1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Teng X, Stefaniak E, Willison KR, Ying L. Interplay between Copper, Phosphatidylserine, and α-Synuclein Suggests a Link between Copper Homeostasis and Synaptic Vesicle Cycling. ACS Chem Neurosci 2024; 15:2884-2896. [PMID: 39013013 PMCID: PMC11311125 DOI: 10.1021/acschemneuro.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ewelina Stefaniak
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| | - Keith R. Willison
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
4
|
Cheng R, Nishikawa Y, Wagatsuma T, Kambe T, Tanaka YK, Ogra Y, Tamura T, Hamachi I. Protein-Labeling Reagents Selectively Activated by Copper(I). ACS Chem Biol 2024; 19:1222-1228. [PMID: 38747299 DOI: 10.1021/acschembio.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper is an essential trace element that participates in many biological processes through its unique redox cycling between cuprous (Cu+) and cupric (Cu2+) oxidation states. To elucidate the biological functions of copper, chemical biology tools that enable selective visualization and detection of copper ions and proteins in copper-rich environments are required. Herein, we describe the design of Cu+-responsive reagents based on a conditional protein labeling strategy. Upon binding Cu+, the probes generated quinone methide via oxidative bond cleavage, which allowed covalent labeling of surrounding proteins with high Cu+ selectivity. Using gel- and imaging-based analyses, the best-performing probe successfully detected changes in the concentration of labile Cu+ in living cells. Moreover, conditional proteomics analysis suggested intramitochondrial Cu+ accumulation in cells undergoing cuproptosis. Our results highlight the power of Cu+-responsive protein labeling in providing insights into the molecular mechanisms of Cu+ metabolism and homeostasis.
Collapse
Affiliation(s)
- Rong Cheng
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
5
|
Dai X, Han Y, Jiao H, Shi F, Rabeah J, Brückner A. Aerobic Oxidative Synthesis of Formamides from Amines and Bioderived Formyl Surrogates. Angew Chem Int Ed Engl 2024; 63:e202402241. [PMID: 38567831 DOI: 10.1002/anie.202402241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/16/2024]
Abstract
Herein we present a new strategy for the oxidative synthesis of formamides from various types of amines and bioderived formyl sources (DHA, GLA and GLCA) and molecular oxygen (O2) as oxidant on g-C3N4 supported Cu catalysts. Combined characterization data from EPR, XAFS, XRD and XPS revealed the formation of single CuN4 sites on supported Cuphen/C3N4 catalysts. EPR spin trapping experiments disclosed ⋅OOH radicals as reactive oxygen species and ⋅NR1R2 radicals being responsible for the initial C-C bond cleavage. Control experiments and DFT calculations showed that the successive C-C bond cleavage in DHA proceeds via a reaction mechanism co-mediated by ⋅NR1R2 and ⋅OOH radicals based on the well-equilibrated CuII and CuI cycle. Our catalyst has much higher activity (TOF) than those based on noble metals.
Collapse
Affiliation(s)
- Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yunyan Han
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Yang M, Wu X, He Y, Li X, Yang L, Song T, Wang F, Yang CS, Zhang J. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system. Food Funct 2024; 15:2052-2063. [PMID: 38293823 DOI: 10.1039/d3fo03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity via regulating the renin-angiotensin system (RAS) in type 2 diabetic mice. The present study determined the pro-apoptosis activities and anticancer mechanisms of the EGCG oxidation-derived polymer preparation (the >10 kDa EGCG polymers) in digestive tract cancer cells. Upon incubation of the >10 kDa EGCG polymers with CaCo2 colon cancer cells, these polymers coated the cell surface and regulated multiple components of the RAS in favor of cancer inhibition, including the downregulation of angiotensin-converting enzyme (ACE), angiotensin-II (AngII) and AngII receptor type 1 (AT1R) in the pro-tumor axis, as well as the upregulation of angiotensin-converting enzyme 2 (ACE2) and angiotensin1-7 (Ang(1-7)) in the anti-tumor axis. The treatment also markedly increased angiotensinogen (AGT), which is the precursor of the angiotensin peptides. The regulation of these RAS components occurred prior to apoptosis. Similar pro-apoptotic mechanisms of the >10 kDa EGCG polymers, were also observed in TCA8113 oral cancer cells. The >10 kDa EGCG polymers exhibited compromised activities in scavenging or initiating reactive oxygen species compared to EGCG, but gained a higher reactivity toward sulfhydryl groups, including protein cysteine thiols. We propose that the polymers bind onto the cell surface and regulate multiple RAS components by reacting with the sulfhydryl groups on the ectodomains of transmembrane proteins.
Collapse
Affiliation(s)
- Mingchuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Xiuli Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
8
|
Xi G, Lu C, Wu Y, Chen Z, Xu K, Jia X, Zhao Z, Xu C, Wang Q. Effect of Different Carbon Sources on Antioxidant Properties of Exopolysaccharides Produced by Scleroderma areolatum (Agaricomycetes). Int J Med Mushrooms 2024; 26:67-76. [PMID: 38505904 DOI: 10.1615/intjmedmushrooms.2023052044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Five kinds of exopolysaccharides (EPS) were obtained by fermentation of Scleroderma areolatum Ehrenb. with sucrose, glucose, maltose, lactose, and fructose as carbon sources. Antioxidant abilities of the obtained EPSs were evaluated by inhibiting AAPH, HO·, and glutathione (GS·) induced oxidation of DNA and quenching 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS· and galvinoxyl radicals. The effects of carbon sources on the antioxidant properties of EPSs could be examined. The results showed that five EPSs can effectively inhibit radicals induced oxidation of DNA, and the thiobarbituric acid reactive substances (TBARS) percentages were 44.7%-80.8%, 52.3%-77.5%, and 44.7%-73.3% in inhibiting AAPH, HO·, and GS· induced oxidation of DNA, respectively. All five EPSs could scavenge ABTS· and galvinoxyh, and exhibit superior activity in scavenging free radicals. Antioxidant abilities of EPS with fructose as carbon source were highest among five EPS.
