1
|
Gao C, Li X, Liu T, Wang W, Wu J. An overview of phenylsulfonylfuroxan-based nitric oxide donors for cancer treatment. Bioorg Chem 2024; 154:108020. [PMID: 39657549 DOI: 10.1016/j.bioorg.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule integral to numerous physiological processes, including tumor modulation, cardiovascular regulation, and systemic physiological functions. Its dual role in promoting and inhibiting tumor growth makes it a focal point of contemporary oncological research. Phenylsulfonylfuroxan, a classical NO donor, has been shown to significantly elevate NO levels, thereby inducing apoptosis and inhibiting proliferation and metastasis in tumor cells. It enhances the efficacy of chemotherapy, radiotherapy, and immunotherapy, reverses multidrug resistance (MDR), and impedes tumor progression. Notably, phenylsulfonylfuroxan have the ability to trigger ferroptosis in cancer cells by binding covalently to inhibit glutathione peroxidase 4 (GPX4). Recent developments in phenylsulfonylfuroxan-based therapies have positioned them as crucial in the advancement of cancer treatment modalities. This review elucidates the mechanism by which phenylsulfonylfuroxan releases NO and summarizes the significant advancements over the past 16 years in the research and development of phenylsulfonylfuroxan conjugates with various anticancer agents for targeted cancer therapy.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tong Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
3
|
Sjödin B, Mannervik B. Role of human glutathione transferases in biotransformation of the nitric oxide prodrug JS-K. Sci Rep 2021; 11:20765. [PMID: 34675290 PMCID: PMC8531399 DOI: 10.1038/s41598-021-00327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO) plays a prominent physiological role as a low-molecular-mass signal molecule involved in diverse biological functions. Great attention has been directed to pharmacologically modulating the release of NO for various therapeutic applications. We have focused on O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) as an example of diazeniumdiolate prodrugs with potential for cancer chemotherapy. JS-K is reportedly activated by glutathione conjugation by glutathione transferase (GST), but the scope of activities among the numerous members of the GSTome is unknown. We demonstrate that all human GSTs tested except GST T1-1 are active with JS-K as a substrate, but their specific activities are notably spanning a > 100-fold range. The most effective enzyme was the mu class member GST M2-2 with a specific activity of 273 ± 5 µmol min-1 mg-1 and the kinetic parameters Km 63 µM, kcat 353 s-1, kcat/Km 6 × 106 M-1 s-1. The abundance of the GSTs as an ensemble and their high catalytic efficiency indicate that release of NO occurs rapidly in normal tissues such that this influence must be considered in clarification of the tumor-killing effect of JS-K.
Collapse
Affiliation(s)
- Birgitta Sjödin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Korman DB, Ostrovskaya LA, Vanin AF. Nitric Oxide Donors as Potential Antitumor Agents. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092102010x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
5
|
Liu L, Xing Y, Cao M, Xu J, Chen J. Exogenous NO induces apoptosis of hepatocellular carcinoma cells via positive p38/JNK signaling pathway and negative ERK signaling pathways. Mol Cell Biochem 2021; 476:1651-1661. [PMID: 33420899 DOI: 10.1007/s11010-020-04032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
JS-K as an exogenous NO donor could release NO after activation by glutathione S-transferases (GSTs). The present study explores the effects of JS-K on MAPK pathway in HepG2 and Bel-7402 cells. JS-K significantly prompted apoptosis and SB203580 (a p38 inhibitor) and SP600125 (a JNK inhibitor) prior to JS-K could partly reverse apoptosis and activation of cleaved-caspase-3 and cleaved PARP. However, U0126 (a MEK inhibitor) strengthened the cell apoptosis and the expressions of cleaved-caspase-3 and cleaved PARP. JS-K caused phosphorylation of p38 MAPK and JNK but attenuated phosphorylation of ERK, which were reversed by Carboxy-PTIO (a NO scavenger). Meanwhile, the phosphorylation of HSP27, c-JUN and ATF-2 were activated in JS-K-treated cells. SB203580 and SP600125 could attenuate phosphorylation of p38 MAPK and JNK, respectively. The phosphorylation in downstream substrates of p38 MAPK and JNK was also abolished by SB203580 and SP600125 in JS-K-treated cells. Additionally, JS-K decreased phosphorylation of c-Raf, which subsequently caused a decrease of MEK1/2 phosphorylation. Several downstream targets of ERK1/2 including p90RSK and transcription factors (e.g., Elk-1, c-Myc and c-Fos) were inhibited. U0126 potentiated JS-K-induced inhibitory effect of Raf/MEK/ERK pathway. The same results were also observed in the downstream substrates of ERK1/2 including p90RSK, Elk-1, c-Myc and c-Fos. Moreover, Carboxy-PTIO abolished the inhibitory effect of Raf/MEK/ERK pathway triggered by JS-K. Finally, JS-K significantly suppressed the growth of rat primary hepatic carcinoma via MAPK pathway in vivo. Taken together, JS-K can induce hepatocellular carcinoma cells apoptosis through its activation of JNK and p38 MAPK and inactivation of Raf/MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China.
