1
|
Hosseinikebria S, Khazaei M, Dervisevic M, Judicpa MA, Tian J, Razal JM, Voelcker NH, Nilghaz A. Electrochemical biosensors: The beacon for food safety and quality. Food Chem 2025; 475:143284. [PMID: 39956060 DOI: 10.1016/j.foodchem.2025.143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Electrochemical biosensors transduce chemical reactions into measurable electrical signals by incorporating recognition components. Although they are capable of detecting a broad range of target molecules, their application in complex matrices, such as food, at minimum or no sample preparation, is challenging and requires the introduction of innovative and effective strategies. This review explores the recent advances in electrochemical biosensors for on-site food safety and quality analysis. We first discuss the presence of chemical contaminants and biohazards in food and the need for robust, rapid, low-cost, and point-of-care (POC) analytical techniques. We then address the critical aspects of sensitivity and selectivity of electrochemical biosensors in detecting chemical and biological contaminants in real food samples. We finally investigate the major drawbacks of these biosensors and provide future perspectives on the field.
Collapse
Affiliation(s)
| | - Masoud Khazaei
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Mia Angela Judicpa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Pedersen T, Gurevich L, Magnusson NE. Aspects of Electrochemical Biosensors Using Affinity Assays. BIOSENSORS 2025; 15:166. [PMID: 40136962 PMCID: PMC11939962 DOI: 10.3390/bios15030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
In recent decades, the utilization of biomarkers has gained increasing attention. The timely identification and quantification of proteins, nucleic acids, and small molecules associated with a medical condition, infection, or contaminant have become increasingly crucial across a variety of fields, including medicine, food safety, and quality/environmental control. State-of-the-art biomarker detection methods predominantly rely on standard immunoassay techniques, requiring specialized laboratory equipment and trained personnel. This impedes the broad commercial implementation of biosensors in, e.g., Point-of-Care (PoC) settings where ease of operation, portability, and cost-efficiency are prioritized. Small, robust electrochemical biosensors are a promising alternative for analyzing biomarkers in complex samples within PoC environments. Therefore, creating and designing optimized sensing surfaces, immobilization strategies, and efficient signal generation are crucial for improving biosensor systems, which in turn can have real-world impact. In the present paper, we reviewed common electrode types and geometries used in electrochemical biosensors and the immobilization approaches, discussed the advantages and drawbacks of different electrochemical detection methods, and presented different labeling strategies for signal generation and enhancement.
Collapse
Affiliation(s)
- Thor Pedersen
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark;
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark;
| | - Nils E. Magnusson
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| |
Collapse
|
3
|
Saldaña-Ahuactzi Z, Gómez-Montaño FJ, Morales-Chávez J, Salinas RA, Reyes-Betanzo C, Rojas-López M, Dutt A, Orduña-Díaz A. Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches. Mikrochim Acta 2025; 192:102. [PMID: 39843762 DOI: 10.1007/s00604-024-06924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests. This process involves specific facilities, a long-time analysis procedures, and skilled personnel. Conversely, biosensors are an emerging innovative approach to detecting pathogens in real time due to their portability, specificity, sensitivity, and low fabrication costs. These advantages can be achieved from the synergistic work between nanotechnology, materials science, and biotechnology for coupling biomolecules in nano-matrices to enhance biosensing performance. This review highlights recent advancements in electrochemical and optical biosensing techniques for detecting bacteria and viruses. Key properties, such as detection limits, are examined, as they depend on factors like the design of the biorecognition molecule, the type of transducer, the target's characteristics, and matrix interferences. Sensitivity levels reported range from 1 to 1 × 10⁸ CFU/mL, with detection times spanning 10 min to 8 h. Additionally, the review explores innovative approaches, including biosensors capable of distinguishing between live and dead bacteria, multimodal sensing, and the simultaneous detection of multiple foodborne pathogens - emerging trends in biosensor development.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| | - Francisco Javier Gómez-Montaño
- Instituto Tecnológico Superior de San Martín Texmelucan. Camino a Barranca de Pesos S/N., San Martín Texmelucan, 74120, Puebla, México
| | | | - Rafael A Salinas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Claudia Reyes-Betanzo
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
| | - Marlon Rojas-López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Abdú Orduña-Díaz
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| |
Collapse
|
4
|
Ranjbari S, Almahmeed W, Kesharwani P, Sahebkar A. Advancements in biosensor technologies for fibrinogen detection in cardiovascular disorders. Talanta 2024; 280:126687. [PMID: 39126966 DOI: 10.1016/j.talanta.2024.126687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Rapid and accurate identification of cardiovascular diseases (CVDs) are crucial for timely medical interventions and improved patient outcomes. Fibrinogen (Fib) has emerged as a valuable biomarker for CVDs, playing a significant role in their early detection. Elevated levels of Fib are associated with an increased risk of developing CVD, highlighting its importance for more precise diagnosis and effective treatment strategies. In recent years, significant advancements have been made in developing biosensor-based approaches for detecting Fib, offering high sensitivity and specificity. This review aims to explore the impact of Fib on cardiovascular conditions, assess the current advancements, and discuss the future potential of biosensors in Fib research for diagnosing cardiovascular disorders. Furthermore, we evaluate various biosensor techniques, including optical, electrochemical, electronic, and gravimetric methods, in terms of their utility for measuring Fib in clinical samples such as serum, plasma, whole blood, and other body fluids. A comparative analysis of these techniques is conducted based on their performance characteristics. By providing a comprehensive overview of the relationship between Fib and cardiovascular ailments, this review aims to clarify the advancements in biosensor technology for Fib detection. The comparison of different biosensor techniques will aid researchers and clinicians in selecting the most suitable approach for their specific diagnostic needs. Ultimately, integrating biosensors into clinical practice has the potential to revolutionize the detection and management of CVDs, leading to improved patient care and outcomes.
