1
|
Akram F, Ul Haq I, Mir AS. Gene cloning, IPTG-independent auto-induction and characterization of a novel hyperstable S9 prolyl oligopeptidase having lipolytic activity from Thermotoga naphthophila RKU-10 T with applications. Int J Biol Macromol 2024; 279:135107. [PMID: 39197610 DOI: 10.1016/j.ijbiomac.2024.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
A hyperstable lipase from Thermotoga naphthophila (TnLip) was cloned and overexpressed as a soluble and active monomeric protein in an effectual mesophilic host system. Sequence study revealed that TnLip is a peptidase S9 prolyl oligopeptidase domain (acetyl esterase/lipase-like protein), belongs to alpha/beta (α/β)-hydrolase superfamily containing a well-conserved α/β-hydrolase fold and penta-peptide (GLSAG) motif. Various cultivation and induction strategies were applied to improve the heterologous expression and bacterial biomass, but TnLip intracellular activity was enhanced by 14.25- fold with IPTG-independent auto-induction approach after 16 h (26 °C, 150 rev min-1) incubation. Purified TnLip (35 kDa) showed peak activity at 85 °C in McIlvaine buffer (pH 7.0-8.0), and has great stability over a broad range of pH (5.0-10.0), and temperature (40-85 °C) for 8 h. TnLip exhibited prodigious resistance toward various commercial detergents, chemical additives, and salt. TnLip activity was improved by 170.51 %, 130.67 %, 127.42 %, 126.54 %, 126.61 %, 120.32 %, and 116.31 % with 50 % (v/v) of methanol, ethanol, n-butanol, isopropanol, acetone, glycerol, and acetic acid, respectively. Moreover, with 3.0 M of NaCl, and 10 mM of Ca2+, Mn2+, and Mg2+ TnLip activity was augmented by 210 %, 185.64 %, 152.03 %, and 116.26 %, respectively. TnLip has an affinity with various substrates (p-nitrophenyl ester and natural oils) but maximal hydrolytic activity was perceived with p-nitrophenyl palmitate (pNPP, 3600 U mg-1) and olive oil (1182.05 U mg-1). The values of Km (0.576 mM), Vmax (4216 μmol mg-1 min-1), VmaxKm-1 (7319.44 min-1), kcat (1106.74 s-1), and kcatKm-1 (1921.42 mM-1 s-1) were calculated using pNPP substrate. Additionally, TnLip degraded animals' fats and removed oil stains within 3 h and 5 min, respectively. All these features make halo-alkali-thermophilic TnLip as an auspicious contender for laundry detergents (cleaning bio-additive), fat degradation, wastewater treatment and endorse eco-friendly stewardship along with various other biotechnological applications.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Ikram Ul Haq
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Azka Shahzad Mir
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
2
|
Antipov A, Okorokova N, Mordkovich N, Safonova T, Veiko V. Role of phosphate-coordinating arginine residues in the thermal stability of uridine phosphorylase from Shewanella oneidensis MR-1. Biochimie 2024; 225:19-25. [PMID: 38723939 DOI: 10.1016/j.biochi.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
The role of phosphate-coordinating arginine residues in the thermal stability of uridine phosphorylase from Shewanella oneidensis MR-1 was investigated by mutation analysis. Uridine phosphorylase mutant genes were constructed by site-directed mutagenesis. The enzyme mutants were prepared and isolated, and their kinetic parameters were determined. It was shown that all these arginine residues play an important role both in the catalysis and thermal stability. The arginine residues 176 were demonstrated to form a kind of a phosphate pore in the hexameric structure of uridine phosphorylase, and they not only contribute to thermal stabilization of the enzyme but also have a regulatory function. The replacement of arginine 176 with an alanine residue resulted in a significant decrease in the kinetic stability of the enzyme but led to a twofold increase in its specific activity.
Collapse
Affiliation(s)
- Alexey Antipov
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia.
| | - Natalya Okorokova
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Nadezhda Mordkovich
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Tatyana Safonova
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| | - Vladimir Veiko
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, Russia
| |
Collapse
|
3
|
Guo Q, Dan M, Zheng Y, Zhao G, Wang D. Construction and characterization of a novel fusion alginate lyase with endolytic and exolytic cleavage activity for industrial preparation of alginate oligosaccharides. Food Chem 2024; 453:139695. [PMID: 38788651 DOI: 10.1016/j.foodchem.2024.139695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alginate lyases with high activity and good thermostability are lacking for the preparation of alginate oligosaccharides (AOS) with various biological activities. We constructed a fusion alginate lyase with both endo-and exo-activities. AlyRm6A-Zu7 was successfully constructed by connecting the highly thermostable AlyRm6A to a new exotype lyase, AlyZu7. The fusion enzyme exhibited high catalytic activity and thermostability. It transformed sodium alginate into oligosaccharides with degrees of polymerization (DP) of 2-4 while producing 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). The maximum reducing sugar, AOS, and DP1 + DEH yields were 75 %, 45 %, and 40 %, respectively. Molecular docking confirmed the formation of a stable complex between the substrate and AlyRm6A-Zu7. Protein interactions increased the thermostability of AlyZu7. This work provides new insights into the industrial formation of AOS and monosaccharide DEH using thermally stable fusion enzymes, which has a positive effect in the fields of functional oligosaccharide production and biofuel formation.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin, Sichuan 644000, China.
| |
Collapse
|
4
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Fang J, An L, Yu J, Ma J, Zhou R, Wang B. Characterization of a novel carboxylesterase from Streptomyces lividans TK24 and site-directed mutagenesis for its thermostability. J Biosci Bioeng 2024:S1389-1723(24)00130-0. [PMID: 38871580 DOI: 10.1016/j.jbiosc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
As an industrial enzyme that catalyzes the formation and cleavage of ester bonds, carboxylesterase has attracted attention in fine chemistry, pharmaceutical, biological energy and bioremediation fields. However, the weak thermostability limits their further developments in industrial applications. In this work, a novel carboxylesterase (EstF) from Streptomyces lividans TK24, belonging to family XVII, was acquired by successfully heterologous expressed and biochemically identified. The EstF exhibited optimal activity at 55 °C, pH 9.0 and excellent catalytic performances (Km = 0.263 mM, kcat/Km = 562.3 s-1 mM-1 for p-nitrophenyl acetate (pNPA2) hydrolysis). Besides, the EstF presented exceptionally high thermostability with a half-life of 387.23 h at 55 °C and 2.86 h at 100 °C. Furthermore, the EstF was modified to obtain EstFP144G using the site-directed mutation technique to investigate the effect of single glycine on thermostability. Remarkably, the mutant EstFP144G displayed a 5.10-fold increase of half-life at 100 °C versus wild-type without affecting catalytic performance. Structural analysis implied that the glycine introduction could release a steric strain and induce cooperative effects between distal residues to increase the thermostability. Therefore, the thermostable EstF and EstFP144G with prominently catalytic characteristics have potential industrial applications and the introduction of a single glycine strategy opens up alternative avenues for the thermostability engineering of other enzymes.
