Republic of China
| | - Chuanliu Wang
- Quzhou Peoples Hosp, Dept Neurol, 2 Zhongloudi Rd, Quzhou 324000, People's Republic of China
| | - Congsi Wang
- School of Mechano- Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| |
Collapse
|
2
|
Souissi R, Bouricha B, Bouguila N, El Mir L, Labidi A, Abderrabba M. Chemical VOC sensing mechanism of sol-gel ZnO pellets and linear discriminant analysis for instantaneous selectivity. RSC Adv 2023; 13:20651-20662. [PMID: 37435386 PMCID: PMC10332130 DOI: 10.1039/d3ra03042c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
This work reports on the integration of ZnO pellets for use as a virtual sensor array (VSA) of volatile organic compounds (VOCs). ZnO pellets consist of nano-powder prepared using a sol-gel technique. The microstructure of the obtained samples was characterized by XRD and TEM methods. The response to VOCs at different concentrations was measured over a range of operating temperatures (250-450 °C) using DC electrical characterization. The ZnO based sensor showed a good response towards ethanol, methanol, isopropanol, acetone and toluene vapors. We note that the highest sensitivity (0.26 ppm-1) is obtained with ethanol while the lowest one (0.041 ppm-1) corresponds to methanol. Consequently, the limit of detection (LOD) estimated analytically reached 0.3 ppm for ethanol and 2.0 ppm for methanol at an operating temperature of 450 °C. The sensing mechanism of the ZnO semiconductor was developed on the basis of the reaction between the reducing VOCs with the chemisorbed oxygen. We verify through the Barsan model that mainly O- ions in the layer react with VOC vapor. Furthermore, dynamic response was investigated to construct mathematical features with distinctly different values for each vapor. Basic linear discrimination analysis (LDA) shows a good job of separating two groups by combining features. In the same way we have shown an original reason embodying the distinction between more than two volatile compounds. With relevant features and VSA formalism, the sensor is clearly selective towards individual VOCs.
Collapse
Affiliation(s)
- R Souissi
- Université de Carthage, Laboratoire des Matériaux, Molécules et Applications IPEST BP 51 La Marsa 2070 Tunisia +21628419444
| | - B Bouricha
- Université de Carthage, Laboratoire des Matériaux, Molécules et Applications IPEST BP 51 La Marsa 2070 Tunisia +21628419444
| | - N Bouguila
- Laboratoire de Physique des Matériaux et des Nanomatériaux appliqué à l'environnement, Faculté des Sciences de Gabès, Université de Gabès Cité Erriadh, Zrig 6072 Gabès Tunisia
| | - L El Mir
- Laboratoire de Physique des Matériaux et des Nanomatériaux appliqué à l'environnement, Faculté des Sciences de Gabès, Université de Gabès Cité Erriadh, Zrig 6072 Gabès Tunisia
| | - A Labidi
- Department of Physics, College of Science and Art at Ar-Rass, Qassim University Buraydah 51921 Saudi Arabia
| | - M Abderrabba
- Université de Carthage, Laboratoire des Matériaux, Molécules et Applications IPEST BP 51 La Marsa 2070 Tunisia +21628419444
| |
Collapse
|
3
|
Yuan Z, Han M, Li D, Hao R, Guo X, Sang S, Zhang H, Ma X, Jin H, Xing Z, Zhao C. A cost-effective smartphone-based device for rapid C-reaction protein (CRP) detection using magnetoelastic immunosensor. LAB ON A CHIP 2023; 23:2048-2056. [PMID: 36916284 DOI: 10.1039/d2lc01065h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
C-Reaction protein (CRP) is a marker of nonspecific immunity for vital signs and wound assessment, and it can be used to diagnose infections in clinical medicine. However, measuring CRP level currently requires hospital-based instruments, high-cost reagents, and a complex process, all of which have limited its full capabilities for self-detection, a growing trend in modern medicine. In this study, we developed a novel smartphone-based device using advanced methods of magnetoelastic immunosensing to mitigate these limitations. We combined a system-on-chip (SoC) hardware architecture with smartphone apps to realize the sampling of resonance frequency shift on magnetoelastic chips, which can determine the ultra-sensitivity to mass change caused by the binding of anti-CRP antibody and CRP. Through detecting a multi-group of samples, we found that the resonance frequency shift was linearly proportional to the CRP concentration in the range from 0.1 to 100 μg mL-1, with a sensitivity of 12.90 Hz μg-1 mL-1 and a detection limit of 2.349 × 10-4 μg mL-1. Meanwhile, compared with the large-scale instrument used in clinical settings, the performance of our device was stable and significantly more portable, rapid and cost-effective, offering excellent potential for modern home-based diagnosis.
Collapse
Affiliation(s)
- Zhongyun Yuan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengshu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Donghao Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Runfang Hao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongpeng Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Hu Jin
- Division of Electrical Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Zhijin Xing
- Department of Ultrasound Medicine, Shenzhen Hospital of the University of Hong Kong, 518053, Shenzhen, China
| | - Chun Zhao
- College of Information and Communication Engineering, Sungkyunkwan University, Chunchun-Dong, Changan-Ku, 440746 Suwon, Republic of Korea.
| |
Collapse
|
4
|
Nath N, Kumar A, Chakroborty S, Soren S, Barik A, Pal K, de Souza FG. Carbon Nanostructure Embedded Novel Sensor Implementation for Detection of Aromatic Volatile Organic Compounds: An Organized Review. ACS OMEGA 2023; 8:4436-4452. [PMID: 36777592 PMCID: PMC9909795 DOI: 10.1021/acsomega.2c05953] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/16/2022] [Indexed: 06/13/2023]
Abstract
For field-like environmental gas monitoring and noninvasive illness diagnostics, effective sensing materials with exceptional sensing capabilities of sensitive, quick detection of volatile organic compounds (VOCs) are required. Carbon-based nanomaterials (CNMs), like CNTs, graphene, carbon dots (Cdots), and others, have recently drawn a lot of interest for their future application as an elevated-performance sensor for the detection of VOCs. CNMs have a greater potential for developing selective sensors that target VOCs due to their tunable chemical and surface properties. Additionally, the mechanical versatility of CNMs enables the development of novel gas sensors and places them ahead of other sensing materials for wearable applications. An overview of the latest advancements in the study of CNM-based sensors is given in this comprehensive organized review.