Collapse
Affiliation(s)
- Sara Ranjbari
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Kaur D, Esseili MA, Ramasamy RP. A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus. BIOSENSORS 2024; 14:576. [PMID: 39727841 PMCID: PMC11726883 DOI: 10.3390/bios14120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV. A cell culture-adapted HAV strain (HM175/18f) and its permissive cells (FRhK-4), along with gold nanoparticle-modified screen-printed electrodes, were used to develop the biosensor. Electrochemical impedance spectroscopy was used to quantify the electrical impedance signal. Nyquist plots showed successful fabrication of the cell-based biosensor. The optimum period of HAV incubation with the biosensor was 6 h. A significant linear relationship (R2 = 0.98) was found between the signal and a 6-log range of HAV titers, with a limit of detection of ~5 TCID50/mL (tissue culture infectious dose). The biosensor did not detect non-target viruses such as feline calicivirus and human coronavirus 229E. The biosensor was stable for 3 to 7 days at an abusive temperature (37 °C), retaining ~90 to 60% of the original signal, respectively. In conclusion, this prototype cell-based biosensor is capable of rapidly detecting low levels of infectious HAV.
Collapse
Affiliation(s)
- Dilmeet Kaur
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| | - Malak A. Esseili
- Center for Food Safety, University of Georgia, Griffin Campus, Griffin, GA 30223, USA
| | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
6
|
Bahramian H, Gholinejad J, Yazdanpanah Goharrizi A. Folded flexure MOEMS for the detection of PSA and hepatitis DNA as biosensor for prostate cancer and viruses. Sci Rep 2024; 14:22881. [PMID: 39358419 PMCID: PMC11446923 DOI: 10.1038/s41598-024-73910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Micro-opto-electro-mechanical systems (MOEMS) biosensors are employed in various applications such as disease monitoring, drug investigation, detection of pollutants, and biological fluid studies. In this paper, a novel MOEMS biosensor based on a differential folded-flexure structure is introduced. The designed device is employed to detect prostate-specific antigen (PSA) protein and Hepatitis DNA. The target molecules cause a mechanical deflection in the folded-flexure; subsequently, the transmitted optical power across the finger, attached to the flexure, is modulated in proportion to the input concentration. Then, a photodiode power sensor measures the modulated optical power, where the output of the sensor is simply a current related to the target molecules' concentrations. The employed readout circuit operates at a wavelength of λ = 1550 nm with a laser power of 1 µW. The dimensions of the proposed biosensor are considered to be 365 × 340 × 2 μm³, making this sensor small enough and suitable for integration. The designed biosensor provides notable features of mechanical deflection sensitivities of 0.2053 nm/(ng/ml) and 7.2486 nm/nM, optical transmittance sensitivities of 0.535504 × 10-3 1/(ng/ml) and 18.91 × 10-3 1/nM, total output sensitivities of 0.5398 (mA/W)/(ng/ml) and 19.059 (mA/W)/nM, and measurement ranges of 0-1000 ng/ml and 0-28.33 nM for PSA and Hepatitis DNA, respectively. The proposed system is a sensitive and powerful sensor that can play an important role in diagnosing many diseases.
Collapse
Affiliation(s)
- Hossein Bahramian
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran
| | - Jalal Gholinejad
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran
| | - Arash Yazdanpanah Goharrizi
- Department of Electronics, Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Evin, Tehran, 19839- 69411, Iran.
| |
Collapse
|
7
|
Zambry NS, Awang MS, Hamzah HH, Mohamad AN, Khalid MF, Khim BK, Bustami Y, Jamaluddin NF, Ibrahim F, Aziah I, Abd Manaf A. A portable label-free electrochemical DNA biosensor for rapid detection of Salmonella Typhi. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5254-5262. [PMID: 39011785 DOI: 10.1039/d4ay00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 μM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health & Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Ahmad Najib Mohamad
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Beh Khi Khim
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nurul Fauzani Jamaluddin
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Gunasekaran BM, Srinivasan S, Ezhilan M, Nesakumar N. Nucleic acid-based electrochemical biosensors. Clin Chim Acta 2024; 559:119715. [PMID: 38735514 DOI: 10.1016/j.cca.2024.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer, breast cancer, oxidative DNA damage, and viral infections are all significant and major health threats to human health, presenting substantial challenges in early diagnosis. In this regard, a wide range of nucleic acid-based electrochemical platforms have been widely employed as point-of-care diagnostics in health care and biosensing technologies. This review focuses on biosensor design strategies, underlying principles involved in the development of advanced electrochemical genosensing devices, approaches for immobilizing DNA on electrode surfaces, as well as their utility in early disease diagnosis, with a particular emphasis on cancer, leukaemia, oxidative DNA damage, and viral pathogen detection. Notably, the role of biorecognition elements and nanointerfaces employed in the design and development of advanced electrochemical genosensors for recognizing biomarkers related to colorectal cancer, breast cancer, leukaemia, oxidative DNA damage, and viral pathogens has been extensively reviewed. Finally, challenges associated with the fabrication of nucleic acid-based biosensors to achieve high sensitivity, selectivity, a wide detection range, and a low detection limit have been addressed. We believe that this review will provide valuable information for scientists and bioengineers interested in gaining a deeper understanding of the fabrication and functionality of nucleic acid-based electrochemical biosensors for biomedical diagnostic applications.
Collapse
Affiliation(s)
- Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Chemistry, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Poondi, Thanjavur, Tamil Nadu 613 503, India
| | - Madeshwari Ezhilan
- Department of biomedical engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
9
|
Ghaedamini H, Khalaf K, Kim DS, Tang Y. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2. Anal Biochem 2024; 689:115504. [PMID: 38458306 DOI: 10.1016/j.ab.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.