Collapse
Affiliation(s)
- Gaolei Xi
- Technology Center, China Tobacco Henan Industrial Co. Ltd., Zhengzhou, Henan, P.R. China
| | - Changtong Lu
- Technology Center, China Tobacco Henan Industrial Co. Ltd., Zhengzhou, Henan, P.R. China
| | - Yihong Wu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, P.R. China
| | - Zhifei Chen
- Technology Center, China Tobacco Henan Industrial Co. Ltd., Zhengzhou, Henan, P.R. China
| | - Kejing Xu
- Technology Center, China Tobacco Henan Industrial Co. Ltd., Zhengzhou, Henan, P.R. China
| | - Xuewei Jia
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Zhiwei Zhao
- Technology Center, China Tobacco Henan Industrial Co. Ltd., Zhengzhou, Henan, P.R. China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Qiuling Wang
- Technical Department, Henan Jinrui Flavoring and Essence Company, Zhengzhou, Henan, P.R. China
| |
Collapse
|
9
|
Zhang L, Fu JM, Song LB, Cheng K, Zhang F, Tan WH, Fan JX, Zhao YD. Ultrasmall Bi/Cu Coordination Polymer Combined with Glucose Oxidase for Tumor Enhanced Chemodynamic Therapy by Starvation and Photothermal Treatment. Adv Healthc Mater 2024; 13:e2302264. [PMID: 37812564 DOI: 10.1002/adhm.202302264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Multi-modal combination therapy for tumor is expected to have superior therapeutic effect compared with monotherapy. In this study, a super-small bismuth/copper-gallic acid coordination polymer nanoparticle (BCN) protected by polyvinylpyrrolidone is designed, which is co-encapsulated with glucose oxidase (GOX) by phospholipid to obtain nanoprobe BCGN@L. It shows that BCN has an average size of 1.8 ± 0.7 nm, and photothermal conversion of BCGN@L is 31.35% for photothermal imaging and photothermal therapy (PTT). During the treatment process of 4T1 tumor-bearing nude mice, GOX catalyzes glucose in the tumor to generate gluconic acid and hydrogen peroxide (H2 O2 ), which reacts with copper ions (Cu2+ ) to produce toxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT) and new fresh oxygen (O2 ) to supply to GOX for further catalysis, preventing tumor hypoxia. These reactions increase glucose depletion for starvation therapy , decrease heat shock protein expression, and enhance tumor sensitivity to low-temperature PTT. The in vitro and in vivo results demonstrate that the combination of CDT with other treatments produces excellent tumor growth inhibition. Blood biochemistry and histology analysis suggests that the nanoprobe has negligible toxicity. All the positive results reveal that the nanoprobe can be a promising approach for incorporation into multi-modal anticancer therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Physical Education, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jin-Mei Fu
- Jiangxi Sports Science and Medical Center, Nanchang, Jiangxi, 330000, P. R. China
| | - Lai-Bo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Wen-Hui Tan
- School of Physical Education, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
10
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
11
|
Zhou DN, Han L, Zhang Z, Wang YL, Zhang XP, Wu YJ, Xi GL. Synthesis and Antioxidant Properties of Psoralen Derivatives. Chem Biodivers 2023; 20:e202300620. [PMID: 37690995 DOI: 10.1002/cbdv.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Five psoralen derivatives were synthesized and the structures of them were characterized by 1 H-NMR, 13 C-NMR, and IR. The antioxidant properties of the compounds were tested by inhibiting the free radical-initiated DNA oxidation and scavenging the radical reaction. The results showed that the effective stoichiometric factors (n) of the compounds V and IV could reach 2.00 and 2.11 in the system of inhibiting the DNA oxidation reaction initiated by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). In the inhibition of ⋅OH-oxidation of the DNA system, compounds I~V showed antioxidant properties. The thiobarbituric acid absorbance (TBARS) percentages of compounds IV and V were 76.19 % and 78.84 %. Compounds I~V could also inhibit Cu2+ /GSH-oxidation of DNA, and all compounds exhibited good antioxidant properties except compound II (94.00 %). All the five compounds were able to trap diammonium 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) salt radical (ABTS+ ⋅), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH⋅) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-p-tolylox radical (galvinoxyl⋅). The ability of compounds I~V to scavenge those free radicals can be measured by the k values. The k values ranged from 0.07 to 0.82 in scavenging ABTS+ ⋅, galvinoxyl, and DPPH radicals, respectively.
Collapse
Affiliation(s)
- Dang-Nan Zhou
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Lu Han
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| | - Yun-Long Wang
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Xiao-Ping Zhang
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Yun-Jie Wu
- Tobacco Science, Henan Agricultural University /Flavors and Fragrance Engineering & Technology Research Center of Henan Province No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, China, 450046
| | - Gao-Lei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China, 450016
| |
Collapse
|
12
|
Gale JR, Hartnett-Scott K, Ross MM, Rosenberg PA, Aizenman E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J Neurochem 2023; 167:277-295. [PMID: 37702109 PMCID: PMC10591933 DOI: 10.1111/jnc.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.
Collapse
Affiliation(s)
- Jenna R. Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Karen Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Madeline M. Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Paul A. Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States, 02115
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| |
Collapse
|
13
|
Gupta K, Datta A. An activity-based fluorescent sensor with a penta-coordinate N-donor binding site detects Cu ions in living systems. Chem Commun (Camb) 2023; 59:8282-8285. [PMID: 37318277 DOI: 10.1039/d3cc02201c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An activity-based sensor afforded a 63 times fluorescence-enhancement with Cu2+/Cu+ ions and could image Cu2+/Cu+ in living cells and in a multicellular organism. The sensor functioned only in the presence of ambient dioxygen and glutathione, and the characterization of intermediates and products hinted toward a sensing mechanism involving a CuII hydroperoxo species.
Collapse
Affiliation(s)
- Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| |
Collapse
|
14
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Dayob K, Zengin A, Garifullin R, Guler MO, Abdullin TI, Yergeshov A, Salakhieva DV, Cong HH, Zoughaib M. Metal-Chelating Self-Assembling Peptide Nanofiber Scaffolds for Modulation of Neuronal Cell Behavior. MICROMACHINES 2023; 14:883. [PMID: 37421116 DOI: 10.3390/mi14040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
Synthetic peptides are promising structural and functional components of bioactive and tissue-engineering scaffolds. Here, we demonstrate the design of self-assembling nanofiber scaffolds based on peptide amphiphile (PA) molecules containing multi-functional histidine residues with trace metal (TM) coordination ability. The self-assembly of PAs and characteristics of PA nanofiber scaffolds along with their interaction with Zn, Cu, and Mn essential microelements were studied. The effects of TM-activated PA scaffolds on mammalian cell behavior, reactive oxygen species (ROS), and glutathione levels were shown. The study reveals the ability of these scaffolds to modulate adhesion, proliferation, and morphological differentiation of neuronal PC-12 cells, suggesting a particular role of Mn(II) in cell-matrix interaction and neuritogenesis. The results provide a proof-of-concept for the development of histidine-functionalized peptide nanofiber scaffolds activated with ROS- and cell-modulating TMs to induce regenerative responses.
Collapse
Affiliation(s)
- Kenana Dayob
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aygul Zengin
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Türkkuşu Kampüsü, Ankara 06790, Turkey
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Abdulla Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Hong Hanh Cong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Hanoi 100000, Vietnam
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
17
|
Mandil R, Prakash A, Rahal A, Koli S, Kumar R, Garg SK. Evaluation of oxidative stress-mediated cytotoxicity and genotoxicity of copper and flubendiamide: amelioration by antioxidants in vivo and in vitro. Toxicol Res (Camb) 2023; 12:232-252. [PMID: 37125329 PMCID: PMC10141782 DOI: 10.1093/toxres/tfad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Present study was designed to evaluate toxic effects of copper (Cu) (@ 33 mg/kg b.wt.) and flubendimide (Flb) (@ 200 mg/kg b.wt.) alone and/or in combination on blood-biochemical indices, oxidative stress, and drug metabolizing enzymes (DMEs) in vivo in male Wistar rats following oral exposure continuously for 90 days and their immunotoxic (cyto-genotoxic and apoptotic) potential in vitro on thymocytes. In in vivo study, ameliorative potential of α-tocopherol was assessed, whereas α-tocopherol, curcumin, resveratrol, and catechin were evaluated for protective effect in vitro. Significantly (P < 0.05) increased AST activity and increment in total bilirubin, uric acid, creatinine, and BUN levels; however, reduction in total protein, GSH content, reduced activities of SOD and GST, and increased lipid peroxidation and GPx activity with severe degenerative changes in histopathological examination of liver and kidney in group of Cu and Flb were observed. Treatment with α-tocopherol improved biochemical variables, redox status, and histoarchitecture of liver and kidney tissues. Reduced hepatic CYP450, CYPb5, APH, UGT, and GST activities observed in both Cu and α-tocopherol alone and their combination groups, whereas significant increment in Flb alone, while α-tocopherol in combination with xenobiotics improved the activities of hepatic DMEs. Primary cell culture of thymocytes (106 cells/ml) exposed to Cu and Flb each @ 40 μM increased TUNEL+ve cells, micronuclei induction, DNA shearing, and comet formation establishes their apoptotic and genotoxic potential, whereas treatment with antioxidants showed concentration-dependent significant reduction and their order of potency on equimolar concentration (10 μM) basis is: curcumin > resveratrol > catechin = α-tocopherol.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Anu Rahal
- Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura 281122, India
| | - Swati Koli
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Rahul Kumar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishvidyalay Evam Go- Anushandhan Sansthan (DUVASU), Near Civil Line, Mathura 281001, India
| | - Satish K Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| |
Collapse
|
18
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights. ACS OMEGA 2023; 8:4508-4526. [PMID: 36777601 PMCID: PMC9909689 DOI: 10.1021/acsomega.2c06939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
| | - Diego Chaparro
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
| | - David Morales-Morales
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Areli Flores-Gaspar
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
- Areli Flores-Gaspar − Departamento de Química,
Universidad Militar Nueva
Granada, Cajicá, 250247, Colombia.
