1
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
2
|
Reversal of multidrug resistance by Fissistigma latifolium–derived chalconoid 2-hydroxy-4,5,6-trimethoxydihydrochalcone in cancer cell lines overexpressing human P-glycoprotein. Biomed Pharmacother 2022; 156:113832. [DOI: 10.1016/j.biopha.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
|
3
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
4
|
Wang S, Wang SQ, Teng QX, Lei ZN, Chen ZS, Chen XB, Liu HM, Yu B. Discovery of the Triazolo[1,5- a]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance. J Med Chem 2021; 64:16187-16204. [PMID: 34723530 DOI: 10.1021/acs.jmedchem.1c01498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo[1,5-a]pyrimidine derivative WS-898 as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC50 = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. WS-898 inhibited the efflux function of ABCB1, thus leading to decreased efflux and increased intracellular PTX concentration in SW620/Ad300 cells. The cellular thermal shift assay indicated direct engagement of WS-898 to ABCB1. Furthermore, WS-898 stimulated the ATPase activity of ABCB1 but had minimal effects on cytochrome P450 3A4 (CYP3A4). Importantly, WS-898 increased PTX sensitization in vivo without obvious toxicity. The results suggest that WS-898 is a highly effective triazolo[1,5-a]pyrimidine-based ABCB1 inhibitor and shows promise in reversing ABCB1-mediated PTX resistance.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Sinha S, Prakash A, Medhi B, Sehgal A, Batovska DI, Sehgal R. Pharmacokinetic evaluation of Chalcone derivatives with antimalarial activity in New Zealand White Rabbits. BMC Res Notes 2021; 14:264. [PMID: 34238361 PMCID: PMC8268181 DOI: 10.1186/s13104-021-05684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Malaria is a major global health concern with the urgent need for new treatment alternatives due to the alarming increase of drug-resistant Plasmodium strains. Chalcones and its derivatives are important pharmacophores showing antimalarial activity. Determination of the pharmacokinetic variables at the preliminary step of drug development for any drug candidates is an essential component of in vivo antimalarial efficacy tests. Substandard pharmacokinetic variables are often responsible for insufficient therapeutic effect. Therefore, three chalcone derivatives, 1, 2, and 3, having antimalarial potency were studied further for potential therapeutic efficacy. Results In vivo pharmacokinetic studies of these three derivatives were performed on New Zealand White rabbits. The three derivatives were administered intra-peritoneally or orally at effective dose concentration and blood samples at different time points were collected. The determination of drug concentration was done through reverse phase-high performance liquid chromatography. The peak plasma concentration of derivative 1, 2, and 3 were 1.96 ± 0.46 µg/mL (intraperitoneal route), 69.89 ± 5.49 µg/mL (oral route), and 3.74 ± 1.64 µg/mL (oral route). The results indicate a very low bioavailability of these derivatives. The present study gives a benchmark to advance the investigation of more derivatives in order to revamp the pharmacokinetic variables while maintaining both potency and metabolic constancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05684-8.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstetrics & Gynecology, Government Medical College & Hospital Sector 32, Chandigarh, India
| | - Daniela I Batovska
- Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
6
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
7
|
Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev Med Chem 2021; 20:942-957. [PMID: 32048967 DOI: 10.2174/1389557520666200212104742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.
Collapse
Affiliation(s)
- Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari 07100, Italy
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Irfan R, Mousavi S, Alazmi M, Saleem RSZ. A Comprehensive Review of Aminochalcones. Molecules 2020; 25:molecules25225381. [PMID: 33213087 PMCID: PMC7698532 DOI: 10.3390/molecules25225381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Chalcones, members of the flavonoid family, display a plethora of interesting biological activities including but not limited to antioxidant, anticancer, antimicrobial, anti-inflammatory, and antiprotozoal activities. The literature cites the synthesis and activity of a range of natural, semisynthetic, and synthetic chalcones. The current review comprehensively covers the literature on amino-substituted chalcones and includes chalcones with amino-groups at various positions on the aromatic rings as well as those with amino-groups containing mono alkylation, dialkylation, alkenylation, acylation, and sulfonylation. The aminochalcones are categorized according to their structure, and the corresponding biological activities are discussed as well. Some compounds showed high potency against cancer cells, microbes, and malaria, whereas others did not. The purpose of this review is to serve as a one-stop location for information on the aminochalcones reported in the literature in recent years.
Collapse
Affiliation(s)
- Rimsha Irfan
- Department of Chemistry and Chemical Engineering, SBA School of Sciences and Engineering, Lahore University of Management Sciences, DHA, Lahore 54792, Pakistan; (R.I.); (S.M.)
| | - Shikufa Mousavi
- Department of Chemistry and Chemical Engineering, SBA School of Sciences and Engineering, Lahore University of Management Sciences, DHA, Lahore 54792, Pakistan; (R.I.); (S.M.)