Collapse
Affiliation(s)
- Jinxin Fang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Lihua An
- Medical and Health Analysis Center, Peking University, Beijing 100191, China
| | - Jiao Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jinxue Ma
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Rongjie Zhou
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| |
Collapse
|
6
|
Zhang X, Zhang X, Shi H, Zhang H, Zhang J, Yue C, Li D, Yao L, Tang C. Combining Flexible Region Design and Automatic Design to Enhance the Thermal Stability and Catalytic Efficiency of Leucine Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38838197 DOI: 10.1021/acs.jafc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Leucine dehydrogenase (LeuDH, EC 1.4.1.9) can reversibly catalyze the oxidative deamination of l-leucine and some other specific α-amino acids to form the corresponding α-ketoacids. This reaction has great significance in the field of food additives and the pharmaceutical industry. The LeuDH from Exiguobacterium sibiricum (EsLeuDH) has high catalytic efficiency but limited thermal stability, hindering its widespread industrial application. In this study, a mutant N5F/I12L/A352Y of EsLeuDH (referred to as M2) was developed with enhanced thermal stability and catalytic activity through rational modification. The M2 mutant exhibits a half-life at 60 °C (t1/2(60 °C)) of 975.7 min and a specific activity of 69.6 U mg-1, which is 5.4 and 2.1 times higher than those of EsLeuDH, respectively. This research may facilitate the utilization of EsLeuDH at elevated temperatures, enhancing its potential for industrial applications. The findings offer a practical and efficient approach for optimizing LeuDH and other industrial enzymes.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Xichuan Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Hongling Shi
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianhui Zhang
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| | - Chao Yue
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Dandan Li
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Lunguang Yao
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Cunduo Tang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| |
Collapse
|
7
|
Kayrav A, Mumcu H, Durmus N, Karaguler NG. Revealing the role of the X25 domains through the characterization of truncated variants of amylopullulanase enzyme from Thermoanaerobacter brockii brockii. Int J Biol Macromol 2024; 270:132404. [PMID: 38754672 DOI: 10.1016/j.ijbiomac.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.
Collapse
Affiliation(s)
- Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Naciye Durmus
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye.
| |
Collapse
|
8
|
Arisan D, Moya-Beltrán A, Rojas-Villalobos C, Issotta F, Castro M, Ulloa R, Chiacchiarini PA, Díez B, Martín AJM, Ñancucheo I, Giaveno A, Johnson DB, Quatrini R. Acidithiobacillia class members originating at sites within the Pacific Ring of Fire and other tectonically active locations and description of the novel genus ' Igneacidithiobacillus'. Front Microbiol 2024; 15:1360268. [PMID: 38633703 PMCID: PMC11021618 DOI: 10.3389/fmicb.2024.1360268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Recent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1T as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1TS), 'Igneacidithiobacillus siniensis' (S30A2T), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 TS), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 TS). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.
Collapse
Affiliation(s)
- Dilanaz Arisan
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Ana Moya-Beltrán
- Departamento de Informática y Computación, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Camila Rojas-Villalobos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Francisco Issotta
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
| | - Matías Castro
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Ricardo Ulloa
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Patricia A. Chiacchiarini
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Beatriz Díez
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Center for Climate and Resilience Research (CR), Santiago, Chile
| | - Alberto J. M. Martín
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Iván Ñancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur, Concepción, Chile
| | - Alejandra Giaveno
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - D. Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Natural History Museum, London, United Kingdom
| | - Raquel Quatrini
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| |
Collapse
|
9
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
Aberuagba A, Joel EB, Bello AJ, Igunnu A, Malomo SO, Olorunniji FJ. Thermophilic PHP Protein Tyrosine Phosphatases (Cap8C and Wzb) from Mesophilic Bacteria. Int J Mol Sci 2024; 25:1262. [PMID: 38279261 PMCID: PMC10816263 DOI: 10.3390/ijms25021262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) of the polymerase and histidinol phosphatase (PHP) superfamily with characteristic phosphatase activity dependent on divalent metal ions are found in many Gram-positive bacteria. Although members of this family are co-purified with metal ions, they still require the exogenous supply of metal ions for full activation. However, the specific roles these metal ions play during catalysis are yet to be well understood. Here, we report the metal ion requirement for phosphatase activities of S. aureus Cap8C and L. rhamnosus Wzb. AlphaFold-predicted structures of the two PTPs suggest that they are members of the PHP family. Like other PHP phosphatases, the two enzymes have a catalytic preference for Mn2+, Co2+ and Ni2+ ions. Cap8C and Wzb show an unusual thermophilic property with optimum activities over 75 °C. Consistent with this model, the activity-temperature profiles of the two enzymes are dependent on the divalent metal ion activating the enzyme.
Collapse
Affiliation(s)
- Adepeju Aberuagba
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| | - Enoch B. Joel
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos 930003, Nigeria
| | - Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| | - Adedoyin Igunnu
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 234031, Nigeria; (A.I.); (S.O.M.)
| | - Sylvia O. Malomo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 234031, Nigeria; (A.I.); (S.O.M.)