Collapse
Affiliation(s)
| | - Khalid Khalaf
- Department of Bioengineering, University of Toledo, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, USA
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, USA.
| |
Collapse
|
10
|
Panicker LR, Kummari S, Keerthanaa MR, Rao Bommi J, Koteshwara Reddy K, Yugender Goud K. Trends and challenges in electroanalytical biosensing methodologies for infectious viral diseases. Bioelectrochemistry 2024; 156:108594. [PMID: 37984310 DOI: 10.1016/j.bioelechem.2023.108594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Viral pandemic diseases have disruptive global consequences leading to millions of deaths and a severe impact on the global economy. Inadequate preventative protocols have led to an overwhelming demand for intensive care leading to uncontrollable burdens and even breakdown of healthcare sectors across many countries. The rapid detection of viral disease helps in the understanding of the relevant intricacies, helping to tackle infection with improved guidelines. Portable biosensor devices offer promising solutions by facilitating on-site detection of viral pathogens. This review summarizes the latest innovative strategies reported using electroanalytical methods for the screening of viral antigens. The structural components of viruses and their categories are presented followed by the various recognition elements and transduction techniques involved in biosensors. Core sections focus on biosensors reported for viral genomic detection(DNA and RNA) and antigenic capsid protein. Strategies for addressing the challenges of electroanalytical biosensing of viral components are also presented. The advantages, and disadvantages of biorecognition elements and nanozymes for the detection of viral disease are highlighted. Such technical insights will help researchers working in chemistry, and biochemistry as well as clinicians working in medical diagnostics.
Collapse
Affiliation(s)
- Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - M R Keerthanaa
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | | | - K Koteshwara Reddy
- School of Material Science and Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - K Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
| |
Collapse
|
11
|
Mohammadinejad A, Aleyaghoob G, Nooranian S, Dima L, Moga MA, Badea M. Development of biosensors for detection of fibrinogen: a review. Anal Bioanal Chem 2024; 416:21-36. [PMID: 37837539 DOI: 10.1007/s00216-023-04976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Fibrinogen as a major inflammation marker and blood coagulation factor has a direct impact on the health of humanity. The variations in fibrinogen content lead to risky conditions such as bleeding and cardiovascular diseases. So, accurate methods for monitoring of this glycoprotein are of high importance. The conventional methods, such as the Clauss method, are time consuming and require highly specialized expert analysts. The development of fast, simple, easy to use, and inexpensive methods is highly desired. In this way, biosensors have gained outstanding attention since they offer means for performing analyses at the points-of-care using self-testing devices, which can be applied outside of clinical laboratories or hospital. This review indicates that different electrochemical and optical sensors have been successfully implemented for the detection of fibrinogen under normal levels of fibrinogen in plasma. The biosensors for the detection of fibrinogen have been designed based on the quartz crystal microbalance, field-effect transistor, electrochemical impedance spectroscopy, amperometry, surface plasmon resonance, localized surface plasmon resonance, and colorimetric techniques. Also, this review demonstrates the utility of the application of nanoparticles in different detection techniques.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania.
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania.
| |
Collapse
|
12
|
Ranjbari S, Hatamluyi B, Aghaee-Bakhtiari SH, Rezayi M, Arefinia R. A label-free electrochemical biosensor based on PBA-Au-MXene QD for miR-122 detection in serum samples. Mikrochim Acta 2023; 190:482. [PMID: 37999813 DOI: 10.1007/s00604-023-06062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
A poly(n-butyl acrylate)-gold-MXene quantum dots (PBA-Au-MXene QD) nanocomposite-based biosensor is presented that is modified by unique antisense single-stranded DNA (ssDNA) and uses the electrochemical detection methods of DPV, CV, and EIS to early detect miR-122 as a breast cancer biomarker in real clinical samples. This fabrication method is based on advanced nanotechnology, at which a poly(n-butyl acrylate) (PBA) as a non-conductive polymer transforms into a conductive composite by incorporating Au-MXene QD. This biosensor had a limit of detection (LOD) of 0.8 zM and a linear range from 0.001 aM to 1000 nM, making it capable of detecting the low concentrations of miR-122 in patient samples. Moreover, it allows approximately 100% sensitivity and 100% specificity for miR-122 without extraction. The synthesis and detection characteristics were evaluated by different complementary tests such as AFM, FTIR, TEM, and FESEM. This new biosensor can have a high potential in clinical applications to detect breast cancer early and hence improve patient outcomes.
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Rashid M, Khalid M, Ashraf A, Saleem T, Shafiq I, Shakil MA, Zainab B, El-Kott AF, Yaqub M, Shafiq Z. Multicomponent synthesis of pyrido[2,3- b]pyrazine derivatives: electrochemical DNA sensing, nonlinear optical properties and biological activity. RSC Adv 2023; 13:32160-32174. [PMID: 37920758 PMCID: PMC10619479 DOI: 10.1039/d3ra05365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We synthesized novel pyrido[2,3-b]pyrazin based heterocyclic compounds (4-7) and their chemical structures were ascertained by spectral techniques (NMR, FT-IR). Besides experimental investigation, density functional theory (DFT) computations with B3LYP/6-31G(d,p) level of theory were executed to obtain spectroscopic and electronic properties. Nonlinear optical (NLO) properties, frontier molecular orbitals (FMOs), UV-visible, vibrational analysis, natural bond orbitals (NBOs), transition density matrix (TDM) and density of states (DOS) analyses of molecules (4-7) were accomplished at B3LYP/6-31G (d,p) level. Global reactivity parameters (GRPs) were correlated with the band gap (Egap) values; compound 7 with lower Egap (3.444 eV), exhibited smaller value of hardness (1.722 eV) with greater softness value (0.290 eV-1). The dipole moment (μ), average polarizability 〈α〉, first (βtot) and second 〈γ〉 hyper-polarizabilities were calculated for compounds (4-7). Compound 7 showed less Egap, highest absorption wavelength and remarkable NLO response. The highest 〈α〉, βtot and 〈γ〉 values for compound 7 were observed as 3.90 × 10-23, 15.6 × 10-30 and 6.63 × 10-35 esu, respectively. High NLO response revealed that pyrido[2,3-b]pyrazin based heterocyclic compounds had very remarkable contributions towards NLO technological applications. Further compounds (4-7) are utilized for the first time in electrochemical sensing of DNA, in vitro antioxidant and antiurease activity.
