1
|
Crittenden J, Raudabaugh D, Gunsch CK. Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site. Biodegradation 2025; 36:15. [PMID: 39853428 PMCID: PMC11761828 DOI: 10.1007/s10532-024-10106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/23/2024] [Indexed: 01/26/2025]
Abstract
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia. Our goal was to identify non-basidiomycete PAH degrading fungi. A total of 132 isolates were isolated, of which the overwhelming majority belonged to the phylum Ascomycota. Isolates were screened for their ability to produce known PAH degrading enzymes, particularly laccase and manganese-dependent peroxidases, and to transform model PAH compounds [fluoranthene, phenanthrene, pyrene and benzo(a)pyrene]. Fungal isolates were subsequently biostimulated using complex amendments including chicken feathers, wheat seeds, grasshoppers, and maple saw dust. Following biostimulation, laccase expression and PAH transformation were assessed. The grasshopper amendment was found to yield the highest laccase upregulation improvement with a maximum increase of 18.9% for the Paraphaeosphaeria isolate. The Septoriella and Trichoderma isolates exposed to the chitin-based grasshopper amendment demonstrated an increase in PAH removal. Septoriella sp. increased its transformation of fluoranthene (44%), pyrene (54.2%, and benzo(a)pyrene (48.7%), while there was a 58.3% increase in the removal of benzo(a)pyrene by Trichoderma sp. While the results from this study demonstrate the potential of indigenous fungi to be biostimulated for the removal of PAHs, additional investigation is needed to determine if the response to the chitin-based grasshopper mycostimulation can be translated from the bench to the field.
Collapse
Affiliation(s)
- Joshua Crittenden
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
| | - Daniel Raudabaugh
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA
| | - Claudia K Gunsch
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Miranda-Zaragoza B, Huerta-Miranda GA, García-García WI, Hernández-Álvarez E, Solano-Peralta A, Lee J, Strynadka N, Miranda-Hernández M, Rodríguez-Almazán C. Structure-Function Relationship of the β-Hairpin of Thermus thermophilus HB27 Laccase. Int J Mol Sci 2025; 26:735. [PMID: 39859450 PMCID: PMC11766367 DOI: 10.3390/ijms26020735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper. C1Tth-Lac showed a higher dependency on copper, increasing its activity by 1600-fold for syringaldazine (SGZ). All mutants presented a higher activity than Tth-Lac with phenolic substrates in the presence of copper. The position of the signal associated with CuT2 also changed, as shown in EPR spectra. Elucidation of the crystal structure of P1Tth-Lac mutant (PDB: 9CPM) showed that the partial deletion of the β-hairpin did not significantly affect the overall tertiary structure compared to the wild-type (PDB: 2xu9) nor the coordination of the four internally bound Cu atoms. Higher B-factors of the residues downstream of the deletion indicate increased flexibility (Q307, G308, P309, S310) that were otherwise more ordered in the Tth-Lac structure. Redox potential experiments on platinum electrodes have shown that all proteins have high redox potential, a finding that could have significant implications in the field of protein research.
Collapse
Affiliation(s)
- Beatriz Miranda-Zaragoza
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Guillermo A. Huerta-Miranda
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Wendy I. García-García
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Elizabeth Hernández-Álvarez
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico;
| | - Alejandro Solano-Peralta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico;
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.L.); (N.S.)
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.L.); (N.S.)
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, Temixco C.P. 62580, Mexico; (G.A.H.-M.); (W.I.G.-G.); (M.M.-H.)
| | - Claudia Rodríguez-Almazán
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| |
Collapse
|
3
|
Li K, Wang L, Guo Z, Wang Z, Wang Y, Zhang X, Xu J, Huang H, Li Y. A novel method for the rapid determination of phenolic compounds based on the nanozyme with laccase-like activity. ENVIRONMENTAL RESEARCH 2025; 269:120841. [PMID: 39814252 DOI: 10.1016/j.envres.2025.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CH3NA, Cu2-ANA nanozymes with laccase-activity. Compared with natural laccase and CuNA, Cu2-ANA exhibited higher catalytic activity with a similar Km of 0.05 mM and a higher Vmax of 6.08 μM min-1. Cu2-ANA also exhibited a remarkable level of stability and can be used under a wide range of conditions. In addition, Cu2-ANA catalyzed the oxidation of different common phenolic compounds (PCs) and mix PCs. A visually inspective portable sensor constructed by using paper test strips coated with Cu2-ANA employed the colorimetric method for evaluating the concentration of PCs. There is no need for complicated instrumentation, and the popularity and portability of smartphones make on-site testing more efficient and convenient.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zihan Guo
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zeyang Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yansong Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiyun Xu
- Jilin Lanjing Environmental Protection Technology Co., Ltd., Jilin, 132002, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
4
|
So KK, Alvarado FAH, Han GH, Kim JW, Kim TG, Kim DH. Heterologous Expression of Laccase1 from Cryphonectria parasitica in Saccharomyces cerevisiae. MYCOBIOLOGY 2025; 53:36-46. [PMID: 39895930 PMCID: PMC11780702 DOI: 10.1080/12298093.2024.2439646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Laccases are enzymes capable of oxidizing phenolic compounds and are important tools in different industrial processes. Heterologous expression of laccases is of great interest in biotechnological applications but achieving high expression levels is challenging. Three different laccases have been identified in the chestnut blight fungus Cryphonectria parasitica, among which a tannic acid-inducible laccase (laccase3) was successfully expressed using Saccharomyces cerevisiae. To obtain high and stable expression of fungal laccases, we cloned the gene encoding an extracellular laccase (Laccase1) of C. parasitica into a yeast episomal vector, used the resulting vectors to transform S. cerevisiae, and optimized the culture conditions of the selected transformants for Laccase1 production. We also tested the significance of the signal peptide of Laccase1 in the secretion of expressed Laccase1 and compared it with the widely used rice amylase signal peptide. Among the four constructs tested using a yeast episomal vector, full-length Laccase1 containing an endogenous signal peptide, showed the highest laccase activity. Interestingly, the stability of the recombinant vector expressing laccase was lower than that of the mock transformant, suggesting a detrimental effect of the Laccase1-expressing vector on host cells. Thus, we optimized the culture conditions to produce Laccase1 and the resulting optimum culture conditions identified through one-factor-at-a -time (OFAT) were 2% sucrose; 3% yeast nitrogen base without amino acid; pH 5.0; and 30 °C. The laccase activity was found to be 2.2 U/mL in optimal culture conditions, resulting in a 6.5-fold increase compared to the conventional culture medium.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | | | - Gui-Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Jeong-Won Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, Republic of Korea
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| |
Collapse
|
5
|
Zhou J, Hu F, Berhe M, Zhou R, Li D, Li H, Yang L, Zhou T, Zhang Y, Wang L, You J. Genome-wide identification, classification, and expression profiling of LAC gene family in sesame. BMC PLANT BIOLOGY 2024; 24:1254. [PMID: 39725882 DOI: 10.1186/s12870-024-05982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop. RESULTS In this study, 51 sesame LAC genes (SiLACs) were identified, which were unevenly distributed across different chromosomes. The phylogeny of Arabidopsis LAC (AtLACs) subdivided the SiLAC proteins into seven subgroups (Groups I-VII), of which Group VII contained only sesame LACs. Within the same subgroup, SiLACs exhibit comparable structures and conserved motifs. The promoter region of SiLACs harbors various cis-acting elements that are related to plant growth, phytohormones, and stress responses. Most SiLACs were expressed in the roots and stems, whereas some were expressed specifically in flowers or seeds. RNA-seq analysis revealed that 19 SiLACs exhibited down-regulation and three showed up-regulation in response to drought stress, while 15 SiLACs were down-regulated and four up-regulated under salt stress. Additionally, qRT-PCR analysis showcased that certain SiLAC expression was significantly upregulated as a result of osmotic and salt stress. SiLAC5 and SiLAC17 exhibited the most significant changes in expression under osmotic and salt stresses, indicating that they may serve as potential targets for improving sesame resistance to various stresses. CONCLUSIONS Our study offers a thorough comprehension of LAC gene structure, classification, evolution, and abiotic stress response in sesame plants. Furthermore, we provide indispensable genetic resources for sesame functional characterization to enhance its tolerance to various abiotic stresses.