| | - Yihao Xing
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Mengyao Cao
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Jinglei Xu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Jingjing Chen
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| |
Collapse
|
6
|
Narayanankutty A, Job JT, Narayanankutty V. Glutathione, an Antioxidant Tripeptide: Dual Roles in Carcinogenesis and Chemoprevention. Curr Protein Pept Sci 2020; 20:907-917. [PMID: 30727890 DOI: 10.2174/1389203720666190206130003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Glutathione (GSH or reduced glutathione) is a tripeptide of gamma-Glutamyl-cysteinylglycine and the predominant intracellular antioxidant in many organisms including humans. GSH and associated enzymes are controlled by a transcription factor-nuclear factor-2 related erythroid factor-2 (Nrf2). In cellular milieu, GSH protects the cells essentially against a wide variety of free radicals including reactive oxygen species, lipid hydroperoxides, xenobiotic toxicants, and heavy metals. It has two forms, the reduced form or reduced glutathione (GSH) and oxidized form (GSSG), where two GSH moieties combine by sulfhydryl bonds. Glutathione peroxidase (GPx) and glutathione-s-transferase (GST) essentially perform the detoxification reactions using GSH, converting it into GSSG. Glutathione reductase (GR) operates the salvage pathway by converting GSSG to GSH with the expense of NADPH and restores the cellular GSH pool. Hence, GSH and GSH-dependent enzymes are necessary for maintaining the normal redox balance in the body and help in cell survival under stress conditions. In addition, GST removes various carcinogenic compounds offering a chemopreventive property, whereas the GSH system plays a significant role in regulating the cellular survival by offering redox stability in a variety of cancers including prostate, lung, breast, and colon cancer. Studies have also indicated that GSH inhibitors, such as buthionine sulfoximine, improve the chemo-sensitivity in cancer cells. In addition, GSH and dependent enzymes provide a survival advantage for cancer cells against chemotherapeutic drugs and radiotherapy.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Postgraduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri (Affiliated to University of Calicut), Calicut- 673 019, Kerala, India
| | - Joice Tom Job
- Postgraduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri (Affiliated to University of Calicut), Calicut- 673 019, Kerala, India
| | | |
Collapse
|
7
|
Liu B, Huang X, Li Y, Liao W, Li M, Liu Y, He R, Feng D, Zhu R, Kurihara H. JS-K, a nitric oxide donor, induces autophagy as a complementary mechanism inhibiting ovarian cancer. BMC Cancer 2019; 19:645. [PMID: 31262254 PMCID: PMC6604176 DOI: 10.1186/s12885-019-5619-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the second most frequent gynecological cancer and is associated with a poor prognosis because OC progression is often asymptoma-tic and is detected at a late stage. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. As a nitric oxide prodrug, JS-K is reported highly cytotoxic to human cancer cells such as acute myeloid leukemia, multiple myeloma and breast cancer. This study is aim to investigate the influence of JS-K on proliferation and apoptosis in ovarian cancer cells and explored possible autophagy-related mechanisms, which will contribute to future ovarian cancer therapy and supply theory support that JS-K holds great promise as a novel therapeutic agent against ovarian cancer. METHODS The cytotoxicity, extracellular ROS/RNS activity and apoptotic effect of JS-K and indicated inhibitors on ovarian cancer cells in vitro were evaluated by MTT assay, extracellular ROS/RNS assay, caspases activities assay and western blot. Further autophagy effect of JS-K and indicated inhibitors were examined by MTT assay, cell transfection, immunofluorescence analysis, transmission electron microscopy (TEM) analysis and western blot on ovarian cancer cells in vitro. In vivo, the BALB/c-nude female mice with SKOV3 ovarian cancer cells xenograft were used to examine the efficacy of JS-K treatment on tumor growth. PCNA and p62 proteins were analyzed by immunohistochemistry. RESULTS In vitro, JS-K inhibited the proliferation of ovarian cancer cells, induced apoptosis and cell nucleus shrinkage, enhanced the enzymatic activity of caspase-3/7/8/9, and significantly increased the production of ROS/RNS in ovarian cancer A2780 and SKOV3 cells, these effects were attenuated by inhibition of NAC. In addition, JS-K induced autophagy-related proteins and autophagosomes changes in ovarian cancer A2780 and SKOV3 cells. In vivo, JS-K inhibited tumor growth, decreased p62 protein expression and increased the expression levels of PCNA in xenograft models which were established using SKOV3 ovarian cancer cells. CONCLUSION Taken together, we demonstrated that ROS/RNS stress-mediated apoptosis and autophagy are mechanisms by which SKOV3 cells undergo cell death after treatment with JS-K in vitro. Moreover, JS-K inhibited SKOV3 tumor growth in vivo. An alternative therapeutic approach for triggering cell death in cancer cells could constitute a useful multimodal therapies for treating ovarian cancer, which is known for its resistance to apoptosis-inducing drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Xiaojie Huang
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Weiguo Liao
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Yi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Rongrong He
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou, Medical University, Guangzhou, 511436 Guangdong China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 Jiangsu China
| | - Hiroshi Kurihara
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
8
|
Zhao X, Cai A, Peng Z, Liang W, Xi H, Li P, Chen G, Yu J, Chen L. JS-K induces reactive oxygen species-dependent anti-cancer effects by targeting mitochondria respiratory chain complexes in gastric cancer. J Cell Mol Med 2019; 23:2489-2504. [PMID: 30672108 PMCID: PMC6433691 DOI: 10.1111/jcmm.14122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