Collapse
Affiliation(s)
- Nibedita Nath
- Department
of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha 768214, India
| | - Anupam Kumar
- Electrical
and Electronics Engineering Department, IES College of Technology, Bhopal, Madhya Pradesh 462044, India
| | - Subhendu Chakroborty
- Department
of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh 462044, India
| | - Siba Soren
- Department
of Chemistry, Ravenshaw University, Cuttack, Odisha 753003, India
| | - Arundhati Barik
- Rama
Devi Women’s University, Bhubaneswar, Odisha 751007, India
| | - Kaushik Pal
- University
Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| | - Fernando Gomes de Souza
- Instituto
de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade
Universitária, Universidade Federal
de Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| |
Collapse
|
5
|
Jyothi MS, Nagarajan V, Chandiramouli R. M-cymene and m-xylene adsorption studies on hex-star arsenene nanosheets – a DFT investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. S. Jyothi
- Department of Chemistry, AMC Engineering College, Bengaluru, India
| | - V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, India
| |
Collapse
|
6
|
Shuba A, Kuchmenko T, Umarkhanov R. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:8529. [PMID: 36366226 PMCID: PMC9654775 DOI: 10.3390/s22218529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
When developing methods for diagnosing pathologies and diseases in humans and animals using electronic noses, one of the important trends is the miniaturization of devices, while maintaining significant information for diagnostic purposes. A combination of several sorbents that have unique sorption features of volatile organic compounds (VOCs) on one transducer is a possible option for the miniaturization of sensors for gas analysis. This paper considers the principles of creating polycomposite coatings on the electrodes of piezoelectric quartz resonators, including the choice of sorbents for the formation of sensitive layers, determining the mass and geometry of the formation of sensitive layers in a polycomposite coating, as well as an algorithm for processing the output data of sensors to obtain maximum information about the qualitative and quantitative composition of the gas phase. A comparative analysis of the efficiency and kinetics of VOC vapor sorption by sensors with polycomposite coatings and a set of sensors with relevant single coatings has been carried out. Regression equations have been obtained to predict the molar-specific sensitivity of the microbalance of VOC vapors by a sensor with a polycomposite coating of three sorbents with an error of 5-15% based on the results of the microbalance of VOC vapors on single coatings. A method for creating "visual prints" of sensor signals with polycomposite coatings is shown, with results comparable to those from an array of sensors. The parameters Aij∑ are proposed for obtaining information on the qualitative composition of the gas phase when processing the output data of sensors with polycomposite coatings. A biochemical study of exhaled breath condensate (EBC) samples, a microbiological investigation of calf tracheal washes, and a clinical examination were conducted to assess the presence of bovine respiratory disease (BRD). An analysis of the gas phase over EBC samples with an array of sensors with polycomposite coatings was also carried out. The "visual prints" of the responses of sensors with polycomposite coatings and the results of the identification of VOCs in the gas phase over EBC samples were compared to the results of bacteriological studies of tracheal washes of the studied calves. A connection was found between the parameters Aij∑ of a group of sensors with polycomposite coatings and the biochemical parameters of biosamples. The adequacy of replacing an array of piezoelectric sensors with single coatings by the sensors with polycomposite coatings is shown.
Collapse
Affiliation(s)
- Anastasiia Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| | - Tatiana Kuchmenko
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
- Laboratory of Sensors and Determination of Gas-Forming Impurities, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ruslan Umarkhanov
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| |
Collapse
|
7
|
|
8
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|
9
|
Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Yuan Z, Duan Z, Liang J, Jiang Y, Tai H, Chen J. Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7301-7310. [PMID: 35076218 DOI: 10.1021/acsami.1c22457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high moisture level of exhaled gases unavoidably limits the sensitivity of breath analysis via wearable bioelectronics. Inspired by pulmonary lobe expansion/contraction observed during respiration, a respiration-driven triboelectric sensor (RTS) was devised for simultaneous respiratory biomechanical monitoring and exhaled acetone concentration analysis. A tin oxide-doped polyethyleneimine membrane was devised to play a dual role as both a triboelectric layer and an acetone sensing material. The prepared RTS exhibited excellent ability in measuring respiratory flow rate (2-8 L/min) and breath frequency (0.33-0.8 Hz). Furthermore, the RTS presented good performance in biochemical acetone sensing (2-10 ppm range at high moisture levels), which was validated via finite element analysis. This work has led to the development of a novel real-time active respiratory monitoring system and strengthened triboelectric-chemisorption coupling sensing mechanism.
Collapse
Affiliation(s)
- Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Si Wang
- Institute of Optoelectronic Technology, Chinese Academy of Sciences, Chengdu 610209, P. R. China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Junge Liang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
11
|
Abstract
Wireless chemical sensors have been developed as a result of advances in chemical sensing and wireless communication technology. Because of their mobility and widespread availability, smartphones have been extensively combined with sensors such as hand-held detectors, sensor chips, and test strips for biochemical detection. Smartphones are frequently used as controllers, analyzers, and displayers for quick, authentic, and point-of-care monitoring, which may considerably streamline the design and lower the cost of sensing systems. This study looks at the most recent wireless and smartphone-supported chemical sensors. The review is divided into four different topics that emphasize the basic types of wireless smartphone-operated chemical sensors. According to a study of 114 original research publications published during recent years, market opportunities for wireless and smartphone-supported chemical sensor systems include environmental monitoring, healthcare and medicine, food quality, sport, and fitness. The issues and illustrations for each of the primary chemical sensors relevant to many application areas are covered. In terms of performance, the advancement of technologies related to chemical sensors will result in smaller and more lightweight, cost-effective, versatile, and durable devices. Given the limitations, we suggest that wireless and smartphone-supported chemical sensor systems play a significant role in the sensor Internet of Things.
