1
|
Zhao L, Wei F, He X, Dai A, Yang D, Jiang H, Wen L, Cheng X. Identification of a carbohydrate recognition motif of purinergic receptors. eLife 2023; 12:e85449. [PMID: 37955640 PMCID: PMC10642967 DOI: 10.7554/elife.85449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
As a major class of biomolecules, carbohydrates play indispensable roles in various biological processes. However, it remains largely unknown how carbohydrates directly modulate important drug targets, such as G-protein coupled receptors (GPCRs). Here, we employed P2Y purinoceptor 14 (P2Y14), a drug target for inflammation and immune responses, to uncover the sugar nucleotide activation of GPCRs. Integrating molecular dynamics simulation with functional study, we identified the uridine diphosphate (UDP)-sugar-binding site on P2Y14, and revealed that a UDP-glucose might activate the receptor by bridging the transmembrane (TM) helices 2 and 7. Between TM2 and TM7 of P2Y14, a conserved salt bridging chain (K2.60-D2.64-K7.35-E7.36 [KDKE]) was identified to distinguish different UDP-sugars, including UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine. We identified the KDKE chain as a conserved functional motif of sugar binding for both P2Y14 and P2Y purinoceptor 12 (P2Y12), and then designed three sugar nucleotides as agonists of P2Y12. These results not only expand our understanding for activation of purinergic receptors but also provide insights for the carbohydrate drug development for GPCRs.
Collapse
Affiliation(s)
- Lifen Zhao
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Fangyu Wei
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinheng He
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Antao Dai
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Dehua Yang
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced StudyHangzhouChina
| | - Liuqing Wen
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xi Cheng
- State Key Laboratory of Drug Research, Carbohydrate-Based Drug Research Center and National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced StudyHangzhouChina
| |
Collapse
|
2
|
Wen Z, Pramanik A, Lewicki SA, Jung YH, Gao ZG, Randle JCR, Cronin C, Chen Z, Giancotti LA, Whitehead GS, Liang BT, Breton S, Salvemini D, Cook DN, Jacobson KA. Alicyclic Ring Size Variation of 4-Phenyl-2-naphthoic Acid Derivatives as P2Y 14 Receptor Antagonists. J Med Chem 2023; 66:9076-9094. [PMID: 37382926 PMCID: PMC10407959 DOI: 10.1021/acs.jmedchem.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
P2Y14 receptor (P2Y14R) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2Y14R antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2Y14R antagonist (4-phenyl-2-naphthoic acid derivative) PPTN 1 was varied from 4- to 8-membered rings, with bridging/functional substitution. Conformationally and sterically modified isosteres included N-containing spirocyclic (6-9), fused (11-13), and bridged (14, 15) or large (16-20) ring systems, either saturated or containing alkene or hydroxy/methoxy groups. The alicyclic amines displayed structural preference. An α-hydroxyl group increased the affinity of 4-(4-((1R,5S,6r)-6-hydroxy-3-azabicyclo[3.1.1]heptan-6-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid 15 (MRS4833) compared to 14 by 89-fold. 15 but not its double prodrug 50 reduced airway eosinophilia in a protease-mediated asthma model, and orally administered 15 and prodrugs reversed chronic neuropathic pain (mouse CCI model). Thus, we identified novel drug leads having in vivo efficacy.
Collapse
Affiliation(s)
- Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John C R Randle
- Random Walk Ventures, LLC, 108 Lincoln Street Unit 6B, Boston, Massachusetts 02111, United States
| | - Chunxia Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Sylvie Breton
- Centre de Recherche du CHU de Québec, Département d'Obstétrique, de Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Laval, Québec G1V 4G2, Canada
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Zhang JZ, Shi NR, Wu JS, Wang X, Illes P, Tang Y. UDP-glucose sensing P2Y 14R: A novel target for inflammation. Neuropharmacology 2023; 238:109655. [PMID: 37423482 DOI: 10.1016/j.neuropharm.2023.109655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Uridine 5'-diphosphoglucose (UDP-G) as a preferential agonist, but also other UDP-sugars, such as UDP galactose, function as extracellular signaling molecules under conditions of cell injury and apoptosis. Consequently, UDP-G is regarded to function as a damage-associated molecular pattern (DAMP), regulating immune responses. UDP-G promotes neutrophil recruitment, leading to the release of pro-inflammatory chemokines. As a potent endogenous agonist with the highest affinity for the P2Y14 receptor (R), it accomplishes an exclusive relationship between P2Y14Rs in regulating inflammation via cyclic adenosine monophosphate (cAMP), nod-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription 1 (STAT1) pathways. In this review, we initially present a brief introduction into the expression and function of P2Y14Rs in combination with UDP-G. Subsequently, we summarize emerging roles of UDP-G/P2Y14R signaling pathways that modulate inflammatory responses in diverse systems, and discuss the underlying mechanisms of P2Y14R activation in inflammation-related diseases. Moreover, we also refer to the applications as well as effects of novel agonists/antagonists of P2Y14Rs in inflammatory conditions. In conclusion, due to the role of the P2Y14R in the immune system and inflammatory pathways, it may represent a novel target for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Ji-Zhou Zhang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Nan-Rui Shi
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jia-Si Wu
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xin Wang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
4
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
5
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
6
|
Beswick L, Ahmadipour S, Hofman GJ, Wootton H, Dimitriou E, Reynisson J, Field RA, Linclau B, Miller GJ. Exploring anomeric glycosylation of phosphoric acid: Optimisation and scope for non-native substrates. Carbohydr Res 2020; 488:107896. [PMID: 31887633 DOI: 10.1016/j.carres.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gert-Jan Hofman
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Hannah Wootton
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- Hornbeam Building, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom.
