1
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Filipiuc LE, Creangă-Murariu I, Tamba BI, Ababei DC, Rusu RN, Stanciu GD, Ștefanescu R, Ciorpac M, Szilagyi A, Gogu R, Filipiuc SI, Tudorancea IM, Solcan C, Alexa-Stratulat T, Cumpăt MC, Cojocaru DC, Bild V. JWH-182: a safe and effective synthetic cannabinoid for chemotherapy-induced neuropathic pain in preclinical models. Sci Rep 2024; 14:16242. [PMID: 39004628 PMCID: PMC11247095 DOI: 10.1038/s41598-024-67154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP), a condition with unmet treatment needs, affects over half of cancer patients treated with chemotherapeutics. Researchers have recently focused on the endocannabinoid system because of its critical role in regulating our bodies' most important functions, including pain. We used in vitro and in vivo methods to determine the toxicity profile of a synthetic cannabinoid, JWH-182, and whether it could be potentially effective for CINP alleviation. In vitro, we evaluated JWH-182 general toxicity, measuring fibroblast viability treated with various concentrations of compound, and its neuroprotection on dorsal root ganglion neurons treated with paclitaxel. In vivo, we performed an evaluation of acute and 28-day repeated dose toxicity in mice, with monitoring of health status and a complete histopathological examination. Finally, we evaluated the efficacy of JWH-182 on a CINP model in mice using specific pain assessment tests. JWH-182 has an acceptable toxicity profile, in both, in vitro and in vivo studies and it was able to significantly reduce pain perception in a CINP model in mice. However, the translation of these results to the clinic needs further investigation.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Gabriela-Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Ștefanescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ivona-Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, "Ion Ionescu de La Brad" University of Life Sciences, 700490, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Marinela-Carmen Cumpăt
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iasi, Romania
| |
Collapse
|
3
|
Chaturvedi K, Anthony CS, Pandey P, Doerksen RJ, Godfrey M. Influence of structural characteristics on the binding of synthetic cannabinoids from the JWH family to the CB1 receptor: A computational study. J Mol Graph Model 2024; 126:108620. [PMID: 37722351 PMCID: PMC10841904 DOI: 10.1016/j.jmgm.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
Synthetic cannabinoids, including some from the John W. Huffman (JWH) family, emerged on the drug scene around 2004 as "alternative marijuana," despite being considerably more potent than marijuana. Like Δ9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana, synthetic cannabinoids have also been found to interact with cannabinoid receptors CB1 and CB2, found in the brain, immune system, and peripheral organs. The JWH compounds and other synthetic cannabinoids have become important subjects of research in the forensic science community due to their drug-abuse potential, undetectability under routine drug screening, and unpredictable toxicity. In this study, an active-state CB1 receptor model was used to assess the receptor-ligand interactions between the CB1 receptor and ligands from the JWH synthetic cannabinoid family, as well as some newly designed JWH-like virtual compounds, labeled as MGCS compounds, using docking, binding free-energy calculations (ΔG), and molecular dynamics simulations (MDs). The calculated ΔG revealed that the carbonyl group between the naphthalene and the indole, characteristic of the JWH family, and the length of the N-linked alkyl chain were two important structural characteristics that influenced the predicted CB1 binding affinity, especially as increasing the length of the alkyl chain led to better predicted binding affinity. MDs and per-residue-breakdown results showed that the designed MGCS compounds with a pentyl chain attached to the naphthalene moiety and selected JWH compounds formed stable and strong hydrophobic interactions with the key residues Phe170, Phe174, Phe177, Phe200, Phe268, and Trp279 of the CB1 receptor. Comprehension of these critical interactions can help forensic chemists predict the structure of undiscovered families of synthetic cannabinoids.
Collapse
Affiliation(s)
- Krishna Chaturvedi
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States
| | - Caroline S Anthony
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States
| | - Pankaj Pandey
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, 38677, United States; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677-1848, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, 38677, United States
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, 38677, United States.
| |
Collapse
|
4
|
de Oliveira MC, Vides MC, Lassi DLS, Torales J, Ventriglio A, Bombana HS, Leyton V, Périco CDAM, Negrão AB, Malbergier A, Castaldelli-Maia JM. Toxicity of Synthetic Cannabinoids in K2/Spice: A Systematic Review. Brain Sci 2023; 13:990. [PMID: 37508922 PMCID: PMC10377539 DOI: 10.3390/brainsci13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Synthetic cannabinoids (SCs) are emerging drugs of abuse sold as 'K2', 'K9' or 'Spice'. Evidence shows that using SCs products leads to greater health risks than cannabis. They have been associated with greater toxicity and higher addiction potential unrelated to the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). Moreover, early cases of intoxication and death related to SCs highlight the inherent danger that may accompany the use of these substances. However, there is limited knowledge of the toxicology of Spice ingredients. This systematic review intends to analyze the toxicity of SCs compounds in Spice/K2 drugs. (2) Methods: Studies analyzing synthetic cannabinoid toxicity and dependence were included in the present review. We searched the PubMed database of the US National Library of Medicine, Google Scholar, CompTox Chemicals, and Web of Science up to May 2022. (3) Results: Sixty-four articles reporting the effects of synthetic cannabinoids in humans were included in our review. Ten original papers and fifty-four case studies were also included. Fourteen studies reported death associated with synthetic cannabinoid use, with AB-CHMINACA and MDMB-CHMICA being the main reported SCs. Tachycardia and seizures were the most common toxicity symptoms. The prevalence of neuropsychiatric symptoms was higher in third-generation SCs. (4) Conclusion: SCs may exhibit higher toxicity than THC and longer-lasting effects. Their use may be harmful, especially in people with epilepsy and schizophrenia, because of the increased risk of the precipitation of psychiatric and neurologic disorders. Compared to other drugs, SCs have a higher potential to trigger a convulsive crisis, a decline in consciousness, and hemodynamic changes. Therefore, it is crucial to clarify their potential harms and increase the availability of toxicology data in both clinical and research settings.
Collapse
Affiliation(s)
- Mariana Campello de Oliveira
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Mariana Capelo Vides
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Dângela Layne Silva Lassi
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Julio Torales
- Department of Psychological Medicine, School of Medical Sciences, National University of Asuncion, San Lorenzo 111421, Paraguay
| | - Antonio Ventriglio
- Department of Experimental Medicine, Medical School, University of Foggia, 71122 Foggia, Italy
| | - Henrique Silva Bombana
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | - Vilma Leyton
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | | | - André Brooking Negrão
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - André Malbergier
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - João Maurício Castaldelli-Maia
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
- Department of Neuroscience, Medical School, FMABC University Center, Santo André 09060-870, SP, Brazil
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
6
|
Kline T, Xu C, Kreitzer FR, Hurst DP, Eldeeb KM, Wager-Miller J, Olivas K, Hepburn SA, Huffman JW, Mackie K, Howlett AC, Reggio P, Stella N. Design, synthesis, and evaluation of substituted alkylindoles that activate G protein-coupled receptors distinct from the cannabinoid CB 1 and CB 2 receptors. Eur J Med Chem 2023; 249:115123. [PMID: 36708677 PMCID: PMC10917149 DOI: 10.1016/j.ejmech.2023.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
The alkylindole (AI), WIN55212-2, modulates the activity of several proteins, including cannabinoid receptors 1 and 2 (CB1R, CB2R), and at least additional G protein-coupled receptor (GPCR) that remains uncharacterized with respect to its molecular identity and pharmacological profile. Evidence suggests that such AI-sensitive GPCRs are expressed by the human kidney cell line HEK293. We synthesized fourteen novel AI analogues and evaluated their activities at AI-sensitive GPCRs using [35S]GTPγS and [3H]WIN55212-2 binding in HEK293 cell membranes, and performed in silico pharmacophore modeling to identify characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R. Compounds 10 and 12 stimulated [35S]GTPγS binding (EC50s = 3.5 and 1.1 nM, respectively), and this response was pertussis toxin-sensitive, indicating that AI-sensitive GPCRs couple to Gi/o proteins. Five AI analogues reliably distinguished two binding sites that correspond to the high and low affinity state of AI-sensitive GPCRs coupled or not to G proteins. In silico pharmacophore modeling suggest 3 characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R: 1) an s-cis orientation of the two aromatic rings in AI analogues, 2) a narrow dihedral angle between the carbonyl group and the indole ring plane [i.e., O-C(carbonyl)-C3-C2] and 3) the presence of a carbonyl oxygen. The substituted alkylindoles reported here represent novel chemical tools to study AI-sensitive GPCRs.