Collapse
|
12
|
Ji D, Low SS, Zhang D, Liu L, Lu Y, Liu Q. Smartphone-Based Electrochemical System for Biosensors and Biodetection. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2393:493-514. [PMID: 34837196 DOI: 10.1007/978-1-0716-1803-5_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the advantages of high popularity, convenient operation, open-source operation systems, high resolution imaging, and excellent computing capabilities, smartphones have been widely used as the core of detection system for calculation, control, and real-time display. Hence, smartphones play an important role in electrochemical detection and optical detection. Smartphone-based electrochemical systems were combined with screen-printed electrode and interdigital electrodes for in situ detection. The electrodes were modified with biomaterials, chemical materials, and nanomaterials for biosensors and biodetection, such as 3-amino phenylboronic acid nanocomposites, graphene, gold nanoparticles, zinc oxide nanoparticles, carbon nanotubes, proteins, peptides, and antibodies. With the modified electrodes, the smartphone-based impedance system was used to detect acetone, bovine serum albumin, human serum albumin, and trinitrotoluene, while smartphone-based amperometric system was employed to monitor glucose, ascorbic acid, dopamine, uric acid, and levodopa. The smartphone-based electrochemical system for biosensors and biodetection has provided miniaturized and portable alternative for diagnosis, which is promising to find application in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Diming Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
13
|
Wu X, Wang H, Wang J, Wang D, Shi L, Tian X, Sun J. VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
15
|
Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910236. [PMID: 34639537 PMCID: PMC8508139 DOI: 10.3390/ijerph181910236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Environmental chemicals and contaminants coming from multiple external sources enter the human body, determining a potential risk for human health. Human biomonitoring (HBM), measuring the concentrations of biomarkers in human specimens, has become an emerging approach for assessing population-wide exposure to hazardous chemicals and health risk through large-scale studies in many countries. However, systematic mapping of HBM studies, including their characteristics, targeted hazardous pollutants, analytical techniques, and sample population (general population and occupationally exposed workers), has not been done so far. We conducted a systematic review of the literature related to airborne hazardous pollutants in biofluids to answer the following questions: Which main chemicals have been included in the literature, which bodily fluids have been used, and what are the main findings? Following PRISMA protocol, we summarized the publications published up to 4 February 2021 of studies based on two methods: gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses). We screened 2606 records and 117 publications were included in the analysis, the most based on GC/MS analysis. The selected HBM studies include measurements of biomarkers in different bodily fluids, such as blood, urine, breast milk, and human semen as well as exhaled air. The papers cover numerous airborne hazardous pollutants that we grouped in chemical classes; a lot of hazardous and noxious compounds, mainly persistent organic pollutants (POPs) and volatile organic compounds (VOCs), have been detected in biological fluids at alarming levels. The scenario that emerged from this survey demonstrates the importance of HBM in human exposure to hazardous pollutants and the need to use it as valid tool in health surveillance. This systematic review represents a starting point for researchers who focus on the world of pollutant biomonitoring in the human body and gives them important insights into how to improve the methods based on GC/MS. Moreover, it makes a first overview of the use of gas sensor array and e-noses in HBM studies.
Collapse
|
17
|
Olifant GE, Kondiah K, Mamo MA. Application of candle soot CNPs-TiO2-PVP composite in the detection of volatile organic compounds with aldehyde, amine and ketone functional groups by resistance and impedance responses. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf60a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We have fabricated a solid-state gas sensor using a composite sensor layer made up of three different sensing materials namely; candle soot Carbon nanoparticles, Titanium dioxide and Poly (vinyl) pyrrolidone (PVP). The study was carried out to study the sensor’s response towards butyraldehyde, diethylamine and isobutyrophenone vapour at room temperature. The sensor was prepared by mixing candle soot CNPs, TiO2 and PVP in dimethylformamide using the ratio (2:1:3) respectively. The sensing materials were characterised using Brunauer–Emmett–Teller (BET), x-ray diffraction (XRD), Transmission and Scanning Electron Microscopy (TEM, SEM). The sensor’s response was measured by injecting a volume of 1 to 5 μl of each liquid analyte in a round-bottomed glass and an LCR metre was used to measure the ∆R and ∆Z responses. In both parameters, the sensor responded well to the different analytes, the response of the sensor linearly increases as the analyte vapour concentration increases. The sensors were discovered to exhibit more sensitivity of 0.07 Ω ppm−1 towards diethylamine in ∆R response and it was more sensitive towards isobutyrophenone in ∆Z response giving a sensitivity of 0.14 Ω ppm−1 while Butyraldehyde had the fastest response time of 145 s and Diethylamine had the fasted recovery time 130 s.
Collapse
|
18
|
Peng T, Sui Z, Huang Z, Xie J, Wen K, Zhang Y, Huang W, Mi W, Peng K, Dai X, Fang X. Point-of-care test system for detection of immunoglobulin-G and -M against nucleocapsid protein and spike glycoprotein of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 331:129415. [PMID: 33519091 DOI: 10.1016/j.snb.2020.129414] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic continues to ravage the world. In epidemic control, dealing with a large number of samples is a huge challenge. In this study, a point-of-care test (POCT) system was successfully developed and applied for rapid and accurate detection of immunoglobulin-G and -M against nucleocapsid protein (anti-N IgG/IgM) and receptor-binding domain in spike glycoprotein (anti-S-RBD IgG/IgM) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Any one of the IgG/IgM found in a sample was identified as positive. The POCT system contains colloidal gold-based lateral flow immunoassay test strips, homemade portable reader, and certified reference materials, which detected anti-N and anti-S-RBD IgG/IgM objectively in serum within 15 min. Receiver operating characteristic curve analysis was used to determine the optimal cutoff values, sensitivity, and specificity. It exhibited equal to or better performances than four approved commercial kits. Results of the system and chemiluminescence immunoassay kit detecting 108 suspicious samples had high consistency with kappa coefficient at 0.804 (P < 0.001). Besides, the levels and alterations of the IgG/IgM in an inpatient were primarily investigated by the POCT system. Those results suggested the POCT system possess the potential to contribute to rapid and accurate serological diagnosis and epidemiological survey of COVID-19.