As a nitric oxide (NO) donor prodrug, JS‐K inhibits cancer cell proliferation, induces the differentiation of human leukaemia cells, and triggers apoptotic cell death in various cancer models. However, the anti‐cancer effect of JS‐K in gastric cancer has not been reported. In this study, we found that JS‐K inhibited the proliferation of gastric cancer cells in vitro and in vivo and triggered mitochondrial apoptosis. Moreover, JS‐K induced a significant accumulation of reactive oxygen species (ROS), and the clearance of ROS by antioxidant reagents reversed JS‐K‐induced toxicity in gastric cancer cells and subcutaneous xenografts. Although JS‐K triggered significant NO release, NO scavenging had no effect on JS‐K‐induced toxicity in vivo and in vitro. Therefore, ROS, but not NO, mediated the anti‐cancer effects of JS‐K in gastric cancer. We also explored the potential mechanism of JS‐K‐induced ROS accumulation and found that JS‐K significantly down‐regulated the core proteins of mitochondria respiratory chain (MRC) complex I and IV, resulting in the reduction of MRC complex I and IV activity and the subsequent ROS production. Moreover, JS‐K inhibited the expression of antioxidant enzymes, including copper‐zinc‐containing superoxide dismutase (SOD1) and catalase, which contributed to the decrease of antioxidant enzymes activity and the subsequent inhibition of ROS clearance. Therefore, JS‐K may target MRC complex I and IV and antioxidant enzymes to exert ROS‐dependent anti‐cancer function, leading to the potential usage of JS‐K in the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng Peng
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenquan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Peiyu Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guozhu Chen
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Jiyun Yu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
9
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
10
|
Huang Z, Liu L, Chen J, Cao M, Wang J. JS-K as a nitric oxide donor induces apoptosis via the ROS/Ca 2+/caspase-mediated mitochondrial pathway in HepG2 cells. Biomed Pharmacother 2018; 107:1385-1392. [PMID: 30257354 DOI: 10.1016/j.biopha.2018.08.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023] Open
Abstract
JS-K, (O2-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen 1-ium-1, 2-diolate), is a novel diazeniumdiolate-based nitric oxide donor prodrug. The present study investigated the relationship between reactive oxygen species (ROS) elevation, Ca2+ overload and mitochondrial disruption in JS-K-induced apoptosis. JS-K could significantly inhibit cell growth and induce apoptosis in a dose-dependent manner. Meanwhile, JS-K caused the accumulation of ROS, overload of Ca2+, decrease of mitochondrial membrane potential, release of cytochrome c (Cyt c) from mitochondria to the cytoplasm, increase of Bax-to-Bcl-2 ratio and activation of caspase- 9/3. NAC (an antioxidant) or BAPTA (an intracellular Ca2+ chelator) could partially reverse the above events, while BAPTA had little effect on the levels of ROS. Furthermore, pre-treatment with Carboxy-PTIO (a NO scavenger) significantly blocked the increasing of ROS, cytosolic Ca2+ and reversed the loss of mitochondrial membrane potential in JS-K-induced apoptosis. Taken together, the results suggested that NO released from JS-K could significantly induce HepG2 cell apoptosis through a ROS/Ca2+/caspase-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Zile Huang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China.
| | - Jingjing Chen
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Mengyao Cao
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| |
Collapse
|
11
|
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018; 7:8. [PMID: 29362397 PMCID: PMC5833873 DOI: 10.1038/s41389-017-0025-3] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Glutathione transferase classical GSH conjugation activity plays a critical role in cellular detoxification against xenobiotics and noxious compounds as well as against oxidative stress. However, this feature is also exploited by cancer cells to acquire drug resistance and improve their survival. As a result, various members of the family were found overexpressed in a number of different cancers. Moreover several GST polymorphisms, ranging from null phenotypes to point mutations, were detected in members of the family and found to correlate with the onset of neuro-degenerative diseases. In the last decades, a great deal of research aimed at clarifying the role played by GSTs in drug resistance, at developing inhibitors to counteract this activity but also at exploiting GSTs for prodrugs specific activation in cancer cells. Here we summarize some of the most important achievements reached in this lively area of research.
Collapse
Affiliation(s)
- Nerino Allocati
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.
| | - Michele Masulli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.,CESI-MET, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
12
|
Xue R, Wu J, Luo X, Gong Y, Huang Y, Shen X, Zhang H, Zhang Y, Huang Z. Design, Synthesis, and Evaluation of Diazeniumdiolate-Based DNA Cross-Linking Agents Activatable by Glutathione S-Transferase. Org Lett 2016; 18:5196-5199. [PMID: 27696880 DOI: 10.1021/acs.orglett.6b02222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel class of O2-(2,4-dinitrophenyl)-1-[N,N-bis(2-substituted ethyl)amino]diazen-1-ium-1,2-diolates 4-6 were designed, synthesized, and biologically evaluated. The most active compound 6 caused significant DNA damage by releasing N,N-bis(2-TsO ethyl)amine and two molecules of nitric oxide (NO) after activation by GST/GSH in cancer cells, being more cytotoxic against three cancer cell lines than a well-known diazeniumdiolate-based anticancer agent JS-K, suggesting that the strategy has potential to extend to other O2-derived diazeniumdiolates to improve anticancer activity.
Collapse
Affiliation(s)
- Rongfang Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Xiaojun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Yan Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Yun Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Xinxin Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Honghua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening and ‡Foreign Languages Department, China Pharmaceutical University , Nanjing 210009, PR China
| |
Collapse
|
13
|
Dharmaraja AT, Ravikumar G, Chakrapani H. Arylboronate Ester Based Diazeniumdiolates (BORO/NO), a Class of Hydrogen Peroxide Inducible Nitric Oxide (NO) Donors. Org Lett 2014; 16:2610-3. [DOI: 10.1021/ol5010643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Allimuthu T. Dharmaraja
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Govindan Ravikumar
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| |
Collapse
|
14
|
Tan L, Wan A, Zhu X, Li H. Nitric oxide release triggered by two-photon excited photoluminescence of engineered nanomaterials. Chem Commun (Camb) 2014; 50:5725-8. [PMID: 24740587 DOI: 10.1039/c4cc01126k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new strategy toward controllable release of NO for therapeutic purpose is described. Mn(2+)-doped ZnS quantum dots with NIR-II to visible upconversion properties were encapsulated by chitosan, with which photochemical NO precursors were conjugated to generate nanostructured materials capable of releasing NO under NIR-II irradiation.