Collapse
Affiliation(s)
- Toni Kline
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Cong Xu
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Khalil M Eldeeb
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Kathleen Olivas
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Seon A Hepburn
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - John W Huffman
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Patricia Reggio
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA; Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Gallagher R, McLaughlin MG, Blakey K, Wermuth UD, Boyd S, McGowan J. N,N-Diformylmescaline: A novel analogue of mescaline detected in Queensland. Drug Test Anal 2023; 15:204-212. [PMID: 36245421 DOI: 10.1002/dta.3390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
N,N-Diformylmescaline, a novel analogue of mescaline, has recently been detected in Australia in two unrelated seizures. To confirm the identification, a three-step synthesis from 3,4,5-trimethoxyphenylacetic acid was devised. However, purification of the final product proved problematic with the compound prone to degradation in solution. Analysis of the compound by LC-MS indicated that the compound was unstable under acidic and basic conditions, breaking down to N-formylmescaline. Further degradation to mescaline was observed when the compound was dissolved in hydrochloric acid for an extended period of time suggesting that N,N-diformylmescaline may be a prodrug for mescaline. The GC-MS, NMR and FTIR data for the seized compound are presented along with details of the synthesis and studies of the compound's stability in solution.
Collapse
Affiliation(s)
- Ryan Gallagher
- Queensland Health Forensic and Scientific Services (QHFSS), Brisbane, Australia
| | | | - Karen Blakey
- Queensland Health Forensic and Scientific Services (QHFSS), Brisbane, Australia
| | - Urs D Wermuth
- Queensland Health Forensic and Scientific Services (QHFSS), Brisbane, Australia
| | - Sue Boyd
- School of Environment and Science, Griffith University, Brisbane, Australia
| | - Jenny McGowan
- Queensland Health Forensic and Scientific Services (QHFSS), Brisbane, Australia
| |
Collapse
|
8
|
Szafrański PW, Siwek A, Smaga-Maślanka I, Pomierny-Chamioło L, Ilnicki P, Żuchowski G, Nevalainen T, Filip M, Zajdel P, Cegła MT. Synthesis, relative configuration and CB1 receptor affinity studies for a set of 1,2,3-triazole derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
10
|
Chourey S, Wang R, Ye Q, Reddy CN, Sun S, Takenaka N, Powell WS, Rokach J. Concise Syntheses of Microsomal Metabolites of a Potent OXE (Oxoeicosanoid) Receptor Antagonist. Chem Pharm Bull (Tokyo) 2023; 71:534-544. [PMID: 37394602 DOI: 10.1248/cpb.c22-00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent eosinophil chemoattractant among lipid mediators, and its actions are mediated by the selective oxoeicosanoid (OXE) receptor. Our group previously developed a highly potent indole-based OXE antagonist, S-C025, with an IC50 value of 120 pM. S-C025 was converted to a number of metabolites in the presence of monkey liver microsomes. Complete chemical syntheses of authentic standards enabled us to identify that the four major metabolites were derived by the oxidation at its benzylic and N-methyl carbon atoms. Herein we report concise syntheses of the four major metabolites of S-C025.
Collapse
Affiliation(s)
- Shishir Chourey
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Rui Wang
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Qiuji Ye
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Shiyu Sun
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Norito Takenaka
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre
| | - Joshua Rokach
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| |
Collapse
|
11
|
Wu YR, Tang JQ, Zhang WN, Zhuang CL, Shi Y. Rational drug design of CB2 receptor ligands: from 2012 to 2021. RSC Adv 2022; 12:35242-35259. [PMID: 36540233 PMCID: PMC9730932 DOI: 10.1039/d2ra05661e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 08/29/2023] Open
Abstract
Cannabinoid receptors belong to the large family of G-protein-coupled receptors, which can be divided into two receptor types, cannabinoid receptor type-1 (CB1) and cannabinoid receptor type-2 (CB2). Marinol, Cesamet and Sativex are marketed CB1 drugs which are still in use and work well, but the central nervous system side effects caused by activation CB1, which limited the development of CB1 ligands. So far, no selective CB2 ligand has been approved for marketing, but lots of its ligands in the clinical stage and pre-clinical stage have positive effects on the treatment of some disease models and have great potential for development. Most selective CB2 agonists are designed and synthesized based on non-selective CB2 agonists through the classical med-chem strategies, e.g. molecular hybridization, scaffold hopping, bioisosterism, etc. During these processes, the balance between selectivity, activity, and pharmacokinetic properties needs to be achieved. Hence, we summarized some reported ligands on the basis of the optimization strategies in recent 10 years, and the limitations and future directions.
Collapse
Affiliation(s)
- Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jia-Qin Tang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| |
Collapse
|
12
|
Sparkes E, Boyd R, Chen S, Markham JW, Luo JL, Foyzun T, Zaman H, Fletcher C, Ellison R, McGregor IS, Santiago MJ, Lai F, Gerona RR, Connor M, Hibbs DE, Cairns EA, Glass M, Ametovski A, Banister SD. Synthesis and pharmacological evaluation of newly detected synthetic cannabinoid receptor agonists AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA, MDMB-4F-BUTINACA and their analogs. Front Psychiatry 2022; 13:1010501. [PMID: 36245876 PMCID: PMC9558907 DOI: 10.3389/fpsyt.2022.1010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo, use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB1 (pK i = < 5 to 8.89 ± 0.09 M) and CB2 (pK i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50 = < 5 to 9.48 ± 0.14 M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.