Collapse
Affiliation(s)
- Tao Peng
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | | | - Jie Xie
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, PR China
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Wenfeng Huang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wei Mi
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ke Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xinhua Dai
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xiang Fang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| |
Collapse
|
19
|
Moitra P, Bhagat D, Kamble VB, Umarji AM, Pratap R, Bhattacharya S. First example of engineered β-cyclodextrinylated MEMS devices for volatile pheromone sensing of olive fruit pests. Biosens Bioelectron 2020; 173:112728. [PMID: 33220535 DOI: 10.1016/j.bios.2020.112728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023]
Abstract
Olive oil is more preferred than other vegetable oils because of the increasing health concern among people throughout the world. The major hindrance in large-scale production of olive oil is olive fruit pests which cause serious economic damage to the olive orchards. This requires careful monitoring and timely application of suitable remedies before pest infestation. Herein we demonstrate efficacious utilization of covalently functionalized β-cyclodextrinylated MEMS devices for selective and sensitive detection of female sex pheromone of olive fruit pest, Bactocera oleae. Two of the MEMS devices, silicon dioxide surface-micromachined cantilever arrays and zinc oxide surface-microfabricated interdigitated circuits, have been used to selectively capture the major pheromone component, 1,7-dioxaspiro[5,5]undecane. The non-covalent capture of olive pheromones inside the β-cyclodextrin cavity leads to the reduction of resonant frequency of the cantilevers, whereas an increase in resistance has been found in case of zinc oxide derived MEMS devices. Sensitivity of the MEMS devices towards the olive pheromone was found to be directly correlated with the increasing availability of β-cyclodextrin moieties over the surface of the devices and thus the detection limit of the devices has been achieved to a value as low as 0.297 ppq of the olive pheromone when the devices were functionalized with one of the standardized protocols. Overall, the reversible usability and potential capability of the suitably functionalized MEMS devices to selectively detect the presence of female sex pheromone of olive fruit fly before the onset of pest infestation in an orchard makes the technology quite attractive for viable commercial application.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Facility III, 670 W Baltimore St, Baltimore, MD, 21201, USA; Technical Research Center, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Deepa Bhagat
- National Bureau of Agricultural Insect Resources, P.B. No. 2491, H. A. Farm Post, Bangalore, 560024, India
| | - Vinayak B Kamble
- Materials Research Center, Indian Institute of Science, Bangalore, 560012, India
| | - Arun M Umarji
- Materials Research Center, Indian Institute of Science, Bangalore, 560012, India
| | - Rudra Pratap
- Centre of Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Technical Research Center, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
20
|
Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal Chem 2020; 92:12201-12207. [DOI: 10.1021/acs.analchem.0c01201] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Keisuke Tomoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroki Nitta
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shuhei Takeuchi
- Gerodontology and Oral Rehabilitation, Tokyo Medical and Dental University, Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Toshiaki Sekita
- Gerodontology and Oral Rehabilitation, Tokyo Medical and Dental University, Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shunsuke Minakuchi
- Gerodontology and Oral Rehabilitation, Tokyo Medical and Dental University, Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020; 145:2873-2891. [PMID: 32141448 DOI: 10.1039/c9an02294e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disease diagnostics, food safety monitoring and environmental quality monitoring are the key means to safeguard human health. However, conventional detection devices for health care are costly, bulky and complex, restricting their applications in resource-limited areas of the world. With the rapid development of biosensors and the popularization of smartphones, smartphone-based sensing systems have emerged as novel detection devices that combine the sensitivity of biosensors and diverse functions of smartphones to provide a rapid, low-cost and convenient detection method. In these systems, a smartphone is used as a microscope to observe and count cells, as a camera to record fluorescence images, as an analytical platform to analyze experimental data, and as an effective tool to connect detection devices and online doctors. These systems are widely used for cell analysis, biochemical analysis, immunoassays, and molecular diagnosis, which are applied in the fields of disease diagnostics, food safety monitoring and environmental quality monitoring. Therefore, we discuss four types of smartphone-based sensing systems in this review paper, specifically in terms of the structure, performance and efficiency of these systems. Finally, we give some suggestions for improvement and future prospective trends.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | | | | | | | | | | |
Collapse
|
22
|
Liu J, Xu N, Men H, Li S, Lu Y, Low SS, Li X, Zhu L, Cheng C, Xu G, Liu Q. Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1422. [PMID: 32150916 PMCID: PMC7085790 DOI: 10.3390/s20051422] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cortisol is commonly used as a significant biomarker of psychological or physical stress. With the accelerated pace of life, non-invasive cortisol detection at the point of care (POC) is in high demand for personal health monitoring. In this paper, an ultrasensitive immunosensor using gold nanoparticles/molybdenum disulfide/gold nanoparticles (AuNPs/MoS2/AuNPs) as transducer was explored for non-invasive salivary cortisol monitoring at POC with the miniaturized differential pulse voltammetry (DPV) system based on a smartphone. Covalent binding of cortisol antibody (CORT-Ab) onto the AuNPs/MoS2/AuNPs transducer was achieved through the self-assembled monolayer of specially designed polyethylene glycol (PEG, SH-PEG-COOH). Non-specific binding was avoided by passivating the surface with ethanolamine. The miniaturized portable DPV system was utilized for human salivary cortisol detection. A series current response of different cortisol concentrations decreased and exhibited a linear range of 0.5-200 nM, the detection limit of 0.11 nM, and high sensitivity of 30 μA M-1 with a regression coefficient of 0.9947. Cortisol was also distinguished successfully from the other substances in saliva. The recovery ratio of spiked human salivary cortisol and the variation of salivary cortisol level during one day indicated the practicability of the immunosensor based on the portable system. The results demonstrated the excellent performance of the smartphone-based immunosensor system and its great potential application for non-invasive human salivary cortisol detection at POC.
Collapse
Affiliation(s)
- Jingjing Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
- Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ning Xu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
| | - Hong Men
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
| | - Shuang Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Lihang Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Chen Cheng
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Gang Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| |
Collapse
|
23
|
Arumugam S, Colburn DAM, Sia SK. Biosensors for Personal Mobile Health: A System Architecture Perspective. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1900720. [PMID: 33043127 PMCID: PMC7546526 DOI: 10.1002/admt.201900720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 05/29/2023]
Abstract
Advances in mobile biosensors, integrating developments in materials science and instrumentation, are fueling an expansion in health data being collected and analyzed in decentralized settings. For example, semiconductor-based sensors are enabling measurement of vital signs, and microfluidic-based sensors are enabling measurement of biochemical markers. As biosensors for mobile health are becoming increasingly paired with smart devices, it will become critical for researchers to design biosensors - with appropriate functionalities and specifications - to work seamlessly with accompanying connected hardware and software. This article describes recent research in biosensors, as well as current mobile health devices in use, as classified into four distinct system architectures that take into account the biosensing and data processing functions required in personal mobile health devices. We also discuss the path forward for integrating biosensors into smartphone-based mobile health devices.