Collapse
Affiliation(s)
- Lianjiang Tan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | |
Collapse
|
15
|
Kaczmarek MZ, Holland RJ, Lavanier SA, Troxler JA, Fesenkova VI, Hanson CA, Cmarik JL, Saavedra JE, Keefer LK, Ruscetti SK. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug JS-K in murine erythroleukemia cells. Leuk Res 2014; 38:377-82. [PMID: 24461365 PMCID: PMC3943942 DOI: 10.1016/j.leukres.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/13/2013] [Accepted: 12/01/2013] [Indexed: 12/28/2022]
Abstract
The nitric oxide (NO) prodrug JS-K, a promising anti-cancer agent, consists of a diazeniumdiolate group necessary for the release of NO as well as an arylating ring. In this study, we research the mechanism by which JS-K kills a murine erythroleukemia cell line and determine the roles of NO and arylation in the process. Our studies indicate that JS-K inhibits the PI 3-kinase/Akt and MAP kinase pathways. This correlates with the activation of the tumor suppressor FoxO3a and increased expression of various caspases, leading to apoptosis. The arylating capability of JS-K appears to be sufficient for inducing these biological effects. Overall, these data suggest that JS-K kills tumor cells by arylating and inactivating signaling molecules that block the activation of a tumor suppressor.
Collapse
Affiliation(s)
- Monika Z Kaczmarek
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ryan J Holland
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen A Lavanier
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jami A Troxler
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Valentyna I Fesenkova
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Charlotte A Hanson
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joan L Cmarik
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joseph E Saavedra
- Science Applications International Corporation-Frederick, National Cancer Institute, Frederick, MD, USA
| | - Larry K Keefer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sandra K Ruscetti
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
16
|
Kim J, Saravanakumar G, Choi HW, Park D, Kim WJ. A platform for nitric oxide delivery. J Mater Chem B 2014; 2:341-356. [DOI: 10.1039/c3tb21259a] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Role of glutathione in cancer progression and chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:972913. [PMID: 23766865 PMCID: PMC3673338 DOI: 10.1155/2013/972913] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/19/2023]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.
Collapse
|
18
|
Ruzza P, Calderan A. Glutathione Transferase (GST)-Activated Prodrugs. Pharmaceutics 2013; 5:220-31. [PMID: 24300447 PMCID: PMC3834953 DOI: 10.3390/pharmaceutics5020220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase (formerly GST) catalyzes the inactivation of various electrophile-producing anticancer agents via conjugation to the tripeptide glutathione. Moreover, several data link the overexpression of some GSTs, in particular GSTP1-1, to both natural and acquired resistance to various structurally unrelated anticancer drugs. Tumor overexpression of these proteins has provided a rationale for the search of GST inhibitors and GST activated cytotoxic prodrugs. In the present review we discuss the current structural and pharmacological knowledge of GST-activated cytotoxic compounds.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padova Unit, Via Marzolo 1, Padova 35131, Italy.
| | | |
Collapse
|
19
|
Weidensteiner C, Reichardt W, Shami PJ, Saavedra JE, Keefer LK, Baumer B, Werres A, Jasinski R, Osterberg N, Weyerbrock A. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI. Nitric Oxide 2013; 30:17-25. [PMID: 23370169 PMCID: PMC3617040 DOI: 10.1016/j.niox.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic drugs into brain tumors. DCE-MRI is a non-invasive, repeatable imaging modality to monitor biological effects of NO donors and other experimental therapeutics in intracranial tumor models.
Collapse
Affiliation(s)
- Claudia Weidensteiner
- Dept. of Radiology/Medical Physics, University Medical Center Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maciag AE, Holland RJ, Robert Cheng YS, Rodriguez LG, Saavedra JE, Anderson LM, Keefer LK. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol 2013; 1:115-24. [PMID: 24024144 PMCID: PMC3757670 DOI: 10.1016/j.redox.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022] Open
Abstract
JS-K is a nitric oxide (NO)-releasing prodrug of the O (2)-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH) via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion) spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.
Collapse
Key Words
- ATF, activating transcription factor
- Arylated diazeniumdiolate
- DAF-FM, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate
- DCF-DA, 5-(and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate
- DMSO, dimethyl sulfoxide
- FBS, fetal bovine serum
- GSH, glutathione
- GSSG, glutathione disulfide (oxidized GSH)
- Glutathione
- HBSS, Hank's balanced salt solution
- IPA, Ingenuity Pathway Analysis
- JS-K, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate
- LC/MS, liquid chromatography/mass spectrometry
- Leukemia
- MAPK, mitogen-activated protein kinase
- NAC, N-acetylcysteine
- NO, nitric oxide
- NSCLC, non-small cell lung cancer
- Nitric oxide
- PARP, poly (ADP-ribose) polymerase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SAPK/JNK, stress activated protein kinase/c-jun N-terminal kinase.