Collapse
Affiliation(s)
- Muhammad Rashid
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
- Department of Chemistry, Govt. Graduate College Shah Rukne-Alam Multan Pakistan
| | - Tahira Saleem
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Azeem Shakil
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Briha Zainab
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University Abha Saudi Arabia
- Department of Zoology, College of Science, Damanhour University Egypt
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| |
Collapse
|
15
|
Oliveira LS, Avelino KYPS, Oliveira SRDE, Lucena-Silva N, de Oliveira HP, Andrade CAS, Oliveira MDL. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J Pharm Biomed Anal 2023; 235:115606. [PMID: 37544275 DOI: 10.1016/j.jpba.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.
Collapse
Affiliation(s)
- Léony S Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Sevy R D E Oliveira
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Norma Lucena-Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), 50670-420 Recife, PE, Brazil; Laboratório de Biologia Molecular, Departamento de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), 50070-550 Recife, PE, Brazil
| | - Helinando P de Oliveira
- Institute Pesquisa em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
16
|
Murray A, Ojeda J, El Merhebi O, Calvo-Marzal P, Gerasimova Y, Chumbimuni-Torres K. Cost-Effective Modular Biosensor for SARS-CoV-2 and Influenza A Detection. BIOSENSORS 2023; 13:874. [PMID: 37754108 PMCID: PMC10526333 DOI: 10.3390/bios13090874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
A modular, multi-purpose, and cost-effective electrochemical biosensor based on a five-stranded four-way junction (5S-4WJ) system was developed for SARS-CoV-2 (genes S and N) and Influenza A virus (gene M) detection. The 5S-4WJ structure consists of an electrode-immobilized universal stem-loop (USL) strand, two auxiliary DNA strands, and a universal methylene blue redox strand (UMeB). This design allows for the detection of specific nucleic acid sequences using square wave voltammetry (SWV). The sequence-specific auxiliary DNA strands (m and f) ensure selectivity of the biosensor for target recognition utilizing the same USL and UMeB components. An important feature of this biosensor is the ability to reuse the USL-modified electrodes to detect the same or alternative targets in new samples. This is accomplished by a simple procedure involving rinsing the electrodes with water to disrupt the 5S-4WJ structure and subsequent re-hybridization of the USL strand with the appropriate set of strands for a new analysis. The biosensor exhibited minimal loss in signal after rehybridization, demonstrating its potential as a viable multiplex assay for both current and future pathogens, with a low limit of quantification (LOQ) of as low as 17 pM.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA; (A.M.); (J.O.); (O.E.M.); (P.C.-M.); (Y.G.)
| |
Collapse
|
17
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|
18
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
19
|
Bolourinezhad M, Rezayi M, Meshkat Z, Soleimanpour S, Mojarrad M, Zibadi F, Aghaee-Bakhtiari SH, Taghdisi SM. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta 2023; 265:124804. [PMID: 37329753 PMCID: PMC10259158 DOI: 10.1016/j.talanta.2023.124804] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Since the rapid spread of the SARS-CoV-2 (2019), the need for early diagnostic techniques to control this pandemic has been highlighted. Diagnostic methods based on virus replication, such as RT-PCR, are exceedingly time-consuming and expensive. As a result, a rapid and accurate electrochemical test which is both available and cost-effective was designed in this study. MXene nanosheets (Ti3C2Tx) and carbon platinum (Pt/C) were employed to amplify the signal of this biosensor upon hybridization reaction of the DNA probe and the virus's specific oligonucleotide target in the RdRp gene region. By the differential pulse voltammetry (DPV) technique, the calibration curve was obtained for the target with varying concentrations ranging from 1 aM to 100 nM. Due to the increase in the concentration of the oligonucleotide target, the signal of DPV increased with a positive slope and a correlation coefficient of 0.9977. Therefore, at least a limit of detection (LOD) was obtained 0.4 aM. Furthermore, the specificity and sensitivity of the sensors were evaluated with 192 clinical samples with positive and negative RT-PCR tests, which revealed 100% accuracy and sensitivity, 97.87% specificity and limit of quantification (LOQ) of 60 copies/mL. Besides, various matrices such as saliva, nasopharyngeal swabs, and serum were assessed for detecting SARS-CoV-2 infection by the developed biosensor, indicating that this biosensor has the potential to be used for rapid Covid-19 test detection.
Collapse
Affiliation(s)
- Monireh Bolourinezhad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Genetics, School of Medicine Medical Genetics Research Center Basic Sciences Research Institute Mashhad University of Medical Sciences, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Pedersen T, Fojan P, Pedersen AKN, Magnusson NE, Gurevich L. Amperometric Biosensor for Quantitative Measurement Using Sandwich Immunoassays. BIOSENSORS 2023; 13:bios13050519. [PMID: 37232880 DOI: 10.3390/bios13050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
State-of-the-art clinical detection methods typically involve standard immunoassay methods, requiring specialized equipment and trained personnel. This impedes their use in the Point-of-Care (PoC) environment, where ease of operation, portability, and cost efficiency are prioritized. Small, robust electrochemical biosensors provide a means with which to analyze biomarkers in biological fluids in PoC environments. Optimized sensing surfaces, immobilization strategies, and efficient reporter systems are key to improving biosensor detection systems. The signal transduction and general performance of electrochemical sensors are determined by surface properties that link the sensing element to the biological sample. We analyzed the surface characteristics of screen-printed and thin-film electrodes using scanning electron microscopy and atomic force microscopy. An enzyme-linked immunosorbent assay (ELISA) was adapted for use in an electrochemical sensor. The robustness and reproducibility of the developed electrochemical immunosensor were investigated by detecting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in urine. The sensor showed a detection limit of 1 ng/mL, a linear range of 3.5-80 ng/mL, and a CV% of 8%. The results demonstrate that the developed platform technology is suitable for immunoassay-based sensors on either screen-printed or thin-film gold electrodes.