Collapse
Affiliation(s)
- Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| | - David A M Colburn
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| |
Collapse
|
24
|
Kumar V, Vikrant K, Kim KH. Use of graphene-based structures as platforms for the trace-level detection of gaseous formaldehyde and insights into their superior sensing potentials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
McLamore ES, Palit Austin Datta S, Morgan V, Cavallaro N, Kiker G, Jenkins DM, Rong Y, Gomes C, Claussen J, Vanegas D, Alocilja EC. SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. SENSORS 2019; 19:s19224935. [PMID: 31766116 PMCID: PMC6891700 DOI: 10.3390/s19224935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity machine-assisted decision support tool. We summarize the approaches used for mobile phone-based chemical/biological sensors, including general hardware and software requirements for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which may lend itself to dynamic composability by enabling context-specific selection of relevant units, resulting in case-based working modules. SNAPS is an element of this platform where data analytics, statistical characterization and algorithms may be delivered to the data either via embedded systems in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the physical systems with the cyber components paves the path for SNAPS to progress to higher levels of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative data and qualitative data, each operated using a mobile device (smartphone or tablet) for data acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around the value to users/stakeholders and the key performance indicators users may find helpful, for these types of machine-assisted tools.
Collapse
Affiliation(s)
- Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- Correspondence: ; Tel.: +1-(352)294-6703
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MDPnP Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Nicholas Cavallaro
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Greg Kiker
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Daniel M. Jenkins
- Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA;
| | - Yue Rong
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jonathan Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA 50011, USA;
- Ames Laboratory, Ames, IA 50011, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA;
- Nano-Biosensors Lab, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
|
27
|
|
28
|
Iitani K, Toma K, Arakawa T, Mitsubayashi K. Ultrasensitive Sniff-Cam for Biofluorometric-Imaging of Breath Ethanol Caused by Metabolism of Intestinal Flora. Anal Chem 2019; 91:9458-9465. [PMID: 31287286 DOI: 10.1021/acs.analchem.8b05840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a gas-imaging system (sniff-cam) for gaseous ethanol (EtOH) with improved sensitivity. The sniff-cam was applied to measure the extremely low concentration distribution of breath EtOH without the consumption of alcohol, which is related to the activity of the oral or gut bacterial flora. A ring-type ultraviolet-light-emitting diode was mounted around a camera lens as an excitation light source, which enabled simultaneous excitation and imaging of the fluorescence. In the EtOH sniff-cam, a nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) was used to catalyze the redox reaction between EtOH and the oxidized form of NAD (NAD+). Upon application of gaseous EtOH to the ADH-immobilized mesh that was soaked in an NAD+ solution and placed in front of the camera, NADH was produced through an ADH-mediated reaction. NADH expresses fluorescence at an emission wavelength of 490 nm and excitation wavelength of 340 nm. Thus, the concentration distribution of EtOH was visualized by measuring the distribution of the fluorescence light intensity from NADH on the ADH-immobilized mesh surface. First, a comparison of image analysis methods based on the red-green-blue color (RGB) images and the optimization of the buffer pH and NAD+ solution concentration was performed. The new sniff-cam showed a 25-fold greater sensitivity and broader dynamic range (20.6-300000 ppb) in comparison to those of the previously fabricated sniff-cam. Finally, we measured the concentration distribution of breath EtOH without alcohol consumption using the improved sniff-cam and obtained a value of 116.2 ± 35.7 ppb (n = 10).
Collapse
Affiliation(s)
- Kenta Iitani
- Postdoctoral Research Fellow PD , Japan Society for the Promotion of Science , 5-3-1 Kojimatchi , Chiyoda-ku, Tokyo 102-0083 , Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering , Waseda University (TWIns) , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan.,Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan.,Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| |
Collapse
|
29
|
Sawhney MA, Conlan RS. POISED-5, a portable on-board electrochemical impedance spectroscopy biomarker analysis device. Biomed Microdevices 2019; 21:70. [PMID: 31273464 PMCID: PMC6609592 DOI: 10.1007/s10544-019-0406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Point-of-care medical devices offer the potential for rapid biomarker detection and reporting of medical conditions, thereby bypassing the requirements for offline clinical laboratory facilities in many cases. Label-free electrochemical techniques are suitable for use in handheld diagnostic devices due the inherent electronic detection modality and low requirement for processing reagents. While electrochemical impedance sensing is widely used in tissue analysis such as body composition measurement, its use in point-of-care patient testing is yet to be widely adopted. Here we have considered a number of issues currently limiting the translation of electrochemical impedance sensing into clinical biosensor devices. Specifically, we have addressed the current requirement for these sensors to be connected to an external processor by applying a minimum number of frequencies required for optimized biomarker detection, and subsequently delivering analytics within the measurement device. The POISED-5 device was evaluated using a sensor for the ovarian cancer biomarker cancer antigen 125 (CA125), demonstrating performance comparable to standard laboratory equipment, with direct interpretation of response signal amplitude substituting traditional impedance component calculation and model fitting.
Collapse
Affiliation(s)
- M. Anne Sawhney
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - R. S. Conlan
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| |
Collapse
|
30
|
Patil YS, Salunkhe PH, Navale YH, Patil VB, Ubale VP, Ghanwat AA. Tetraphenylthiophene–thiazole-based π-conjugated polyazomethines: synthesis, characterization and gas sensing application. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02856-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Fu Y, Tan H, Wu X, Wu X, Yang Y, Gao Y, Liu R, Qi M, Chen X, Ning Y, Sun W, Chang N, Ma J, Cheng K, Yang H, Li Q, Wang P, Wu C, Xian H, Wang L. Combination of medical and health care based on digital smartphone-powered photochemical dongle for renal function management. Electrophoresis 2019; 42:1043-1049. [PMID: 31087687 DOI: 10.1002/elps.201900136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/13/2023]
Abstract
Currently, the global healthcare market is increasing at high speed with the impendent global aging issue. Healthcare Industry 4.0 has emerged as an efficient solution towards the aging issue since it was integrated with ubiquitous medical sensors, big health processing platform, high bandwidth, speed technologies, and medical services, etc. It is believed to fulfil the requirement of the tremendously growing health market. The acquisition of medical data acts as the dominant precondition to implement the Healthcare Industry 4.0. In the same way, the widely available smartphone could serve as the best biomedical information collect station. In this study, a smartphone-powered photochemical dongle is demonstrated to precisely estimate blood creatinine from the fingertip blood, which works as a highly compact reflectance spectral analyzer with an enzymatically dry chemical test strip. Comparing with conventional laboratory facility for the evaluation and treatment of chronic kidney disease (CKD), it implemented the platform of point care with agreed accuracy. In order to estimate the efficiency of treatment and recovery of the CKD, the proposed photochemical dongle would provide a flexible and rapid platform for point of care. Furthermore, the proposed measured technology is very promising method for remote CKD management.