Collapse
Affiliation(s)
- Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Jack W. Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Tahira Foyzun
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Humayra Zaman
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Charlotte Fletcher
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - Felcia Lai
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Mark Connor
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - David E. Hibbs
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Why Do Marijuana and Synthetic Cannabimimetics Induce Acute Myocardial Infarction in Healthy Young People? Cells 2022; 11:cells11071142. [PMID: 35406706 PMCID: PMC8997492 DOI: 10.3390/cells11071142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
The use of cannabis preparations has steadily increased. Although cannabis was traditionally assumed to only have mild vegetative side effects, it has become evident in recent years that severe cardiovascular complications can occur. Cannabis use has recently even been added to the risk factors for myocardial infarction. This review is dedicated to pathogenetic factors contributing to cannabis-related myocardial infarction. Tachycardia is highly important in this respect, and we provide evidence that activation of CB1 receptors in brain regions important for cardiovascular regulation and of presynaptic CB1 receptors on sympathetic and/or parasympathetic nerve fibers are involved. The prototypical factors for myocardial infarction, i.e., thrombus formation and coronary constriction, have also been considered, but there is little evidence that they play a decisive role. On the other hand, an increase in the formation of carboxyhemoglobin, impaired mitochondrial respiration, cardiotoxic reactions and tachyarrhythmias associated with the increased sympathetic tone are factors possibly intensifying myocardial infarction. A particularly important factor is that cannabis use is frequently accompanied by tobacco smoking. In conclusion, additional research is warranted to decipher the mechanisms involved, since cannabis use is being legalized increasingly and Δ9-tetrahydrocannabinol and its synthetic analogue nabilone are indicated for the treatment of various disease states.
Collapse
|
14
|
Min KH, Iqbal N, Cho EJ. Ni-Catalyzed Reductive Coupling of Alkynes and Amides to Access Multi-Functionalized Indoles. Org Lett 2022; 24:989-994. [PMID: 35050641 DOI: 10.1021/acs.orglett.1c03971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A nickel-catalyzed reductive coupling of alkynes and amides, followed by base-free transmetalation, proceeded selectively in the presence of an uncommon bidentate primary aminophosphine ligand to access highly functionalized indoles comprising biologically important trifluoromethyl groups and challenging electron-rich alkenyl groups at the 2- and 3-positions, respectively. Indole molecules were installed within natural products or drug molecules under mild conditions, and a trifluoromethylated analogue of a drug molecule (pravadoline) was also synthesized.
Collapse
Affiliation(s)
- Kwan Hong Min
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Howlett AC, Thomas BF, Huffman JW. The Spicy Story of Cannabimimetic Indoles. Molecules 2021; 26:6190. [PMID: 34684770 PMCID: PMC8538531 DOI: 10.3390/molecules26206190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.
Collapse
Affiliation(s)
- Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian F. Thomas
- Department of Analytical Sciences, The Cronos Group, Toronto, ON M5V 2H1, Canada;
| | - John W. Huffman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
16
|
Martínez L, La Maida N, Papaseit E, Pérez-Mañá C, Poyatos L, Pellegrini M, Pichini S, Ventura M, Galindo L, Busardò FP, Farré M. Acute Pharmacological Effects and Oral Fluid Concentrations of the Synthetic Cannabinoids JWH-122 and JWH-210 in Humans After Self-Administration: An Observational Study. Front Pharmacol 2021; 12:705643. [PMID: 34489699 PMCID: PMC8417402 DOI: 10.3389/fphar.2021.705643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Synthetic cannabinoids (SCs) are a group of new psychoactive drugs used recreationally with potential health risks. They are monitored by the EU Early Warning System since 2010 due to severe adverse effects on consumers. JWH-122 and JWH-210 are naphthoylindole SCs and potent cannabinoid receptor CB1 and CB2 agonists. Information about the effects of SCs usually is available from intoxication cases and surveys, and few studies on humans after controlled administration or observational/naturalistic studies using standardized measures of cardiovascular and subjective effects are available. The aim of this study was to evaluate the acute pharmacological effects of JWH-122 and JWH-210 recreational consumption in a 4 h observational study and assess their disposition in oral fluid (OF). Sixteen volunteers self-administered 1 mg dose of JWH-122 (n = 8) or 2.25 mg mean dose of JWH-210 (range 2–3 mg, n = 8) by inhalation (smoking). Physiological parameters including blood pressure (systolic and diastolic), heart rate (HR), and cutaneous temperature were measured. A set of visual analog scales, the 49-item short-form version of the Addiction Research Center Inventory (ARCI), and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were used for the evaluation of subjective effects. OF was collected at baseline and at 10, 20, and 40 min and 1, 2, 3, and 4 h after self-administration. Statistically significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR were observed after JWH-122 self-administration but not after JWH-210 self-administration. JWH-210 self-administration produced significant changes in subjective drug effects, similar to those induced by THC (intensity, high, good effects, and hunger). The subjective effects following JWH-122 consumption were minimal. The maximal effects were mostly observed 20 min after intake. JWH-122 and JWH 210 OF concentration reached a peak 20 min after administration and could not be detected after 3 h. The results demonstrated a different pattern of effects of these two SCs. Due to the limitations of our observational study, further research with a larger sample and controlled studies are needed to better define the acute pharmacological effect and health risk profile of JWH-122 and JWH-210.
Collapse
Affiliation(s)
- Lucia Martínez
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.,Clinical Pharmacology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Nunzia La Maida
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Esther Papaseit
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Clara Pérez-Mañá
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Lourdes Poyatos
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Manuela Pellegrini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Mireia Ventura
- Energy Control, Associació Benestar i Desenvolupament, Barcelona, Spain
| | - Liliana Galindo
- Energy Control, Associació Benestar i Desenvolupament, Barcelona, Spain.,Department of Psychiatry, University of Cambridge/Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Magí Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| |
Collapse
|
17
|
Fulo HF, Shoeib A, Cabanlong CV, Williams AH, Zhan CG, Prather PL, Dudley GB. Synthesis, Molecular Pharmacology, and Structure-Activity Relationships of 3-(Indanoyl)indoles as Selective Cannabinoid Type 2 Receptor Antagonists. J Med Chem 2021; 64:6381-6396. [PMID: 33887913 PMCID: PMC8683641 DOI: 10.1021/acs.jmedchem.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic indole cannabinoids characterized by a 2',2'-dimethylindan-5'-oyl group at the indole C3 position constitute a new class of ligands possessing high affinity for human CB2 receptors at a nanomolar concentration and a good selectivity index. Starting from the neutral antagonist 4, the effects of indole core modification on the pharmacodynamic profile of the ligands were investigated. Several N1 side chains afforded potent and CB2-selective neutral antagonists, notably derivatives 26 (R1 = n-propyl, R2 = H) and 35 (R1 = 4-pentynyl, R2 = H). Addition of a methyl group at C2 improved the selectivity for the CB2 receptor. Moreover, C2 indole substitution may control the CB2 activity as shown by the functionality switch in 35 (antagonist) and 49 (R1 = 4-pentynyl, R2 = CH3, partial agonist).
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
18
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
19
|
Abstract
Synthetic drugs of abuse contain various psychoactive substances. These substances have recently emerged as novel drugs of abuse in public; thus, they are known as novel psychoactive substances (NPS). As these compounds are artificially synthesized in a laboratory, they are also called designer drugs. Synthetic cannabinoids and synthetic cathinones are the two primary classes of NPS or designer drugs. Synthetic cannabinoids, also known as "K2" or "Spice," are potent agonists of the cannabinoid receptors. Synthetic cathinones, known as "Bath salts," are beta-keto amphetamine derivatives. These compounds can cause severe intoxication, including overdose deaths. NPS are accessible locally and online. NPS are scheduled in the US and other countries, but the underground chemists keep modifying the chemical structure of these compounds to avoid legal regulation; thus, these compounds have been evolving rapidly. These drugs are not detectable by traditional drug screening, and thus, these substances are mainly abused by young individuals and others who wish to avoid drug detection. These compounds are analyzed primarily by mass spectrometry.