Collapse
Affiliation(s)
- Thor Pedersen
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
| | - Peter Fojan
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
| | - Anne Kathrine Nissen Pedersen
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| | - Nils E Magnusson
- Biostrip APS, Lindevangsvej 10, 8240 Risskov, Denmark
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
| |
Collapse
|
21
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
22
|
Ranjbari S, Rezayi M, Arefinia R, Aghaee-Bakhtiari SH, Hatamluyi B, Pasdar A. A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer. Talanta 2023; 255:124247. [PMID: 36603443 DOI: 10.1016/j.talanta.2022.124247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Alnaji N, Wasfi A, Awwad F. The design of a point of care FET biosensor to detect and screen COVID-19. Sci Rep 2023; 13:4485. [PMID: 36934198 PMCID: PMC10024292 DOI: 10.1038/s41598-023-31679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Graphene field effect transistor (FET) biosensors have attracted huge attention in the point-of-care and accurate detection. With the recent spread of the new emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for rapid, and accurate detection & screening tools is arising. Employing these easy-to-handle sensors can offer cheap, rapid, and accurate detection. Herein, we propose the design of a reduced graphene oxide (rGO) FET biosensor for the detection of SARS-CoV-2. The main objective of this work is to detect the SARS-CoV-2 spike protein antigen on spot selectively and rapidly. The sensor consists of rGO channel, a pair of golden electrodes, and a gate underneath the channel. The channel is functionalized with COVID-19 spike protein antibodies to achieve selectivity, and with metal nanoparticles (MNPs) such as copper and silver to enhance the bio-sensing performance. The designed sensor successfully detects the SARS-CoV-2 spike protein and shows singular electrical behavior for detection. The semi-empirical modeling approach combined with none-equilibrium Green's function were used to study the electronic transport properties of the rGO-FET biosensor before and after the addition of the target molecules. The sensor's selectivity is also tested against other viruses. This study provides a promising guide for future practical fabrication.
Collapse
Affiliation(s)
- Nisreen Alnaji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
24
|
Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, Khalid MF, Ozsoz M, Manaf AA, Aziah I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. LAB ON A CHIP 2023; 23:1622-1636. [PMID: 36786757 DOI: 10.1039/d2lc01159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Khi Khim Beh
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
25
|
Yin L, Li Y, Zhang W, Han X, Wu Q, Xie Y, Fan J, Ma L. Detection Methods for Foodborne Viruses: Current State-of-Art and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3551-3563. [PMID: 36657010 DOI: 10.1021/acs.jafc.2c06537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Foodborne viruses have been recognized as important threats to food safety and human health. Rapid and accurate detection is one of the most crucial measures for food safety control. With the development of biology, chemistry, nanoscience, and related interdisciplines, detection strategies have been devised and advanced continuously. This review mainly focuses on the progress of detection methods for foodborne viruses. The current detection methods for foodborne viruses are summarized, including traditional electron microscopy and cultural isolation, immunoassay, molecular technology, biosensors, and newly emerging CRISPR/Cas-based detection technology. Furthermore, a comparison of the detection methods was objectively discussed. This review provides a comprehensive account of foodborne virus detection methods from fundamentals to state-of-the-art and illustrates the advantages and disadvantages of the current methods and proposes the future trends and directions for foodborne virus detection. It is hoped that this review can update current knowledge and present blueprints in order to accelerate futuristic development.
Collapse
Affiliation(s)
- Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiankun Wu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingjing Fan
- Beijing Kwinbon Biotechnology Co., Ltd, Beijing, 102200, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
26
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
27
|
Wasiewska LA, Diaz FG, Teixeira SR, Burgess CM, Duffy G, O'Riordan A. Amplification-free, highly sensitive electrochemical DNA-based sensor for simultaneous detection of stx1 and stx2 genes of Shiga toxin-producing E. coli (STEC). Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Guo J, Zhang H, Yang J, Zhang Y, Wang J, Yan G. ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
29
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Wang K, Lin X, Zhang M, Li Y, Luo C, Wu J. Review of Electrochemical Biosensors for Food Safety Detection. BIOSENSORS 2022; 12:bios12110959. [PMID: 36354467 PMCID: PMC9688552 DOI: 10.3390/bios12110959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/30/2023]
Abstract
Food safety issues are directly related to people's quality of life, so there is a need to develop efficient and reliable food contaminants' detection devices to ensure the safety and quality of food. Electrochemical biosensors have the significant advantages of miniaturization, low cost, high sensitivity, high selectivity, rapid detection, and low detection limits using small amounts of samples, which are expected to enable on-site analysis of food products. In this paper, the latest electrochemical biosensors for the detection of biological contaminants, chemical contaminants, and genetically modified crops are reviewed based on the analytes of interest, electrode materials and modification methods, electrochemical methods, and detection limits. This review shows that electrochemical biosensors are poised to provide miniaturized, specific, selective, fast detection, and high-sensitivity sensor platforms for food safety.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Maoxiao Zhang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Yu Li
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Chunfeng Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
31
|
Simultaneous detection of four specific DNAs fragments based on two-dimensional bimetallic MOF nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Nimal R, Nur Unal D, Erkmen C, Bozal-Palabiyik B, Siddiq M, Eren G, Shah A, Uslu B. Development of the electrochemical, spectroscopic and molecular docking approaches toward the investigation of interaction between DNA and anti-leukemic drug azacytidine. Bioelectrochemistry 2022; 146:108135. [DOI: 10.1016/j.bioelechem.2022.108135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
|
33
|
Hatamluyi B, Rezayi M, Amel Jamehdar S, Rizi KS, Mojarrad M, Meshkat Z, Choobin H, Soleimanpour S, Boroushaki MT. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 2022; 207:114209. [PMID: 35339072 PMCID: PMC8938305 DOI: 10.1016/j.bios.2022.114209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023]
Abstract