Collapse
Affiliation(s)
- Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ryan J. Holland
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Y.-S. Robert Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Luis G. Rodriguez
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lucy M. Anderson
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Larry K. Keefer
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
21
|
Abstract
BACKGROUND Glutathione (GSH) and related enzymes are critical to cell protection from toxins, both endogenous and environmental, including a number of anti-cancer cytotoxic agents. SCOPE OF REVIEW Enhancing GSH and associated enzymes represents a longtime and persistent aim in the search for cytoprotective strategies against cancer, neurologic degeneration, pulmonary and inflammatory conditions, as well as cardiovascular ailments. The challenge is to identify effective GSH analogues or precursors that generate mimic molecules with glutathione's cellular protective effects. This review will provide an update on these efforts. Much effort has also been directed at depleting cellular GSH and related cytoprotective effects, in order to sensitize established tumors to the cytotoxic effects of anti-cancer agents. Efforts to deplete GSH have been limited by the challenge of selectivity doing so in tumor and not in normal tissue so as to avoid enhancing the toxicity of anti-cancer drugs. This review will also provide an update of efforts at overcoming the challenge of targeting the desired GSH depletion to tumor cells. MAJOR CONCLUSIONS This chapter provides a brief background and update of progress in the development and use of GSH analogues in the therapeutic setting, including the pharmacological aspects of these compounds. GENERAL SIGNIFICANCE This is an area of enormous research activity, and major advances promise the advent of novel therapeutic opportunities in the near future. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
22
|
Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. ACTA ACUST UNITED AC 2012; 65:399-412. [DOI: 10.1111/j.1574-695x.2012.00954.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/31/2022]
|
23
|
Nandurdikar RS, Maciag AE, Holland RJ, Cao Z, Shami PJ, Anderson LM, Keefer LK, Saavedra JE. Structural modifications modulate stability of glutathione-activated arylated diazeniumdiolate prodrugs. Bioorg Med Chem 2012; 20:3094-9. [PMID: 22480849 PMCID: PMC3590845 DOI: 10.1016/j.bmc.2012.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
JS-K, a diazeniumdiolate-based nitric oxide (NO)-releasing prodrug, is currently in late pre-clinical development as an anti-cancer drug candidate. This prodrug was designed to be activated by glutathione (GSH) to release NO. To increase the potency of JS-K, we are investigating the effect of slowing the reaction of the prodrugs with GSH. Herein, we report the effect of replacement of nitro group(s) by other electron-withdrawing group(s) in JS-K and its homo-piperazine analogues on GSH activation and the drugs' biological activity. We show that nitro-to-cyano substitution increases the half-life of the prodrug in the presence of GSH without compromising the compound's in vivo antitumor activity.
Collapse
Affiliation(s)
- Rahul S. Nandurdikar
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ryan J. Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Zhao Cao
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Paul J. Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lucy M. Anderson
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
24
|
Duan S, Cai S, Xie Y, Bagby T, Ren S, Forrest ML. Synthesis and characterization of a multi-arm poly(acrylic acid) star polymer for application in sustained delivery of cisplatin and a nitric oxide prodrug. ACTA ACUST UNITED AC 2012; 50:2715-2724. [PMID: 26549934 DOI: 10.1002/pola.26059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functionalized polymeric nanocarriers have been recognized as drug delivery platforms for delivering therapeutic concentrations of chemotherapies. Of this category, star-shaped multiarm polymers are emerging candidates for targeted delivery of anti-cancer drugs, due to their compact structure, narrow size distribution, large surface area and high water solubility. In this study, we synthesized a multi-arm poly(acrylic acid) star polymer via MADIX/RAFT polymerization and characterized it using NMR and size exclusion chromatography. The poly(acrylic acid) star polymer demonstrated excellent water solubility and extremely low viscosity, making it highly suited for targeted drug delivery. Subsequently, we selected a hydrophilic drug, cisplatin, and a hydrophobic nitric oxide-donating prodrug, O2-(2,4-dinitrophenyl) 1-[4-(2-hydroxy)ethyl]-3-methylpiperazin-1-yl]diazen-1-ium-1,2-diolate, as two model compounds to evaluate the feasibility of using poly(acrylic acid) star polymers for delivery of chemotherapeutics. After synthesizing and characterizing two poly(acrylic acid) star polymer-based nanoconjugates, poly(acrylic acid)-cisplatin (acid-Pt) and poly(acrylic acid)-nitric oxide prodrug (acid-NO), the in vitro drug release kinetics of both acid-Pt and acid-NO were determined at physiological conditions. In summary, we have designed and evaluated a polymeric nanocarrier for sustained-delivery of chemotherapies, either as a single treatment or a combination therapy regimen.
Collapse
Affiliation(s)
- Shaofeng Duan
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Shuang Cai
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Yumei Xie
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Taryn Bagby
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Shenqiang Ren
- University of Kansas, 1251 Wescoe Hall Drive, 3012 Malott Hall, Lawrence, KS 66045
| | | |
Collapse
|
25
|
Weyerbrock A, Osterberg N, Psarras N, Baumer B, Kogias E, Werres A, Bette S, Saavedra JE, Keefer LK, Papazoglou A. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas. Neurosurgery 2012; 70:497-510; discussion 510. [PMID: 21849924 PMCID: PMC3253212 DOI: 10.1227/neu.0b013e31823209cf] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutathione S-transferases (GSTs) control multidrug resistance and are upregulated in many cancers, including malignant gliomas. The diazeniumdiolate JS-K generates nitric oxide (NO) on enzymatic activation by glutathione and GST, showing promising NO-based anticancer efficacy. OBJECTIVE To evaluate the role of NO-based antitumor therapy with JS-K in U87 gliomas in vitro and in vivo. METHODS U87 glioma cells and primary glioblastoma cell lines were exposed to JS-K and a variety of inhibitors to study cell death by necrosis, apoptosis, and other mechanisms. GST expression was evaluated by immunocytochemistry, polymerase chain reaction, and Western blot, and NO release from JS-K was studied with a NO assay. The growth-inhibitory effect of JS-K was studied in a U87 xenograft model in vivo. RESULTS Dose-dependent inhibition of cell proliferation was observed in human U87 glioma cells and primary glioblastoma cells in vitro. Cell death was partially induced by caspase-dependent apoptosis, which could be blocked by Z-VAD-FMK and Q-VD-OPH. Inhibition of GST by sulfasalazine, cGMP inhibition by ODQ, and MEK1/2 inhibition by UO126 attenuated the antiproliferative effect of JS-K, suggesting the involvement of various intracellular death signaling pathways. Response to JS-K correlated with mRNA and protein expression of GST and the amount of NO released by the glioma cells. Growth of U87 xenografts was reduced significantly, with immunohistochemical evidence for increased necrosis and apoptosis and reduced proliferation. CONCLUSION Our data show for the first time the potent antiproliferative effect of JS-K in gliomas in vitro and in vivo. These findings warrant further investigation of this novel NO-releasing prodrug in gliomas.