Collapse
|
20
|
Penthala NR, Shoeib A, Dachavaram SS, Cabanlong CV, Yang J, Zhan CG, Prather PL, Crooks PA. 7-Azaindolequinuclidinones (7-AIQD): A novel class of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands. Bioorg Med Chem Lett 2020; 30:127501. [PMID: 32882418 DOI: 10.1016/j.bmcl.2020.127501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 11/29/2022]
Abstract
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure-activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soma Shekar Dachavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jingfang Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
21
|
Bulska E, Bachliński R, Cyrański MK, Michalska-Kacymirow M, Kośnik W, Małecki P, Grela K, Dobrowolski MA. Comprehensive Protocol for the Identification and Characterization of New Psychoactive Substances in the Service of Law Enforcement Agencies. Front Chem 2020; 8:693. [PMID: 33102427 PMCID: PMC7546804 DOI: 10.3389/fchem.2020.00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
A non-routine, comprehensive protocol for characterization of emerging new psychoactive substances (NPS) including chemical structures, impurities, as well as crystal structures, has been developed to facilitate the work of law enforcement agencies. A set of NPS has been synthesized, identified, and characterized by various analytical methods in order to be used as certified reference standards (CRMs). Seven selected compounds (5-IT, NM-2201, MT-45, AB-CHMINACA, UR-144, 5F-PB-22, and 4-CMC) were synthesized on the laboratory scale, then the process was upscaled to semi-technical. All products were analyzed by electrospray Q/TOF-MS/MS for molecular structure identification. The presence of by-products, as well as metal impurities, arising from the performed syntheses, were characterized by reversed phase liquid chromatography (RP-HPLC) with DAD and Q/TOF-MS detection and inductively-coupled plasma with quadrupole mass spectrometer (ICP-QMS), respectively. Additionally, the crystal structures of UR-144, NM-2201, 5F-PB-22, and 4-CMC have been determined by single-crystal and powder X-ray diffraction.
Collapse
Affiliation(s)
- Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | | | - Wioletta Kośnik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Paweł Małecki
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Karol Grela
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Michał A Dobrowolski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Trexler KR, Vanegas SO, Poklis JL, Kinsey SG. The short-acting synthetic cannabinoid AB-FUBINACA induces physical dependence in mice. Drug Alcohol Depend 2020; 214:108179. [PMID: 32688070 PMCID: PMC7461724 DOI: 10.1016/j.drugalcdep.2020.108179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent years have seen a rise in the diversity and use of synthetic cannabinoids. The present study evaluated the behavioral effects of the third-generation indazole-3-carboxamide-type synthetic cannabinoid, AB-FUBINACA. METHODS Adult male and female C57BL/6J mice were treated with AB-FUBINACA (0-3 mg/kg, i.p.) and tested repeatedly in the tetrad battery measuring catalepsy, antinociception, hypothermia, and locomotor activity. Mice treated with AB-FUBINACA (≥2 mg/kg, i.p.) displayed classic cannabinoid effects in the tetrad that were blocked by the CB1 receptor selective antagonist rimonabant. To address tolerance and withdrawal effects, a second group of mice was injected with AB-FUBINACA (3 mg/kg, s.c.) or vehicle consisting of 5% ethanol, 5% Kolliphor EL, and 90 % saline every 12 h and tested daily in modified tetrad over the course of 5 days. On the 6th day, withdrawal was precipitated using rimonabant (3 mg/kg, s.c.), and somatic signs of withdrawal (i.e., head twitches and paw tremors) were quantified. RESULTS Although mice did not develop tolerance to AB-FUBINACA or cross-tolerance to Δ9-tetrahydrocannabinol (THC; 50 mg/kg, i.p.), somatic precipitated withdrawal signs were observed. Repeated tetrad testing up to 48 h post injection indicated that AB-FUBINACA effects are relatively short-lived, as compared with THC. Brain levels of AB-FUBINACA, as quantified by UHPLC-MS/MS, were undetectable 4 h post injection. CONCLUSIONS These data indicate that the cannabinoid effects of AB-FUBINACA are relatively short-lived, yet sufficient to induce dependence in mice.
Collapse
Affiliation(s)
- Kristen R. Trexler
- Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - S. Olivia Vanegas
- Department of Psychology, West Virginia University, Morgantown, WV, United States,Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States,School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven G. Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, United States,School of Nursing, University of Connecticut, Storrs, CT, United States,Corresponding author at: 231 Glenbrook Rd., Unit 4026, University of Connecticut, Storrs, CT, 06269-3237, United States. (S.G. Kinsey)
| |
Collapse
|
23
|
Norman K, Ciesielski AL, Wagner JR. Identification and associated hazards of clandestine drug laboratories. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/wfs2.1393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keith Norman
- School of Defence and Security Cranfield University Bedford UK
| | - Austin L. Ciesielski
- School of Forensic Sciences Oklahoma State University Center for Health Sciences Tulsa Oklahoma USA
| | - Jarrad R. Wagner
- School of Forensic Sciences Oklahoma State University Center for Health Sciences Tulsa Oklahoma USA
| |
Collapse
|
24
|
Walsh KB, Andersen HK. Molecular Pharmacology of Synthetic Cannabinoids: Delineating CB1 Receptor-Mediated Cell Signaling. Int J Mol Sci 2020; 21:E6115. [PMID: 32854313 PMCID: PMC7503917 DOI: 10.3390/ijms21176115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoids (SCs) are a class of new psychoactive substances (NPSs) that exhibit high affinity binding to the cannabinoid CB1 and CB2 receptors and display a pharmacological profile similar to the phytocannabinoid (-)-trans-Δ9-tetrahydrocannabinol (THC). SCs are marketed under brand names such as K2 and Spice and are popular drugs of abuse among male teenagers and young adults. Since their introduction in the early 2000s, SCs have grown in number and evolved in structural diversity to evade forensic detection and drug scheduling. In addition to their desirable euphoric and antinociceptive effects, SCs can cause severe toxicity including seizures, respiratory depression, cardiac arrhythmias, stroke and psychosis. Binding of SCs to the CB1 receptor, expressed in the central and peripheral nervous systems, stimulates pertussis toxin-sensitive G proteins (Gi/Go) resulting in the inhibition of adenylyl cyclase, a decreased opening of N-type Ca2+ channels and the activation of G protein-gated inward rectifier (GIRK) channels. This combination of signaling effects dampens neuronal activity in both CNS excitatory and inhibitory pathways by decreasing action potential formation and neurotransmitter release. Despite this knowledge, the relationship between the chemical structure of the SCs and their CB1 receptor-mediated molecular actions is not well understood. In addition, the potency and efficacy of newer SC structural groups has not been determined. To address these limitations, various cell-based assay technologies are being utilized to develop structure versus activity relationships (SAR) for the SCs and to explore the effects of these compounds on noncannabinoid receptor targets. This review focuses on describing and evaluating these assays and summarizes our current knowledge of SC molecular pharmacology.