Collapse
Affiliation(s)
- Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, P. R. China
| | - Haiyan Tan
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, P. R. China
| | - Xiujian Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Yongchuan Hospital Affiliated to Chongqing Medical University, Yongchuan, Chongqing, P. R. China
| | - Xiaohe Wu
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, P. R. China
| | - Yongzheng Yang
- The First People's Hospital of Neijiang, Neijiang, Sichuan, P. R. China
| | - Yanling Gao
- The Second People's Hospital of Yibin, Yibin City, Sichuan Province, P. R. China
| | - Ruowei Liu
- Nanchong Central Hospital, Nanchong City, Sichuan Province, P. R. China
| | - Min Qi
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan, P. R. China
| | - Xiaoyun Chen
- Dali Bai Autonomous Prefecture People's Hospital, Zibo, Shandong, P. R. China
| | - Yaochao Ning
- The First Hospital of Zibo, Zibo, Shandong, P. R. China
| | - Weidong Sun
- Zigong Fourth People's Hospital, Zigong City, Sichuan, P. R. China
| | - Nianhuan Chang
- Yuncheng Central Hospital, Yuncheng City, Shanxi, P. R. China
| | - Junjie Ma
- Suining Central Hospital, Suining City, Sichuan, P. R. China
| | - Kang Cheng
- The Affiliated Hospital of Northwest University (Xi'an NO. 3 hospital), Xi'an, Shaanxi, P. R. China
| | - Hongni Yang
- Department of Geratology, Hospital of Xinjiang Province, Urumqi, Xinjang, P. R. China
| | - Qing Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Ping Wang
- Department of Otolaryngology, Nuclear Industry 416 Hospital, The second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's hospital, Shenzhen, Guangdong, P. R. China
| | - Hong Xian
- West P. R. China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Wang
- The People's Hospital Of Lesh, Leshan City, Sichuan Province, P. R. China
| |
Collapse
|
32
|
Okechukwu V, Mavumengwana V, Hümmelgen IA, Mamo MA. Concomitant in Situ FTIR and Impedance Measurements To Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO 2-Polymer Nanocomposites. ACS OMEGA 2019; 4:8324-8333. [PMID: 31459920 PMCID: PMC6648472 DOI: 10.1021/acsomega.8b03589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
Polymer nanocomposite-based sensors were prepared using cellulose acetate (CA), carbon nanoparticles (CNPs), and manganese dioxide (MnO2) nanorods to detect and to understand the sensing mechanism of 2-methylcyclopentanone vapor. A sensor with a mass ratio of 1:1.5:3 of MnO2/CNPs/CA as well as MnO2/CA and MnO2/CNP composite and MnO2 sensors were prepared. The sensor with the three sensing materials combined exhibited an enhancement of response for 2-methylcyclopentanone vapor, ascribed to a synergistic effect between MnO2/CNPs/CA. An in situ Fourier-transform infrared (FTIR)-combined online LCR meter setup was used to understand the sensing mechanism of the sensor. The sensing mechanism involved a deep oxidation decomposition of the analyte to CO2. This was confirmed from the in situ FTIR-combined online LCR meter results, where a new distinct CO2 bending mode IR band was recorded. To optimize the performance of the sensor, the composites were prepared by varying the amount of metal oxide added into the composites; sensor A (composition of mass ratio 1:1.5:3), sensor B (composition of mass ratio 2:1.5:3), and sensor C (composition of mass ratio 2.5:1.5:3); their compositions are MnO2/CNPs/CA. The performance of sensor B was higher than that of the other two sensors. The sensors also show relatively good response-recovery time. All fabricated sensors were found to have the sensing ability regenerated after the analyte was removed from the system without losing its sensing and recovery abilities. The structural and morphological features of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.
Collapse
Affiliation(s)
- Viola
O. Okechukwu
- Department
of Applied Chemistry and Department of Biotechnology, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Vuyo Mavumengwana
- Department
of Applied Chemistry and Department of Biotechnology, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Ivo A. Hümmelgen
- Departamento
de Física, Universidade Federal do
Paraná, Caixa Postal
19044, Curitiba 81531-980, Brazil
| | - Messai A. Mamo
- Department
of Applied Chemistry and Department of Biotechnology, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
- DST-NRF
Centre of Excellence in Strong Materials (CoE-SM), University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| |
Collapse
|
33
|
Nanomolar Detection of Dopamine at ZnO/Graphene Modified Carbon Paste Electrode. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01134-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019; 194:452-460. [DOI: 10.1016/j.talanta.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
|
35
|
Taking connected mobile-health diagnostics of infectious diseases to the field. Nature 2019; 566:467-474. [PMID: 30814711 DOI: 10.1038/s41586-019-0956-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Mobile health, or 'mHealth', is the application of mobile devices, their components and related technologies to healthcare. It is already improving patients' access to treatment and advice. Now, in combination with internet-connected diagnostic devices, it offers novel ways to diagnose, track and control infectious diseases and to improve the efficiency of the health system. Here we examine the promise of these technologies and discuss the challenges in realizing their potential to increase patients' access to testing, aid in their treatment and improve the capability of public health authorities to monitor outbreaks, implement response strategies and assess the impact of interventions across the world.
Collapse
|
36
|
Shang J, Yu L, Sun Y, Chen X, Kang Q, Shen D. On site determination of free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and reliability. NEW J CHEM 2019. [DOI: 10.1039/c9nj03954f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Absorbance in a long-path portable colorimetric device was measured by a ratiometric fluorescent strategy in a smartphone platform.