Collapse
Affiliation(s)
- Astrid Weyerbrock
- Department of Neurosurgery, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maciag AE, Holland RJ, Saavedra JE, Chakrapani H, Shami PJ, Keefer LK. Thiol Modification By Pharmacologically Active Agents of the Diazeniumdiolate Class. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2012; 3:91-95. [PMID: 23585982 PMCID: PMC3622254 DOI: 10.1615/forumimmundisther.2012006334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Promising drug candidates of the diazeniumdiolate (NONOate) chemical family include several types of thiol modification among their mechanisms of action: 1) drugs designed to release nitric oxide (NO) on reaction with the thiol group of glutathione (GSH) arylate the GSH, a step that removes reducing equivalents from the cell; (2) a similar reaction of the drug with the thiol group of a protein changes its structure, leading to potentially impaired function and cell death; (3) the NO generated as a byproduct in the above reactions can undergo oxidation, leading to S-nitrosylation and S-glutathionylation; and (4) diazeniumdiolates can also generate nitroxyl, which reacts with thiol groups to form disulfides or sulfinamides.
Collapse
Affiliation(s)
- Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., Frederick, Maryland
| | - Ryan J. Holland
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - Paul J. Shami
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah
| | - Larry K. Keefer
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
27
|
Abstract
Nitric oxide (NO)-releasing agents such as JS-K and NO-releasing hybrids such as NO- and NONO-nonsteroidal anti-inflammatory drugs are novel agents with great potential for controlling cancer. Although studied extensively, a key question pertaining to their molecular targets and mechanism of action remains unclear: the role of NO in the overall biological effect of these agents. It has been shown that NO can directly modify sulfhydryl residues of proteins through S-nitrosylation and induce apoptosis. We showed that 3 structurally diverse NO-nonsteroidal anti-inflammatory drugs S-nitrosylated nuclear factor-κB p65 in vitro and in vivo and also showed that these agents S-nitrosylated caspase-3 in vivo. JS-K reduced nuclear β-catenin and cyclin D1 protein levels without affecting cytosolic β-catenin expression. On the basis of a time course study, S-nitrsolyation of nuclear β-catenin was determined to precede its degradation. These data provide a mechanistic role for NO and a rationale for the chemopreventive effects of these novel agents.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031; Tel.: (212) 650-6641; -7692
| |
Collapse
|
28
|
Maciag AE, Nandurdikar RS, Hong SY, Chakrapani H, Diwan B, Morris NL, Shami PJ, Shiao YH, Anderson LM, Keefer LK, Saavedra JE. Activation of the c-Jun N-terminal kinase/activating transcription factor 3 (ATF3) pathway characterizes effective arylated diazeniumdiolate-based nitric oxide-releasing anticancer prodrugs. J Med Chem 2011; 54:7751-8. [PMID: 22003962 PMCID: PMC3422893 DOI: 10.1021/jm2004128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improved therapies are needed for nonsmall cell lung cancer. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Recently, we have shown that O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, 1) is effective against nonsmall cell lung cancer (NSCLC) cells in culture and in vivo. Here we report mechanistic studies with compound 1 and its homopiperazine analogue and structural modification of these into more stable prodrugs. Compound 1 and its homopiperazine analogue were potent cytotoxic agents against NSCLC cells in vitro and in vivo, concomitant with activation of the SAPK/JNK stress pathway and upregulation of its downstream effector ATF3. Apoptosis followed these events. An aryl-substituted analogue, despite extended half-life in the presence of glutathione, did not activate JNK or have antitumor activity. The data suggest that rate of reactivity with glutathione and activation of JNK/ATF3 are determinants of cancer cell killing by these prodrugs.
Collapse
Affiliation(s)
- Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Rahul S. Nandurdikar
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702
| | - Sam Y. Hong
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhalchandra Diwan
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Nicole L. Morris
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Paul J. Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Yih-Horng Shiao
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702
| | - Lucy M. Anderson
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702
| | - Larry K. Keefer
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
29
|
Ratanatawanate C, Chyao A, Balkus KJ. S-Nitrosocysteine-Decorated PbS QDs/TiO2 Nanotubes for Enhanced Production of Singlet Oxygen. J Am Chem Soc 2011; 133:3492-7. [DOI: 10.1021/ja109328a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chalita Ratanatawanate
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Amy Chyao
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Kenneth J. Balkus
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
30
|
Maciag AE, Chakrapani H, Saavedra JE, Morris NL, Holland RJ, Kosak KM, Shami PJ, Anderson LM, Keefer LK. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species. J Pharmacol Exp Ther 2011; 336:313-20. [PMID: 20962031 PMCID: PMC3033717 DOI: 10.1124/jpet.110.174904] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022] Open
Abstract
Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.