Collapse
Affiliation(s)
- Kenneth B. Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC 29208, USA;
| | | |
Collapse
|
25
|
Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol 2020; 50:359-382. [PMID: 32530350 DOI: 10.1080/10408444.2020.1762539] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The word "cannabinoid" refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2", synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as "not for human consumption" to circumvent legislation, their legal status varies by country with many government institutions currently pushing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxications in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than natural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially leading to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
26
|
Halter S, Mogler L, Auwärter V. Quantification of Herbal Mixtures Containing Cumyl-PEGACLONE-Is Inhomogeneity Still an Issue? J Anal Toxicol 2020; 44:81-85. [PMID: 31044247 DOI: 10.1093/jat/bkz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/02/2019] [Indexed: 11/13/2022] Open
Abstract
Synthetic cannabinoid receptor agonizts (SCRAs), also known as synthetic cannabinoids, are mostly consumed in the form of herbal mixtures available in online shops. These herbal mixtures are produced by soaking dried, crushed plant material in a solution of SCRAs or by spraying the solution on the plant material. Inhomogeneity in the distribution of the active ingredient can occur during the production process and pose a serious health risk for consumers of these drugs. In the present study 20 herbal mixtures containing Cumyl-PEGACLONE, one of the most prevalent SCRAs in Germany in 2017, were quantitatively analyzed by high-performance liquid chromatography with diode array detection (HPLC-DAD) after an initial screening by gas chromatography mass spectrometry. All investigated herbal mixtures were purchased in online shops during a systematic product monitoring carried out in the frame of the EU project "SPICE Profiling". The complete content of the packages was divided into aliquots without homogenization and extracted three times with methanol under ultrasonication. The combined extracts of each aliquot were filtered and quantified with a fully validated HPLC-DAD method using a 7-point calibration curve (1-50 μg/mL). The Cumyl-PEGACLONE content in the analyzed material ranged from 8.6 to 146 mg/g (median 29.4 mg/g, mean 38.5 mg/g). The intrapackage concentration variability was mostly below 10% RSD. Analyzed concentrations roughly correlated with product advisory (e.g., "strong") on the websites, if available. Aliquots at the bottom of a package generally tended to show higher levels of Cumyl-PEGACLONE than the upper aliquots. Packages of the same brand with different date of order did not always show the same mean concentrations. Compared to former studies, the SCRA concentrations are generally lower and the risk of extreme variation of intrapackage SCRA contents seems to have dropped.
Collapse
Affiliation(s)
- Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
| | - Lukas Mogler
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Alam RM, Keating JJ. Adding more "spice" to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists. Drug Test Anal 2020; 12:297-315. [PMID: 31854124 DOI: 10.1002/dta.2752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) first appeared on the international recreational drug market in the early 2000s in the form of SCRA-containing herbal blends. Due to the cannabimimetic effects associated with the consumption of SCRAs, they have acquired an ill-informed reputation for being cheap, safe, and legal alternatives to illicit cannabis. Possessing high potency and affinity for the human cannabinoid receptor subtype-1 (CB1 ) and -2 (CB2 ), it is now understood that the recreational use of SCRAs can have severe adverse health consequences. The major public health problem arising from SCRA use has pressed legislators around the world to employ various control strategies to curb their recreational use. To circumvent legislative control measures, SCRA manufacturers have created a wide range of SCRA analogs that contain, more recently, previously unencountered azaindole, γ-carbolinone, or carbazole heterocyclic scaffolds. At present, little information is available regarding the chemical syntheses of these newly emerging classes of SCRA, from a clandestine perspective. When compared with previous generations of indole- and indazole-type SCRAs, current research suggests that many of these heterocyclic SCRA analogs maintain high affinity and efficacy at both CB1 and CB2 but largely evade legislative control. This review highlights the importance of continued research in the field of SCRA chemistry and pharmacology, as recreational SCRA use remains a global public health issue and represents a serious control challenge for law enforcement agencies.
Collapse
Affiliation(s)
- Ryan M Alam
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland.,School of Chemistry, University College Cork, Cork, Ireland
| | - John J Keating
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland.,School of Chemistry, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Zhang A, Meng T, Wang W, Liu X, Zhu Y, Liu L. Palladium‐catalyzed cyclization reaction of N‐(2‐Haloaryl)alkynylimines: Synthesis of 3‐acylindoles using water as the sole solvent and oxygen source. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- An‐An Zhang
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
| | - Tuanjie Meng
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
| | - Wenli Wang
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
| | - Xueli Liu
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
| | - Yupei Zhu
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
| | - Lantao Liu
- College of Chemistry and Chemical EngineeringShangqiu Normal University Shangqiu 47600, P. R. China
- College of ChemistryZhengzhou University Zhengzhou 450001 P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of ChemistryPeking University Beijing 100871 P. R. China
| |
Collapse
|
29
|
Schurman LD, Lu D, Kendall DA, Howlett AC, Lichtman AH. Molecular Mechanism and Cannabinoid Pharmacology. Handb Exp Pharmacol 2020; 258:323-353. [PMID: 32236882 PMCID: PMC8637936 DOI: 10.1007/164_2019_298] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.
Collapse
Affiliation(s)
- Lesley D Schurman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Worob A, Wenthur C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem Neurosci 2019; 11:3881-3892. [PMID: 31799831 DOI: 10.1021/acschemneuro.9b00586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This Review covers the background, pharmacology, adverse effects, synthesis, pharmacokinetics, metabolism, and history of synthetic cannabinoid compounds. Synthetic cannabinoids are a class of novel psychoactive substances that act as agonists at cannabinoid receptors. This class of compounds is structurally diverse and rapidly changing, with multiple generations of molecules having been developed in the past decade. The structural diversity of synthetic cannabinoids is supported by the breadth of chemical space available for exploitation by clandestine chemists and incentivized by attempts to remain ahead of legal pressures. As a class, synthetic cannabinoid products have a more serious adverse effect profile than that of traditional phytocannabinoids, including notable risks of lethality, as well as a history of dangerous adulteration. Most synthetic cannabinoids are rapidly metabolized to active species with prolonged residence times and peripheral tissue distribution, and analytical confirmation of use of these compounds remains challenging. Overall, the emergence of synthetic cannabinoids serves as a noteworthy example of the pressing public health challenges associated with the increasing development of easily synthesized, structurally flexible, highly potent, psychoactive drugs.