| |
Collapse
|
7
|
Baszczyňski O, Watt JM, Rozewitz MD, Guse AH, Fliegert R, Potter BVL. Synthesis of Terminal Ribose Analogues of Adenosine 5'-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2. J Org Chem 2019; 84:6143-6157. [PMID: 30978018 PMCID: PMC6528165 DOI: 10.1021/acs.joc.9b00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
TRPM2
(transient receptor potential cation channel, subfamily M,
member 2) is a nonselective cation channel involved in the response
to oxidative stress and in inflammation. Its role in autoimmune and
neurodegenerative diseases makes it an attractive pharmacological
target. Binding of the nucleotide adenosine 5′-diphosphate
ribose (ADPR) to the cytosolic NUDT9 homology (NUDT9H) domain activates the channel. A detailed understanding of how ADPR
interacts with the TRPM2 ligand binding domain is lacking, hampering
the rational design of modulators, but the terminal ribose of ADPR
is known to be essential for activation. To study its role in more
detail, we designed synthetic routes to novel analogues of ADPR and
2′-deoxy-ADPR that were modified only by removal of a single
hydroxyl group from the terminal ribose. The ADPR analogues were obtained
by coupling nucleoside phosphorimidazolides to deoxysugar phosphates.
The corresponding C2″-based analogues proved to be unstable.
The C1″- and C3″-ADPR analogues were evaluated electrophysiologically
by patch-clamp in TRPM2-expressing HEK293 cells. In addition, a compound
with all hydroxyl groups of the terminal ribose blocked as its 1″-β-O-methyl-2″,3″-O-isopropylidene
derivative was evaluated. Removal of either C1″ or C3″
hydroxyl groups from ADPR resulted in loss of agonist activity. Both
these modifications and blocking all three hydroxyl groups resulted
in TRPM2 antagonists. Our results demonstrate the critical role of
these hydroxyl groups in channel activation.
Collapse
Affiliation(s)
- Ondřej Baszczyňski
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Bath BA2 7AY , U.K
| | - Joanna M Watt
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K.,Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Bath BA2 7AY , U.K
| | - Monika D Rozewitz
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology , University Medical Center Hamburg-Eppendorf , Martinistrasse 52 , 20246 Hamburg , Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology , University Medical Center Hamburg-Eppendorf , Martinistrasse 52 , 20246 Hamburg , Germany
| | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology , University Medical Center Hamburg-Eppendorf , Martinistrasse 52 , 20246 Hamburg , Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K.,Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Bath BA2 7AY , U.K
| |
Collapse
|
8
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
9
|
UDP-sugars activate P2Y 14 receptors to mediate vasoconstriction of the porcine coronary artery. Vascul Pharmacol 2017; 103-105:36-46. [PMID: 29253618 PMCID: PMC5906693 DOI: 10.1016/j.vph.2017.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Aims UDP-sugars can act as extracellular signalling molecules, but relatively little is known about their cardiovascular actions. The P2Y14 receptor is a Gi/o-coupled receptor which is activated by UDP-glucose and related sugar nucleotides. In this study we sought to investigate whether P2Y14 receptors are functionally expressed in the porcine coronary artery using a selective P2Y14 receptor agonist, MRS2690, and a novel selective P2Y14 receptor antagonist, PPTN (4,7-disubstituted naphthoic acid derivative). Methods and results Isometric tension recordings were used to evaluate the effects of UDP-sugars in porcine isolated coronary artery segments. The effects of the P2 receptor antagonists suramin and PPADS, the P2Y14 receptor antagonist PPTN, and the P2Y6 receptor antagonist MRS2578, were investigated. Measurement of vasodilator-stimulated phosphoprotein (VASP) phosphorylation using flow cytometry was used to assess changes in cAMP levels. UDP-glucose, UDP-glucuronic acid UDP-N-acetylglucosamine (P2Y14 receptor agonists), elicited concentration-dependent contractions of the porcine coronary artery. MRS2690 was a more potent vasoconstrictor than the UDP-sugars. Concentration dependent contractile responses to MRS2690 and UDP-sugars were enhanced in the presence of forskolin (activator of cAMP), where the level of basal tone was maintained by addition of U46619, a thromboxane A2 mimetic. Contractile responses to MRS2690 were blocked by PPTN, but not by MRS2578. Contractile responses to UDP-glucose were also attenuated by PPTN and suramin, but not by MRS2578. Forskolin-induced VASP-phosphorylation was reduced in porcine coronary arteries exposed to UDP-glucose and MRS2690, consistent with P2Y14 receptor coupling to Gi/o proteins and inhibition of adenylyl cyclase activity. Conclusions Our data support a role of UDP-sugars as extracellular signalling molecules and show for the first time that they mediate contraction of porcine coronary arteries via P2Y14 receptors.