Collapse
Affiliation(s)
- Jian Shang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Lei Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yan Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Xiaolan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
37
|
Affiliation(s)
- Alexander C. Sun
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| | - Drew A. Hall
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| |
Collapse
|
38
|
Tong B, Deng Z, Xu B, Meng G, Shao J, Liu H, Dai T, Shan X, Dong W, Wang S, Zhou S, Tao R, Fang X. Oxygen Vacancy Defects Boosted High Performance p-Type Delafossite CuCrO 2 Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34727-34734. [PMID: 30207676 DOI: 10.1021/acsami.8b10485] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
p-type ternary oxides can be extensively explored as alternative sensing channels to binary oxides with diverse structural and compositional versatilities. Seeking a novel approach to magnify their sensitivities toward gas molecules, e.g., volatile organic compounds (VOCs), will definitely expand their applications in the frontier area of healthcare and air-quality monitoring. In this work, delafossite CuCrO2 (CCO) nanoparticles with different grain sizes have been utilized as p-type ternary oxide sensors. It was found that singly ionized oxygen vacancies (Vo•) defects, compared with the grain size of CCO nanoparticles, play an important role in enhancing the charge exchange at the VOCs molecules/CCO interface. In addition to suppressing the hole concentration of the sensor channel, the unpaired electron trapped in Vo• provides an active site for chemisorptions of environmental oxygen and VOCs molecules. The synergetic effect is responsible for the observed increase of sensitivity. Furthermore, the sensitive (Vo• defect-rich) CCO sensor exhibits good reproducibility and stability under a moderate operation temperature (<325 °C). Our work highlights that Vo• defects, created via either in situ synthesis or postannealing treatment, could be explored to rationally boost the performance of p-type ternary oxide sensors.
Collapse
Affiliation(s)
- Bin Tong
- University of Science and Technology of China , Hefei 230026 , China
| | | | - Bo Xu
- China Pharmaceutical University , Nanjing 211198 , China
| | | | | | - Hongyu Liu
- University of Science and Technology of China , Hefei 230026 , China
| | - Tiantian Dai
- University of Science and Technology of China , Hefei 230026 , China
| | - Xueyan Shan
- University of Science and Technology of China , Hefei 230026 , China
| | | | | | | | | | | |
Collapse
|
39
|
Aydindogan E, Guler Celik E, Timur S. Paper-Based Analytical Methods for Smartphone Sensing with Functional Nanoparticles: Bridges from Smart Surfaces to Global Health. Anal Chem 2018; 90:12325-12333. [PMID: 30222319 DOI: 10.1021/acs.analchem.8b03120] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Feature, the most recent developments as well as "pros and cons" in smartphone sensing, which have been developed using various functional nanoparticles in paper-based sensing systems, will be discussed. Additionally, smart phone sensing and POC combination as a potential tool that opens a gate for knowledge flow "from lab scale data to public use" will be evaluated.
Collapse
Affiliation(s)
- Eda Aydindogan
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey
| | - Emine Guler Celik
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey
| | - Suna Timur
- Ege University , Faculty of Science, Biochemistry Department , 35100 , Bornova, Izmir , Turkey.,Central Research Testing and Analysis Laboratory Research and Application Center , Ege University , 35100 , Bornova, Izmir , Turkey
| |
Collapse
|
40
|
Fu Y, Guo J. Blood Cholesterol Monitoring With Smartphone as Miniaturized Electrochemical Analyzer for Cardiovascular Disease Prevention. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:784-790. [PMID: 30010594 DOI: 10.1109/tbcas.2018.2845856] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Currently, cardiovascular diseases become one of the major threat to human's life. The early prevention of cardiovascular diseases plays a critical role in the healthcare engineering. Point of care monitoring the blood lipid level is capable of making the positive contribution to the prevention of cardiovascular disease. Ubiquitous smartphones paved the way as the flexible and widespread platform for the interaction of various health information. In this manuscript, we report the world's first medical smartphone as an electrochemical analyzer for blood lipid monitoring. Integrating an electrochemical analyzer into a smartphone allows us to measure the current generated by the enzymatic reaction with the total cholesterol test strip. The disposable test strip is used to convert the biochemical signal to electrical signal through the electrochemical reaction. The proposed medical smartphone can provide accurate evaluation of patient's blood lipid level as compared to the clinical biochemical analyzer. The proposed medical smartphone system is a promising platform as a point-of-care device for blood total cholesterol (TC) monitoring, which can be applied for long-term prevention of cardiovascular disease due to its portability, reliability, lower cost, convenience, and internet-based medical data interaction.
Collapse
|
41
|
Abstract
Meeting policy requirements is essential for advancing molecular diagnostic devices from the laboratory to real-world applications and commercialization. Considering policy as a starting point in the design of new technology is a winning strategy. Rapid developments have put mobile biosensors at the frontier of molecular diagnostics, at times outpacing policymakers, and therefore offering new opportunities for breakthroughs in global health. In this Perspective we survey influential global health policies and recent developments in mobile biosensing in order to gain a new perspective for the future of the field. We summarize the main requirements for mobile diagnostics outlined by policy makers such as the World Health Organization (WHO), the World Bank, the European Union (EU), and the Food and Drug Administration (FDA). We then classify current mobile diagnostic technologies according to the manner in which the biosensor interfaces with a smartphone. We observe a trend in reducing hardware components and substituting instruments and laborious data processing steps for user-friendly apps. From this perspective we see software application developers as key collaborators for bridging the gap between policy and practice.