The sudden increase of the COVID-19 outbreak and its continued growth with mutations in various forms has created a global health crisis as well as devastating social and economic effects over the past two years. In this study, a screen-printed carbon electrode reinforced with boron nitride quantum dots/flower-like gold nanostructures (BNQDs/FGNs/SPCE) and functionalized by highly specific antisense DNA oligonucleotide presents an alternative and promising solution for targeting SARS-CoV-2 RNA without nucleic acid amplification. The platform was tested on 120 SARS-CoV-2 RNA isolated from real clinical samples (60 positive and 60 negative confirmed by conventional RT-PCR method). Based on obtained quantitative results and statistical analysis (box-diagram, cutoff value, receiver operating characteristic curve, and t-test), the biosensor revealed a significant difference between the two positive and negative groups with 100% sensitivity and 100% specificity. To evaluate the quantitation capacity and detection limit of the biosensor for clinical trials, the detection performance of the biosensor for continuously diluted RNA isolated from SARS-CoV-2-confirmed patients was compared to those obtained by RT-PCR, demonstrating that the detection limit of the biosensor is lower than or comparable to that of RT-PCR. The ssDNA/BNQDs/FGNs/SPCE showed negligible cross-reactivity with RNA fragments isolated from Influenza A (IAV) clinical samples and also remained stable for up to 14 days. In conclusion, the fabricated biosensor may serve as a promising tool for point-of-care applications.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Salimian Rizi
- Isfahan University of Technology, Department of Materials Engineering, Isfahan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Šišoláková I, Petruš O, Shepa J, Farka Z, Oriňak A, Oriňaková R. Colloidal lithography as a novel approach for the development of Ni-nanocavity insulin sensor. Sci Rep 2022; 12:11020. [PMID: 35773298 PMCID: PMC9246938 DOI: 10.1038/s41598-022-15283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, a highly sensitive, fast, and selective enzyme-free electrochemical sensor based on the deposition of Ni cavities on conductive glass was proposed for insulin detection. Considering the growing prevalence of diabetes mellitus, an electrochemical sensor for the determination of insulin was proposed for the effective diagnosis of the disease. Colloidal lithography enabled deposition of nanostructured layer (substrate) with homogeneous distribution of Ni cavities on the electrode surface with a large active surface area. The morphology and structure of conductive indium tin oxide glass modified with Ni cavities (Ni-c-ITO) were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The diameter of the resulting cavities was approximately 500 nm, while their depth was calculated at 190 ± 4 nm and 188 ± 18 nm using AFM and SEM, respectively. The insulin assay performance was evaluated by cyclic voltammetry. Ni-c-ITO exhibited excellent analytical characteristics, including high sensitivity (1.032 µA µmol-1 dm3), a low detection limit (156 µmol dm-3), and a wide dynamic range (500 nmol dm-3 to 10 µmol dm-3). Finally, the determination of insulin in buffer with interferents and in real blood serum samples revealed high specificity and demonstrated the practical potential of the method.
Collapse
Affiliation(s)
- Ivana Šišoláková
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Ondrej Petruš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic.
| | - Jana Shepa
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Andrej Oriňak
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Renáta Oriňaková
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| |
Collapse
|
35
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
36
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
37
|
|
38
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
39
|
Harun-Ur-Rashid M, Foyez T, Jahan I, Pal K, Imran AB. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review. RSC Adv 2022; 12:9445-9465. [PMID: 35424900 PMCID: PMC8959446 DOI: 10.1039/d2ra01293f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
The novel human coronavirus pandemic is one of the most significant occurrences in human civilization. The rapid proliferation and mutation of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) have created an exceedingly challenging situation throughout the world's healthcare systems ranging from underdeveloped countries to super-developed countries. The disease is generally recognized as coronavirus disease 2019 (COVID-19), and it is caused by a new human CoV, which has put mankind in jeopardy. COVID-19 is death-dealing and affects people of all ages, including the elderly and middle-aged people, children, infants, persons with co-morbidities, and immunocompromised patients. Moreover, multiple SARS-CoV-2 variants have evolved as a result of genetic alteration. Some variants cause severe symptoms in patients, while others cause an unusually high infection rate, and yet others cause extremely severe symptoms as well as a high infection rate. Contrasting with a previous epidemic, COVID-19 is more contagious since the spike protein of SARS-CoV-2 demonstrates profuse affection to angiotensin-converting enzyme II (ACE2) that is copiously expressed on the surface of human lung cells. Since the estimation and tracking of viral loads are essential for determining the infection stage and recovery duration, a quick, accurate, easy, cheap, and versatile diagnostic tool is critical for managing COVID-19, as well as for outbreak control. Currently, Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing is the most often utilized approach for COVID-19 diagnosis, while Computed Tomography (CT) scans of the chest are used to assess the disease's stages. However, the RT-PCR method is non-portable, tedious, and laborious, and the latter is not capable of detecting the preliminary stage of infection. In these circumstances, nano-biosensors can play an important role to deliver point-of-care diagnosis for a variety of disorders including a wide variety of viral infections rapidly, economically, precisely, and accurately. New technologies are being developed to overcome the drawbacks of the current methods. Nano-biosensors comprise bioreceptors with electrochemical, optical, or FET-based transduction for the specific detection of biomarkers. Different types of organic-inorganic nanomaterials have been incorporated for designing, fabricating, and improving the performance and analytical ability of sensors by increasing sensitivity, adsorption, and biocompatibility. The particular focus of this review is to carry out a systematic study of the status and perspectives of synthetic routes for nano-biosensors, including their background, composition, fabrication processes, and prospective applications in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology Dhaka 1230 Bangladesh
| | - Tahmina Foyez
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University Dhaka 1229 Bangladesh
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University Nagoya Japan
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University Punjab 140413 India
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| |
Collapse
|
40
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta 2022; 238:123049. [PMID: 34801906 DOI: 10.1016/j.talanta.2021.123049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Mycobacterium simiae has been reported to be the most prevalent species of Nontuberculous mycobacteria (NTM) in many countries. As both phenotypic and molecular detection of M. simiae and other NTMs have limitations, finding an accurate, fast, and low-cost diagnostic method is critical for the management of infections. Here, we report the development of a new type of label-free electrochemical biosensor using a gold electrode decorated with l-cysteine/PAMAM dendrimer for specific targeting of M. simiae ITS sequence. DNA hybridization was monitored by measuring changes in the free guanine electrical signal with changing ssDNA target concentrations by differential pulse voltammetry (DPV) method. Response surface methodology (RSM) was applied for the optimization of variables affecting biosensor response. Under optimal conditions, the biosensor revealed a wide linear range from 10-14 M to 10-6 M and a detection limit of 1.40 fM. The fabricated biosensor showed an excellent selectivity to M. simiae in the presence of other similar pathogenic bacteria. Moreover, experimental results confirmed that this biosensor exhibited great precision and high reproducibility, hence provides a low-cost, label-free, and faster detection analysis, representing a novel strategy in detecting other NTMs.