| | - Jorge Alí-Torres
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Jorge Alí-Torres − Departamento de Química, Universidad Nacional de
Colombia, Sede Bogotá,11301, Bogotá, Colombia.
| |
Collapse
|
19
|
Mandal PK, Guha Roy R, Kalyani A. Distribution Pattern of Closed and Extended Forms of Glutathione in the Human Brain: MR Spectroscopic Study. ACS Chem Neurosci 2023; 14:270-276. [PMID: 36595311 DOI: 10.1021/acschemneuro.2c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glutathione (GSH) is a potent antioxidant synthesized de novo in cells and helps to detoxify free radicals in the brain and other organs. In vitro NMR studies from various research groups have reported primarily two sets of chemical shifts (2.80 or 2.96 ppm) of Cys-βCH2 depending on GSH sample preparation in either inert or oxygenated environments. A multi-center in vivo MRS human study has also validated the presence of two types of GSH conformer in the human brain. Our study is aimed at investigating the distribution patterns of the two GSH conformers from five brain regions, namely, ACC (anterior cingulate cortex), PCC (posterior cingulate cortex), LPC (left parietal cortex), LH (left hippocampus), and CER (cerebellum). GSH was measured using a 3T MRI scanner using MEGA-PRESS pulse sequence in healthy young male and female populations (M/F = 5/9; age 32.8 ± 5.27 years). We conclude that the closed GSH conformer (characteristic NMR shift signature: Cys Hα 4.40-Hβ 2.80 ppm) is more abundant than the extended GSH form (characteristic NMR shift signature Cys Hα 4.56-Hβ 2.95 ppm). Closed conformer has a non-uniform distribution (ACC < CER < LH < PCC < LPC) in the healthy brain. On the contrary, the extended form of GSH has a uniform distribution in various anatomical regions.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy Laboratory (NINS), National Brain Research Center, Gurgaon, Haryana 122051, India.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3052, Australia
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy Laboratory (NINS), National Brain Research Center, Gurgaon, Haryana 122051, India
| | - Avinash Kalyani
- Neuroimaging and Neurospectroscopy Laboratory (NINS), National Brain Research Center, Gurgaon, Haryana 122051, India
| |
Collapse
|
20
|
Wang X, Wang WX. Cell-Type-Dependent Dissolution of CuO Nanoparticles and Efflux of Cu Ions following Cellular Internalization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12404-12415. [PMID: 35946305 DOI: 10.1021/acs.est.2c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CuO nanoparticles (NPs) show promising applications in biosensors, waste treatment, and energy materials, but the growing manufacture of CuO NPs also leads to the concerns for their potential environmental and health risks. However, the cellular fates of CuO NPs such as Cu ion dissolution, transformation, and efflux remain largely speculative. In the present study, we for the first time combined the gold-core labeling and Cu ion bioimaging technologies to reveal the intracellular fates of CuO NPs in different cells following cellular internalization of NPs. We demonstrated that the dissolution rate of CuO NPs depended on the cell type. Following CuO dissolution, limited transformation of Cu(II) to Cu(I) occurred within the cellular microenvironment. Instead, Cu(II) was rapidly eliminated from the cells, and such rapid efflux in different cells was highly dependent on the GSH-mediated pathway and lysosome exocytosis. The labile Cu(I) level in the two cancerous cell lines was immediately regulated upon Cu exposure, which explained their tolerance to Au@CuO NPs. Overall, our study demonstrated a very rapid turnover of Cu in the cells following CuO internalization, which subsequently determined the cellular toxicity of CuO. The results will have important implications for assessing the health risk of CuO NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Mandal PK, Goel A, Bush AI, Punjabi K, Joon S, Mishra R, Tripathi M, Garg A, Kumar NK, Sharma P, Shukla D, Ayton SJ, Fazlollahi A, Maroon JC, Dwivedi D, Samkaria A, Sandal K, Megha K, Shandilya S. Hippocampal glutathione depletion with enhanced iron level in patients with mild cognitive impairment and Alzheimer’s disease compared with healthy elderly participants. Brain Commun 2022; 4:fcac215. [PMID: 36072647 PMCID: PMC9445173 DOI: 10.1093/braincomms/fcac215] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 01/20/2023] Open
Abstract
Abstract
Oxidative stress has been implicated in Alzheimer’s disease, and it is potentially driven by the depletion of primary antioxidant, glutathione, as well as elevation of the pro-oxidant, iron. Present study evaluates glutathione level by magnetic resonance spectroscopy, iron deposition by quantitative susceptibility mapping in left hippocampus, as well as the neuropsychological scores of healthy old participants (N = 25), mild cognitive impairment (N = 16) and Alzheimer’s disease patients (N = 31). Glutathione was found to be significantly depleted in mild cognitive impaired (P < 0.05) and Alzheimer’s disease patients (P < 0.001) as compared with healthy old participants. A significant higher level of iron was observed in left hippocampus region for Alzheimer’s disease patients as compared with healthy old (P < 0.05) and mild cognitive impairment (P < 0.05). Multivariate receiver-operating curve analysis for combined glutathione and iron in left hippocampus region provided diagnostic accuracy of 82.1%, with 81.8% sensitivity and 82.4% specificity for diagnosing Alzheimer’s disease patients from healthy old participants. We conclude that tandem glutathione and iron provides novel avenue to investigate further research in Alzheimer’s disease.