Collapse
Affiliation(s)
- Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, P.O. Box 62, Tigray, Ethiopia
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
6
|
Li L, Xu X, Liu X, Ashori A, Xu F, Zhang X. Thermophilic lignin-based laccase nanozyme with CuN x center for the detection of epinephrine and degradation of phenolic pollutants. Int J Biol Macromol 2024; 283:137453. [PMID: 39547605 DOI: 10.1016/j.ijbiomac.2024.137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Natural laccases are a family of multi‑copper oxidases that can oxidize multiple phenol substrates and of great importance to contaminant remediation and biosensing. However, the construction of substitutes for the expensive and perishable laccase used in harsh conditions remains a great challenge. Here, we reported a novel strategy for the fabrication of copper-doped lignin-based laccase nanozymes (Cu-AL) through the coordination of aminated lignin and different copper sources. The Cu-AL prepared from CuSO4, possessed highest Cu content and Cu+ proportion, exhibited the best laccase-like activity to various phenols degradation. Strikingly, the thermophilic Cu-AL exhibited superior catalytic activity at 100 °C (3.23 times than that of 60 °C) and durability (> 50 % activity even after 160 days stored in water). Furthermore, a smartphone-based detection platform was successfully developed to achieve the rapid, convenient, and accurate detection of epinephrine concentration. In summary, this work provides a new sustainable and low-cost way to design robust laccase nanozymes from lignocellulose biomass, especially for expanding the applications of enzymatic reaction with high-temperature operation and/or long-term storage in environmental remediation and biosensing.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Xin Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Lee SY, Roh H, Gonzalez-Perez D, Mackey MR, Kim KY, Hoces D, McLaughlin CN, Adams SR, Nguyen K, Luginbuhl DJ, Luo L, Udeshi ND, Carr SA, Hernández-López RA, Ellisman MH, Alcalde M, Ting AY. Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620861. [PMID: 39554088 PMCID: PMC11565909 DOI: 10.1101/2024.10.29.620861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Enzymes that oxidize aromatic substrates have shown utility in a range of cell-based technologies including live cell proximity labeling (PL) and electron microscopy (EM), but are associated with drawbacks such as the need for toxic H 2 O 2 . Here, we explore laccases as a novel enzyme class for PL and EM in mammalian cells. LaccID, generated via 11 rounds of directed evolution from an ancestral fungal laccase, catalyzes the one-electron oxidation of diverse aromatic substrates using O 2 instead of toxic H 2 O 2 , and exhibits activity selective to the surface plasma membrane of both living and fixed cells. We show that LaccID can be used with mass spectrometry-based proteomics to map the changing surface composition of T cells that engage with tumor cells via antigen-specific T cell receptors. In addition, we use LaccID as a genetically-encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
Collapse
|
8
|
Yang T, Li Y, Liu G, Tong J, Zhang P, Feng B, Tian K, Liu X, Qing T. Nucleobase-modulated copper nanomaterials with laccase-like activity for high-performance degradation and detection of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135292. [PMID: 39059292 DOI: 10.1016/j.jhazmat.2024.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Laccases are the most commonly used agents for the treatment of phenolic pollutants. To address the instability and high cost of natural laccases, we investigated nucleobase-modulated copper nanomaterial with laccase-like activity. Various nucleobases, including adenine, guanine, cytosine, and thymine, were investigated as templates for Cu2+ reduction and copper nanomaterials formation due to their coordination capacity. By comparing structure and catalytic activity, the cytosine-mediated copper nanomaterial (C-Cu) had the best laccase-like activity and other nucleobase-templated copper nanomaterials exhibited low catalytic activity under the same conditions. The mechanism of nucleobase regulation of the catalytic activity of copper nanomaterials was further analyzed using X-ray photoelectron spectroscopy and density functional theory. The possible catalytic mechanisms of C-Cu, including substrate adsorption, substrate oxidation, oxygen binding, and oxygen reduction, were proposed. Remarkably, nucleobase-modulated copper nanozymes showed high stability and catalytic oxidation performance at various pH values, temperatures, long-term storage, and high salinity. In combination with electrochemical techniques, a portable electrochemical sensor for measuring phenolic pollutants was developed. This novel sensor exhibited a good linear response to catechol (10-1000 μM) with a limit of detection of 1.8 μM and excellent selectivity and anti-interference ability. This study provides not only a new strategy for the regulation of the laccase-like activity of copper nanomaterials but also a novel tool for the effective removal and low-cost detection of phenolic pollutants.
Collapse
Affiliation(s)
- Tao Yang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yuanyuan Li
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Gonghao Liu
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Jiajun Tong
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Ke Tian
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Taiping Qing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
9
|
Wan X, Shahrear S, Chew SW, Vilaplana F, Mäkelä MR. Discovery of alkaline laccases from basidiomycete fungi through machine learning-based approach. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:120. [PMID: 39261970 PMCID: PMC11391777 DOI: 10.1186/s13068-024-02566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Laccases can oxidize a broad spectrum of substrates, offering promising applications in various sectors, such as bioremediation, biomass fractionation in future biorefineries, and synthesis of biochemicals and biopolymers. However, laccase discovery and optimization with a desirable pH optimum remains a challenge due to the labor-intensive and time-consuming nature of the traditional laboratory methods. RESULTS This study presents a machine learning (ML)-integrated approach for predicting pH optima of basidiomycete fungal laccases, utilizing a small, curated dataset against a vast metagenomic data. Comparative computational analyses unveiled the structural and pH-dependent solubility differences between acidic and neutral-alkaline laccases, helping us understand the molecular bases of enzyme pH optimum. The pH profiling of the two ML-predicted alkaline laccase candidates from the basidiomycete fungus Lepista nuda further validated our computational approach, showing the accuracy of this comprehensive method. CONCLUSIONS This study uncovers the efficacy of ML in the prediction of enzyme pH optimum from minimal datasets, marking a significant step towards harnessing computational tools for systematic screening of enzymes for biotechnology applications.