Collapse
Affiliation(s)
- Adam Worob
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Cody Wenthur
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
31
|
Almada M, Alves P, Fonseca BM, Carvalho F, Queirós CR, Gaspar H, Amaral C, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol Lett 2019; 319:129-137. [PMID: 31730886 DOI: 10.1016/j.toxlet.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023]
Abstract
The increasing use of synthetic cannabinoids (SCBs) in recreational settings is becoming a new paradigm of drug abuse. Although SCBs effects mimic those of the Cannabis sativa plant, these drugs are frequently more potent and hazardous. It is known that endocannabinoid signalling plays a crucial role in diverse reproductive events such as placental development. Moreover, the negative impact of the phytocannabinoid Δ9-tetrahydrocannabinol (THC) in pregnancy outcome, leading to prematurity, intrauterine growth restriction and low birth weight is well recognized, which makes women of childbearing age a sensitive group to developmental adverse effects of cannabinoids. Placental trophoblast turnover relies on regulated processes of proliferation and apoptosis for normal placental development. Here, we explored the impact of the SCBs JWH-018, JWH-122 and UR-144 and of the phytocannabinoid THC in BeWo cell line, a human placental cytotrophoblast cell model. All the cannabinoids caused a significant decrease in cell viability without LDH release, though this effect was only detected for the highest concentrations of THC. Moreover, a cell cycle arrest at the G2/M phase was also observed. JWH-018 and JWH-122 increased reactive oxygen species (ROS) production and THC, UR-144 and JWH-122 caused loss of mitochondrial membrane potential. All the compounds were able to induce caspase-9 activation. The involvement of apoptotic pathways was further confirmed through the significant increase in caspase -3/-7 activities. For UR-144, this effect was reversed by the CB1 antagonist AM281, for JWH-018 and THC this effect was mediated by both cannabinoid receptors CB1 and CB2 while for JWH-122 it was cannabinoid receptor-independent. This work demonstrates that THC and SCBs are able to induce apoptotic cell death. Although they may act through different mechanisms and potencies, the studied cannabinoids have the potential to disrupt gestational fundamental events.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Cláudio R Queirós
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Natércia A Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal.
| |
Collapse
|
32
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
33
|
Discovery of Orexant and Anorexant Agents with Indazole Scaffold Endowed with Peripheral Antiedema Activity. Biomolecules 2019; 9:biom9090492. [PMID: 31527522 PMCID: PMC6770484 DOI: 10.3390/biom9090492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
The endocannabinoid system represents an integrated neuronal network involved in the control of several organisms' functions, such as feeding behavior. A series of hybrids of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (mimonabant), a well-known inverse agonist of the type-1 cannabinoid receptor (CB1), once used as an antiobesity drug, and the N-(2S)-substitutes of 1-[(4-fluorophenyl)methyl]indazole-3-carboxamide with 1-amino-3-methyl-1-oxobutane (AB-Fubinaca), 1-amino-3,3-dimethyl-1-oxobutane (ADB-Fubinaca), and 3-methylbutanoate (AMB-Fubinaca), endowed with potent agonistic activity towards cannabinoid receptors CB1 and CB2 were in solution as C-terminal amides, acids, methyl esters and N-methyl amides. These compounds have been studied by binding assays to cannabinoid receptors and by functional receptor assays, using rat brain membranes in vitro. The most active among them as an agonist, (S)-1-(2,4-dichlorobenzyl)-N-(3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (LONI11), and an antagonist, (S)-2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3-methylbutanoic acid (LONI4), were tested in vivo in mic, to evaluate their ability to stimulate or suppress feeding behavior after intraperitoneal (i.p.) administration. For a LONI11 formalin test and a tail flick test after an administration by the subcutaneous (s.c.) and intracerebroventricular (i.c.v.) routes, respectively, were also carried out in vivo in mice to investigate the antinociceptive property at the central and peripheral levesl. We observed a significant orexant effect for LONI11 and an intense anorexant effect for (S)-methyl 2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (LONI2) and LONI4. In zymosan-induced edema and hyperalgesia, LONI11 reduced the percent of paw volume increase and paw latency after s.c. administration, also suggesting a possible peripheral anti-inflammatory activity.
Collapse
|
34
|
Identification of synthetic cannabinoids that were seized, consumed, or associated with deaths in Kuwait in 2018 using GC-MS and LC-MS-MS analysis. Forensic Sci Int 2019; 303:109960. [PMID: 31550599 DOI: 10.1016/j.forsciint.2019.109960] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 01/18/2023]
Abstract
Synthetic cannabinoids are gaining much popularity worldwide. Although the death rate associated with their use is rising, these drugs are the largest and fastest growing class of novel psychoactive substances. Despite increased concerns regarding adverse effects stemming from the use of synthetic cannabinoids, there is no published data on the subject for the Gulf region or Kuwait, specifically. The current study investigates the diversity of synthetic cannabinoids in Kuwait in 2018. In total, 434 cases from the Narcotics and Psychotropic Laboratory, 70 cases from the Toxicology Laboratory, and six cases from the Forensic Medicine Department were reviewed and analyzed. Numerous synthetic cannabinoid types were identified using GC-MS and LC-MS-MS. The majority of synthetic cannabinoids were members of the indazole-3-carboxamide or indole-3-carboxamide families. Members from the indazole-3-carboxamide family identified in Kuwait were 5F-ADB, FUB-AMB, ADB-FUBINACA, AB-FUBINACA, 5F-ADB-PINACA, 5F-AKB-48, 5Cl-AKB-48, MDMB-FUBINACA, 5F-AB-PINACA, APINACA, and AB-PINACA whereas MDMB-CHMICA, 5F-MDMB-PICA, ADB-BICA, and MMB-CHMICA belonged to the indole-3-carboxamide family. In addition, members of other families were identified, including CBL2201 and UR-144, which belonged to indole-3-carboxylate and cyclopropylindole families, respectively. The most common synthetic cannabinoids were 5F-ADB, FUB-AMB, and 5Cl-AKB-48. Various mixes of two, three, or four types of synthetic cannabinoids were identified, and mixtures of synthetic cannabinoids with other illicit drugs were also present. Our findings show that in Kuwait, the most common mix of synthetic cannabinoids is FUB-AMB with 5F-ADB. These two types were mixed, either together or individually, with methamphetamine, tramadol, heroin, Δ9THC, and ketamine. Most importantly, our results reveal the synthetic cannabinoid types that were associated with six reported deaths.
Collapse
|
35
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
36
|
Abstract
Despite greater chronic pain prevalence in females compared with males, and the analgesic potential of cannabinoid receptor type 2 (CB2) agonists, CB2 agonists have rarely been tested in females. The aim of the present study was to compare the antinociceptive effects of a CB2-preferring agonist, (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), in female and male rats against acute pain and persistent inflammatory pain. JWH015 (5-20 mg/kg, intraperitoneally) produced dose-dependent and time-dependent increases in latency to respond on the tail withdrawal and paw pressure tests that did not differ statistically between the sexes. JWH015 dose-dependently decreased locomotor activity in both sexes, but was more potent in females than males. JWH015 produced little catalepsy in either sex. In females, the antinociceptive effects of JWH015 against acute pain were blocked by rimonabant and SR144528, whereas locomotor suppression was antagonized by rimonabant. When administered 3 days after intraplantar injection of complete Freund's adjuvant, JWH015 produced a significantly greater antiallodynic effect in females at the highest dose tested (10 mg/kg, intraperitoneally). Antiallodynic effects of JWH015 were antagonized by rimonabant and SR144528 in both sexes. These studies indicate that systemically administered JWH015 produced antinociception that was both CB1 and CB2 receptor-mediated in both sexes. Unlike [INCREMENT]-9-tetrahydrocannabinol and other nonselective cannabinoid agonists, the CB2-preferring agonist JWH015 may produce more equivalent antinociception in females and males.