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| |
Collapse
|
11
|
Senthilkumar S, Mahesh S, Jaisankar S, Yennamalli RM. Surface exposed and charged residues drive thermostability in fungi. Proteins 2023. [PMID: 37909647 DOI: 10.1002/prot.26623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Fungi, though mesophilic, include thermophilic and thermostable species, as well. The thermostability of proteins observed in these fungi is most likely to be attributed to several molecular factors, such as the presence of salt bridges and hydrogen bond interactions between side chains. These factors cannot be generalized for all fungi. Factors impacting thermostability can guide how fungal thermophilic proteins gain thermostability. We curated a dataset of proteins for 14 thermophilic fungi and their evolutionarily closer mesophiles. Additionally, the proteome of Chaetomium thermophilum and its evolutionarily related mesophile Chaetomium globosum was analyzed. Using eggNOG, we categorized the proteomes into clusters of orthologous groups (COGs). While the individual count of proteins is over-represented in mesophiles (for COGs S, G, L, and Q), there are certain features that are significantly enriched in thermophiles (such as charged residues, exposed residues, polar residues, etc.). Since fungi are known to be cellulolytic and chitinolytic by nature, we selected 37 existing carbohydrate-active enzymes (CAZyme) families in Eurotiales, Mucorales, and Sordariales. We looked at closely similar sequences and their modeled structures for further comparison. Comparing solvent accessibilities of thermophilic and mesophilic proteins, exposed and intermediate residues are observed higher in thermophiles whereas buried residues are observed higher in mesophiles. For specific five CAZYme families (GH7, GH11, GH18, GH45, and CBM1) we looked at position-specific substitutions between thermophiles and mesophiles. We also found that there are relatively more intramolecular interactions in thermophiles compared to mesophiles. Thus, we found factors such as surface exposed residues and charged residues that are highly likely to impart thermostability in fungi, and this study sets the stage for further studies in the area of fungal thermostability.
Collapse
Affiliation(s)
- Shricharan Senthilkumar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sankar Mahesh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Subachandran Jaisankar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
12
|
Thota N, Quirk S, Zhuang Y, Stover ER, Lieberman RL, Hernandez R. Correlation between chemical denaturation and the unfolding energetics of Acanthamoeba actophorin. Biophys J 2023; 122:2921-2937. [PMID: 36461639 PMCID: PMC10398266 DOI: 10.1016/j.bpj.2022.11.2941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein actophorin from the amoeba Acanthamoeba castellani identified a series of site-directed mutations that increase the thermal stability of the protein by 22°C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared with SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds and number of salt bridges during the pulling process provides a mechanistic view of the structural changes of the actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF.
Collapse
Affiliation(s)
- Nikhil Thota
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | | | - Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Erica R Stover
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Rigoberto Hernandez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
13
|
Jiao YL, Shen PQ, Wang SF, Chen J, Zhou XH, Ma GZ. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties. Curr Microbiol 2023; 80:292. [PMID: 37466752 DOI: 10.1007/s00284-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Arginase has shown promising potential in treating cancers by arginine deprivation therapy; however, low enzymatic activity and stability of arginase are impeding its development. This study was aimed to improve the enzymological properties of a marine bacterial arginase by carboxymethyl chitosan (CMCS) conjugation. An arginase producing marine bacterium Priestia megaterium strain P6 was isolated and identified. The novel arginase PMA from the strain was heterologously expressed, purified, and then conjugated to CMCS by ionic gelation with calcium chloride as the crosslinking agent. Enzymological properties of both PMA and CMCS-PMA conjugate were determined. The optimum temperature for PMA and CMCS-PMA at pH 7 were 60 °C and 55 °C, respectively. The optimum pH for PMA and CMCS-PMA at 37 °C were pH 10 and 9, respectively. CMCS-PMA showed higher thermostability than PMA over 55-70 °C and higher pH stability over pH 4-11 with the highest pH stability at pH 7. At 37 °C and pH of 7, i.e., around the human blood temperature and pH, CMCS-PMA was higher than the free PMA in enzymatic activity and stability by 24% and 21%, respectively. CMCS conjugation not only changed the optimum temperature, optimum pH, and enzymatic activity of PMA, but also improved its pH stability and temperature stability, and thus made it more favorable for medical application.
Collapse
Affiliation(s)
- Yu Liang Jiao
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China.
| | - Pin Quan Shen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Shu Fang Wang
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Jing Chen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Xiang Hong Zhou
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Gui Zhen Ma
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Che Hussian CHA, Leong WY. Thermostable enzyme research advances: a bibliometric analysis. J Genet Eng Biotechnol 2023; 21:37. [PMID: 36971917 PMCID: PMC10043094 DOI: 10.1186/s43141-023-00494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study's analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
Collapse
Affiliation(s)
| | - Wai Yie Leong
- INTI International University & Colleges, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
15
|
Diessner EM, Takahashi GR, Martin RW, Butts CT. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Biomolecules 2023; 13:328. [PMID: 36830697 PMCID: PMC9953012 DOI: 10.3390/biom13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.