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81481, Saudi Arabia;
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Sciences and Engineering, Lahore University of Management Sciences, DHA, Lahore 54792, Pakistan; (R.I.); (S.M.)
- Correspondence: ; Tel.: +92-42-35608215
| |
Collapse
|
9
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
M. F. Gonçalves B, S. P. Cardoso D, U. Ferreira MJ. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020; 25:E3364. [PMID: 32722234 PMCID: PMC7435859 DOI: 10.3390/molecules25153364] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/metabolism
- Drug Resistance, Multiple/drug effects
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Nitrogen/chemistry
- Terpenes/chemistry
- Terpenes/pharmacology
Collapse
Affiliation(s)
| | | | - Maria-José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (B.M.F.G.); (D.S.P.C.)
| |
Collapse
|
11
|
Wu CP, Lusvarghi S, Hsiao SH, Liu TC, Li YQ, Huang YH, Hung TH, Ambudkar SV. Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. JOURNAL OF NATURAL PRODUCTS 2020; 83:1461-1472. [PMID: 32347726 PMCID: PMC7402219 DOI: 10.1021/acs.jnatprod.9b01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The overexpression of the ATP-binding cassette (ABC) transporter ABCG2 has been linked to clinical multidrug resistance in solid tumors and blood cancers, which remains a significant obstacle to successful cancer chemotherapy. For years, the potential modulatory effect of bioactive compounds derived from natural sources on ABCG2-mediated multidrug resistance has been investigated, as they are inherently well tolerated and offer a broad range of chemical scaffolds. Licochalcone A (LCA), a natural chalcone isolated from the root of Glycyrrhiza inflata, is known to possess a broad spectrum of biological and pharmacological activities, including pro-apoptotic and antiproliferative effects in various cancer cell lines. In this study, the chemosensitization effect of LCA was examined in ABCG2-overexpressing multidrug-resistant cancer cells. Experimental data demonstrated that LCA inhibits the drug transport function of ABCG2 and reverses ABCG2-mediated multidrug resistance in human multidrug-resistant cancer cell lines in a concentration-dependent manner. Results of LCA-stimulated ABCG2 ATPase activity and the in silico docking analysis of LCA to the inward-open conformation of human ABCG2 suggest that LCA binds ABCG2 in the transmembrane substrate-binding pocket. This study provides evidence that LCA should be further evaluated as a modulator of ABCG2 in drug combination therapy trials against ABCG2-expressing drug-resistant tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sabrina Lusvarghi
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Te-Chun Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, United States
| |
Collapse
|
12
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Cui J, Liu X, Chow LMC. Flavonoids as P-gp Inhibitors: A Systematic Review of SARs. Curr Med Chem 2019; 26:4799-4831. [PMID: 30277144 DOI: 10.2174/0929867325666181001115225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 11/22/2022]
Abstract
P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoyang Liu
- The Fu Foundation School of Engineering and Applied Sciences, Columbia University in the City of New York, New York, United States
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
14
|
Yin H, Dong J, Cai Y, Shi X, Wang H, Liu G, Tang Y, Liu J, Ma L. Design, synthesis and biological evaluation of chalcones as reversers of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2019; 180:350-366. [PMID: 31325783 DOI: 10.1016/j.ejmech.2019.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) is one of the major causes for multidrug resistance (MDR), which has become a major obstacle in cancer therapy. One hopeful approach to reverse the MDR is to develop inhibitors of P-gp in expression and/or function. Here, we designed and synthesized a series of chalcone derivatives as P-gp inhibitors and evaluated their potential reversal activities against MDR. Among them, the most active compound MY3 had little intrinsic cytotoxicity and showed the highest activity (RF = 50.19) in reversing DOX resistance in MCF-7/DOX cells. Further studies demonstrated that MY3 could increase intracellular accumulation of DOX and inhibit expression of P-gp at mRNA and protein levels. More importantly, MY3 significantly enhanced the efficacy of DOX against the tumor xenografts bearing MCF-7/DOX cells with the precondition of unchanged body weight. Therefore, MY3 might represent a promising lead to develop MDR reversal agents for cancer chemotherapy.
Collapse
Affiliation(s)
- Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingjing Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hao Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jianwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Han P, Zhou W, Chen M, Wang Q. Microwave-assisted Synthesis of Polymethoxychalcone Mannich Bases and Their Antiproliferative Activity. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180627110223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of eight polymethoxychalcone Mannich base derivatives 2a-2h was synthesized via
the microwave-assisted Mannich reaction of natural product 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone
(1) with various secondary amines and formaldehyde. Compared to conventional heating method
(80°C), the microwave-assisted method (700W, 65°C) is efficient with short reaction time (0.5-1 h) and
good yields (74-88%). The antiproliferative activities of eight Mannich base derivatives were evaluated
in vitro on a panel of three human cancer cell lines (Hela, HCC1954 and SK-OV-3) by CCK-8 assay.