Collapse
Affiliation(s)
- Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Sazzad Shahrear
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland
| | - Shea Wen Chew
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullbacken 21, 11421, Stockholm, Sweden
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland.
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
10
|
Hou Y, Zhao L, Yue C, Yang J, Zheng Y, Peng W, Lei L. Enhancing catalytic efficiency of Bacillus subtilis laccase BsCotA through active site pocket design. Appl Microbiol Biotechnol 2024; 108:460. [PMID: 39235610 PMCID: PMC11377520 DOI: 10.1007/s00253-024-13291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BsCotA laccase is a promising candidate for industrial application due to its excellent thermal stability. In this research, our objective was to enhance the catalytic efficiency of BsCotA by modifying the active site pocket. We utilized a strategy combining the diversity design of the active site pocket with molecular docking screening, which resulted in selecting five variants for characterization. All five variants proved functional, with four demonstrating improved turnover rates. The most effective variants exhibited a remarkable 7.7-fold increase in catalytic efficiency, evolved from 1.54 × 105 M-1 s-1 to 1.18 × 106 M-1 s-1, without any stability loss. To investigate the underlying molecular mechanisms, we conducted a comprehensive structural analysis of our variants. The analysis suggested that substituting Leu386 with aromatic residues could enhance BsCotA's ability to accommodate the 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonate (ABTS) substrate. However, the inclusion of charged residues, G323D and G417H, into the active site pocket reduced kcat. Ultimately, our research contributes to a deeper understanding of the role played by residues in the laccases' active site pocket, while successfully demonstrating a method to lift the catalytic efficiency of BsCotA. KEY POINTS: • Active site pocket design that enhanced BsCotA laccase efficiency • 7.7-fold improved in catalytic rate • All tested variants retain thermal stability.
Collapse
Affiliation(s)
- Yiqia Hou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Lijun Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Chen Yue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yanli Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
11
|
Orlando C, Rizzo IC, Arrigoni F, Zampolli J, Mangiagalli M, Di Gennaro P, Lotti M, De Gioia L, Marino T, Greco C, Bertini L. Mechanism of non-phenolic substrate oxidation by the fungal laccase Type 1 copper site from Trametes versicolor: the case of benzo[ a]pyrene and anthracene. Dalton Trans 2024; 53:12152-12161. [PMID: 38989958 DOI: 10.1039/d4dt01377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Laccases (EC 1.10.3.2) are multicopper oxidases with the capability to oxidize diverse phenolic and non-phenolic substrates. While the molecular mechanism of their activity towards phenolic substrates is well-established, their reactivity towards non-phenolic substrates, such as polycyclic aromatic hydrocarbons (PAHs), remains unclear. To elucidate the oxidation mechanism of PAHs, particularly the activation mechanism of the sp2 aromatic C-H bond, we conducted a density functional theory investigation on the oxidation of two PAHs (anthracene and benzo[a]pyrene) using an extensive model of the T1 copper catalytic site of the fungal laccase from Trametes versicolor.
Collapse
Affiliation(s)
- Carla Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Isabella Cecilia Rizzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
12
|
Tu Z, Geng A, Xiang Y, Zayas-Garriga A, Guo H, Zhu D, Xie R, Sun J. Lignin Degradation by Klebsiella aerogenes TL3 under Anaerobic Conditions. Molecules 2024; 29:2177. [PMID: 38792038 PMCID: PMC11124209 DOI: 10.3390/molecules29102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Lignin, the largest non-carbohydrate component of lignocellulosic biomass, is also a recalcitrant component of the plant cell wall. While the aerobic degradation mechanism of lignin has been well-documented, the anaerobic degradation mechanism is still largely elusive. In this work, a versatile facultative anaerobic lignin-degrading bacterium, Klebsiella aerogenes TL3, was isolated from a termite gut, and was found to metabolize a variety of carbon sources and produce a single kind or multiple kinds of acids. The percent degradation of alkali lignin reached 14.8% under anaerobic conditions, and could reach 17.4% in the presence of glucose within 72 h. Based on the results of infrared spectroscopy and 2D nuclear magnetic resonance analysis, it can be inferred that the anaerobic degradation of lignin may undergo the cleavage of the C-O bond (β-O-4), as well as the C-C bond (β-5 and β-β), and involve the oxidation of the side chain, demethylation, and the destruction of the aromatic ring skeleton. Although the anaerobic degradation of lignin by TL3 was slightly weaker than that under aerobic conditions, it could be further enhanced by adding glucose as an electron donor. These results may shed new light on the mechanisms of anaerobic lignin degradation.
Collapse
Affiliation(s)
- Zhuowei Tu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Alei Geng
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
- Changzhou Engineering and Technology Institute, Jiangsu University, Changzhou 214153, China
| | - Yuhua Xiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Anaiza Zayas-Garriga
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Hao Guo
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.T.); (Y.X.); (A.Z.-G.); (H.G.); (D.Z.); (R.X.)
| |
Collapse
|
13
|
Zhang K, Li J, Wang Z, Xie B, Xiong Z, Li H, Ahmed M, Fang F, Li J, Li X. Cloning, expression and application of a novel laccase derived from water buffalo ruminal lignin-degrading bacteria. Int J Biol Macromol 2024; 266:131109. [PMID: 38531520 DOI: 10.1016/j.ijbiomac.2024.131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Water buffalo is the only mammal found to degrade lignin so far, and laccase plays an indispensable role in the degradation of lignin. In this study, multiple laccase genes were amplified based on the water buffalo rumen derived lignin-degrading bacteria Bacillus cereus and Ochrobactrum pseudintermedium. Subsequently, the corresponding recombinant plasmids were transformed into E. coli expression system BL21 (DE3) for induced expression by Isopropyl-β-D-thiogalactopyranoside (IPTG). After preliminary screening, protein purification and enzyme activity assays, Lac3833 with soluble expression and high enzyme activity was selected to test its characteristics, especially the ability of lignin degradation. The results showed that the optimum reaction temperature of Lac3833 was 40 °C for different substrates. The relative activity of Lac3833 reached the highest at pH 4.5 and pH 5.5 when the substrates were ABTS or 2,6-DMP and guaiacol, respectively. Additionally, Lac3833 could maintain high enzyme activity in different temperatures, pH and solutions containing Na+, K+, Mg2+, Ca2+ and Mn2+. Importantly, compared to negative treatment, recombinant laccase Lac3833 treatment showed that it had a significant function in degrading lignin. In conclusion, this is a pioneering study to produce recombinant laccase with lignin-degrading ability by bacteria from water buffalo rumen, which will provide new insights for the exploitation of more lignin-degrading enzymes.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingfa Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bohan Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zixiang Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mehboob Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China.
| |
Collapse
|
14
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
15
|
Qi X, Niu Z, Xiao S, Waigi MG, Lin H, Sun K. Novel insights into the mechanism of laccase-driven rhizosphere humification for alleviating wheat 17β-estradiol contamination. ENVIRONMENT INTERNATIONAL 2024; 185:108576. [PMID: 38490070 DOI: 10.1016/j.envint.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17β-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 μM exposures by LDRH increased from 0.03 and 0.02 h-1 to 0.36 and 0.09 h-1, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.