Collapse
Affiliation(s)
| | - Gemma R. Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Yang L, Zhang X, Chen J, Zhang Y, Feng Z. Expanding the pH range of glutamate decarboxylase from L. pltarum LC84 by site-directed mutagenesis. Front Bioeng Biotechnol 2023; 11:1160818. [PMID: 37122870 PMCID: PMC10133459 DOI: 10.3389/fbioe.2023.1160818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Glutamate decarboxylase is a class Ⅱ amino acid decarboxylase dependent onpyridoxal-5'-phosphate (PLP), which catalyzes the decarboxylation of substrateL-glutamate (L-Glu) to synthesize γ-aminobutyric acid (GABA). The low activity ofglutamic acid decarboxylase (GAD) and its ability to catalyze only under acidicconditions limit its application in biosynthesis of GABA. Methods: Taking glutamic acid decarboxylase from Lactobacillus plantarum, which produces GABA, as the research object, the mutation site was determined by amino acid sequence analysis of GAD, the mutation was introduced by primers, and the mutant was constructed by whole plasmid PCR and expressed in Escherichia coli. Then, the enzymatic properties of the mutant were analyzed. Finally, the three-dimensional structure of the mutant was simulated to support the experimental results. Results and Discussion: In this case, mutants E313S and Q347H of glutamate decarboxylase from L. pltarum LC84 (LpGAD) were constructed by targeted mutagenesis. Compared with the wild-type, their enzyme activity increased by 62.4% and 12.0% at the optimum pH 4.8, respectively. In the range of pH 4.0-7.0, their enzyme activity was higher than that of the wild-type, and enzyme activity of mutant E313S was 5 times that of the wild-type at pH 6.2. Visualization software PyMOL analyzed the 3D structure of the mutant predicted by homologous modeling, and the results showed that mutant E313S may broadened the reaction pH of LpGAD through the influence of surface charge, while mutant Q347H may broadened the reaction pH of LpGAD through the stacking effect of aromatic rings. In a word, mutants E313S and Q347H were improved the enzyme activity and were broadened the reaction pH of the enzyme, which made it possible for it to be applied in food industry and laid the foundation for the industrial production of GABA.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science and Engineering, Yinbin, China
- Liquor Making Bio-Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yinbin, China
| | - Jing Chen
- Faculty of Quality Management and Inspection and Quarantine, Yibin University, Yibin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science and Engineering, Yinbin, China
- Liquor Making Bio-Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
- *Correspondence: Zhiping Feng,
| |
Collapse
|
17
|
Laube E, Meier-Credo J, Langer JD, Kühlbrandt W. Conformational changes in mitochondrial complex I of the thermophilic eukaryote Chaetomium thermophilum. SCIENCE ADVANCES 2022; 8:eadc9952. [PMID: 36427319 PMCID: PMC9699679 DOI: 10.1126/sciadv.adc9952] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 05/23/2023]
Abstract
Mitochondrial complex I is a redox-driven proton pump that generates proton-motive force across the inner mitochondrial membrane, powering oxidative phosphorylation and ATP synthesis in eukaryotes. We report the structure of complex I from the thermophilic fungus Chaetomium thermophilum, determined by cryoEM up to 2.4-Å resolution. We show that the complex undergoes a transition between two conformations, which we refer to as state 1 and state 2. The conformational switch is manifest in a twisting movement of the peripheral arm relative to the membrane arm, but most notably in substantial rearrangements of the Q-binding cavity and the E-channel, resulting in a continuous aqueous passage from the E-channel to subunit ND5 at the far end of the membrane arm. The conformational changes in the complex interior resemble those reported for mammalian complex I, suggesting a highly conserved, universal mechanism of coupling electron transport to proton pumping.
Collapse
Affiliation(s)
- Eike Laube
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Jakob Meier-Credo
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
- Max-Planck-Institute for Brain Research, Frankfurt 60438, Germany
| | - Julian D. Langer
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
- Max-Planck-Institute for Brain Research, Frankfurt 60438, Germany
| | | |
Collapse
|
18
|
A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. Int J Mol Sci 2022; 23:ijms231710116. [PMID: 36077513 PMCID: PMC9456548 DOI: 10.3390/ijms231710116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Thermophilic proteins have various practical applications in theoretical research and in industry. In recent years, the demand for thermophilic proteins on an industrial scale has been increasing; therefore, the engineering of thermophilic proteins has become a hot direction in the field of protein engineering. However, the exact mechanism of thermostability of proteins is not yet known, for engineering thermophilic proteins knowing the basis of thermostability is necessary. In order to understand the basis of the thermostability in proteins, we have made a statistical analysis of the sequences, secondary structures, hydrogen bonds, salt bridges, DHA (Donor-Hydrogen-Accepter) angles, and bond lengths of ten pairs of thermophilic proteins and their non-thermophilic orthologous. Our findings suggest that polar amino acids contribute to thermostability in proteins by forming hydrogen bonds and salt bridges which provide resistance against protein denaturation. Short bond length and a wider DHA angle provide greater bond stability in thermophilic proteins. Moreover, the increased frequency of aromatic amino acids in thermophilic proteins contributes to thermal stability by forming more aromatic interactions. Additionally, the coil, helix, and loop in the secondary structure also contribute to thermostability.
Collapse
|
19
|
Cui R, Che X, Li L, Sun-Waterhouse D, Wang J, Wang Y. Engineered lipase from Janibacter sp. with high thermal stability to efficiently produce long-medium-long triacylglycerols. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
21
|
Cheng M, Huang Z, Zhang W, Kim BG, Mu W. Thermostability engineering of an inulin fructotransferase for the biosynthesis of difructose anhydride I. Enzyme Microb Technol 2022; 160:110097. [PMID: 35835015 DOI: 10.1016/j.enzmictec.2022.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The thermostability of enzymes is an essential factor that performs a vital role during practical applications. Inulin fructotransferases can efficiently convert inulin into bio-functional difructose anhydrides (DFAs). The present study aimed to improve the thermostability of a previously reported inulin fructotransferase, SpIFTase, and apply it to the biosynthesis of DFA I. In silico rational design was used to predict mutation sites, based on sequential and structural information. Two triple-site mutants, Q69L/Q234L/K310G and E201I/Q234L/K310G, were characterized and exhibited enhanced thermostability with approximately 5 °C higher in melting temperature (Tm), respectively, and a 45-fold longer half-life (t1/2) at 70 °C, compared to that of SpIFTase. Molecular dynamic simulations and elaborate structural analysis suggested that the combinations of hydrophobic interaction, electrostatic potential distribution, and decreased flexibility via stabilization of loops and α-helix improved the thermostability of SpIFTase. Additionally, the promising mutants exhibited great potential to the industrial production of DFA I.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826 South Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, China.
| |
Collapse
|
22
|
Fang Y, Huang Z, Xu W, Wang C, Sun Y, Zhang W, Guang C, Mu W. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Hoarfrost A, Aptekmann A, Farfañuk G, Bromberg Y. Deep learning of a bacterial and archaeal universal language of life enables transfer learning and illuminates microbial dark matter. Nat Commun 2022; 13:2606. [PMID: 35545619 PMCID: PMC9095714 DOI: 10.1038/s41467-022-30070-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
The majority of microbial genomes have yet to be cultured, and most proteins identified in microbial genomes or environmental sequences cannot be functionally annotated. As a result, current computational approaches to describe microbial systems rely on incomplete reference databases that cannot adequately capture the functional diversity of the microbial tree of life, limiting our ability to model high-level features of biological sequences. Here we present LookingGlass, a deep learning model encoding contextually-aware, functionally and evolutionarily relevant representations of short DNA reads, that distinguishes reads of disparate function, homology, and environmental origin. We demonstrate the ability of LookingGlass to be fine-tuned via transfer learning to perform a range of diverse tasks: to identify novel oxidoreductases, to predict enzyme optimal temperature, and to recognize the reading frames of DNA sequence fragments. LookingGlass enables functionally relevant representations of otherwise unknown and unannotated sequences, shedding light on the microbial dark matter that dominates life on Earth. Computational methods to analyse microbial systems rely on reference databases which do not capture their full functional diversity. Here the authors develop a deep learning model and apply it using transfer learning, creating biologically useful models for multiple different tasks.