The results showed that all of the Mannich base derivatives exhibited potential antiproliferative activities
on tested cancer cell lines with the IC50 values of 9.13-48.51 µM. Some active compounds exhibited
more activity as compared to positive control cis-Platin. Among them, compound 2b revealed to
have the strongest antiproliferative activity against all the three cancer cell lines with IC50 values ranging
from 9.13 to 11.24 µM.
Collapse
Affiliation(s)
- Peipei Han
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenhua Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Mingxia Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuan Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
17
|
Fasinu PS, Manda VK, Dale OR, Egiebor NO, Walker LA, Khan SI. Modulation of Cytochrome P450, P-glycoprotein and Pregnane X Receptor by Selected Antimalarial Herbs-Implication for Herb-Drug Interaction. Molecules 2017; 22:molecules22122049. [PMID: 29168799 PMCID: PMC6150001 DOI: 10.3390/molecules22122049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022] Open
Abstract
Seven medicinal plants popularly used for treating malaria in West Africa were selected to assess herb-drug interaction potential through a series of in vitro methods. Fluorescent cytochrome P450 (CYP) assays were conducted using the recombinant CYP enzymes for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 to assess the effect of the methanolic extracts on the metabolic activity of CYPs. Secondly, the inhibitory effect of the extracts was evaluated on P-glycoproteins (P-gp) using calcein-AM, a fluorescent substrate, in MDCK-II and hMDR1-MDCK-II cells. The inhibition of P-gp activity was determined as a reflection of increase in calcein-AM uptake. Additionally, the enzyme induction potential of the extracts was assessed through the modulation of PXR activity in HepG2 cells transiently transfected with pSG5-PXR and PCR5 plasmid DNA. Significant inhibition of CYP activity (IC50 < 10 µg/mL) was observed with the following herbs: A. muricata [CYP2C9, 3A4 and CYP2D6]; M. indica [CYP2C9]; M. charantia [CYP2C9 and CYP2C19]; P. amarus [CYP2C19, CYP2C9 and CYP3A4]; T. diversifolia [CYP2C19 and CYP3A4]. Extracts of four herbs (P. amarus, M. charantia, T. diversifolia and A. muricata) exhibited significant inhibition of P-gp with IC50 values (µg/mL) of 17 ± 1, 16 ± 0.4, 26 ± 1, and 24 ± 1, respectively. In addition, four herbs (A. mexicana, M. charantia, P. amarus and T. diversifolia) showed a >two-fold increase in induction in PXR activity. These findings suggest that these herbs may be capable of eliciting herb-drug interactions if consumed in high quantities with concomitant use of conventional therapies.
Collapse
Affiliation(s)
- Pius S Fasinu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA.
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Vamshi K Manda
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Nosa O Egiebor
- Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
18
|
Investigating the potential of tetrahydropyridinyl chalcones as useful agents against breast carcinoma: An in vitro and in vivo study. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Okoniewska K, Konieczny MT, Lemke K, Grabowski T. Pharmacokinetic Studies of Oxathio-Heterocycle Fused Chalcones. Eur J Drug Metab Pharmacokinet 2017; 42:49-58. [PMID: 26815590 DOI: 10.1007/s13318-016-0320-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Chalcone constitutes one of the most used molecular frameworks in medicinal chemistry and its derivatives exhibit a broad spectrum of biological activities. Low absolute bioavailability, poor distribution, intensive metabolism and elimination of chalcones are the main problems in designing new drugs based on their structure. One of the fundamental steps in evaluation of drug candidates is a comparative analysis of pharmacokinetic parameters. The aim of the studies was the pharmacokinetic characterization of the selected oxathio-heterocycle fused chalcones. METHODS The pharmacokinetic parameters of 19 compounds were reported. The analyzed chalcones were examined after a single intravenous administration to forty 7-week-old mature male rats of Wistar stock. Pharmacokinetic analysis was performed independently using SHAM (slopes, highest, amounts, and moments) and the two-compartment model. Basic physiochemical parameters were calculated. The bioanalytical methods were validated in terms of repeatability, linearity, accuracy, precision, and selectivity. RESULTS The pharmacokinetics of the examined group of chalcones are compatible with the two-compartment model. The physicochemical characteristics of this group are quite homogeneous. The kinetics of the examined chalcones are indicative of a distribution to the tissue compartment with the predominance of a rate constant from central to peripheral compartments (k12) over the rate constant from peripheral to central compartments (k21). The elimination from the central compartment (k10) is higher than the transfer from the central compartment to the tissues (k10 > k12) in almost all examined cases. CONCLUSIONS The presented group of compounds may form a starting point for studies into drugs treating autoimmune diseases of the gastro-intestinal tract.