Collapse
Affiliation(s)
- Anna E Maciag
- SAIC-Frederick, Inc, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nath N, Chattopadhyay M, Pospishil L, Cieciura LZ, Goswami S, Kodela R, Saavedra JE, Keefer LK, Kashfi K. JS-K, a nitric oxide-releasing prodrug, modulates ß-catenin/TCF signaling in leukemic Jurkat cells: evidence of an S-nitrosylated mechanism. Biochem Pharmacol 2010; 80:1641-9. [PMID: 20797387 PMCID: PMC6959133 DOI: 10.1016/j.bcp.2010.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
Abstract
β-Catenin is a central player of the Wnt signaling pathway that regulates cell-cell adhesion and may promote leukemia cell proliferation. We examined whether JS-K, an NO-donating prodrug, modulates the Wnt/β-catenin/TCF-4 signaling pathway in Jurkat T-Acute Lymphoblastic Leukemia cells. JS-K inhibited Jurkat T cell growth in a concentration and time-dependent manner. The IC(50)s for cell growth inhibition were 14±0.7 and 9±1.2μM at 24 and 48h, respectively. Treatment of the cells with JS-K for 24h, caused a dose-dependent increase in apoptosis from 16±3.3% at 10μM to 74.8±2% at 100μM and a decrease in proliferation. This growth inhibition was also due, in part, to alterations in the different phases of the cell cycle. JS-K exhibited a dose-dependent cytotoxicity as measured by LDH release at 24h. However, between 2 and 8h, LDH release was less than 20% for any indicated JS-K concentration. The β-catenin/TCF-4 transcriptional inhibitory activity was reduced by 32±8, 63±5, and 93±2% at 2, 10, and 25μM JS-K, respectively, based on luciferase reporter assays. JS-K reduced nuclear β-catenin and cyclin D1 protein levels, but cytosolic β-catenin expression did not change. Based on a time-course assay of S-nitrosylation of proteins by a biotin switch assay, S-nitrsolyation of nuclear β-catenin was determined to precede its degradation. A comparison of the S-nitrosylated nuclear β-catenin to the total nuclear β-catenin showed that β-catenin protein levels were degraded at 24h, while S-nitrosylation of β-catenin occurred earlier at 0-6h. The NO scavenger PTIO abrogated the JS-K mediated degradation of β-catenin demonstrating the need for NO.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
- Department of Life Sciences, New York Institute of Technology, New York, NY, United States
| | - Mitali Chattopadhyay
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Liliya Pospishil
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Lucyna Z. Cieciura
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Satindra Goswami
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Ravinder Kodela
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Joseph E. Saavedra
- Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Larry K. Keefer
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Khosrow Kashfi
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| |
Collapse
|
32
|
Biswas D, Deschamps JR, Keefer LK, Hrabie JA. Nitrogen-bound diazeniumdiolated amidines. Chem Commun (Camb) 2010; 46:5799-801. [PMID: 20589293 PMCID: PMC6959519 DOI: 10.1039/c0cc00849d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to amidines bearing ionizable alpha-CH bonds, which react with nitric oxide (NO) to add diazeniumdiolate groups at their alpha-carbons, benzamidine forms an N-bound diazeniumdiolate that can be further derivatized at the other amidine nitrogen and/or the terminal oxygen to form caged NO compounds as potential NO prodrugs.
Collapse
Affiliation(s)
- Debanjan Biswas
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
33
|
Mohr PC, Mohr A, Vila TP, Korth HG. Localization of hydrophobic N-diazeniumdiolates in aqueous micellar solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12785-12793. [PMID: 20614897 DOI: 10.1021/la101619y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The interaction of phenyl-substituted zwitterionic N-diazeniumdiolates PhCH(2)N[N(O)NO](-)(CH(2))(2)NH(3)(+) (1) and PhCH(2)N[N(O)NO](-)(CH(2))(2)NH(2)(+)CH(2)Ph (2) with aqueous micellar solutions of prototypal surfactants was investigated by means of UV/vis and (1)H NMR spectroscopy in order to establish the localization of hydrophobic N-diazeniumdiolates in micelles as a model for the binding of the NO donors in biological membranes. In the presence of sodium dodecyl sulfate (SDS), significant shifts of the apparent pK(a) values of 1 and 2 were observed, suggesting strong electrostatic interaction between the diazeniumdiolates and the negatively charged SDS micelles. No effect on both pK(a) and rate of NO release was found in the presence of Triton X-100. The solubilization site of micellar bound N-diazeniumdiolates was established by (1)H NMR spectroscopic studies, taking advantage of the spectroscopic effects induced by CH-pi interactions. The spectra indicate that in alkaline solutions of SDS 1 resides preferably at the micellar surface within the interfacial region, whereas the more hydrophobic NO donor 2 penetrates into the apolar region of the micelle. This suggests hydrophobic interaction as the main driving force for micellar binding of 2 in alkaline solution. Similar studies in presence of Triton X-100 indicate that 1 and 2 are adsorbed within the poly(oxyethylene) layer of the micellar surface rather than penetrating the palisade layer of the micelles. In alkaline solutions of hexadecyltrimethylammonium bromide (CTAB), 1 and 2 bind to the cationic micellar aggregates, whereby the solubilization site strongly depends on the hydrophobicity of the substrate. Up to a moderate pH of 8, the hydrophobic NO donor 2 penetrates the hydrocarbon region of the micelles. As a result, the rate of NO release from 2 is noticeably inhibited by the micellar aggregates due to the higher local concentration of hydroxide ions along the micelle-water interface. From solubilization studies, guidelines for the development and application of future NONOates can be derived. The rate of NO release from micellar bound diazeniumdiolates is determined by the surface charge of the micelles. This ability to tune stability is significant for the design and selection of potential NO delivery systems (drug formulations).