Collapse
Affiliation(s)
- A Hoarfrost
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08873, USA. .,NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| | - A Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08901, USA
| | - G Farfañuk
- Department of Biological Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Y Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
24
|
Liu Y, Bastiaan-Net S, Zhang Y, Hoppenbrouwers T, Xie Y, Wang Y, Wei X, Du G, Zhang H, Imam KMSU, Wichers H, Li Z. Linking the thermostability of FIP-nha (Nectria haematococca) to its structural properties. Int J Biol Macromol 2022; 213:555-564. [DOI: 10.1016/j.ijbiomac.2022.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
|
25
|
Li SF, Xu SY, Wang YJ, Zheng YG. Tailoring pullulanase PulAR from Anoxybacillus sp. AR-29 for enhanced catalytic performance by a structure-guided consensus approach. BIORESOUR BIOPROCESS 2022; 9:25. [PMID: 38647800 PMCID: PMC10992289 DOI: 10.1186/s40643-022-00516-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pullulanase is a well-known debranching enzyme that can specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides, however, it suffers from low stability and catalytic efficiency under industrial conditions. In the present study, four residues (A365, V401, H499, and T504) lining the catalytic pocket of Anoxybacillus sp. AR-29 pullulanase (PulAR) were selected for site-directed mutagenesis (SDM) by using a structure-guided consensus approach. Five beneficial mutants (PulAR-A365V, PulAR-V401C, PulAR-A365/V401C, PulAR-A365V/V401C/T504V, and PulAR-A365V/V401C/T504V/H499A) were created, which showed enhanced thermostability, pH stability, and catalytic efficiency. Among them, the quadruple mutant PulAR-A365V/V401C/T504V/H499A displayed 6.6- and 9.6-fold higher catalytic efficiency toward pullulan at 60 ℃, pH 6.0 and 5.0, respectively. In addition, its thermostabilities at 60 ℃ and 65 ℃ were improved by 2.6- and 3.1-fold, respectively, compared to those of the wild-type (WT). Meanwhile, its pH stabilities at pH 4.5 and 5.0 were 1.6- and 1.8-fold higher than those of WT, respectively. In summary, the catalytic performance of PulAR was significantly enhanced by a structure-guided consensus approach. The resultant quadruple mutant PulAR-A365V/V401C/T504V/H499A demonstrated potential applications in the starch industry.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
26
|
Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Comput Struct Biotechnol J 2022; 20:459-470. [PMID: 35070168 PMCID: PMC8761609 DOI: 10.1016/j.csbj.2021.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) has caused serious environmental concerns but could be degraded at high temperature. Previous studies show that cutinase from Thermobifida fusca KW3 (TfCut2) is capable of degrading and upcycling PET but is limited by its thermal stability. Nowadays, Popular protein stability modification methods rely mostly on the crystal structures, but ignore the fact that the actual conformation of protein is complex and constantly changing. To solve these problems, we developed a computational approach to design variants with enhanced protein thermal stability by mining Molecular Dynamics simulation trajectories using Machine Learning methods (MDL). The optimal classification accuracy and the optimal Pearson correlation coefficient of MDL model were 0.780 and 0.716, respectively. And we successfully designed variants with high ΔTm values using MDL method. The optimal variant S121P/D174S/D204P had the highest ΔTm value of 9.3 °C, and the PET degradation ratio increased by 46.42-fold at 70℃, compared with that of wild type TfCut2. These results deepen our understanding on the complex conformations of proteins and may enhance the plastic recycling and sustainability at glass transition temperature.
Collapse
|
27
|
Characterization of a Novel Thermostable Dye-Linked l-Lactate Dehydrogenase Complex and Its Application in Electrochemical Detection. Int J Mol Sci 2021; 22:ijms222413570. [PMID: 34948373 PMCID: PMC8704557 DOI: 10.3390/ijms222413570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Flavoenzyme dye-linked l-lactate dehydrogenase (Dye-LDH) is primarily involved in energy generation through electron transfer and exhibits potential utility in electrochemical devices. In this study, a gene encoding a Dye-LDH homolog was identified in a hyperthermophilic archaeon, Sulfurisphaera tokodaii. This gene was part of an operon that consisted of four genes that were tandemly arranged in the Sf. tokodaii genome in the following order: stk_16540, stk_16550 (dye-ldh homolog), stk_16560, and stk_16570. This gene cluster was expressed in an archaeal host, Sulfolobus acidocaldarius, and the produced enzyme was purified to homogeneity and characterized. The purified recombinant enzyme exhibited Dye-LDH activity and consisted of two different subunits (products of stk_16540 (α) and stk_16550 (β)), forming a heterohexameric structure (α3β3) with a molecular mass of approximately 253 kDa. Dye-LDH also exhibited excellent stability, retaining full activity upon incubation at 70 °C for 10 min and up to 80% activity after 30 min at 50 °C and pH 6.5–8.0. A quasi-direct electron transfer (DET)-type Dye-LDH was successfully developed by modification of the recombinant enzyme with an artificial redox mediator, phenazine ethosulfate, through amine groups on the enzyme’s surface. This study is the first report describing the development of a quasi-DET-type enzyme by using thermostable Dye-LDH.
Collapse
|
28
|
A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure. Sci Rep 2021; 11:19523. [PMID: 34593864 PMCID: PMC8484680 DOI: 10.1038/s41598-021-98588-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.