Collapse
Affiliation(s)
- Pravat K Mandal
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
- Florey Institute of Neuroscience and Mental Health , Melbourne , Australia
| | - Anshika Goel
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health , Melbourne , Australia
- Melbourne Dementia Research Centre , Melbourne , Australia
- The University of Melbourne , Victoria , Australia
| | - Khushboo Punjabi
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Shallu Joon
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Ritwick Mishra
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | | | - Arun Garg
- Institute of Neurosciences, Medanta—The Medicity , Gurgaon, Haryana , India
| | - Natasha K Kumar
- Institute of Neurosciences, Medanta—The Medicity , Gurgaon, Haryana , India
| | - Pooja Sharma
- Medanta Institute of Education and Research , Gurgaon, Haryana , India
| | - Deepika Shukla
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Scott Jonathan Ayton
- Florey Institute of Neuroscience and Mental Health , Melbourne , Australia
- Melbourne Dementia Research Centre , Melbourne , Australia
- The University of Melbourne , Victoria , Australia
| | - Amir Fazlollahi
- Department of Radiology, University of Melbourne , Melbourne , Australia
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center , Pittsburgh , USA
| | - Divya Dwivedi
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Avantika Samkaria
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Kanika Sandal
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Kanu Megha
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| | - Sandhya Shandilya
- National Brain Research Center, NeuroImaging and NeuroSpectroscopy Laboratory (NINS) , Gurgaon , India
| |
Collapse
|
22
|
Bonet-Aleta J, Encinas-Gimenez M, Urriolabeitia E, Martin-Duque P, Hueso JL, Santamaria J. Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper-iron nanoparticles working under chemically relevant tumour conditions. Chem Sci 2022; 13:8307-8320. [PMID: 35919722 PMCID: PMC9297535 DOI: 10.1039/d2sc01379g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The present work sheds light on a generally overlooked issue in the emerging field of bio-orthogonal catalysis within tumour microenvironments (TMEs): the interplay between homogeneous and heterogeneous catalytic processes. In most cases, previous works dealing with nanoparticle-based catalysis in the TME focus on the effects obtained (e.g. tumour cell death) and attribute the results to heterogeneous processes alone. The specific mechanisms are rarely substantiated and, furthermore, the possibility of a significant contribution of homogeneous processes by leached species - and the complexes that they may form with biomolecules - is neither contemplated nor pursued. Herein, we have designed a bimetallic catalyst nanoparticle containing Cu and Fe species and we have been able to describe the whole picture in a more complex scenario where both homogeneous and heterogeneous processes are coupled and fostered under TME relevant chemical conditions. We investigate the preferential leaching of Cu ions in the presence of a TME overexpressed biomolecule such as glutathione (GSH). We demonstrate that these homogeneous processes initiated by the released by Cu-GSH interactions are in fact responsible for the greater part of the cell death effects found (GSH, a scavenger of reactive oxygen species, is depleted and highly active superoxide anions are generated in the same catalytic cycle). The remaining solid CuFe nanoparticle becomes an active catalyst to supply oxygen from oxygen reduced species, such as superoxide anions (by-product from GSH oxidation) and hydrogen peroxide, another species that is enriched in the TME. This activity is essential to sustain the homogeneous catalytic cycle in the oxygen-deprived tumour microenvironment. The combined heterogeneous-homogeneous mechanisms revealed themselves as highly efficient in selectively killing cancer cells, due to their higher GSH levels compared to healthy cell lines.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Miguel Encinas-Gimenez
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
| | - Esteban Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza) 50009 Zaragoza Spain
| | - Pilar Martin-Duque
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Instituto Aragonés de Ciencias de la Salud (IACS) Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
- Fundación Araid Av. de Ranillas 1-D 50018 Zaragoza Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n 50018 Zaragoza Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza Campus Rio Ebro, C/María de Luna, 3 50018 Zaragoza Spain
- Instituto de Investigación Sanitaria (IIS) Aragón Avenida San Juan Bosco, 13 50009 Zaragoza Spain
| |
Collapse
|
23
|
Bonet-Aleta J, Sancho-Albero M, Calzada-Funes J, Irusta S, Martin-Duque P, Hueso JL, Santamaria J. Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. J Colloid Interface Sci 2022; 617:704-717. [DOI: 10.1016/j.jcis.2022.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|
24
|
Changes in serum heavy metals in polycystic ovary syndrome and their association with endocrine, lipid-metabolism, inflammatory characteristics and pregnancy outcomes. Reprod Toxicol 2022; 111:20-26. [DOI: 10.1016/j.reprotox.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
25
|
Arfaeinia H, Masjedi MR, Jafari AJ, Ahmadi E. Urinary level of heavy metals in people working in smoking cafés. ENVIRONMENTAL RESEARCH 2022; 207:112110. [PMID: 34614394 DOI: 10.1016/j.envres.2021.112110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Previous researches have reported significant levels of heavy metals in indoor air of smoking cafés. The current research aimed to evaluate the potential exposure of smoking cafés workers to heavy metals through quantifying amounts of these pollutants in urine samples. To this end, 35 waterpipe/cigarette cafés workers were selected as the exposed population, 35 employees from non-smoking cafe' as the control group 1 (CG1) and 25 cases of the normal citizens as the control group 2 (CG2); and their urine samples were taken. Samples were then prepared by acid digestion approach and measured by the ICP in order to determine amount of heavy metals in them. The findings of the current work show the significant difference among urinary levels of metals in the exposed and both CG1 and CG2 (P value < 0.05). Furthermore, urinary metal levels in samples collected from smoking café workers after the exposure were considerably higher than those were collected before the exposure (P-value <0.05). According to the findings, "tobacco type" could be considered as a leading factor for heavy metal exposure in studied smokers. Additionally, a positive and significant association was found between urinary metals and urinary levels of 8-OHdG (a markers of DNA degradation through oxidative stress). Therefore, workers in waterpipe/cigarette café can be classified as high risk people in terms of DNA oxidative damage.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohmmad Reza Masjedi
- Professor of Pulmonary Medicine, Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran.
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Wang L, Yu L, Ge H, Bu Y, Sun M, Huang D, Wang S. A novel reversible dual-mode probe based on amorphous carbon nanodots for the detection of mercury ion and glutathione. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
28
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
29
|
Dithiophosphate-Induced Redox Conversions of Reduced and Oxidized Glutathione. Molecules 2021; 26:molecules26102973. [PMID: 34067789 PMCID: PMC8157023 DOI: 10.3390/molecules26102973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/31/2023] Open
Abstract
Phosphorus species are potent modulators of physicochemical and bioactive properties of peptide compounds. O,O-diorganyl dithiophoshoric acids (DTP) form bioactive salts with nitrogen-containing biomolecules; however, their potential as a peptide modifier is poorly known. We synthesized amphiphilic ammonium salts of O,O-dimenthyl DTP with glutathione, a vital tripeptide with antioxidant, protective and regulatory functions. DTP moiety imparted radical scavenging activity to oxidized glutathione (GSSG), modulated the activity of reduced glutathione (GSH) and profoundly improved adsorption and electrooxidation of both glutathione salts on graphene oxide modified electrode. According to NMR spectroscopy and GC–MS, the dithiophosphates persisted against immediate dissociation in an aqueous solution accompanied by hydrolysis of DTP moiety into phosphoric acid, menthol and hydrogen sulfide as well as in situ thiol-disulfide conversions in peptide moieties due to the oxidation of GSH and reduction of GSSG. The thiol content available in dissolved GSH dithiophosphate was more stable during air oxidation compared with free GSH. GSH and the dithiophosphates, unlike DTP, caused a thiol-dependent reduction of MTS tetrazolium salt. The results for the first time suggest O,O-dimenthyl DTP as a redox modifier for glutathione, which releases hydrogen sulfide and induces biorelevant redox conversions of thiol/disulfide groups.
Collapse
|
30
|
Masjedi MR, Dobaradaran S, Keshmiri S, Taghizadeh F, Arfaeinia H, Fanaei F, Behroozi M, Nasrzadeh F, Joukar M. Use of toenail-bounded heavy metals to characterize occupational exposure and oxidative stress in workers of waterpipe/cigarette cafés. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1783-1797. [PMID: 33098497 DOI: 10.1007/s10653-020-00751-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Tobacco smoke is known for releasing metals in indoor air of waterpipe/cigarette cafés. However, the worker exposure to metals, and its association with oxidative stress in these cafés are still unclear. To this end, 54 workers and 38 customers from waterpipe/cigarette cafés (the exposed group), 30 workers from non-smoking cafés (the control group 1 (CG_1)) and 32 individuals from the general population (the control group 2 (CG_2)) were selected and toenails samples were then taken from them. Our findings revealed a significant difference in terms of toenail-bounded metal levels between the exposure and control groups (CG_1 and CG_2) (Mann-Whitney U test, Pvalue < 0.05). This study has also indicated that "type of tobacco" could be considered as a predictor for toenail-bounded heavy metals. Furthermore, our research's results suggest that toenail-bounded heavy metals are positively and significantly correlated with urinary levels of 8- hydroxy-2'-deoxyguanosine (8-OHdG, as a biomarker for the degradation of deoxyribonucleic acid (DNA) oxidative stress). Therefore, it can be concluded that workers of waterpipe/cigarette cafés are at high risks of adverse health of DNA oxidative degradation.