Collapse
Affiliation(s)
- Krystyna Okoniewska
- P.F.O. Vetos-Farma sp. z o. o., ul. Dzierżoniowska 21, 58-260, Bielawa, Poland.
| | - Marek T Konieczny
- Department of Chemical Technology of Drugs, Medical University of Gdansk, 80-416, Gdańsk, Poland
| | - Krzysztof Lemke
- Biovico sp. z o. o., ul. Hryniewickiego 6b/135, 81-340, Gdynia, Poland
| | | |
Collapse
|
20
|
Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1891-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
22
|
Schmitt F, Draut H, Biersack B, Schobert R. Halogenated naphthochalcones and structurally related naphthopyrazolines with antitumor activity. Bioorg Med Chem Lett 2016; 26:5168-5171. [PMID: 27727127 DOI: 10.1016/j.bmcl.2016.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022]
Abstract
Three 3-(3-halo-4,5-dimethoxyphenyl)-1-(2-naphthyl)prop-2-en-1-ones 1 and three structurally related 2-pyrazolines 2 were prepared and assessed in vitro for anticancer activity. The chalcones 1 were antiproliferative with low double-digit micromolar IC50 values against six tumor cell lines whereas the pyrazolines 2 showed low single-digit micromolar IC50 values against this panel. The pyrazolines inhibited ATP-binding cassette efflux transporters of types P-gp and BCRP while the chalcones inhibited selectively BCRP. All test compounds induced an accumulation of HT-29 colon carcinoma cells in the G2/M phase of the cell cycle and they interfered with the microtubule and F-actin dynamics, but only the chalcones induced apoptosis in 518A2 melanoma cells after 24h.
Collapse
Affiliation(s)
- Florian Schmitt
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Heidrun Draut
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
23
|
Abstract
Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.
Collapse
|
24
|
Therapeutic potential of chalcones as cardiovascular agents. Life Sci 2016; 148:154-72. [PMID: 26876916 DOI: 10.1016/j.lfs.2016.02.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/21/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents.
Collapse
|
25
|
Gonzalez-Lobato L, Chaptal V, Molle J, Falson P. Leishmania tarentolae as a Promising Tool for Expressing Polytopic and Multi-Transmembrane Spans Eukaryotic Membrane Proteins: The Case of the ABC Pump ABCG6. Methods Mol Biol 2016; 1432:119-31. [PMID: 27485333 DOI: 10.1007/978-1-4939-3637-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter includes a practical method of membrane protein production in Leishmania tarentolae cells. We routinely use it to express membrane proteins of the ABC (adenosine triphosphate-binding cassette) family, here exemplified with ABCG6 from L. braziliensis, implicated in phospholipid trafficking and drug efflux. The pLEXSY system used here allows membrane protein production with a mammalian-like N-glycosylation pattern, at high levels and at low costs. Also the effects of an N-terminal truncation of the protein are described. The method is described to allow any kind of membrane protein production.
Collapse
Affiliation(s)
- Lucia Gonzalez-Lobato
- Drug Resistance and Membrane Proteins Team, UMR CNRS-UCBL1 5086, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Team, UMR CNRS-UCBL1 5086, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Jennifer Molle
- Drug Resistance and Membrane Proteins Team, UMR CNRS-UCBL1 5086, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, UMR CNRS-UCBL1 5086, IBCP, 7, passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
26
|
Abstract
Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| |
Collapse
|
27
|
Ła̧cka I, Konieczny MT, Bułakowska A, Kodedová M, Gašková D, Maurya IK, Prasad R, Milewski S. Chemosensitization of multidrug resistant Candida albicans by the oxathiolone fused chalcone derivatives. Front Microbiol 2015; 6:783. [PMID: 26300857 PMCID: PMC4525051 DOI: 10.3389/fmicb.2015.00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/17/2015] [Indexed: 01/15/2023] Open
Abstract
Three structurally related oxathiolone fused chalcone derivatives appeared effective chemosensitizers, able to restore in part sensitivity to fluconazole of multidrug-resistant C. albicans strains. Compound 21 effectively chemosensitized cells resistant due to the overexpression of the MDR1 gene, compound 6 reduced resistance of cells overexpressing the ABC-type drug transporters CDR1/CDR2 and derivative 18 partially reversed fluconazole resistance mediated by both types of yeast drug efflux pumps. The observed effect of sensitization of resistant strains of Candida albicans to fluconazole activity in the presence of active compounds most likely resulted from inhibition of the pump-mediated efflux, as was revealed by the results of studies involving the fluorescent probes, Nile Red, Rhodamine 6G and diS-C3(3).