Collapse
Affiliation(s)
- Parveen Choudhary Mohr
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie; Institut für Chemie und Biochemie, Takustr. 3, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Keefer LK. Broad-Spectrum Anti-Cancer Activity of O-Arylated Diazeniumdiolates. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2010; 1:205-218. [PMID: 21949595 PMCID: PMC3179376 DOI: 10.1615/forumimmundisther.v1.i3.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
O(2)-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) and O(2)-{2,4-dinitro-5-[4-(N-methylamino)be nzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO) are O(2)-arylated diazeniumdiolates that have shown promising in vivo activity in a variety of rodent cancer models, including prostate cancer, leukemia, liver cancer, multiple myeloma, and ovarian cancer. This compound class was designed to be activated for anti-cancer effects by glutathione-S-transferase (GST)-induced release of cytotoxic nitric oxide (NO), but mechanistic studies have implicated a variety of pathways, some GST/NO-related, some not. Current work is focused on improving formulations and other drug development activities, as well as exploring possible new applications of these agents and their analogs. The selectivity of these drugs for attacking tumors while exhibiting little toxicity toward normal tissues suggests considerable promise for the treatment of various tumor types.
Collapse
Affiliation(s)
- Larry K Keefer
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD
| |
Collapse
|
35
|
Ning MS, Price SE, Ta JA, Davies KM. Nucleophilic reactivity of thiolate, hydroxide and phenolate ions towards a model O-arylated diazeniumdiolate prodrug in aqueous and cationic surfactant media. J PHYS ORG CHEM 2010; 23:220-226. [PMID: 21533014 PMCID: PMC3083076 DOI: 10.1002/poc.1607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The kinetics of aromatic nucleophilic substitution of the nitric oxide generating diazeniumdiolate ion, DEA/NO, by thiols, (L-glutathione, L-cysteine, DL-homocysteine, 1-propanethiol, 2-mercaptoethanol and sodium thioglycolate) from the prodrug, DNP-DEA/NO, has been examined in aqueous solution and in solutions of cationic DOTAP vesicles. Second-order rate constants in buffered aqueous solutions (k(RS(-) ) = 3.48 - 30.9 M(-1)s(-1); 30 °C) gave a linear Brønsted plot (β(nuc) = 0.414 ± 0.068) consistent with rate-limiting S(N)Ar nucleophilic attack by thiolate ions. Cationic DOTAP vesicles catalyze the thiolysis reactions with rate enhancements between 11 and 486-fold in Tris-HCl buffered solutions at pH 7.4. The maximum rate increase was obtained with thioglycolate ion. Thiolysis data are compared to data for nucleophilic displacement by phenolate (k(PhO(-) ) = 0.114 M(-1)s(-1)) and hydroxide (k(OH(-) ) = 1.82 × 10(-2) M(-1)s(-1), 37 °C) ions. The base hydrolysis reaction is accelerated by CTAB micelles and DODAC vesicles with vesicles being ca 3-fold more effective as catalysts. Analysis of the data using pseudophase ion-exchange formalism implies that the rate enhancement of the thiolysis and base hydrolysis reactions is due primarily to reactant concentration in the surfactant pseudophase.
Collapse
Affiliation(s)
- Matthew S. Ning
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, U.S.A
| | - Stacy E. Price
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, U.S.A
| | - Jackie A. Ta
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, U.S.A
| | - Keith M. Davies
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, U.S.A
| |
Collapse
|
36
|
Kumar V, Hong SY, Maciag AE, Saavedra JE, Adamson DH, Prud'homme RK, Keefer LK, Chakrapani H. Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and Double JS-K, through incorporation into PEG-protected nanoparticles. Mol Pharm 2010; 7:291-8. [PMID: 20000791 PMCID: PMC2815019 DOI: 10.1021/mp900245h] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO are protected from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
| | - Sam Y. Hong
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Douglas H. Adamson
- Department of Chemistry and Institute for Material Science, University of Connecticut, Storrs, Connecticut 06269
| | - Robert K. Prud'homme
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
| | - Larry K. Keefer
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
37
|
Nandurdikar RS, Maciag AE, Citro ML, Shami PJ, Keefer LK, Saavedra JE, Chakrapani H. Synthesis and evaluation of piperazine and homopiperazine analogues of JS-K, an anti-cancer lead compound. Bioorg Med Chem Lett 2009; 19:2760-2. [PMID: 19364650 PMCID: PMC2755573 DOI: 10.1016/j.bmcl.2009.03.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 10/21/2022]
Abstract
Here we report a number of novel JS-K structural analogues with sub-micromolar anti-proliferative activities against human leukemia cell lines HL-60 and U937; JS-K is the anti-cancer lead compound O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate. The ability of these compounds to generate intracellular nitric oxide correlated well with their observed anti-proliferative effects: analogues that had potent inhibitory activity against leukemia cells formed elevated levels of intracellular nitric oxide.
Collapse
Affiliation(s)
- Rahul S. Nandurdikar
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Sciences Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Michael L. Citro
- Basic Sciences Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Paul J. Shami
- Division of Oncology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Larry K. Keefer
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Saavedra
- Basic Sciences Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Harinath Chakrapani
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells. Genomics 2009; 94:32-8. [PMID: 19348908 DOI: 10.1016/j.ygeno.2009.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/11/2009] [Accepted: 03/26/2009] [Indexed: 01/01/2023]
Abstract
The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.
Collapse
|