Collapse
Affiliation(s)
- Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Keshmiri
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Taghizadeh
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Behroozi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Nasrzadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Melika Joukar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
31
|
Onat T, Demir Caltekin M, Turksoy VA, Baser E, Aydogan Kirmizi D, Kara M, Yalvac ES. The Relationship Between Heavy Metal Exposure, Trace Element Level, and Monocyte to HDL Cholesterol Ratio with Gestational Diabetes Mellitus. Biol Trace Elem Res 2021; 199:1306-1315. [PMID: 33219922 DOI: 10.1007/s12011-020-02499-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study is to assess the levels of heavy metals (cadmium, lead, antimony, mercury, and arsenic), which are also called endocrine-disrupting chemicals, and trace elements (chromium-III, chromium-VI, zinc, copper, and selenium) vs. monocyte to HDL ratio among pregnant women with gestational diabetes mellitus (GDM). A total of 112 pregnant women (60 with GDM and 52 healthy women) were included in this case-control study. Analysis of heavy metals and trace elements were performed in inductively coupled plasma mass spectrometer. Heavy metals (cadmium, lead, antimony, mercury, and arsenic), trace elements (chromium-III, chromium-VI, zinc, copper, and selenium), and metabolic parameters were assessed in both groups. It was determined that the levels of cadmium, lead, antimony, and copper were higher (p < 0.05) and levels of chromium-III, zinc, and selenium were lower (p < 0.05) among the GDM group compared to the control group, whereas there was a statistically insignificant difference between the two groups, regarding the levels of copper, mercury, and arsenic (p > 0.05). Moreover, the monocyte to HDL ratio was higher in the GDM group (p < 0.05), and the insulin resistance was significantly higher as well (p < 0.05). The results of our study demonstrated that environmental factors could be effective in the etiology of GDM. Toxic heavy metals, through inducing Cu, OS, and chronic inflammation, and other trace elements, either directly by impacting insulin secretion or through weakening the body's antioxidant defense system, could play a role in the occurrence of GDM.
Collapse
Affiliation(s)
- Taylan Onat
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey.
| | - Melike Demir Caltekin
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Vugar Ali Turksoy
- Department of Public Health Yozgat, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Emre Baser
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Demet Aydogan Kirmizi
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mustafa Kara
- Department of Obstetrics & Gynecology, Kirsehir Ahi Evran University Faculty of Medicine, Kirsehir, Turkey
| | - Ethem Serdar Yalvac
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
32
|
Malekirad AA, Hassani S, Abdollahi M. Oxidative stress and copper smelter workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Eteshola EOU, Haupt DA, Koos SI, Siemer LA, Morris DL. The role of metal ion binding in the antioxidant mechanisms of reduced and oxidized glutathione in metal-mediated oxidative DNA damage. Metallomics 2020; 12:79-91. [PMID: 31750486 DOI: 10.1039/c9mt00231f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antioxidant activity of glutathione in its reduced (GSH) and oxidized (GSSG) forms against metal-mediated oxidative DNA damage was studied by monitoring production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) from calf-thymus DNA. GSH and GSSG were combined with Fe(ii) and Cu(ii) before and after addition of DNA to investigate the role of metal coordination in the antioxidant mechanism. The antioxidant behavior of GSH and GSSG was also compared to the known radical scavenger DMSO. GSH and GSSG lower oxidative DNA damage for Fe(ii) and Cu(ii) reactions. GSH only exhibited appreciable antioxidant behavior when combined with Fe(ii) prior to adding DNA, and GSH and GSSG were slightly more effective against Cu(ii)-mediated damage when combined with Cu(ii) prior to adding DNA. Raman spectra of GSH in the presence of Cu(ii) indicate that Cu(ii) oxidizes GSH and raises the possibility that the antioxidant activity of GSH against Cu(ii) reactions may be attributed to its ability to form GSSG. No evidence of GSH oxidation in the presence of Fe(ii) was observed. The fluorescent probe dichlorofluorescein diacetate (DCF-DA) shows that the presence of GSH (for Cu(ii) reactions) and GSSG (for Fe(ii) and Cu(ii) reactions) lowers levels of reactive oxygen species (ROS) in bulk solution. Overall, the results suggest that the mechanism of antioxidant activity for GSH and GSSG against Fe(ii) and Cu(ii)-mediated oxidative damage involves metal coordination, and isothermal titration calorimetry (ITC) studies of the Cu(ii)-GSSG system show an enthalpically favored complexation reaction with an apparent 1 : 1 stoichiometry.
Collapse
Affiliation(s)
- Elias O U Eteshola
- Department of Pharmacology & Cancer Biology/Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
34
|
A novel supramolecule-based fluorescence turn-on and ratiometric sensor for highly selective detection of glutathione over cystein and homocystein. Mikrochim Acta 2020; 187:631. [PMID: 33125575 DOI: 10.1007/s00604-020-04602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
A cyclodextrin-based fluorescence light-up and ratiometric sensor is reported for highly selective and sensitive recognition of glutathione over cystein and homocystein. The sensing scheme developed builds up on a supramolecular assembly formed between a molecular rotor dye (ThT) and a polyanionic supramolecular host (sulfated-β-cyclodextrin, SCD). The detection scheme is accomplished as follows: firstly, the bivalent Cu2+ quenches the emission from ThT-SCD assembly by causing the dissociation of ThT molecules from SCD surface. Secondly, when GSH is added to the copper-quenched system, owing to specific interaction between Cu2+ and GSH, Cu2+ is removed from the SCD which again allows the formation of ThT-SCD assembly. Indeed, this scheme of disassembly and reassembly successively caused by Cu2+ and GSH in the aqueous solution empowers our sensor framework to work as a good ratiometric sensor for the detection of GSH. The sensor scheme shows a linear response in the range 0-250 μM with a LOD of 2.4 ± 0.2 μM in aqueous solution and 13.6 ± 0.5 μM in diluted human serum sample. The sensor system is excited at 410 nm and the emission signal is plotted as a ratio of intensity at 545 nm (aggregate band) and 490 nm (monomer band). This ratiometric sensor system is highly selective to glutathione over cystein, homocystein, and other amino acids. Additionally, response of the sensor system towards GSH in complex biological media of serum samples demonstrates its potential for practical utility. Graphical abstract.