Collapse
Affiliation(s)
- Steven M. Russell
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Roberto de la Rica
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
42
|
Hosu O, Mirel S, Săndulescu R, Cristea C. Minireview: Smart tattoo, Microneedle, Point-Of-care, and Phone-Based Biosensors for Medical Screening, Diagnosis, and Monitoring. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1391826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Oana Hosu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Robert Săndulescu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
43
|
Smartphone based bioanalytical and diagnosis applications: A review. Biosens Bioelectron 2018; 102:136-149. [DOI: 10.1016/j.bios.2017.11.021] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
44
|
Sahatiya P, Kadu A, Gupta H, Thanga Gomathi P, Badhulika S. Flexible, Disposable Cellulose-Paper-Based MoS 2/Cu 2S Hybrid for Wireless Environmental Monitoring and Multifunctional Sensing of Chemical Stimuli. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9048-9059. [PMID: 29442495 DOI: 10.1021/acsami.8b00245] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional sensors responding to different chemical stimuli fabricated using functional nanomaterials still remain a challenge because of the usage of the same sensor multiple times for different sensing applications and unreliable front-end processing of the sensing data. This challenge is intensified by the lack of suitable techniques for fabricating disposable sensors, which can be integrated into smartphones with a dedicated application developed for each sensing application. A novel MoS2/Cu2S hybrid grown on disposable cellulose paper by the hydrothermal method is reported for its utilization in sensing humidity, temperature, breath, and ethanol adulteration, wherein the data can be wirelessly transmitted to a smartphone with the dedicated application module for each sensing application. The sensor can be utilized for a particular sensing application and then can be disposed, avoiding the need for utilizing the same sensor for different sensing applications, thereby increasing the accuracy of the sensing data. The sensing mechanism of the fabricated sensor is explained for each stimulus in terms of change in the transport properties of the MoS2/Cu2S hybrid. The development of such unique hybrid materials for wireless disposable multifunctional sensors is a great step ahead in flexible and wearable electronics having potential applications in medical, security, Internet of things, etc.
Collapse
Affiliation(s)
- Parikshit Sahatiya
- Department of Electrical Engineering , Indian Institute of Technology Hyderabad , Hyderabad 502285 , India
| | - Anand Kadu
- Department of Electrical Engineering , Indian Institute of Technology Hyderabad , Hyderabad 502285 , India
| | - Harshit Gupta
- Department of Electrical Engineering , Indian Institute of Technology Ropar , Rupnagar 140001 , Punjab , India
| | - P Thanga Gomathi
- Department of Electrical Engineering , Indian Institute of Technology Hyderabad , Hyderabad 502285 , India
| | - Sushmee Badhulika
- Department of Electrical Engineering , Indian Institute of Technology Hyderabad , Hyderabad 502285 , India
| |
Collapse
|
45
|
Helfer GA, Tischer B, Filoda PF, Parckert AB, dos Santos RB, Vinciguerra LL, Ferrão MF, Barin JS, da Costa AB. A New Tool for Interpretation of Thermal Stability of Raw Milk by Means of the Alizarol Test Using a PLS Model on a Mobile Device. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1190-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Rong Y, Padron AV, Hagerty KJ, Nelson N, Chi S, Keyhani NO, Katz J, Datta SPA, Gomes C, McLamore ES. Post hoc support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions. Analyst 2018; 143:2066-2075. [DOI: 10.1039/c8an00065d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We develop a simple, open source machine learning algorithm for analyzing impedimetric biosensor data using a mobile phone.
Collapse
Affiliation(s)
- Y. Rong
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - A. V. Padron
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - K. J. Hagerty
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - N. Nelson
- Biological & Agricultural Engineering
- North Carolina State University
- USA
| | - S. Chi
- Institute of Agricultural Resources and Regional Planning
- Chinese Academy of Agricultural Sciences; Key Laboratory of Microbial Resources
- Ministry of Agriculture
- Beijing
- China
| | - N. O. Keyhani
- Department of Microbiology and Cell Sciences
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - J. Katz
- Department of Oral and Maxillofacial Diagnostic Sciences
- University of Florida
- USA
| | - S. P. A. Datta
- MIT Auto-ID Labs
- Department of Mechanical Engineering
- Massachusetts Institute of Technology
- USA
- Biomedical Engineering Program
| | - C. Gomes
- Department of Mechanical Engineering
- Iowa State University
- USA
| | - E. S. McLamore
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| |
Collapse
|
47
|
Liu H, Liu C, Gu Y, Li C, Yan X, Zhang T, Lu N, Zheng B, Li Y, Zhang Z, Yang M. A multidimensional design of charge transfer interfaces via D–A–D linking fashion for electrophysiological sensing of neurotransmitters. Biosens Bioelectron 2018; 99:296-302. [DOI: 10.1016/j.bios.2017.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
|
48
|
Govorko MH, Fritschi L, White J, Reid A. Identifying Asbestos-Containing Materials in Homes: Design and Development of the ACM Check Mobile Phone App. JMIR Form Res 2017; 1:e7. [PMID: 30684427 PMCID: PMC6334671 DOI: 10.2196/formative.8370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
Abstract
Background Asbestos-containing materials (ACMs) can still be found in many homes in Australia and other countries. ACMs present a health risk when they are damaged or disturbed, such as during do-it-yourself home renovations. However, community members lack knowledge and awareness about asbestos identification and its safe management in residential settings. Objective The objective of our study was to describe the process of developing a mobile phone app, ACM Check, that incorporates a questionnaire designed to identify and assess ACMs located in residential settings. Methods A multidisciplinary team was involved in the formative development and creation of the mobile phone app. The formative development process comprised 6 steps: defining the scope of the app; conducting a comprehensive desktop review by searching online literature databases, as well as a wider online search for gray literature; drafting and revising the content, questionnaire, conditional branching rules, and scoring algorithms; obtaining expert input; manually pretesting the questionnaire; and formulating a final content document to be provided to the software development company. We then constructed ACM Check on the iOS platform for use in a validation study, and then updated the app, replicated it on Android, and released it to the public. Results The ACM Check app identifies potential ACMs, prioritizes the materials based on their condition and likelihood of disturbance, and generates a summary report for each house assessed. Conclusions ACM Check is an initiative to raise community members’ awareness of asbestos in the residential environment and also serves as a data collection tool for epidemiologic research. It can potentially be modified for implementation in other countries or used as the basis for the assessment of other occupational or environmental hazards.
Collapse
Affiliation(s)
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Australia
| | - James White
- Reach Health Promotion Innovations, Perth, Australia
| | - Alison Reid
- School of Public Health, Curtin University, Perth, Australia
| |
Collapse
|
49
|
Tang N, Jiang Y, Qu H, Duan X. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography. NANOTECHNOLOGY 2017; 28:485301. [PMID: 28968225 DOI: 10.1088/1361-6528/aa905b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.
Collapse
Affiliation(s)
- Ning Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Pirsaheb M, Fattahi N, Karami M, Ghaffari HR. Simultaneous determination of deltamethrin, permethrin and malathion in stored wheat samples using continuous sample drop flow microextraction followed by HPLC–UV. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9622-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|