Collapse
Affiliation(s)
- Izabela Ła̧cka
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology Gdańsk, Poland
| | - Marek T Konieczny
- Department of Organic Chemistry, Medical University of Gdańsk Gdańsk, Poland
| | - Anita Bułakowska
- Department of Organic Chemistry, Medical University of Gdańsk Gdańsk, Poland
| | - Marie Kodedová
- Faculty of Mathematics and Physics, Charles University in Prague Prague, Czech Republic
| | - Dana Gašková
- Faculty of Mathematics and Physics, Charles University in Prague Prague, Czech Republic
| | - Indresh K Maurya
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology Gdańsk, Poland
| |
Collapse
|
28
|
Abstract
BCRP/ABCG2, a second member of ABC transporter subclass G, has been shown to be overexpressed in several solid tumors, acute myelogenous leukemia and chronic myeloid leukemia. A variety of chemically unrelated anticancer drugs have been found to be transported by ABCG2 leading to their lower intracellular accumulation and hence causing chemoresistance. Until now several efforts have been taken to identify potent and selective inhibitors of ABCG2. Recent studies carried out to deign BCRP inhibitors have been able to point out the effect of the substitution pattern in compound scaffolds on the potency, selectivity and cytotoxicity of ABCG2 inhibitors.
Collapse
|
29
|
Heterocyclic chalcone activators of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with improved in vivo efficacy. Bioorg Med Chem 2015; 23:5352-9. [PMID: 26278028 DOI: 10.1016/j.bmc.2015.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/18/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Nrf2 activators represent a good drug target for designing agents to treat diseases associated with oxidative stress. Building upon previous work, we designed and prepared a series of heterocyclic chalcone-based Nrf2 activators with reduced lipophilicity and, in some cases, greater in vitro potency compared to the respective carbocyclic scaffold. These changes resulted in enhanced oral bioavailability and a superior pharmacodynamic effect in vivo.
Collapse
|
30
|
Jandial DD, Blair CA, Zhang S, Krill LS, Zhang YB, Zi X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr Cancer Drug Targets 2015; 14:181-200. [PMID: 24467530 DOI: 10.2174/1568009614666140122160515] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/09/2023]
Abstract
There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Zi
- Department of Urology, University of California, Irvine, 101 The City Drive South, Rt.81 Bldg.55 Rm.302, Orange CA 92868, USA.
| |
Collapse
|
31
|
Manda VK, Avula B, Dale OR, Chittiboyina AG, Khan IA, Walker LA, Khan SI. Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine. MEDICINES 2015; 2:93-105. [PMID: 28930203 PMCID: PMC5533163 DOI: 10.3390/medicines2020093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 01/17/2023]
Abstract
Background Vinpocetine, a semi-synthetic derivative of vincamine, is a popular dietary supplement used for the treatment of several central nervous system related disorders. Despite its wide use, no pharmacokinetic drug interaction studies are reported in the literature. Due to increasing use of dietary supplements in combination with conventional drugs, the risk of adverse effects is on the rise. As a preliminary step to predict a possibility of drug interaction during concomitant use of vinpocetine and conventional drugs, this study was carried out to evaluate the effects of vinpocetine on three main regulators of pharmacokinetic drug interactions namely, cytochromes P450 (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR). Methods Inhibition of CYPs was evaluated by employing recombinant enzymes. The inhibition of P-gp was determined by calcein-AM uptake method in transfected and wild type MDCKII cells. Modulation of PXR activity was monitored through a reporter gene assay in HepG2 cells. Results Vinpocetine showed a strong inhibition of P-gp (EC50 8 μM) and a moderate inhibition of recombinant CYP3A4 and CYP2D6 (IC50 2.8 and 6.5 μM) with no activity towards CYP2C9, CYP2C19 and CYP1A2 enzymes. In HLM, competitive inhibition of CYP3A4 (IC50 54 and Ki 19 μM) and non-competitive inhibition of CYP2D6 (IC50 19 and Ki 26 μM) was observed. Activation of PXR was observed only at the highest tested concentration of vinpocetine (30 μM) while lower doses were ineffective. Conclusion Strong inhibition of P-gp by vinpocetine is indicative of a possibility of drug interactions by altering the pharmacokinetics of drugs, which are the substrates of P-gp. However, the effects on CYPs and PXR indicate that vinpocetine may not affect CYP-mediated metabolism of drugs, as the inhibitory concentrations are much greater than the expected plasma concentrations in humans.
Collapse
Affiliation(s)
- Vamshi K Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia.
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
32
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
33
|
Marine natural products as breast cancer resistance protein inhibitors. Mar Drugs 2015; 13:2010-29. [PMID: 25854646 PMCID: PMC4413197 DOI: 10.3390/md13042010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.