Collapse
|
35
|
Zoughaib M, Luong D, Garifullin R, Gatina DZ, Fedosimova SV, Abdullin TI. Enhanced angiogenic effects of RGD, GHK peptides and copper (II) compositions in synthetic cryogel ECM model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111660. [PMID: 33545827 DOI: 10.1016/j.msec.2020.111660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Synthetic oligopeptides are a promising alternative to natural full-length growth factors and extracellular matrix (ECM) proteins in tissue regeneration and therapeutic angiogenesis applications. In this work, angiogenic properties of dual and triple compositions containing RGD, GHK peptides and copper (II) ions (Cu2+) were for the first time studied. To reveal specific in vitro effects of these compositions in three-dimensional scaffold, adamantyl group bearing peptides, namely Ada-Ahx-GGRGD (1) and Ada-Ahx-GGGHK (2), were effectively immobilized in bioinert pHEMA macroporous cryogel via host-guest β-cyclodextrin-adamantane interaction. The cryogels were additionally functionalized with Cu2+ via the formation of GHK-Cu complex. Angiogenic responses of HUVECs grown within the cryogel ECM model were analyzed. The results demonstrate that the combination of RGD with GHK and further with Cu2+ dramatically increases cell proliferation, differentiation, and production of a series of angiogenesis related cytokines and growth factors. Furthermore, the level of glutathione, a key cellular antioxidant and redox regulator, was altered in relation to the angiogenic effects. These results are of particular interest for establishing the role of multiple peptide signals on regeneration related processes and for developing improved tissue engineering materials.
Collapse
Affiliation(s)
- Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Duong Luong
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Dilara Z Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana V Fedosimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
36
|
Abolaji AO, Fasae KD, Iwezor CE, Farombi EO. D-Penicillamine prolongs survival and lessens copper-induced toxicity in Drosophila melanogaster. Toxicol Res (Camb) 2020; 9:346-352. [PMID: 32905187 DOI: 10.1093/toxres/tfaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
D-penicillamine (DPA) is an amino-thiol that has been established as a copper chelating agent for the treatment of Wilson's disease. DPA reacts with metals to form complexes and/or chelates. Here, we investigated the survival rate extension capacity and modulatory role of DPA on Cu2+-induced toxicity in Drosophila melanogaster. Adult Wild type (Harwich strain) flies were exposed to Cu2+ (1 mM) and/or DPA (50 μM) in the diet for 7 days. Additionally, flies were exposed to acute Cu2+ (10 mM) for 24 h, followed by DPA (50 μM) treatment for 4 days. Thereafter, the antioxidant status [total thiol (T-SH) and glutathione (GSH) levels and glutathione S-transferase and catalase activities] as well as hydrogen peroxide (H2O2) level and acetylcholinesterase activity were evaluated. The results showed that DPA treatment prolongs the survival rate of D. melanogaster by protecting against Cu2+-induced lethality. Further, DPA restored Cu2+-induced depletion of T-SH level compared to the control (P < 0.05). DPA also protected against Cu2+ (1 mM)-induced inhibition of catalase activity. In addition, DPA ameliorated Cu2+-induced elevation of acetylcholinesterase activity in the flies. The study may therefore have health implications in neurodegenerative diseases involving oxidative stress such as Alzheimer's disease.
Collapse
Affiliation(s)
- Amos Olalekan Abolaji
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kehinde Damilare Fasae
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chizim Elizabeth Iwezor
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
37
|
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020; 13:572308. [PMID: 33071757 PMCID: PMC7533614 DOI: 10.3389/fnmol.2020.572308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
All tauopathies, including Alzheimer's disease (AD), are characterized by the intracellular accumulation of abnormal forms of tau protein in neurons and glial cells, which negatively affect microtubule stability. Under physiological conditions, tubulin-associated unit (Tau) protein is intrinsically disordered, almost without secondary structure, and is not prone to aggregation. In AD, it assembles, and forms paired helical filaments (PHFs) that further build-up neurofibrillary tangles (NFTs). Aggregates are composed of hyperphosphorylated tau protein that is more prone to aggregation. The pathology of AD is also linked to disturbed copper homeostasis, which promotes oxidative stress (OS). Copper imbalance is widely observed in AD patients. Deregulated copper ions may initiate and exacerbate tau hyperphosphorylation and formation of β-sheet-rich tau fibrils that ultimately contribute to synaptic failure, neuronal death, and cognitive decline observed in AD patients. The present review summarizes factors affecting the process of tau aggregation, conformational changes of small peptide sequences in the microtubule-binding domain required for these motifs to act as seeding sites in aggregation, and the role of copper in OS induction, tau hyperphosphorylation and tau assembly. A better understanding of the various factors that affect tau aggregation under OS conditions may reveal new targets and novel pharmacological approaches for the therapy of AD.
Collapse
Affiliation(s)
- Klara Zubčić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Psychology, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
38
|
Du K, Xia Q, Heng H, Feng F. Temozolomide-Doxorubicin Conjugate as a Double Intercalating Agent and Delivery by Apoferritin for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34599-34609. [PMID: 32648735 DOI: 10.1021/acsami.0c08531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We designed a conjugated compound by coupling temozolomide (TMZ) with doxorubicin (DOX) via an acylhydrazone linkage as a potential prodrug used for glioblastoma multiforme (GBM) treatment. Viscosity and spectroscopic studies revealed that the drug conjugate could act as a nonclassical double intercalating agent. Although free TMZ is an inefficient DNA binder in comparison to DOX, the TMZ moiety interacted with DNA as an induced intercalator, arising from the synergistic effect of DOX moiety that mediated conformational changes of the DNA helix. Two binding modes were proposed to interpret the double intercalating effect of the drug conjugate on intra- and inter-DNA interactions that could cause DNA cross-linking and fibril aggregates. We also developed a delivery nanoplatform with a loading efficiency of 83% using copper-bound apoferritin as a nanocarrier. In sharp contrast to the short half-life of free TMZ, the nanocomposite was stable under physiological conditions without detectable drug decomposition after a 2 week storage, and drug release was activatable in the presence of glutathione at millimolar levels. The antitumor effect of the drug conjugate and nanocomposite against GBM cells was reported to demonstrate the potential therapeutic applications of double intercalating materials.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Heng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Zhong L, Dong A, Feng Y, Wang X, Gao Y, Xiao Y, Zhang J, He D, Cao J, Zhu W, Zhang S. Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose Response 2020. [PMID: 32110169 PMCID: PMC7000859 DOI: 10.1177/1559325820904547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionizing radiation causes damage to a variety of tissues, especially radiation-sensitive tissues, such as the small intestine. Radiation-induced damage is caused primarily by increased oxidative stress in the body. Studies have shown that trace metal elements play an irreplaceable role in oxidative stress in humans, which may be associated with radiation-induced tissue damage. However, the alteration and functional significance of trace metal elements in radiation-induced injury is not clear. In this study, we explored the association between radiation-induced damage and 7 trace metal elements in mouse models. We found that the concentration of zinc and copper in mice serum was decreased significantly after irradiation, whereas that of nickel, manganese, vanadium, cobalt, and stannum was not changed by inductively coupled plasma mass spectrometry. The role of copper in radiation-induced intestines was characterized in detail. The concentration of copper was increased in irradiated intestine but reduced in irradiated heart. Immunohistochemistry staining showed that copper transporter protein copper transport 1 expression was upregulated in irradiated mouse intestine, suggesting its potential involvement in radiation-induced copper accumulation. At the cellular level, the addition of CuCl2potentiated radiation-induced reactive oxygen species in intestine-derived human intestinal epithelial cell and IEC-6 cells. Moreover, the level of copper in damaged cells may be related to the severity of radiation-induced damage as evidenced by a cell viability assay. These results indicate that copper may be involved in the progression of radiation-induced tissue damage and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Aijing Dong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ji Zhang
- Soochow University Affiliated Second Hospital, Soochow University, Suzhou, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
41
|