Collapse
|
37
|
Dvorácskó S, Keresztes A, Mollica A, Stefanucci A, Macedonio G, Pieretti S, Zádor F, Walter FR, Deli MA, Kékesi G, Bánki L, Tuboly G, Horváth G, Tömböly C. Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors. Eur J Med Chem 2019; 178:571-588. [PMID: 31220675 DOI: 10.1016/j.ejmech.2019.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
In order to obtain novel pharmacological tools and to investigate a multitargeting analgesic strategy, the CB1 and CB2 cannabinoid receptor agonist JWH-018 was conjugated with the opiate analgesic oxycodone or with an enkephalin related tetrapeptide. The opioid and cannabinoid pharmacophores were coupled via spacers of different length and chemical structure. In vitro radioligand binding experiments confirmed that the resulting bivalent compounds bound both to the opioid and to the cannabinoid receptors with moderate to high affinity. The highest affinity bivalent derivatives 11 and 19 exhibited agonist properties in [35S]GTPγS binding assays. These compounds activated MOR and CB (11 mainly CB2, whereas 19 mainly CB1) receptor-mediated signaling, as it was revealed by experiments using receptor specific antagonists. In rats both 11 and 19 exhibited antiallodynic effect similar to the parent drugs in 20 μg dose at spinal level. These results support the strategy of multitargeting G-protein coupled receptors to develop lead compounds with antinociceptive properties.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Enkephalins/chemistry
- Enkephalins/pharmacology
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Molecular Structure
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Oxycodone/chemistry
- Oxycodone/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Attila Keresztes
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ferenc Zádor
- Laboratory of Opioid Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - Csaba Tömböly
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary.
| |
Collapse
|
38
|
Antonides LH, Cannaert A, Norman C, Vives L, Harrison A, Costello A, Nic Daeid N, Stove CP, Sutcliffe OB, McKenzie C. Enantiospecific Synthesis, Chiral Separation, and Biological Activity of Four Indazole-3-Carboxamide-Type Synthetic Cannabinoid Receptor Agonists and Their Detection in Seized Drug Samples. Front Chem 2019; 7:321. [PMID: 31157203 PMCID: PMC6532652 DOI: 10.3389/fchem.2019.00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have been the largest group of illicit psychoactive substances reported to international monitoring and early warning systems for many years. Carboxamide-type SCRAs are amongst the most prevalent and potent. Enantiospecific synthesis and characterization of four indazole-3-carboxamides, AMB-FUBINACA, AB-FUBINACA, 5F-MDMB-PINACA (5F-ADB), and AB-CHMINACA is reported. The interactions of the compounds with CB1 and CB2 receptors were investigated using a G-protein coupled receptor (GPCR) activation assay based on functional complementation of a split NanoLuc luciferase and EC50 (a measure of potency) and Emax (a measure of efficacy) values determined. All compounds demonstrated higher potency at the CB2 receptor than at the CB1 receptor and (S)-enantiomers had an enhanced potency to both receptors over the (R)-enantiomers. The relative potency of the enantiomers to the CB2 receptor is affected by structural features. The difference was more pronounced for compounds with an amine moiety (AB-FUBINACA and AB-CHMINACA) than those with an ester moiety (AMB-FUBINACA and 5F-MDMB-PINACA). An HPLC method was developed to determine the prevalence of (R)-enantiomers in seized samples. Lux® Amylose-1 [Amylose tris(3,5-dimethylphenylcarbamate)] has the greatest selectivity for the SCRAs with a terminal methyl ester moiety and a Lux® i-Cellulose-5 column for SCRAs with a terminal amide moiety. Optimized isocratic separation methods yielded enantiomer resolution values (Rs) ≥ 1.99. Achiral GC-MS analysis of seized herbal materials (n = 16), found 5F-MDMB-PINACA (<1.0-91.5 mg/g herbal material) and AMB-FUBINACA (15.5-58.5 mg/g herbal material), respectively. EMB-FUBINACA, AMB-CHMICA, 5F-ADB-PINACA isomer 2, and ADB-CHMINACA were also tentatively identified. Analysis using chiral chromatography coupled to photodiode array and quadrupole time of flight mass spectrometry (chiral HPLC-PDA-QToF-MS/MS) confirmed that the (S)-enantiomer predominated in all samples (93.6-99.3% (S)-enantiomer). Small but significant differences in synthesis precursor enantiopurity may provide significant differences between synthesis batches or suppliers and warrants further study. A method to compare potency between samples containing different SCRAs at varying concentrations was developed and applied in this small preliminary study. A 10-fold difference in the "intrinsic" potency of samples in the study was noted. With the known heterogeneity of SCRA infused materials, the approach provides a simplified method for assessing and communicating the risk of their use.
Collapse
Affiliation(s)
- Lysbeth H. Antonides
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, United Kingdom
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom
| | - Annelies Cannaert
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology, Brussels, Belgium
| | - Caitlyn Norman
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom
| | - Loelia Vives
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom
- IUT “A” Paul Sabatier, Département de Chimie, Castres, France
| | | | - Andrew Costello
- Manchester Drug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, United Kingdom
- Greater Manchester Police, Manchester, United Kingdom
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, United Kingdom
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom
| | - Christophe P. Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Oliver B. Sutcliffe
- Manchester Drug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, United Kingdom
- Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Craig McKenzie
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
39
|
Abdel-Hay KM, Belal TS, Abiedalla Y, Thaxton-Weissenfluh A, DeRuiter J, Smith F, Clark CR. Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Infrared (GC-IR) Analyses of the Chloro-1- n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Cannabinoids. APPLIED SPECTROSCOPY 2019; 73:433-443. [PMID: 30347999 DOI: 10.1177/0003702818809998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The analytical differentiation of the indole ring regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles is described in this report. The regioisomeric chloroindole precursor compounds, N- n-pentyl chloroindole synthetic intermediates, and the target chloro-substituted naphthoylindoles showed the equivalent gas chromatographic elution order based on the position of chlorine substitution on the indole ring. The regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles yield electron ionization mass spectra having equivalent major fragments resulting from cleavage of the groups attached to the central indole nucleus. Fragment ions occur at m/z 127 and 155 for the naphthyl and naphthoyl cations common to all indoles having the naphthoyl group substituted at the indole-3 position. Fragments resulting from the loss of the naphthoyl and/or n-pentyl groups from the molecular radical cation yield the cations at m/z 318, 304, 248, and 178. The characteristic (M-17)+ fragment ion at m/z 358 resulting from the loss of OH radical is significant in the mass spectra of all these compounds with 1-naphthoyl groups substituted at the indole-3 position. The vapor phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers.
Collapse
Affiliation(s)
- Karim M Abdel-Hay
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- 2 Department of Chemistry, College of Science, Eastern Kentucky University, Richmond, KY, USA
- 3 Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tarek S Belal
- 3 Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Younis Abiedalla
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- 4 Department of Medicinal Chemistry, Faculty of Pharmacy, Omar Al-Mukhtar University, El-Beida, Libya
| | - Amber Thaxton-Weissenfluh
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack DeRuiter
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Forrest Smith
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
40
|
Ieronimo G, Palmisano G, Maspero A, Marzorati A, Scapinello L, Masciocchi N, Cravotto G, Barge A, Simonetti M, Ameta KL, Nicholas KM, Penoni A. A novel synthesis of N-hydroxy-3-aroylindoles and 3-aroylindoles. Org Biomol Chem 2019; 16:6853-6859. [PMID: 30065979 DOI: 10.1039/c8ob01471j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A straightforward indole synthesis via annulation of C-nitrosoaromatics with conjugated terminal alkynones was realised achieving a simple, highly regioselective, atom- and step economical access to 3-aroylindoles in moderate to good yields. Further functionalizations of indole scaffolds were investigated and an easy way to JWH-018, a synthetic cannabinoid, was achieved.