Collapse
Affiliation(s)
- Xuemin Qi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Davoodi-Rad K, Shokrollahi A, Shahdost-Fard F, Azadkish K, Madani-Nejad E. A smartphone-based colorimetric assay using Cu-tannic acid nanosheets (Cu-TA NShs) as a laccase-mimicking nanozyme for visual detection of quercetin in vegetables. Mikrochim Acta 2024; 191:168. [PMID: 38418635 DOI: 10.1007/s00604-024-06238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The interaction of Cu-tannic acid nanosheets (Cu-TA NShs) as nanozyme in a surfactant solution of CTAB under relatively acidic conditions is shown to exhibit a catalytic effect on quercetin (Qur). This catalytic property of Cu-TA NShs, which mimics laccase enzyme with many advantages, has been applied to developing a selective colorimetric sensor for the determination of trace amounts of Qur in vegetable samples. This strategy presents a desirable linear relationship between the absorbance signal intensity and the concentrations of Qur from 0.350 to 32.09 µM with a detection limit (LOD) of 0.064 µM (S/N = 3). The feasibility of the proposed portable colorimetric sensor for in situ analysis of the real samples has been validated with the high-performance liquid chromatography (HPLC) method as reference method, and two-tailed test (t test) statistical analysis certifies good agreement between the results. This enzyme-free and sensitive naked-eye sensor with the smartphone-based color map is promising to provide technical support for the rapid and visual detection of Qur in vegetables.
Collapse
Affiliation(s)
- Kowsar Davoodi-Rad
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| | | | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Kamal Azadkish
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| | - Elham Madani-Nejad
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| |
Collapse
|
17
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
18
|
Zouari-Mechichi H, Benali J, Alessa AH, Hadrich B, Mechichi T. Efficient Decolorization of the Poly-Azo Dye Sirius Grey by Coriolopsis gallica Laccase-Mediator System: Process Optimization and Toxicity Assessment. Molecules 2024; 29:477. [PMID: 38257390 PMCID: PMC10819905 DOI: 10.3390/molecules29020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| |
Collapse
|
19
|
Fernández-Sandoval MT, García A, Teymennet-Ramírez KV, Arenas-Olivares DY, Martínez-Morales F, Trejo-Hernández MR. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals. Biotechnol Prog 2024; 40:e3406. [PMID: 37964692 DOI: 10.1002/btpr.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.
Collapse
Affiliation(s)
- M T Fernández-Sandoval
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - A García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - K V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - D Y Arenas-Olivares
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - F Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - M R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
20
|
Albulaihed Y, Adnan M, Jamal A, Snoussi M, Patel K, Patel M. Optimization of laccase from Stenotrophomonas maltophilia E1 by submerge fermentation using coconut husk with its detoxification and biodecolorization ability of synthetic dyes. BIORESOUR BIOPROCESS 2023; 10:80. [PMID: 38647840 PMCID: PMC10991366 DOI: 10.1186/s40643-023-00703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Enzymatic degradation of synthetic dyes holds an immense promise for addressing the environmental concerns associated with the textile and dye industries. This study aimed to isolate bacteria capable of producing laccase enzymes from an anthropogenic environment. Subsequently, viability of utilizing cost-effective agricultural residues as substrates for laccase production was assessed. Response Surface Methodology (RSM) and the One Variable at a Time (OVAT) approach was pursued for the optimization of laccase production, followed by pH and temperature stability, dye degradation and decolorization experiments, toxicological studies on the degraded dye metabolites. In results, laccase-producing bacterial strain was identified as Stenotrophomonas maltophilia strain E1 (S. maltophilia). Among variety of substrates, coconut husk exhibited optimal efficacy. In a statistical optimization study, it was found that S. maltophilia was capable of producing laccase 51.38 IU/mL, i.e., three times higher than the amount of laccase produced by unoptimized medium (16.7 IU/mL), and the enzyme activity was found to be steady at an acidic pH, and a mesophilic temperature range. The laccase obtained from S. maltophilia E1 demonstrated proficient dye decolorization capabilities, achieving a notable 92.1% reduction in Malachite green dye coloration at a concentration of 500 ppm. Gas chromatography-mass spectrometry (GC-MS) analysis of the decolorized derivatives of Malachite green revealed a conversion into a distinct compounds. Moreover, after undergoing laccase treatment, Malachite green exhibited decreased phytotoxic effects on Oryza sativa, pointing to enzymatic detoxification. Collectively, insights gained from the present study will contribute to the development of efficient enzymatic approaches for addressing the environmental pollution caused by synthetic dyes.
Collapse
Affiliation(s)
- Yazeed Albulaihed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Kartik Patel
- Biotech Research and Development Lab, Witmans Industries Private Limited, Daman, Bhimpore, 396210, India
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
| |
Collapse
|
21
|
Renfeld ZV, Chernykh AM, Baskunov BP, Gaidina AS, Myasoedova NM, Egorova AD, Moiseeva OV, Gorina SY, Kolomytseva MP. Unusual Oligomeric Laccase-like Oxidases from Ascomycete Curvularia geniculata VKM F-3561 Polymerizing Phenylpropanoids and Phenolic Compounds under Neutral Environmental Conditions. Microorganisms 2023; 11:2698. [PMID: 38004710 PMCID: PMC10673308 DOI: 10.3390/microorganisms11112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The unique oligomeric alkaliphilic laccase-like oxidases of the ascomycete C. geniculata VKM F-3561 (with molecular masses about 1035 and 870 kDa) were purified and characterized for the first time. The ability of the enzymes to oxidize phenylpropanoids and phenolic compounds under neutral environmental conditions with the formation of previously unknown di-, tri-, and tetrameric products of transformation was shown. The possibility to obtain industrially valuable compounds (dihydroxybenzyl alcohol and hydroxytyrosol) from caffeic acid using laccase-like oxidases of C. geniculata VKM F-3561 has been shown. Complete nucleotide sequence of the laccase gene, which is expressed at the peak of alkaliphilic laccase activity of the fungus, and its promoter region were determined. Based on the phylogenetic analysis of the nucleotide sequence, the nearest relationship of the isolated laccase gene with similar genes of fungi of the genera Alternaria, Bipolaris, and Cochliobolus was shown. Homologous model of the laccase structure was predicted and a proton channel was found, which was presumably responsible for the accumulation and transport of protons to T2/T3-copper center in the alkaliphilic laccase molecule and providing the functional activity of the enzyme in the neutral alkaline environment conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marina P. Kolomytseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki 5, 142290 Pushchino, Russia; (Z.V.R.); (A.M.C.); (B.P.B.); (A.D.E.); (O.V.M.); (S.Y.G.)