Yuan Y, Long P, Liu K, Xiao Y, He S, Li J, Mo T, Liu Y, Yu Y, Wang H, Zhou L, Liu X, Yang H, Li X, Min X, Zhang C, Zhang X, Pan A, He M, Hu FB, Navas-Acien A, Wu T. Multiple plasma metals, genetic risk and serum C-reactive protein: A metal-metal and gene-metal interaction study. Redox Biol 2019; 29:101404. [PMID: 31926627 PMCID: PMC6921203 DOI: 10.1016/j.redox.2019.101404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background C-reactive protein (CRP) is a well-recognized biomarker of inflammation, which can be used as a predictor of cardiovascular disease. Evidence have suggested exposure to multiple metals/metalloids may affect immune system and give rise to cardiovascular disease. However, it is lack of study to comprehensively evaluate the association of multiple metals and CRP, the interactions between metals, and the gene-metal interaction in relation to CRP levels. Aims To explore the associations of multiple plasma metals with serum CRP, and to test the interactions between metals, and gene-metal interactions on the levels of serum CRP. Methods We included 2882 participants from the Dongfeng-Tongji cohort, China, and measured 23 plasma metals and serum CRP concentrations. The genetic risk score (GRS) was calculated based on 7 established CRP-associated variants. For metals which were associated with the levels of CRP, we further tested the interactions between metals on CRP, and analyzed the gene-metal interactions on CRP. Results The median level for CRP in the total population was 1.17 mg/L. After multivariable adjustment, plasma copper was positively associated with serum CRP (FDR < 0.001), whereas selenium was negatively associated with serum CRP (FDR = 0.01). Moreover, selenium and zinc attenuated the positive association between high plasma copper and CRP (P for interaction < 0.001). Participants with a higher GRS had a higher CRP level, with the increase in ln-transformed CRP per increment of 5 risk alleles were 0.64 for weighted GRS, and 0.54 for unweighted GRS (both P < 0.001). Furthermore, the genetic association with CRP was modified by copper concentration (P for interaction < 0.001). Conclusions Our results suggest that serum CRP is positively associated with plasma concentration of copper, and inversely associated with selenium. Plasma zinc, selenium and CRP genetic predisposition would modify the associations between plasma copper and serum CRP. We found that serum CRP was positively associated with plasma copper, and inversely associated with selenium. The positive association of plasma copper with serum CRP appeared to be attenuated with high plasma zinc and selenium. This is the first study that explored the potential gene-metal interactions in relation to CRP levels. These novel findings may provide new insights to personalized prevention and interventions for inflammation.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tingting Mo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiulou Li
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Ce Zhang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Frank B Hu
- Department of Nutrition, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
Li X, Shao F, Sun J, Du K, Sun Y, Feng F. Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41935-41945. [PMID: 31644262 DOI: 10.1021/acsami.9b14849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current treatment of recurrent glioblastoma multiforme (GBM) demands dose-intense temozolomide (TMZ), a prodrug of 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide (MTIC), based on the spontaneous hydrolysis of TMZ at basic pH. However, how to control the activity of MTIC remains unknown, which poses a particular challenge to search a reliable MTIC receptor. We reported that copper, for the first time, is found to recognize and bind MTIC in the process of TMZ degradation, which means copper can play an important role in enhancing the bioavailability of MTIC derived from TMZ. Using apoferritin as a model copper-bound protein, we studied the copper-TMZ interaction in protein and observed efficient MTIC immobilization with high binding efficiency (up to 92.9% based on original TMZ) and capacity (up to 185 MTIC moieties per protein). The system was stable against both alkaline and acidic pH and could be activated by glutathione to liberate MTIC, which paves a way to deliver a DNA-alkylating agent for both TMZ-sensitive and TMZ-resistant GBM chemotherapy. Our study provides a new insight for understanding the potential relationship between the special GBM microenvironment (specific copper accumulation) and the therapeutic effect of TMZ.
Collapse
|
43
|
Uwimana E, Cagle B, Yeung C, Li X, Patterson EV, Doorn JA, Lehmler HJ. Atropselective Oxidation of 2,2',3,3',4,6'-Hexachlorobiphenyl (PCB 132) to Hydroxylated Metabolites by Human Liver Microsomes and Its Implications for PCB 132 Neurotoxicity. Toxicol Sci 2019; 171:406-420. [PMID: 31268529 PMCID: PMC6760323 DOI: 10.1093/toxsci/kfz150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) have been associated with neurodevelopmental disorders. Several neurotoxic congeners display axial chirality and atropselectively affect cellular targets implicated in PCB neurotoxicity. Only limited information is available regarding the atropselective metabolism of these congeners in humans and their atropselective effects on neurotoxic outcomes. Here we investigate the hypothesis that the oxidation of 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) by human liver microsomes (HLMs) and their effects on dopaminergic cells in culture are atropselective. Racemic PCB 132 was incubated with pooled or single donor HLMs, and levels and enantiomeric fractions of PCB 132 and its metabolites were determined gas chromatographically. The major metabolite was either 2,2',3,4,4',6'-hexachlorobiphenyl-3'-ol (3'-140), a 1,2-shift product, or 2,2',3,3',4,6'-hexachlorobiphenyl-5'-ol (5'-132). The PCB 132 metabolite profiles displayed inter-individual differences and depended on the PCB 132 atropisomer. Computational studies suggested that 3'-140 is formed via a 3,4-arene oxide intermediate. The second eluting atropisomer of PCB 132, first eluting atropisomer of 3'-140, and second eluting atropisomer of 5'-132 were enriched in all HLM incubations. Enantiomeric fractions of the PCB 132 metabolites differed only slightly between the single donor HLM preparations investigated. Reactive oxygen species and levels of dopamine and its metabolites were not significantly altered after a 24 h exposure of dopaminergic cells to pure PCB 132 atropisomers. These findings suggest that there are inter-individual differences in the atropselective biotransformation of PCB 132 to its metabolites in humans; however, the resulting atropisomeric enrichment of PCB 132 is unlikely to affect neurotoxic outcomes associated with the endpoints investigated in the study.
Collapse
Affiliation(s)
- Eric Uwimana
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Brianna Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Coby Yeung
- Department of Chemistry, College of Arts and Sciences, Stony Brook University, Stony Brook, New York
| | - Xueshu Li
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Eric V Patterson
- Department of Chemistry, College of Arts and Sciences, Stony Brook University, Stony Brook, New York
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
44
|
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 2019; 116:12167-12172. [PMID: 31160463 DOI: 10.1073/pnas.1900172116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Collapse
|
45
|
Quamar S, Kumar J, Mishra A, Flora SJS. Oxidative stress and neurobehavioural changes in rats following copper exposure and their response to MiADMSA and d-penicillamine. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An increase in copper concentration in body may lead to hepatolenticular degeneration which is considered as one clinical feature of Wilson’s disease. Chelation therapy using d-penicillamine is the preferred medical treatment for reducing the toxic effects of copper. However, a few shortcomings associated with d-penicillamine led us to search of an alternative antidote for copper toxicity. Monoisoamyl-2, 3-dimercaptosuccinic acid (MiADMSA), a potent arsenic chelator under clinical trial, has been reported to reduce system copper level. Thus, the present study was envisaged to explore the ameliorative effect of MiADMSA against copper toxicity. Copper pre-exposed animals (CuSO4.5H2O; 100 mg/kg; p.o., for 6 weeks) were segregated in different groups and were administered equimolar dose (0.3 mEq/kg/day; p.o.) of d-penicillamine and MiADMSA for 5 days. The effect of different treatments on spontaneous locomotor activity, muscle coordination, depression like behaviour and contextual fear memory was analysed using neurobehavioural battery test. Biochemical variables related to oxidative stress, zinc and copper concentration were determined in liver, kidney and brain. The results suggested that copper exposure led to oxidative stress in liver, kidney and blood, along with moderate effects in brain. Treatment with d-penicillamine and MiADMSA reduced liver copper load. MiADMSA produced more pronounced beneficial effect compared to d-penicillamine by increasing brain GPx activity. Our study suggests that MiADMSA might be equally effective as d-penicillamine in depleting body copper load. More detailed studies using different doses are required to suggest whether MiADMSA could be an alternative for d-penicillamine in reducing oxidative injury, neurobehavioural changes and depleting body copper burden.