Collapse
|
42
|
Kotsiri Z, Vidic J, Vantarakis A. Applications of biosensors for bacteria and virus detection in food and water-A systematic review. J Environ Sci (China) 2022; 111:367-379. [PMID: 34949365 DOI: 10.1016/j.jes.2021.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 05/09/2023]
Abstract
Biosensors for sensitive and specific detection of foodborne and waterborne pathogens are particularly valued for their portability, usability, relatively low cost, and real-time or near real-time response. Their application is widespread in several domains, including environmental monitoring. The main limitation of currently developed biosensors is a lack of sensitivity and specificity in complex matrices. Due to increased interest in biosensor development, we conducted a systematic review, complying with the PRISMA guidelines, covering the period from January 2010 to December 2019. The review is focused on biosensor applications in the identification of foodborne and waterborne microorganisms based on research articles identified in the Pubmed, ScienceDirect, and Scopus search engines. Efforts are still in progress to overcome detection limitations and to provide a rapid detection system which will safeguard water and food quality. The use of biosensors is an essential tool with applicability in the evaluation and monitoring of the environment and food, with great impact in public health.
Collapse
Affiliation(s)
- Zoi Kotsiri
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Apostolos Vantarakis
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece.
| |
Collapse
|
43
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
44
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
45
|
Xi H, Jiang H, Juhas M, Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS OMEGA 2021; 6:25846-25859. [PMID: 34632242 PMCID: PMC8491437 DOI: 10.1021/acsomega.1c04024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become the world's largest public health emergency of the past few decades. Thousands of mutations were identified in the SARS-CoV-2 genome. Some mutants are more infectious and may replace the original strains. Recently, B.1.1.7(Alpha), B1.351(Beta), and B.1.617.2(Delta) strains, which appear to have increased transmissibility, were detected. These strains accounting for the high proportion of newly diagnosed cases spread rapidly over the world. Particularly, the Delta variant has been reported to account for a vast majority of the infections in several countries over the last few weeks. The application of biosensors in the detection of SARS-CoV-2 is important for the control of the COVID-19 pandemic. Due to high demand for SARS-CoV-2 genotyping, it is urgent to develop reliable and efficient systems based on integrated multiple biosensor technology for rapid detection of multiple SARS-CoV-2 mutations simultaneously. This is important not only for the detection and analysis of the current but also for future mutations. Novel biosensors combined with other technologies can be used for the reliable and effective detection of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Hui Xi
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Hanlin Jiang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mario Juhas
- Medical
and Molecular Microbiology Unit, Department of Medicine, Faculty of
Science and Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Yang Zhang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
46
|
Nikolic MV, Vasiljevic ZZ, Auger S, Vidic J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021; 16:e0258002. [PMID: 34591907 PMCID: PMC8483417 DOI: 10.1371/journal.pone.0258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Detecting viruses, which have significant impact on health and the economy, is essential for controlling and combating viral infections. In recent years there has been a focus towards simpler and faster detection methods, specifically through the use of electronic-based detection at the point-of-care. Point-of-care sensors play a particularly important role in the detection of viruses. Tests can be performed in the field or in resource limited regions in a simple manner and short time frame, allowing for rapid treatment. Electronic based detection allows for speed and quantitative detection not otherwise possible at the point-of-care. Such approaches are largely based upon voltammetry, electrochemical impedance spectroscopy, field effect transistors, and similar electrical techniques. Here, we systematically review electronic and electrochemical point-of-care sensors for the detection of human viral pathogens. Using the reported limits of detection and assay times we compare approaches both by detection method and by the target analyte of interest. Compared to recent scoping and narrative reviews, this systematic review which follows established best practice for evidence synthesis adds substantial new evidence on 1) performance and 2) limitations, needed for sensor uptake in the clinical arena. 104 relevant studies were identified by conducting a search of current literature using 7 databases, only including original research articles detecting human viruses and reporting a limit of detection. Detection units were converted to nanomolars where possible in order to compare performance across devices. This approach allows us to identify field effect transistors as having the fastest median response time, and as being the most sensitive, some achieving single-molecule detection. In general, we found that antigens are the quickest targets to detect. We also observe however, that reports are highly variable in their chosen metrics of interest. We suggest that this lack of systematisation across studies may be a major bottleneck in sensor development and translation. Where appropriate, we use the findings of the systematic review to give recommendations for best reporting practice.