Collapse
|
29
|
Enhanced Thermostability of Pseudomonas nitroreducens Isoeugenol Monooxygenase by the Combinatorial Strategy of Surface Residue Replacement and Consensus Mutagenesis. Catalysts 2021. [DOI: 10.3390/catal11101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vanillin has many applications in industries. Isoeugenol monooxygenase (IEM) can catalyze the oxidation of isoeugenol to vanillin in the presence of oxygen under mild conditions. However, the low thermal stability of IEM limits its practical application in the biosynthesis of natural vanillin. Herein, two rational strategies were combined to improve the thermostability of IEM from Pseudomonas nitroreducens Jin1. Two variants (K83R and K95R) with better thermostability and one mutant (G398A) with higher activity were identified from twenty candidates based on the Surface Residue Replacement method. According to the Consensus Mutagenesis method, one mutant (I352R) with better thermostability and another mutant (L273F) with higher activity were also identified from nine candidates. After combinatorial mutation, a triple mutant K83R/K95R/L273F with the best thermostability and catalytic efficiency was generated. Compared with the wild-type IEM, the thermal inactivation half-lives (t1/2) of K83R/K95R/L273F at 25 °C, 30 °C, and 35 °C increased 2.9-fold, 11.9-fold, and 24.7-fold, respectively. Simultaneously, it also exhibited a 4.8-fold increase in kcat, leading to a 1.2-fold increase in catalytic efficiency (kcat/Km). When the whole cell of K83R/K95R/L273F was applied to the biotransformation of isoeugenol on preparative scale, the vanillin concentration reached 240.1 mM with space-time yield of 109.6 g/L/d, and vanillin was achieved in 77.6% isolated yield and >99% purity.
Collapse
|
30
|
Su WB, Zhu CY, Zhou HP, Gao J, Zhang YW. A single site mutation significantly improves the thermostability and activity of heparinase I from Bacteroides eggerthii. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1976757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jian Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- College of Petroleum and Chemical Engineering, Beibu Gulf University, People’s Republic of China
| |
Collapse
|
31
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
32
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Wu H, Chen Q, Zhang W, Mu W. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Crit Rev Food Sci Nutr 2021; 63:2057-2073. [PMID: 34445912 DOI: 10.1080/10408398.2021.1970508] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysts such as enzymes are environmentally friendly and have substrate specificity, which are preferred in the production of various industrial products. However, the strict reaction conditions in industry including high temperature, organic solvents, strong acids and bases and other harsh environments often destabilize enzymes, and thus substantially compromise their catalytic functions, and greatly restrict their applications in food, pharmaceutical, textile, bio-refining and feed industries. Therefore, developing industrial enzymes with high thermostability becomes very important in industry as thermozymes have more advantages under high temperature. Discovering new thermostable enzymes using genome sequencing, metagenomics and sample isolation from extreme environments, or performing molecular modification of the existing enzymes with poor thermostability using emerging protein engineering technology have become an effective means of obtaining thermozymes. Based on the thermozymes as biocatalytic chips in industry, this review systematically analyzes the ways to discover thermostable enzymes from extreme environment, clarifies various interaction forces that will affect thermal stability of enzymes, and proposes different strategies to improve enzymes' thermostability. Furthermore, latest development in the thermal stability modification of industrial enzymes through rational design strategies is comprehensively introduced from structure-activity relationship point of view. Challenges and future research perspectives are put forward as well.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
34
|
Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int J Biol Macromol 2021; 187:127-142. [PMID: 34298046 DOI: 10.1016/j.ijbiomac.2021.07.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.
Collapse
|
35
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
36
|
Abramov-Harpaz K, Miller Y. A zinc-dependent switching mechanism from an open to a new closed-state conformation of insulin-degrading enzyme. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The switching mechanism between an open-state conformation and a newly closed-state conformation of IDE is stabilized by electrostatic interactions between domain D1 and domain D3.
Collapse
Affiliation(s)
- Karina Abramov-Harpaz
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| | - Yifat Miller
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| |
Collapse
|
37
|
Contreras F, Nutschel C, Beust L, Davari MD, Gohlke H, Schwaneberg U. Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase. Comput Struct Biotechnol J 2020; 19:743-751. [PMID: 33552446 PMCID: PMC7822948 DOI: 10.1016/j.csbj.2020.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Cellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
Collapse
Affiliation(s)
- Francisca Contreras
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Laura Beust
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
38
|
Enzymatic characterization, molecular dynamics simulation, and application of a novel Bacillus licheniformis laccase. Int J Biol Macromol 2020; 167:1393-1405. [PMID: 33202275 DOI: 10.1016/j.ijbiomac.2020.11.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 02/01/2023]
Abstract
A new laccase gene from newly isolated Bacillus licheniformis TCCC 111219 was actively expressed in Escherichia coli. This recombinant laccase (rLAC) exhibited a high stability towards a wide pH range and high temperatures. 170% of the initial activity was detected at pH 10.0 after 10-d incubation, and 60% of the initial activity was even kept after 2-h incubation at 70 °C. It indicated that only single type of extreme environment, such as strong alkaline environment (300 K, pH 12) or high temperature (370 K, pH 7), did not show obvious impact on the structural stability of rLAC during molecular dynamics simulation process. But the four loop regions of rLAC where the active site is situated were seriously destroyed when strong alkaline and high temperature environment existed simultaneously (370 K, pH 12) because of the damage of hydrogen bonds and salt bridges. Moreover, this thermo- and alkaline-stable enzyme could efficiently decolorize the structurally differing azo, triphenylmethane, and anthraquinone dyes with appropriate mediator at pH 3.0, 7.0, and 9.0 at 60 °C. These rare characteristics suggested its high potential in industrial applications to decolorize textile dyeing effluent.
Collapse
|
39
|
Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chem 2020; 342:128270. [PMID: 33069526 DOI: 10.1016/j.foodchem.2020.128270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Glucose oxidase (Gox) is a biocatalyst that is widely applied in the food industry, as well as other biotechnological industries. However, the industrial application of Gox is hampered by its low thermostability and activity. Here, we aimed to improve the thermostability of GoxM4 from Aspergillus niger without reducing its activity due to the activity-stability trade-off. A simple and effective approach combining enzyme activity and structure stability was adopted to evaluate the thermostability of GoxM4 and its mutants. After four rounds of computer-aided rational design, the best mutant, GoxM8, was obtained. The melting temperature (Tm) of GoxM8 was increased by 9 °C compared with GoxM4. The catalytic efficiency of GoxM8 was similar to GoxM4, suggesting that the enzyme activity-stability trade-off was counteracted. To explore its mechanism, we performed molecular dynamics simulations of GoxM4 and its mutants. Our findings provided a typical example for researching the enzyme activity-stability trade-off.