| |
Collapse
|
22
|
Van Wieren A, Colen P, Majumdar S. A project-oriented biochemistry laboratory for protein engineering and structure-function using small laccase enzyme from Streptomyces coelicolor. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:708-718. [PMID: 37597129 DOI: 10.1002/bmb.21778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
An understanding of structure-function relationships in proteins is essential for modern biochemical studies. The integration of common freely accessible bioinformatics tools available online with the knowledge of protein-engineering tools provide a fundamental understanding of the application of protein structure-function for biochemical research. In order for students to apply their prior knowledge of recombinant protein technology into the understanding of protein structure-function relationships, we developed a semester-long project-oriented biochemistry laboratory experience that is the second laboratory course of a series. For easier integration of knowledge and application, we organized this course into four sequential modules: protein structure visualization/modification, mutagenesis target identification, site-directed mutagenesis, and mutant protein expression, purification, and characterization. These tasks were performed on the protein small laccase (SLAC) that was cloned and characterized by students in the previous semester during the first biochemistry laboratory course of the series. This goal-oriented project-based approach helped students apply their prior knowledge to newly introduced techniques to understand protein structure-function relationships in this research-like laboratory setting. A student assessment before and after the course demonstrated an overall increase in learning and enthusiasm for this topic.
Collapse
Affiliation(s)
- Arie Van Wieren
- Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Philip Colen
- Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Sudipta Majumdar
- Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| |
Collapse
|
23
|
Bobylev EO, Passerini L, de Zwart FJ, Poole DA, Mathew S, Huber M, de Bruin B, Reek JNH. Pd 12M nL 24 (for n = 6, 8, 12) nanospheres by post-assembly modification of Pd 12L 24 spheres. Chem Sci 2023; 14:11840-11849. [PMID: 37920352 PMCID: PMC10619623 DOI: 10.1039/d3sc03745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
In this contribution, we describe a post-assembly modification approach to selectively coordinate transition metals in Pd12L24 cuboctahedra. The herein reported approach involves the preparation of Pd12L24 nanospheres with protonated nitrogen donor ligands that are covalently linked at the interior. The so obtained Pd12(LH+)24 nanospheres are shown to be suitable for coordinative post-modification after deprotection by deprotonation. Selective formation of tetra-coordinated MB in Pd12MB6L24, tri-coordinated MB in Pd12MB8L24 nanospheres and two-coordinated MB in Pd12MB12L24 nanospheres is achieved as a result of different nitrogen donor ligands. A combination of pulsed EPR spectroscopy (DEER) to measure Cu-Cu distances in the different spheres, NMR studies and computational investigations, support the presence of the complexes at precise locations of the Pd12MB6L24 nanosphere. The general post-assembly modification methodology can be extended using other transition metal precursors or supramolecular systems and can guide precise formation and investigation of novel transition metal-complex containing nanospheres with well-defined composition.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Leonardo Passerini
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Felix J de Zwart
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
24
|
Chai TQ, Chen GY, Chen LX, Wang JL, Zhang CY, Yang FQ. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Anal Chim Acta 2023; 1279:341771. [PMID: 37827670 DOI: 10.1016/j.aca.2023.341771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 μM min-1, 6.70 μM min-1, and 2.24 μM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 μM (R2 = 0.9951), 5.0-100.0 μM (R2 = 0.9970), and 5.0-200.0 μM (R2 = 0.9924) with the limits of quantitation of 20.0 μM, 5.0 μM, and 5.0 μM, respectively. SIGNIFICANCE In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.
Collapse
Affiliation(s)
- Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
25
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
26
|
Dolz M, Monterrey DT, Beltrán-Nogal A, Menés-Rubio A, Keser M, González-Pérez D, de Santos PG, Viña-González J, Alcalde M. The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution. Methods Enzymol 2023; 693:73-109. [PMID: 37977739 DOI: 10.1016/bs.mie.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) are arising as versatile biocatalysts for C-H oxyfunctionalization reactions. In recent years, several directed evolution studies have been conducted to design improved UPO variants. An essential part of this protein engineering strategy is the design of reliable colorimetric high-throughput screening (HTS) assays for mutant library exploration. Here, we present a palette of 12 colorimetric HTS assays along with their step-by-step protocols, which have been validated for directed UPO evolution campaigns. This array of colorimetric assays will pave the way for the discovery and design of new UPO variants.
Collapse
Affiliation(s)
- Mikel Dolz
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Dianelis T Monterrey
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Alejandro Beltrán-Nogal
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Andrea Menés-Rubio
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Merve Keser
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - David González-Pérez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | | | - Javier Viña-González
- EvoEnzyme S.L., C/ Faraday 7. Parque Científico de Madrid, Cantoblanco, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain.
| |
Collapse
|
27
|
Jin J, Arciszewski J, Auclair K, Jia Z. Enzymatic polyethylene biorecycling: Confronting challenges and shaping the future. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132449. [PMID: 37690195 DOI: 10.1016/j.jhazmat.2023.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Polyethylene (PE) is a widely used plastic known for its resistance to biodegradation, posing a significant environmental challenge. Recent advances have shed light on microorganisms and insects capable of breaking down PE and identified potential PE-degrading enzymes (PEases), hinting at the possibility of PE biorecycling. Research on enzymatic PE degradation is still in its early stages, especially compared to the progress made with polyethylene terephthalate (PET). While PET hydrolases have been extensively studied and engineered for improved performance, even the products of PEases remain mostly undefined. This Perspective analyzes the current state of enzymatic PE degradation research, highlighting obstacles in the search for bona fide PEases and suggesting areas for future exploration. A critical challenge impeding progress in this field stems from the inert nature of the C-C and C-H bonds of PE. Furthermore, breaking down PE into small molecules using only one monofunctional enzyme is theoretically impossible. Overcoming these obstacles requires identifying enzymatic pathways, which can be facilitated using emerging technologies like omics, structure-based design, and computer-assisted engineering of enzymes. Understanding the mechanisms underlying PE enzymatic biodegradation is crucial for research progress and for identifying potential solutions to the global plastic pollution crisis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada.