Collapse
|
34
|
Trabbic CJ, Overmeyer JH, Alexander EM, Crissman EJ, Kvale HM, Smith MA, Erhardt PW, Maltese WA. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J Med Chem 2015; 58:2489-512. [PMID: 25654321 PMCID: PMC4360382 DOI: 10.1021/jm501997q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methuosis is a form of nonapoptotic cell death characterized by an accumulation of macropinosome-derived vacuoles with eventual loss of membrane integrity. Small molecules inducing methuosis could offer significant advantages compared to more traditional anticancer drug therapies that typically rely on apoptosis. Herein we further define the effects of chemical substitutions at the 2- and 5-indolyl positions on our lead compound 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (MOMIPP). We have identified a number of compounds that induce methuosis at similar potencies, including an interesting analogue having a hydroxypropyl substituent at the 2-position. In addition, we have discovered that certain substitutions on the 2-indolyl position redirect the mode of cytotoxicity from methuosis to microtubule disruption. This switch in activity is associated with an increase in potency as large as 2 orders of magnitude. These compounds appear to represent a new class of potent microtubule-active anticancer agents.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences , 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shin SY, Lee MS, Lee DH, Lee DY, Koh D, Lee YH. The synthetic compound 2′-hydroxy-2,4,6′-trimethoxychalcone overcomes P-glycoprotein-mediated multi-drug resistance in drug-resistant uterine sarcoma MES-SA/DX5 cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0017-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Manda VK, Dale OR, Awortwe C, Ali Z, Khan IA, Walker LA, Khan SI. Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Front Pharmacol 2014; 5:178. [PMID: 25152732 PMCID: PMC4126480 DOI: 10.3389/fphar.2014.00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally used in a number of women's health applications such as to improve libido, relieve postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the constituents of this plant have been reported to possess anticancer, antioxidant, and anti-inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of drug-drug interactions which alter the absorption, distribution, and metabolism of drugs. Given the widespread use of Kacip Fatimah in dietary supplements, the current study focuses on determining the potential of its constituents to affect the activities of CYPs, P-gp, or PXR using in vitro assays which may provide useful information toward the risk of herb-drug interaction with concomitantly used drugs. Six compounds isolated from the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the methanolic extract. The extract of L. pumila showed a significant time dependent inhibition (TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of 1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used concomitantly.
Collapse
Affiliation(s)
- Vamshi K Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Charles Awortwe
- Division of Clinical Pharmacology, University of Stellenbosch Cape Town, South Africa
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacology, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi Oxford, MS, USA ; Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi Oxford, MS, USA
| |
Collapse
|
37
|
Szafraniec MJ, Szczygieł M, Urbanska K, Fiedor L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab Rev 2014; 46:459-74. [DOI: 10.3109/03602532.2014.942037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Winter E, Gozzi GJ, Chiaradia-Delatorre LD, Daflon-Yunes N, Terreux R, Gauthier C, Mascarello A, Leal PC, Cadena SM, Yunes RA, Nunes RJ, Creczynski-Pasa TB, Di Pietro A. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: polyspecificity at B-ring position. Drug Des Devel Ther 2014; 8:609-19. [PMID: 24920885 PMCID: PMC4043709 DOI: 10.2147/dddt.s56625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition. Molecular modeling indicated both electrostatic and steric positive contributions. A higher potency was observed when the 2-naphthyl or 3,4-methylenedioxyphenyl group was shifted to the A-ring and methoxy substituents were shifted to the phenyl B-ring, indicating preferences among polyspecificity of inhibition.
Collapse
Affiliation(s)
- Evelyn Winter
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | | | - Nathalia Daflon-Yunes
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphael Terreux
- Bioinformatique structures et interactions, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Charlotte Gauthier
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Alessandra Mascarello
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paulo César Leal
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Silvia M Cadena
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Rosendo Augusto Yunes
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ricardo José Nunes
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Attilio Di Pietro
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
39
|
Montanari F, Ecker GF. BCRP Inhibition: from Data Collection to Ligand-Based Modeling. Mol Inform 2014; 33:322-31. [DOI: 10.1002/minf.201400012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023]
|
40
|
Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 2014; 77:422-87. [PMID: 24685980 DOI: 10.1016/j.ejmech.2014.03.018] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids.
Collapse
|
41
|
Parveen Z, Brunhofer G, Jabeen I, Erker T, Chiba P, Ecker GF. Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein. Bioorg Med Chem 2014; 22:2311-9. [PMID: 24613626 DOI: 10.1016/j.bmc.2014.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/06/2014] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent multidrug resistance efflux transporter that plays an important role in anticancer drug resistance and in pharmacokinetics of medicines. Despite a large number of structurally and functionally diverse compounds, also flavonoids and chalcones have been reported as inhibitors of P-gp. The latter share some similarity with the well studied class of propafenones, but do not contain a basic nitrogen atom. Furthermore, due to their rigidity, they are suitable candidates for 3D-QSAR studies. In this study, a set of 22 new chalcone derivatives were synthesized and evaluated in a daunomycin efflux inhibition assay using the CCRF.CEM.VCR1000 cell line. The compound 10 showed the highest activity (IC50=42nM), which is one order of magnitude higher than the activity for an equilipohillic propafenone analogue. 2D- and 3D-QSAR studies indicate the importance of H-bond acceptors, methoxy groups, hydrophobic groups as well as the number of rotatable bonds as pharmacophoric features influencing P-gp inhibitory activity.