Collapse
Affiliation(s)
- Solen Monteil
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| | - Alexander J. Casson
- The Henry Royce Institute, Manchester, United Kingdom
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Samuel T. Jones
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| |
Collapse
|
48
|
Palermo G, Rippa M, Conti Y, Vestri A, Castagna R, Fusco G, Suffredini E, Zhou J, Zyss J, De Luca A, Petti L. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43715-43725. [PMID: 34469103 PMCID: PMC8447193 DOI: 10.1021/acsami.1c12525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An inverted pyramidal metasurface was designed, fabricated, and studied at the nanoscale level for the development of a label-free pathogen detection on a chip platform that merges nanotechnology and surface-enhanced Raman scattering (SERS). Based on the integration and synergy of these ingredients, a virus immunoassay was proposed as a relevant proof of concept for very sensitive detection of hepatitis A virus, for the first time to our best knowledge, in a very small volume (2 μL), without complex signal amplification, allowing to detect a minimal virus concentration of 13 pg/mL. The proposed work aims to develop a high-flux and high-accuracy surface-enhanced Raman spectroscopy (SERS) nanobiosensor for the detection of pathogens to provide an effective method for early and easy water monitoring, which can be fast and convenient.
Collapse
Affiliation(s)
- Giovanna Palermo
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Ylli Conti
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Riccardo Castagna
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Giovanna Fusco
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Jun Zhou
- Institute
of Photonics, Faculty of Science, Ningbo University, 315211 Ningbo, People’s Republic of China
| | - Joseph Zyss
- LUMIN Laboratory
(CNRS), Institut d’Alembert, Universitè Paris Saclay, 91190 Gif sur Yvette, France
| | - Antonio De Luca
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| |
Collapse
|
49
|
Thakur S, Dasmahapatra AK, Bandyopadhyay D. Functional liquid droplets for analyte sensing and energy harvesting. Adv Colloid Interface Sci 2021; 294:102453. [PMID: 34120038 DOI: 10.1016/j.cis.2021.102453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Over the past century, rapid miniaturization of technologies has helped in the development of efficient, flexible, portable, robust, and compact applications with minimal wastage of materials. In this direction, of late, the usage of mesoscale liquid droplets has emerged as an alternative platform because of the following advantages: (i) a droplet is incompressible and at the same time deformable, (ii) interfacial area of a spherical droplet is minimum for a given amount of mass; and (iii) a droplet interface allows facile mass, momentum, and energy transfer. Subsequently, such attributes have aided towards the design of diverse droplet-based microfluidic technologies. For example, the microdroplets have been utilized as micro-reactors, colorimetric or electrochemical (EC) sensors, drug-delivery vehicles, and energy harvesters. Further, a number of recently reported lab-on-a-chip technologies exploit the motility, storage, and mixing capacities of the microdroplets. In view of this background, the review initiates discussion by highlighting the different attributes of the microdroplets such as size, shape, surface to volume ratio, wettability, and contact line. Thereafter, the effects of the surface or body forces on the properties of the droplets have been elaborated. Finally, the different aspects of such liquid droplet systems towards technological adaptations in health care, sensing, and energy harvesting have been presented. The review concludes with a tight summary on the potential avenues for further developments.
Collapse
Affiliation(s)
- Siddharth Thakur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
50
|
Micheli L, Fasoli A, Attar A, Donia DT, Divizia M, Amine A, Palleschi G, Salazar Carballo PA, Moscone D. An ELIME assay for hepatitis A virus detection. Talanta 2021; 234:122672. [PMID: 34364473 DOI: 10.1016/j.talanta.2021.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
An Enzyme Linked ImmunoMagnetic Electrochemical assay (ELIME) was developed for the detection of the hepatitis A virus (HAV). This system is based on the use of new polydopamine-modified magnetic nanobeads as solid support for the immunochemical chain, and an array of 8 screen-printed electrodes as a sensing platform. Enzymatic-by-product is quickly measured by differential pulse voltammetry. For this purpose, all analytical parameters were optimized; in particular, different blocking reagents were evaluated in order to minimize the nonspecific interaction of bioreagents. Using the ELIME assays, a quantitative determination of HAV can be achieved with a detection limit of 1·10-11 IU mL-1 and a working range between 10-10 - 5 × 10-7 IU mL-1. The cross-reactivity of the commercial monoclonal antibodies against HAV used in ELIME assays was tested for Coxsackie B4, resulting very low. The sensitivity was also investigated and compared with spectrophotometric sandwich ELISA. The average relative standard deviation (RSD) of the ELIME method was less than 5% for the assays performed on the same day, and 7% for the measurements made on different days. The proposed system was applied to the cell culture of HAV, which title was quantified by Real-Time Quantitative Reverse Transcription PCR (RT¬qPCR). To compare the results, a correlation between the units used in ELIME (IU mL-1) and those used in RT¬qPCR (genome mL-1) was established using a HAV-positive sample, resulting in 1 IU mL-1-10-4 gen mL-1 (R2 = 0.978). The ELIME tool exhibits good stability and high biological selectivity for HAV antigen detection and was successfully applied for the determination of HAV in tap water.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| | - Andrea Fasoli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Aisha Attar
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, BP 146, Mohammedia, 20650, Morocco; Department of Pharmacology, College of Medicine, The University of Illinois at Chicago, 835 S Wolcott Ave E403 (MC868), Chicago, IL, 60612, USA
| | - Domenica T Donia
- Department of Experimental Medicine and Surgery, University of Roma "Tor Vergata", Via Montpellier, 1, 00133, Roma, Italy
| | - Maurizio Divizia
- Department of Experimental Medicine and Surgery, University of Roma "Tor Vergata", Via Montpellier, 1, 00133, Roma, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, BP 146, Mohammedia, 20650, Morocco
| | - Giuseppe Palleschi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Pedro A Salazar Carballo
- Neurochemistry and Neuroimaging Group, (Laboratory of Sensors, Biosensors and Materials) Faculty of Medical Sciences, University of La Laguna, Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain
| | - Danila Moscone
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136, Rome, Italy
| |
Collapse
|