Collapse
Affiliation(s)
- Shaheen Quamar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh, India
| | - Jayant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh, India
| | - SJS Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Ahmadi S, Zhu S, Sharma R, Wu B, Soong R, Dutta Majumdar R, Wilson DJ, Simpson AJ, Kraatz HB. Aggregation of Microtubule Binding Repeats of Tau Protein is Promoted by Cu 2. ACS OMEGA 2019; 4:5356-5366. [PMID: 31001602 PMCID: PMC6463671 DOI: 10.1021/acsomega.8b03595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Understanding the factors that give rise to tau aggregation and reactive oxygen species (ROS) is the key aspect in Alzheimer's disease pathogenesis. Microtubule (MT) binding repeats of tau protein were suggested to play a critical role in tau aggregation. Here, we show that the interaction of Cu2+ with full-length MT binding repeats R1-R4 leads to the aggregation, and a Cys-based redox chemistry is critically involved in tau aggregation leading to disulfide-bridge dimerization of R2 and R3 and further aggregation into a fibrillar structure. Notably, ascorbate and glutathione, the most abundant antioxidants in neurons, cannot prevent the effect of Cu2+ on R2 and R3 aggregation. Detailed ESI-MS and NMR experiments demonstrate the interaction of Cu2+ with MT binding repeats. We show that redox activity of copper increases when bound to the MT repeats leading to ROS formation, which significantly contribute to cellular damage and neuron death. Results presented here provide new insights into the molecular mechanism of tau aggregation and ROS formation and suggest a new target domain for tau aggregation inhibitors.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - Shaolong Zhu
- Chemistry
Department, York University, Toronto, Ontario M3J1P3, Canada
- The
Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Renu Sharma
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Bing Wu
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - R. Dutta Majumdar
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Derek J. Wilson
- Chemistry
Department, York University, Toronto, Ontario M3J1P3, Canada
- The
Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Andre J. Simpson
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental Science, University
of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
47
|
Zhang T, Ruan J, Zhang B, Lu S, Gao C, Huang L, Bai X, Xie L, Gui M, Qiu RL. Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: Identification of exposure sources and metal-induced health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:707-713. [PMID: 30502520 DOI: 10.1016/j.ecoenv.2018.10.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Electronic waste or e-waste dismantling activities are known to release metals. However, the human exposure pathways of metals, and their association with oxidative stress in e-waste dismantling areas (EDAs) remain unclear. In this study, our results revealed elevated geometric mean concentrations in vegetables (Cd 0.096 and Pb 0.35 µg/g fw), rice (Cd 0.15, Pb 0.20, and 12.3 µg/g fw), hen eggs (Cd 0.006 and Pb 0.071 µg/g fw), and human urine (Cd 2.12, Pb 4.98, Cu 22.2, and Sb 0.20 ng/mL). Our calculations indicate that rice consumption source accounted for the overwhelming proportion of daily intakes (DIs) of Cd (61-64%), Cu (85-89%), and Zn (75-80%) in children and adults living in EDA; vegetables were the primary contributors to the DIs of Cd (30-32%); and rice (20-29%), vegetables (28-38%), and dust ingestion (26-45%) were all important exposure sources of Pb. Risk assessment predicted that DIs of Cd, Pb, Cu, and Zn via food consumption poses health risks to local residents of EDAs, and the urinary concentrations of analyzed metals were significantly (Pearson correlation coefficient: r = 0.324-0.710; p < 0.01) associated with elevated 8-OHdG, a biomarker of oxidative stress in humans.
Collapse
Affiliation(s)
- Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, PR China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Chuanzi Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Lifei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Lei Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Mingwei Gui
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, PR China.
| |
Collapse
|
48
|
Dubey V, Mishra A, Ghosh A, Mandal B. Probiotic
Pediococcus pentosaceus
GS
4 shields brush border membrane and alleviates liver toxicity imposed by chronic cadmium exposure in Swiss albino mice. J Appl Microbiol 2019; 126:1233-1244. [DOI: 10.1111/jam.14195] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 02/01/2023]
Affiliation(s)
- V. Dubey
- Department of Integrative Biology, School of BioSciences and Technology VIT Vellore Tamil Nadu India
| | - A.K. Mishra
- Department of Integrative Biology, School of BioSciences and Technology VIT Vellore Tamil Nadu India
| | - A.R. Ghosh
- Department of Integrative Biology, School of BioSciences and Technology VIT Vellore Tamil Nadu India
| | - B.K. Mandal
- Trace Elements Speciation Research Laboratory, Environmental and Analytical Chemistry Division, School of Advanced Sciences VIT Vellore Tamil Nadu India
| |
Collapse
|
49
|
Parui PP, Ray A, Das S, Sarkar Y, Paul T, Roy S, Majumder R, Bandyopadhyay J. Glutathione-selective “off–on” fluorescence response by a probe-displaced modified ligand for its detection in biological domains. NEW J CHEM 2019. [DOI: 10.1039/c8nj05784b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutathione-induced oxidation of benzylic-alcohol into the formyl moiety in the ligand displaced from the Cu(ii)-complex exhibits in vitro and in vivo “off–on” fluorescence responses.
Collapse
Affiliation(s)
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolakta 700013
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Tanaya Paul
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| | - Snigdha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Rini Majumder
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Jaya Bandyopadhyay
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| |
Collapse
|
50
|
Bao LL, Liu ZQ. Hybrid of Resveratrol and Glucosamine: An Approach To Enhance Antioxidant Effect against DNA Oxidation. Chem Res Toxicol 2018; 31:936-944. [PMID: 30106278 DOI: 10.1021/acs.chemrestox.8b00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol exhibits various pharmacological activities, which are dependent upon phenolic hydroxyl groups. In this work, glucosamine, lipoic acid, or adamantanamine moiety was applied for attaching to ortho-position of hydroxyl group in resorcinol moiety of resveratrol (known as position-2). Antioxidant effects of the obtained hybrids were characterized using DNA oxidative systems mediated by •OH, Cu2+/glutathione (GSH), and 2,2'-azobis(2-amidinopropanehydrochloride) (AAPH), respectively. The glucosyl-appended imine and amine at position-2 of resveratrol were found to show higher inhibitory effects than other resveratrol derivatives against AAPH-induced DNA oxidation. The antioxidative effect was quantitatively expressed by stoichiometric factor ( n, the number of radical-propagation terminated by one molecule of antioxidant). The stoichiometric factors of glucosyl-appended imine and amine of resveratrol increased to 4.74 (for imine) and 4.97 (for amine), respectively, higher than that of resveratrol (3.70) and glucoside of resveratrol (3.49). It was thereby concluded that the combination of resveratrol with glucosamine at position-2 represented a novel pathway for modifying resveratrol structure in the protection of DNA against peroxyl radical-mediated oxidation.
Collapse
Affiliation(s)
- Liang-Liang Bao
- Department of Organic Chemistry, College of Chemistry , Jilin University , Changchun 130021 , China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry , Jilin University , Changchun 130021 , China
| |
Collapse
|