Collapse
|
40
|
Zhong C, Wang L, Ning K. Pan-genome study of Thermococcales reveals extensive genetic diversity and genetic evidence of thermophilic adaption. Environ Microbiol 2020; 23:3599-3613. [PMID: 32939951 DOI: 10.1111/1462-2920.15234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
Thermococcales has a strong adaptability to extreme environments, which is of profound interest in explaining how complex life forms emerge on earth. However, their gene composition, thermal stability and evolution in hyperthermal environments are still little known. Here, we characterized the pan-genome architecture of 30 Thermococcales species to gain insight into their genetic properties, evolutionary patterns and specific metabolisms adapted to niches. We revealed an open pan-genome of Thermococcales comprising 6070 gene families that tend to increase with the availability of additional genomes. The genome contents of Thermococcales were flexible, with a series of genes experienced gene duplication, progressive divergence, or gene gain and loss events exhibiting distinct functional features. These archaea had concise types of heat shock proteins, such as HSP20, HSP60 and prefoldin, which were constrained by strong purifying selection that governed their conservative evolution. Furthermore, purifying selection forced genes involved in enzyme, motility, secretion system, defence system and chaperones to differ in functional constraints and their disparity in the rate of evolution may be related to adaptation to specific niche. These results deepened our understanding of genetic diversity and adaptation patterns of Thermococcales, and provided valuable research models for studying the metabolic traits of early life forms.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
41
|
Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Rahman RNZRA. Ion-Pair Interaction and Hydrogen Bonds as Main Features of Protein Thermostability in Mutated T1 Recombinant Lipase Originating from Geobacillus zalihae. Molecules 2020; 25:E3430. [PMID: 32731607 PMCID: PMC7435748 DOI: 10.3390/molecules25153430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023] Open
Abstract
A comparative structure analysis between space- and an Earth-grown T1 recombinant lipase from Geobacillus zalihae had shown changes in the formation of hydrogen bonds and ion-pair interactions. Using the space-grown T1 lipase validated structure having incorporated said interactions, the recombinant T1 lipase was re-engineered to determine the changes brought by these interactions to the structure and stability of lipase. To understand the effects of mutation on T1 recombinant lipase, five mutants were developed from the structure of space-grown T1 lipase and biochemically characterized. The results demonstrate an increase in melting temperature up to 77.4 °C and 76.0 °C in E226D and D43E, respectively. Moreover, the mutated lipases D43E and E226D had additional hydrogen bonds and ion-pair interactions in their structures due to the improvement of stability, as observed in a longer half-life and an increased melting temperature. The biophysical study revealed differences in β-Sheet percentage between less stable (T118N) and other mutants. As a conclusion, the comparative analysis of the tertiary structure and specific residues associated with ion-pair interactions and hydrogen bonds could be significant in revealing the thermostability of an enzyme with industrial importance.
Collapse
Affiliation(s)
- Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
42
|
Bi J, Chen S, Zhao X, Nie Y, Xu Y. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Appl Microbiol Biotechnol 2020; 104:7551-7562. [PMID: 32632476 DOI: 10.1007/s00253-020-10764-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Pullulanases are widely used in food, medicine, and other industries because they specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. In addition, high-temperature thermostable pullulanase has multiple advantages, including decreasing saccharification solution viscosity accompanied with enhanced mass transfer and reducing microbial contamination in starch hydrolysis. However, thermophilic pullulanase availability remains limited. Additionally, most do not meet starch-manufacturing requirements due to weak thermostability. Here, we developed a computation-aided strategy to engineer the thermophilic pullulanase from Bacillus thermoleovorans. First, three computational design predictors (FoldX, I-Mutant 3.0, and dDFIRE) were combined to predict stability changes introduced by mutations. After excluding conserved and catalytic sites, 17 mutants were identified. After further experimental verification, we confirmed six positive mutants. Among them, the G692M mutant had the highest thermostability improvement, with 3.8 °C increased Tm and 2.1-fold longer half-life than the wild type at 70 °C. We then characterized the mechanism underlying increased thermostability, such as rigidity enhancement, closer conformation, and strengthened motion correlation using root mean square fluctuation (RMSF), principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. KEY POINTS: • A computation-aided strategy was developed to engineer pullulanase thermostability. • Seventeen mutants were identified by combining three computational design predictors. • The G692M mutant was obtained with increased Tmand half-life at 70 °C.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Shuhui Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghan Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
43
|
Abstract
Darwin's theory of evolution emphasized that positive selection of functional proficiency provides the fitness that ultimately determines the structure of life, a view that has dominated biochemical thinking of enzymes as perfectly optimized for their specific functions. The 20th-century modern synthesis, structural biology, and the central dogma explained the machinery of evolution, and nearly neutral theory explained how selection competes with random fixation dynamics that produce molecular clocks essential e.g. for dating evolutionary histories. However, quantitative proteomics revealed that selection pressures not relating to optimal function play much larger roles than previously thought, acting perhaps most importantly via protein expression levels. This paper first summarizes recent progress in the 21st century toward recovering this universal selection pressure. Then, the paper argues that proteome cost minimization is the dominant, underlying 'non-function' selection pressure controlling most of the evolution of already functionally adapted living systems. A theory of proteome cost minimization is described and argued to have consequences for understanding evolutionary trade-offs, aging, cancer, and neurodegenerative protein-misfolding diseases.