Collapse
Affiliation(s)
- Zahida Parveen
- Institute of Medical Chemistry, Medical University Vienna, Waehringer Strasse 10, 1090 Vienna, Austria; Abdul Wali Khan University Mardan, Malakand Mardan Rd, Mardan, Pakistan
| | - Gerda Brunhofer
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Ishrat Jabeen
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas Erker
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
42
|
El Sayed Aly MR, Abd El Razek Fodah HH, Saleh SY. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur J Med Chem 2014; 76:517-30. [PMID: 24602794 DOI: 10.1016/j.ejmech.2014.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
Abstract
Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells.
Collapse
Affiliation(s)
- Mohamed Ramadan El Sayed Aly
- Chemistry Department, Faculty of Science, Taif University, Hawyah-Taif, Kingdom of Saudi Arabia, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Port Said University, 42522 Port Said, Egypt.
| | - Hamadah Hamadah Abd El Razek Fodah
- Chemistry Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia, Saudi Arabia; Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Sherif Yousef Saleh
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
43
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
44
|
Abstract
ABCG2 impacts oral availability, tissue distribution and excretion of its substrates, including anticancer and anti-infectious drugs. Highly expressed at physiological barriers, its secretion level significantly controls drug distribution. Furthermore, its increased content into many types of cancer may lead to cell chemoresistance. Owing to the clinical relevance of ABCG2 in the multidrug resistance phenomenon, ABCG2 constitutes an appealing therapeutic target to increase drug distribution. Development of ABCG2 inhibitors can be used in combination with anticancer drugs to block the drug secretion from cancer cells. Very recently, an alternative use of ABCG2 inhibitors in enhancing the bioavailability of ABCG2 substrates has emerged. Hence, it is important to investigate ABCG2 inhibitors with high selectivity, high potency and safety. New inhibitors discovered during the last 5 years will be presented and discussed.
Collapse
|
45
|
Thioxopyrimidine in Heterocyclic Synthesis III: Synthesis and Properties of Some Novel Heterocyclic Chalcone Derivatives Containing a Thieno[2,3- d]pyrimidine-Based Chromophore. J CHEM-NY 2013. [DOI: 10.1155/2013/649576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclization of 4-methyl-2-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carbonitrile1with chloroacetone in DMF in the presence of excess potassium carbonate anhydrous gave the 1-(5-amino-4-methyl-2-phenylthieno[2,3-d]pyrimidin-6-yl)ethanone3, which can react with 2,5-dimethoxytetrahydrofuran in glacial acetic acid producing the 1-[4-methyl-2-phenyl-5-(1H-pyrrol-1-yl)thieno[2,3-d]pyrimidin-6-yl]ethanone4. On the other hand, a series of novel 3-aryl-1-[4-methyl-2-phenyl-5-(1H-pyrrol-1-yl)-thieno[2,3-d]pyrimidin-6-yl]prop-2-en-1-one chalcone dyes6a—nwere obtained by the condensation reaction of 1-[4-methyl-2-phenyl-5(1H-pyrrol-1-yl)thieno[2,3-d]-pyrimidin-6-yl]ethanone4with appropriate aldehydes. The structures of chalcone dyes were characterized by IR,1H NMR, mass, elemental analysis, and UV-Vis spectroscopy. The dyes were applied to polyester fibers for creating hues ranging from greenish-yellow to orange; their spectral characteristics, substituent effect in DMF solution, fastness properties, and colorimetric assessment are also discussed.