Collapse
Affiliation(s)
- Gabriella Ieronimo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100, Como, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Spectroscopic differentiation and chromatographic separation of regioisomeric indole aldehydes: Synthetic cannabinoids precursors. Forensic Chem 2019. [DOI: 10.1016/j.forc.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci 2019; 9:brainsci9010014. [PMID: 30654473 PMCID: PMC6357179 DOI: 10.3390/brainsci9010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The chief psychoactive constituent of many bioactive phytocannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, Cannabis sativa, acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized. Cannabinoid receptor type 1 (CB1R) is found to serve as the archetype for cannabinoid action in the brain. They have attracted wide interest as the mediator of all psychoactive properties of exogenous and endogenous cannabinoids and they are abundantly expressed on most inhibitory and excitatory neurons. Recent evidence established that cannabinoid receptor type 2 (CB2R) is also expressed in the neurons at both presynaptic and postsynaptic terminals and are involved in neuropsychiatric effects. Distinct types of cells in many regions in the brain express CB2Rs and the cellular origin of CB2Rs that induce specific behavioral effects are emerging. To mimic the bliss effects of marijuana, synthetic cannabinoids (SCBs) have been sprayed onto plant material, and this plant material has been consequently packaged and sold under brand name “Spice” or “K2”. These SCBs have been shown to maintain their affinity and functional activity for CB1R and CB2R and have been shown to cause severe harmful effects when compared to the effects of Δ9-THC. The present review discusses the potential brain mechanisms that are involved in the deleterious effects of SCBs.
Collapse
|
43
|
Takahashi H, Araki K, Tabata H, Makino K, Ujiie R, Sezaki K, Nakayama H, Oshitari T, Natsugari H. Elucidation of The Conformational Properties of 3-Pyridinoyl Indoles as Intermediates of Cannabimimetics. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Kernalléguen A, Enjalbal C, Alvarez JC, Belgacem O, Léonetti G, Lafitte D, Pélissier-Alicot AL. Synthetic cannabinoid isomers characterization by MALDI-MS3 imaging: Application to single scalp hair. Anal Chim Acta 2018; 1041:87-93. [DOI: 10.1016/j.aca.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 01/24/2023]
|
45
|
Zhou J, Li J, Li Y, Wu C, He G, Yang Q, Zhou Y, Liu H. Direct Synthesis of 3-Acylindoles through Rhodium(III)-Catalyzed Annulation of N-Phenylamidines with α-Cl Ketones. Org Lett 2018; 20:7645-7649. [DOI: 10.1021/acs.orglett.8b03383] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianhui Zhou
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Jian Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yazhou Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chenglin Wu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Guoxue He
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qiaolan Yang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
46
|
Uttl L, Szczurowska E, Hájková K, Horsley RR, Štefková K, Hložek T, Šíchová K, Balíková M, Kuchař M, Micale V, Páleníček T. Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ 9-THC in Rats. Front Neurosci 2018; 12:703. [PMID: 30405327 PMCID: PMC6206206 DOI: 10.3389/fnins.2018.00703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
Synthetic cannabinoid compounds are marketed as “legal” marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p < 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system.
Collapse
Affiliation(s)
- Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Ewa Szczurowska
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Kateřina Hájková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Kristýna Štefková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Tomáš Hložek
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Marie Balíková
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Martin Kuchař
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Vincenzo Micale
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Psychiatric Clinic, Charles University, Prague, Czechia
| |
Collapse
|
47
|
Hutchison RD, Ford BM, Franks LN, Wilson CD, Yarbrough AL, Fujiwara R, Su MK, Fernandez D, James LP, Moran JH, Patton AL, Fantegrossi WE, Radominska-Pandya A, Prather PL. Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ 9-THC. Front Pharmacol 2018; 9:1084. [PMID: 30319418 PMCID: PMC6168621 DOI: 10.3389/fphar.2018.01084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 01/12/2023] Open
Abstract
Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana.
Collapse
Affiliation(s)
- Rachel D Hutchison
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mark K Su
- New York City Poison Control Center, New York, NY, United States
| | | | - Laura P James
- Translational Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Amy L Patton
- PinPoint Testing, LLC, Little Rock, AR, United States
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
48
|
Floresta G, Apirakkan O, Rescifina A, Abbate V. Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis. Molecules 2018; 23:molecules23092183. [PMID: 30200181 PMCID: PMC6225167 DOI: 10.3390/molecules23092183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Two 3D quantitative structure–activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB1 and CB2) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB1 and CB2 ligands. A set of 312 molecules have been used to build the model for the CB1 receptor, and a set of 187 molecules for the CB2 receptor. All of the molecules were recovered from the literature among those possessing measured Ki values, and Forge was used as software. The present model shows high and robust predictive potential, confirmed by the quality of the statistical analysis, and an adequate descriptive capability. A visual understanding of the hydrophobic, electrostatic, and shaping features highlighting the principal interactions for the CB1 and CB2 ligands was achieved with the construction of 3D maps. The predictive capabilities of the model were then used for a scaffold-hopping study of two selected compounds, with the generation of a library of new compounds with high affinity for the two receptors. Herein, we report two new 3D-QSAR models that comprehend a large number of chemically different CB1 and CB2 ligands and well account for the individual ligand affinities. These features will facilitate the recognition of new potent and selective molecules for CB1 and CB2 receptors.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists/chemistry
- Cannabinoid Receptor Agonists/metabolism
- Cannabinoid Receptor Antagonists/chemistry
- Cannabinoid Receptor Antagonists/metabolism
- Drug Design
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Models, Molecular
- Molecular Conformation
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Protein Binding
- Quantitative Structure-Activity Relationship
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/chemistry
- Receptors, Cannabinoid/metabolism
- Software
- Static Electricity
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Orapan Apirakkan
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
49
|
The ongoing challenge of novel psychoactive drugs of abuse. Part I. Synthetic cannabinoids (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0605] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the past decade, the world has experienced a large increase in the number of novel compounds appearing on the illicit drug market for recreational purposes. Such substances are designed to circumvent governmental regulations; the illegal drug manufacturers take a known psychoactive compound reported in the scientific literature and slightly modify its chemical structure in order to produce analogues that will mimic the pharmacological activity of the original substance. Many of these novel substances are sold via the Internet. Among the various chemical classes, synthetic cannabinoid receptor modulators, commonly referred to as “synthetic cannabinoids” have been at the forefront, as demonstrated by the frequency of drug seizures, numerous severe toxic effects, and fatalities associated with some of these substances. This review presents the chemical structures of relevant synthetic cannabinoids and describes their mechanism of action, pharmacological features, metabolic pathways, and structure-activity relationships. It illustrates the approaches used in forensic testing, both for bulk analysis (drug seizures) and for analytical toxicology (biological matrices) and discusses aspects of regulation surrounding this drug class. This report is intended to provide pertinent information for the purposes of informing scientific, medical, social, and governmental bodies about this ever-evolving recreational drug class and the challenges it poses worldwide.
Collapse
|
50
|
DeRuiter J, Smith F, Abiedalla Y, Neel L, Clark CR. GC-MS and GC-IR analysis of regioisomeric cannabinoids related to 1-(5-fluoropentyl)-3-(1-naphthoyl)-indole. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|