| |
Collapse
|
28
|
Ali M, Bhardwaj P, Ishqi HM, Shahid M, Islam A. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Molecules 2023; 28:6209. [PMID: 37687038 PMCID: PMC10488915 DOI: 10.3390/molecules28176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Collapse
Affiliation(s)
- Misha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| |
Collapse
|
29
|
Kolyadenko I, Tishchenko S, Gabdulkhakov A. Structural Insight into the Amino Acid Environment of the Two-Domain Laccase's Trinuclear Copper Cluster. Int J Mol Sci 2023; 24:11909. [PMID: 37569288 PMCID: PMC10419308 DOI: 10.3390/ijms241511909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Laccases are industrially relevant enzymes. However, their range of applications is limited by their functioning and stability. Most of the currently known laccases function in acidic conditions at temperatures below 60 °C, but two-domain laccases (2D) oxidize some substrates in alkaline conditions and above 70 °C. In this study, we aim to establish the structural factors affecting the alkaline activity of the 2D laccase from Streptomyces griseoflavus (SgfSL). The range of methods used allowed us to show that the alkaline activity of SgfSL is influenced by the polar residues located close to the trinuclear center (TNC). Structural and functional studies of the SgfSL mutants Met199Ala/Asp268Asn and Met199Gly/Asp268Asn revealed that the substitution Asp268Asn (11 Å from the TNC) affects the orientation of the Asn261 (the second coordination sphere of the TNC), resulting in hydrogen-bond-network reorganization, which leads to a change in the SgfSL-activity pH profile. The combination of the Met199Gly/Arg240His and Asp268Asn substitutions increased the efficiency (kcat/KM) of the 2,6-DMP oxidation by 34-fold compared with the SgfSL. Our results extend the knowledge about the structure and functioning of 2D laccases' TNC active sites and open up new possibilities for the directed engineering of laccases.
Collapse
Affiliation(s)
- Ilya Kolyadenko
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (S.T.); (A.G.)
| | | | | |
Collapse
|
30
|
Kumar D, Bhardwaj R, Jassal S, Goyal T, Khullar A, Gupta N. Application of enzymes for an eco-friendly approach to textile processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71838-71848. [PMID: 34651264 DOI: 10.1007/s11356-021-16764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Textile industry is one of the oldest industries existing from several centuries. Major concern of the industry is to design, produce, and distribute yarn, cloth, and clothing. Diverse physical and chemical operations are required in order to achieve this. Environmental concerns related to textile industry have attained attention all around the world as it is generating large amounts of effluents having various toxic agents and chemicals. Enzymes have been suggested as the best possible alternative to replace or reduce these hazardous and toxic chemicals. Enzymes like amylase, cellulase, catalase, protease, pectinase, laccase, and lipase have widely been used in textile manufacturing processes. Use of enzymatic approach is very promising as they are eco-friendly, produce high-quality products, and lead to the reduction of energy, water, and time. This review highlights the significance of different enzymes employed in the textile industry at various stages along with the conventional textile processing.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Microbiology, DAV University, Jalandhar, Punjab, India.
| | - Raveena Bhardwaj
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Tanya Goyal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Aastha Khullar
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India.
| |
Collapse
|
31
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
32
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
33
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Yagoub AEA, Fan Z, Zhou C. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. BIORESOUR BIOPROCESS 2023; 10:21. [PMID: 38647951 PMCID: PMC10992038 DOI: 10.1186/s40643-023-00640-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 04/25/2024] Open
Abstract
Lignin has enormous potential as a renewable feedstock for depolymerizing to numerous high-value chemicals. However, lignin depolymerization is challenging owing to its recalcitrant, heterogenous, and limited water-soluble nature. From the standpoint of environmental friendliness and sustainability, enzymatic depolymerization of lignin is of great significance. Notably, laccases play an essential role in the enzymatic depolymerization of lignin and are considered the ultimate green catalysts. Deep eutectic solvent (DES), an efficient media in biocatalysis, are increasingly recognized as the newest and utmost green solvent that highly dissolves lignin. This review centers on a lignin depolymerization strategy by harnessing the good lignin fractionating capability of DES and the high substrate and product selectivity of laccase. Recent progress and insights into the laccase-DES interactions, protein engineering strategies for improving DES compatibility with laccase, and controlling the product selectivity of lignin degradation by laccase or in DES systems are extensively provided. Lastly, the challenges and prospects of the alliance between DES and laccase for lignin depolymerization are discussed. The collaboration of laccase and DES provides a great opportunity to develop an enzymatic route for lignin depolymerization.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, 520001, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | - Zhiliang Fan
- Biological and Agricultural Engineering Department, University of California, Davis, 95616, USA
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
34
|
Davoodi-Rad K, Shokrollahi A, Shahdost-Fard F, Azadkish K. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. BIOSENSORS 2023; 13:374. [PMID: 36979586 PMCID: PMC10046739 DOI: 10.3390/bios13030374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Inspired by laccase activity, herein, Cu-guanosine nanorods (Cu-Guo NRs) have been synthesized for the first time through a simple procedure. The activity of the Cu-Guo NR as the laccase mimicking nanozyme has been examined in the colorimetric sensing of rutin (Rtn) by a novel and simple spectrophotometric method. The distinct changes in the absorbance signal intensity of Rtn and a distinguished red shift under the optimum condition based on pH and ionic strength values confirmed the formation of the oxidized form of Rtn (o-quinone) via laccase-like nanozyme activity of Cu-Guo NRs. A vivid and concentration-dependent color variation from green to dark yellow led to the visual detection of Rtn in a broad concentration range from 770 nM to 54.46 µM with a limit of detection (LOD) of 114 nM. The proposed methodology was successfully applied for the fast tracing of Rtn in the presence of certain common interfering species and various complex samples such as propolis dry extract, human biofluids, and dietary supplement tablets, with satisfactory precision. The sensitivity and selectivity of the developed sensor, which are bonuses in addition to rapid, on-site, cost-effective, and naked-eye determination of Rtn, hold great promise to provide technical support for routine analysis in the real world.
Collapse
Affiliation(s)
| | | | | | - Kamal Azadkish
- Chemistry Department, Yasouj University, Yasouj 75914-353, Iran (K.A.)