Collapse
|
44
|
Akram F, Haq IU. Overexpression and characterization of TnCel12B, a hyperthermophilic GH12 endo-1,4-β-glucanase cloned from Thermotoga naphthophila RKU-10 T. Anal Biochem 2020; 599:113741. [PMID: 32339490 DOI: 10.1016/j.ab.2020.113741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
A putative cellulolytic gene (825 bp) from Thermotoga naphthophila RKU-10T was overexpressed as an active soluble endo-1,4-β-glucanase (TnCel12B), belongs to glycoside hydrolase family 12 (GH12), in a mesophilic expression host. Heterologous expression and engineered bacterial cell mass was improved through specific strategies (induction and cultivation). Hence, intracellular activity of TnCel12B was enhanced in ZYBM9 modified medium (pH 7.0) by 8.38 and 6.25 fold with lactose (200 mM) and IPTG (0.5 mM) induction, respectively; and 6.95 fold was increased in ZYP-5052 auto-inducing medium after 8 h incubation at 26 °C (200 rev min-1). Purified TnCel12B with a molecular weight of ~32 kDa, was optimally active at 90 °C and pH 6.0; and exhibited prodigious stability over a wide range of temperature (50-85 °C) and pH (5.0-9.0) for 8 h TnCel12B displayed great resistance towards different chemical modulators, though activity was improved by Mg2+, Zn2+, Pb2+ and Ca2+. Purified TnCel12B had affinity with various substrates but peak activity was observed toward barley β-glucan (1664 U mg-1) and carboxymethyl cellulose (736 U mg-1). The values of Km, Vmax, kcat, and kcatKm-1 were found to be 4.63 mg mL-1, 916 μmol mg-1min-1, 1326.7 s-1 and 286.54 mL mg-1 s-1, respectively using CMC substrate. All noteworthy features of TnCel12B make it an appropriate industrial candidate for bioethanol production and various other potential applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan.
| |
Collapse
|
45
|
Chen SC, Wu SP, Chang YY, Hwang TS, Lee TH, Hsu CH. Crystal Structure of α-Galactosidase from Thermus thermophilus: Insight into Hexamer Assembly and Substrate Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6161-6169. [PMID: 32390413 DOI: 10.1021/acs.jafc.0c00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
α-Galactosidase catalyzes the hydrolysis of a terminal α-galactose residue in galacto-oligosaccharides and has potential in various industrial applications and food processing. We determined the crystal structures of α-galactosidase from the thermophilic microorganism Thermus thermophilus (TtGalA) and its complexes with pNPGal and stachyose. The monomer folds into an N-terminal domain, a catalytic (β/α)8 barrel domain, and a C-terminal domain. The domain organization is similar to that of the other family of 36 α-galactosidases, but TtGalA presents a cagelike hexamer. Structural analysis shows that oligomerization may be a key factor for the thermal adaption of TtGalA. The structure of TtGalA complexed with stachyose reveals only the existence of one -1 subsite and one +1 subsite in the active site. Structural comparison of the stachyose-bound complexes of TtGalA and GsAgaA, a tetrameric enzyme with four subsites, suggests evolutionary divergence of substrate specificity within the GH36 family of α-galactosidases. To the best of our knowledge, the crystal structure of TtGalA is the first report of a quaternary structure as a hexameric assembly in the α-galactosidase family.
Collapse
Affiliation(s)
- Sheng-Chia Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Pei Wu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzann-Shun Hwang
- Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
46
|
Dumina MV, Eldarov MA, Zdanov DD, Sokolov NN. [L-asparaginases of extremophilic microorganisms in biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:105-123. [PMID: 32420891 DOI: 10.18097/pbmc20206602105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-asparaginase is extensively used in the treatment of acute lymphoblastic leukemia and several other lymphoproliferative diseases. In addition to its biomedical application, L-asparaginase is also of prospective use in food industry to reduce the formation of acrylamide, which is classified as probably neurotoxic and carcinogenic to human, and in biosensors for determination of L-asparagine level in medicine and food chemistry. The importance of L-asparaginases in different fields, disadvantages of commercial ferments, and the fact that they are widespread in nature stimuli the search for biobetter L-asparaginases from new producing microorganisms. In this regard, extremofile microorganisms exhibit unique physiological properties such as thermal stability, adaptability to extreme cold conditions, salt and pH tolerance and so provide one of the most valuable sources for novel L-asparaginases. The present review summarizes the recent results on studying the structural, functional, physicochemical and kinetic properties, stability of extremophilic L-asparaginases in comparison with their mesophilic homologues.
Collapse
Affiliation(s)
- M V Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - M A Eldarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - D D Zdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
47
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
48
|
Dokuzparmak C, Colak A, Kolcuoglu Y, Akatin MY, Ertunga NS, Tuncay FO. Development of Some Properties of a Thermophilic Recombinant Glucose Isomerase by Mutation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Zhang QF, Hu S, Zhao WR, Huang J, Mei JQ, Mei LH. Parallel Strategy Increases the Thermostability and Activity of Glutamate Decarboxylase. Molecules 2020; 25:molecules25030690. [PMID: 32041144 PMCID: PMC7037157 DOI: 10.3390/molecules25030690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 11/29/2022] Open
Abstract
Glutamate decarboxylase (GAD; EC 4.1.1.15) is a unique pyridoxal 5-phosphate (PLP)-dependent enzyme that specifically catalyzes the decarboxylation of L-glutamic acid to produce γ-aminobutyric acid (GABA), which exhibits several well-known physiological functions. However, glutamate decarboxylase from different sources has the common problem of poor thermostability that affects its application in industry. In this study, a parallel strategy comprising sequential analysis and free energy calculation was applied to identify critical amino acid sites affecting thermostability of GAD and select proper mutation contributing to improve structure rigidity of the enzyme. Two mutant enzymes, D203E and S325A, with higher thermostability were obtained, and their semi-inactivation temperature (T5015) values were 2.3 °C and 1.4 °C higher than the corresponding value of the wild-type enzyme (WT), respectively. Moreover, the mutant, S325A, exhibited enhanced activity compared to the wild type, with a 1.67-fold increase. The parallel strategy presented in this work proved to be an efficient tool for the reinforcement of protein thermostability.
Collapse
Affiliation(s)
- Qing-Fei Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Sheng Hu
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; (S.H.); (W.-R.Z.)
| | - Wei-Rui Zhao
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; (S.H.); (W.-R.Z.)
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Jia-Qi Mei
- Hangzhou Zhongmei Huadong Pharmaceutical Co. Ltd., Hangzhou 31011, China;
| | - Le-He Mei
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; (S.H.); (W.-R.Z.)
- Correspondence: ; Tel.: +86-571-879-531-61
| |
Collapse
|
50
|
Surface engineering of a Pantoea agglomerans-derived phenylalanine aminomutase for the improvement of (S)-β-phenylalanine biosynthesis. Biochem Biophys Res Commun 2019; 518:204-211. [DOI: 10.1016/j.bbrc.2019.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
|