Collapse
|
46
|
Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Arch Pharm Res 2012; 35:2117-25. [DOI: 10.1007/s12272-012-1208-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 10/27/2022]
|
47
|
Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Adv 2012; 2:7948-7963. [PMID: 25400909 PMCID: PMC4228968 DOI: 10.1039/c2ra01369j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, existing mainly as glycosides in nature, have multiple "claimed" beneficial effects in humans. Flavonoids are extensively metabolized in enterocytes and hepatocytes by phase II enzymes such as UGTs and SULTs to form glucuronides and sulfates, respectively. These glucuronides and sulfates are subsequently excreted via ABC transporters (e.g., MRP2 or BCRP). Therefore, it is the interplay between phase II enzymes and efflux transporters that affects the disposition of flavonoids and leads to the low bioavailability of flavonoid aglycones. Flavonoids can also serve as chemical regulators that affect the activity or expression levels of phase II enzymes including UGTs, SULTs and GSTs, and transporters including P-gp, MRP2, BCRP, OATP and OAT. In general, flavonoids may exert the inhibitory or inductive effects on the phase II enzymes and transporters via multiple mechanisms that may involve different nuclear receptors. Since flavonoids may affect the metabolic pathways shared by many important clinical drugs, drug-flavonoid interaction is becoming an increasingly important concern. This review article focused on the disposition of flavonoids and effects of flavonoids on relevant enzymes (e.g. UGTs and SULTs) and transporters (e.g. MRP2 and BCRP) involved in the interplay between phase II enzymes and efflux transporters. The effects of flavonoids on other metabolic enzymes (e.g. GSTs) or transporters (e.g. P-gp, OATP and OAT) are also addressed but that is not the emphasis of this review.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA ; Pharmaceutics Graduate Program, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| |
Collapse
|
48
|
Aly MRE, Ibrahim ESI, El Shahed FA, Soliman HA, Ibrahim ZS, El-Shazly SAM. Synthesis of some quinolinyl chalcone analogues and investigation of their anticancer and synergistic anticancer effect with doxorubicin. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1068162012030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Valdameri G, Gauthier C, Terreux R, Kachadourian R, Day BJ, Winnischofer SMB, Rocha MEM, Frachet V, Ronot X, Di Pietro A, Boumendjel A. Investigation of chalcones as selective inhibitors of the breast cancer resistance protein: critical role of methoxylation in both inhibition potency and cytotoxicity. J Med Chem 2012; 55:3193-200. [PMID: 22449016 PMCID: PMC3983950 DOI: 10.1021/jm2016528] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABCG2 plays a major role in anticancer-drug efflux and related tumor multidrug resistance. Potent and selective ABCG2 inhibitors with low cytotoxicity were investigated among a series of 44 chalcones and analogues (1,3-diarylpropenones), by evaluating their inhibitory effect on the transport of mitoxantrone, a known ABCG2 substrate. Six compounds producing complete inhibition with IC(50) values below 0.5 μM and high selectivity for ABCG2 were identified. The number and position of methoxy substituents appeared to be critical for both inhibition and cytotoxicity. The best compounds, with potent inhibition and low toxicity, contained an N-methyl-1-indolyl (compound 38) or a 6'-hydroxyl-2',4'-dimethoxy-1-phenyl (compound 27) moiety (A-ring) and two methoxy groups at positions 2 and 6 of the 3-phenyl moiety (B-ring). Methoxy substitution contributed to inhibition at positions 3 and 5, but had a negative effect at position 4. Finally, methoxy groups at positions 3, 4, and 5 of the B-ring markedly increased cytotoxicity and, therefore, should be avoided.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Charlotte Gauthier
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphaël Terreux
- Equipe Bioinformatique: structures et interactions, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rémy Kachadourian
- Department of Medicine, National Jewish Health, Denver Colorado 80206, United States
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver Colorado 80206, United States
| | - Sheila M. B. Winnischofer
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria E. M. Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Véronique Frachet
- AGing Imaging Modeling, FRE 3405, Université Joseph Fourier, CNRS, EPHE, Faculté de Médecine, La Tronche, France
| | - Xavier Ronot
- AGing Imaging Modeling, FRE 3405, Université Joseph Fourier, CNRS, EPHE, Faculté de Médecine, La Tronche, France
| | - Attilio Di Pietro
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Ahcène Boumendjel
- Université Joseph Fourier—Grenoble/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, Grenoble, France
| |
Collapse
|
50
|
Gu X, Ren Z, Tang X, Peng H, Ma Y, Lai Y, Peng S, Zhang Y. Synthesis and biological evaluation of bifendate-chalcone hybrids as a new class of potential P-glycoprotein inhibitors. Bioorg Med Chem 2012; 20:2540-8. [PMID: 22429509 DOI: 10.1016/j.bmc.2012.02.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) is one of the major problems to successful cancer chemotherapy. To find novel effective P-gp inhibitors, a series of bifendate-chalcone hybrids were synthesized and evaluated. Among them, the most active compound 8g had little intrinsic cytotoxicity (IC(50)>200 μM), and could increase accumulation of Rhodamine 123 in K562/A02 cells more potently than bifendate and verapamil (VRP) by inhibiting P-gp efflux function. And 8g displayed potent chemo-sensitizing effect and persisted for much longer time (>24h) compared with VRP (<6h). In addition, 8g, unlike VRP, showed no stimulation on the P-gp ATPase activity, suggesting it is not a P-gp substrate. Therefore, 8g may represent a promising lead to develop MDR reversal agents for cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaoke Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|