| |
Collapse
|
35
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
36
|
Katsuumi N, Miyazaki R, Nakane D, Azam M, Akitsu T. Synthesis and characterization of a novel oxovanadium complex and stability of azo groups in the presence of laccase. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
37
|
Liu X, Wang F, Xia C, You Q, Chen X, Li Y, Lin W, Guo L, Fu F. Copper nanoparticles incorporated nitrogen-rich carbon nitride as laccase-like nanozyme for colorimetric detection of bisphenol A released from microplastics. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
38
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
39
|
Wang B, Liu P, Hu Y, Zhao H, Zheng L, Cao Q. A Cu(II) MOF with laccase-like activity for colorimetric detection of 2,4-dichlorophenol and p-nitrophenol. Dalton Trans 2023; 52:2309-2316. [PMID: 36723081 DOI: 10.1039/d2dt03268f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal-organic framework (MOF) materials with aqueous stability have a good potential application in the field of mimetic enzymes. However, most of them have poor robustness in aqueous solution due to competitive coordination effects between water molecules and central metal ions. Herein, a copper-based MOF (Cu-SM MOF) was prepared using copper ions and 5-(sulfomethyl) isophthalic acid (5-SMIPA) by a hydrothermal process. Considering the similarity of coordination and morphology with HKUST-1, the aqueous stability and laccase-like activity of the Cu-SM MOF were investigated using HKUST-1 as the reference. The Cu-SM MOF shows superior aqueous stability to HKUST-1 after immersion in buffer solutions, especially under alkaline conditions. Moreover, the Cu-SM MOF possesses higher catalytic activity than HKUST-1 at a high salt concentration, high temperature, etc., because the Cu-SM MOF exhibits lower Km and higher Vmax values than those of laccase and reported mimetic enzymes. The mimetic enzyme behavior of the Cu-SM MOF is demonstrated in the oxidation of phenols, as well as in the detection of 2,4-dichlorophenol (2,4-DP) and p-nitrophenol with linear ranges of 1-100 μM and 2-250 μM, and limits of detection of 0.53 μM and 1.62 μM, respectively. Owing to the excellent aqueous stability and laccase-like activity of the Cu-SM MOF, it has great application prospects in many fields, such as the determination of phenols and the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Baoru Wang
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Peng Liu
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Yixiao Hu
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Haili Zhao
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Liyan Zheng
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Qiue Cao
- School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| |
Collapse
|
40
|
Renfeld ZV, Chernykh AM, Egorova Shebanova AD, Baskunov BP, Gaidina AS, Myasoedova NM, Moiseeva OV, Kolomytseva MP. The Laccase of Myrothecium roridum VKM F-3565: A New Look at Fungal Laccase Tolerance to Neutral and Alkaline Conditions. Chembiochem 2023; 24:e202200600. [PMID: 36513608 DOI: 10.1002/cbic.202200600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Most of the currently known fungal laccases show their maximum activity under acidic environmental conditions. It is known that a decrease in the activity of a typical laccase at neutral or alkaline pH values is the result of an increase in the binding of the hydroxide anion to the T2/T3 copper center, which prevents the transfer of an electron from the T1 Cu to the trinuclear copper center. However, evolutionary pressure has resolved the existing limitations in the catalytic mechanism of laccase, allowing such enzymes to be functionally active under neutral/alkaline pH conditions, thereby giving fungi an advantage for their survival. Combined molecular and biochemical studies, homological modeling, calculation of the electrostatic potential on the Connolly surface at pH 5.0 and 7.0, and structural analysis of the novel alkaliphilic laccase of Myrothecium roridum VKM F-3565 and alkaliphilic and acidophilic fungal laccases with a known structure allowed a new intramolecular channel near the one of the catalytic aspartate residues at T2-copper atom to be found. The amino acid residues of alkaliphilic laccases forming this channel can presumably serve as proton donors for catalytic aspartates under neutral conditions, thus ensuring proper functioning. For the first time for ascomycetous laccases, the production of new trimeric products of phenylpropanoid condensation under neutral conditions has been shown, which could have a potential for use in pharmacology.
Collapse
Affiliation(s)
- Zhanna V Renfeld
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Alexey M Chernykh
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Anna D Egorova Shebanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Boris P Baskunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Anastasya S Gaidina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Nina M Myasoedova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Olga V Moiseeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Marina P Kolomytseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
41
|
Liu Y, Liu L, Qu Z, Yu L, Sun Y. Supramolecular assembly of benzophenone alanine and copper presents high laccase-like activity for the degradation of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130198. [PMID: 36279648 DOI: 10.1016/j.jhazmat.2022.130198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Laccases are multicopper oxidases of significant importance for the degradation of phenolic pollutants. Because of the inherent defects of natural laccases in practical applications, herein, we discovered highly effective and non-cytotoxic laccase-like metallo-nanofibers based on the supramolecular assembly of single unnatural amino acid, benzophenone-alanine (BpA), in combination with copper ions. Structural analysis revealed that the catalytic BpA-Cu nanofibers possess a Cu(I)-Cu(II) electron transfer system similar to that in natural laccase. Our BpA-Cu nanofibers exhibit 4 times higher substrate affinity and 24% higher catalytic efficiency than the well-known high-performance industrialized laccase (Novozym 51003) in 2,4-dichlorophenol degradation. In addition, the BpA-Cu nanofibers were demonstrated to be stable (>75% residual activity) in long-term storage at a wide range of pH, ionic strength, temperature, ethanol, and water sample, and to be readily recovered for pollutant degradation, keeping 83% of the laccase activity after 10 catalytic recycles. Remarkably, the nanofibers displayed a wide substrate spectrum, detecting and degrading a variety of phenolic pollutants with high activity than other laccase mimics reported in the literature. Furthermore, the biocompatibility of the material was proved with cultured cells. These findings demonstrated the potential of BpA-Cu nanofibers in mimicking laccases for environmental remediation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Ling Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhi Qu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
42
|
Zaccaria M, Dawson W, Russel Kish D, Reverberi M, Bonaccorsi di Patti MC, Domin M, Cristiglio V, Chan B, Dellafiora L, Gabel F, Nakajima T, Genovese L, Momeni B. Experimental-theoretical study of laccase as a detoxifier of aflatoxins. Sci Rep 2023; 13:860. [PMID: 36650163 PMCID: PMC9845376 DOI: 10.1038/s41598-023-27519-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
We investigate laccase-mediated detoxification of aflatoxins, fungal carcinogenic food contaminants. Our experimental comparison between two aflatoxins with similar structures (AFB1 and AFG2) shows significant differences in laccase-mediated detoxification. A multi-scale modeling approach (Docking, Molecular Dynamics, and Density Functional Theory) identifies the highly substrate-specific changes required to improve laccase detoxifying performance. We employ a large-scale density functional theory-based approach, involving more than 7000 atoms, to identify the amino acid residues that determine the affinity of laccase for aflatoxins. From this study we conclude: (1) AFB1 is more challenging to degrade, to the point of complete degradation stalling; (2) AFG2 is easier to degrade by laccase due to its lack of side products and favorable binding dynamics; and (3) ample opportunities to optimize laccase for aflatoxin degradation exist, especially via mutations leading to π-π stacking. This study identifies a way to optimize laccase for aflatoxin bioremediation and, more generally, contributes to the research efforts aimed at rational enzyme optimization.
Collapse
Affiliation(s)
- Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Dawson
- RIKEN Center for Computational Science, Kobe, 6500047, Japan
| | | | - Massimo Reverberi
- Department of Environmental and Evolutionary Biology, "Sapienza" University of Rome, 00185, Rome, Italy
| | | | - Marek Domin
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Bun Chan
- RIKEN Center for Computational Science, Kobe, 6500047, Japan.,Graduate School of Engineering, Nagasaki University, Nagasaki, 8528521, Japan
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Frank Gabel
- CEA/CNRS/IBS, University Grenoble Alpes, 38044, Grenoble, France
| | | | - Luigi Genovese
- CEA/INAC-MEM/L-Sim, University Grenoble Alpes, 38044, Grenoble, France
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
43
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol Appl Biochem 2022; 69:2658-2672. [PMID: 34997643 DOI: 10.1002/bab.2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|
46
|
Maphupha MM, Vidov A, de Koning CB, Brady D. Laccase-catalysed azide-alkyne cycloadditions: Synthesis of benzothiazole and benzimidazole fused 1,2,3-triazole derivatives by copper containing oxidoreductase enzymes. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mudzuli M. Maphupha
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Adela Vidov
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles B. de Koning
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean Brady
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Barber-Zucker S, Mateljak I, Goldsmith M, Kupervaser M, Alcalde M, Fleishman SJ. Designed High-Redox Potential Laccases Exhibit High Functional Diversity. ACS Catal 2022; 12:13164-13173. [PMID: 36366766 PMCID: PMC9638991 DOI: 10.1021/acscatal.2c03006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
White-rot fungi secrete an impressive repertoire of high-redox potential laccases (HRPLs) and peroxidases for efficient oxidation and utilization of lignin. Laccases are attractive enzymes for the chemical industry due to their broad substrate range and low environmental impact. Since expression of functional recombinant HRPLs is challenging, however, iterative-directed evolution protocols have been applied to improve their expression, activity, and stability. We implement a rational, stabilize-and-diversify strategy to two HRPLs that we could not functionally express. First, we use the PROSS stability-design algorithm to allow functional expression in yeast. Second, we use the stabilized enzymes as starting points for FuncLib active-site design to improve their activity and substrate diversity. Four of the FuncLib-designed HRPLs and their PROSS progenitor exhibit substantial diversity in reactivity profiles against high-redox potential substrates, including lignin monomers. Combinations of 3-4 subtle mutations that change the polarity, solvation, and sterics of the substrate-oxidation site result in orders of magnitude changes in reactivity profiles. These stable and versatile HRPLs are a step toward generating an effective lignin-degrading consortium of enzymes that can be secreted from yeast. The stabilize-and-diversify strategy can be applied to other challenging enzyme families to study and expand the utility of natural enzymes.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Ivan Mateljak
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
- EvoEnzyme
S.L., Parque Científico de Madrid, C/Faraday, 7, Campus de Cantoblanco, Madrid 28049, Spain
| | - Moshe Goldsmith
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Meital Kupervaser
- Nancy
and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
48
|
Wang X, Zhao Y, Zhang S, Lin X, Liang H, Chen Y, Ji C. Heterologous Expression of the Lactobacillus sakei Multiple Copper Oxidase to Degrade Histamine and Tyramine at Different Environmental Conditions. Foods 2022; 11:3306. [PMCID: PMC9601898 DOI: 10.3390/foods11203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems. This study analyzed the characterization of heterologously expressed MCO from L. sakei LS. Towards the typical substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the optimal temperature and pH for recombinant MCO (rMCO) were 25 °C and 3.0, respectively, with the specific enzyme activity of 1.27 U/mg. Then, the effect of different environmental factors on the degrading activity of MCO towards two kinds of BAs was investigated. The degradation activity of rMCO is independent of exogenous copper and mediators. Additionally, the oxidation ability of rMCO was improved for histamine and tyramine with an increased NaCl concentration. Several food matrices could influence the amine-oxidizing activity of rMCO. Although the histamine-degrading activities of rMCO were affected, this enzyme reached a degradation rate of 28.1% in the presence of surimi. Grape juice improved the tyramine degradation activity of rMCO by up to 31.18%. These characteristics of rMCO indicate that this enzyme would be a good candidate for degrading toxic biogenic amines in food systems.
Collapse
Affiliation(s)
- Xiaofu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yunsong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10121-10156 Turin, Italy
| | - Huipeng Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yingxi Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Correspondence: or
| |
Collapse
|
49
|
Qin Z, Huang Y, Xiao S, Zhang H, Lu Y, Xu K. Preparation and Characterization of High Mechanical Strength Chitosan/Oxidized Tannic Acid Composite Film with Schiff Base and Hydrogen Bond Crosslinking. Int J Mol Sci 2022; 23:9284. [PMID: 36012548 PMCID: PMC9408846 DOI: 10.3390/ijms23169284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan-based composite films with good biodegradability, biocompatibility, and sustainability are extensively employed in the field of food packaging. In this study, novel chitosan/tannic acid (CTA) and chitosan/oxidized tannic acid (COTA) composite films with excellent mechanical and antibacterial properties were prepared using a tape casting method. The results showed that, when 20% tannic acid (TA) was added, the tensile strength of the CTA composite film was 80.7 MPa, which was 89.4% higher than that of the pure chitosan (CS) film. TA was oxidized to oxidized tannic acid (OTA) with laccase, and the phenolic hydroxyl groups were oxidized to an o-quinone structure. With the addition of OTA, a Schiff base reaction between the OTA and CS occurred, and a dual network structure consisting of a chemical bond and hydrogen bond was constructed, which further improved the mechanical properties. The tensile strength of 3% COTA composite film was increased by 97.2% compared to that of pure CS film. Furthermore, these CTA films with significant antibacterial effects against Escherichia coli (E. coli) are likely to find uses in food packaging applications.
Collapse
Affiliation(s)
- Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| | - Youjia Huang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| | - Siyu Xiao
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| | - Haoyu Zhang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yunlong Lu
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| | - Kaijie Xu
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
| |
Collapse
|
50
|
Wang L, Tan Y, Sun S, Zhou L, Wu G, Shao Y, Wang M, Xin Z. Improving Degradation of Polycyclic Aromatic Hydrocarbons by Bacillus atrophaeus Laccase Fused with Vitreoscilla Hemoglobin and a Novel Strong Promoter Replacement. BIOLOGY 2022; 11:1129. [PMID: 36009756 PMCID: PMC9404780 DOI: 10.3390/biology11081129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Laccases catalyze a variety of electron-rich substrates by reducing O2 to H2O, with O2 playing a vital role as the final electron acceptor in the reaction process. In the present study, a laccase gene, lach5, was identified from Bacillus atrophaeus through sequence-based screening. LacH5 was engineered for modification by fusion expression and promoter replacement. Results showed that the purified enzyme LacH5 exhibited strong oxidative activity towards 2,2'-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid) ammonium salt (ABTS) under optimum pH and temperature conditions (pH 5.0, 60 °C) and displayed remarkable thermostability. The activity of the two fusion enzymes was enhanced significantly from 14.2 U/mg (LacH5) to 22.5 U/mg (LacH5-vgb) and 18.6 U/mg (Vgb-lacH5) toward ABTS after LacH5 fusing with Vitreoscilla hemoglobin (VHb). Three of six tested polycyclic aromatic hydrocarbons (PAHs) were significantly oxidized by two fusion laccases as compared with LacH5. More importantly, the expression level of LacH5 and fusion protein LacH5-vgb was augmented by 3.7-fold and 7.0-fold, respectively, by using a novel strong promoter replacement. The results from the current investigation provide new insights and strategies for improving the activity and expression level of bacterial laccases, and these strategies can be extended to other laccases and multicopper oxidases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (Y.T.); (S.S.); (L.Z.); (G.W.); (Y.S.); (M.W.)
| |
Collapse
|