Collapse
|
10
|
Ahmadipour S, Miller GJ. Recent advances in the chemical synthesis of sugar-nucleotides. Carbohydr Res 2017; 451:95-109. [PMID: 28923409 DOI: 10.1016/j.carres.2017.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
11
|
Toti KS, Jain S, Ciancetta A, Balasubramanian R, Chakraborty S, Surujdin R, Shi ZD, Jacobson KA. Pyrimidine Nucleotides Containing a (S)-Methanocarba Ring as P2Y 6 Receptor Agonists. MEDCHEMCOMM 2017; 8:1897-1908. [PMID: 29423136 DOI: 10.1039/c7md00397h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both agonists and antagonists of the UDP-activated P2Y6 receptor (P2Y6R) have been proposed for therapeutic use, in conditions such as cancer, inflammation, neurodegeneration and diabetes. Uracil nucleotides containing a South-bicyclo[3.1.0]hexane ((S)-methanocarba) ring system in place of the ribose ring were synthesized and shown to be potent P2Y6R agonists in a calcium mobilization assay. The (S)-methanocarba modification was compatible with either a 5-iodo or 4-methoxyimino group on the pyrimidine, but not with a α,β-methylene 5´-diphosphate. (S)-Methanocarba dinucleotide potency was compatible with a N4-methoxy modification on the proximal nucleoside that is assumed to bind at the P2Y6R similarly to UDP; (N)-methanocarba was preferred on the distal nucleoside moiety. This suggests that the distal dinucleotide P2Y6R binding site prefers a ribose-like group that can attain a (N) conformation, rather than (S). Dinucleotide binding was modeled by homology modeling, docking and molecular dynamics simulations, which suggested the same ribose conformational preferences found empirically.
Collapse
Affiliation(s)
- Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Saibal Chakraborty
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ryan Surujdin
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Merino P, Delso I, Tejero T, Ghirardello M, Juste-Navarro V. Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pedro Merino
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Ignacio Delso
- NMR Service, Center of Chemistry and Materials of Aragon (CEQMA); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Tomás Tejero
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Mattia Ghirardello
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Verónica Juste-Navarro
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| |
Collapse
|
13
|
Kiselev E, Balasubramanian R, Uliassi E, Brown KA, Trujillo K, Katritch V, Hammes E, Stevens RC, Harden TK, Jacobson KA. Design, synthesis, pharmacological characterization of a fluorescent agonist of the P2Y₁₄ receptor. Bioorg Med Chem Lett 2015; 25:4733-4739. [PMID: 26303895 DOI: 10.1016/j.bmcl.2015.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
Abstract
The P2Y14R is a G(i/o)-coupled receptor of the P2Y family of purinergic receptors that is activated by extracellular UDP and UDP-glucose (UDPG). In an earlier report we described a P2Y14R fluorescent probe, MRS4174, based on the potent and selective antagonist PPTN, a naphthoic acid derivative. Here, we report the design, preparation, and activity of an agonist-based fluorescent probe MRS4183 (11) and a shorter P2Y14R agonist congener, which contain a UDP-glucuronic acid pharmacophore and BODIPY fluorophores conjugated through diaminoalkyl linkers. The design relied on both docking in a P2Y14R homology model and established structure activity relationship (SAR) of nucleotide analogs. 11 retained P2Y14R potency with EC50 value of 0.96 nM (inhibition of adenylyl cyclase), compared to parent UDPG (EC50 47 nM) and served as a tracer for microscopy and flow cytometry, displaying minimal nonspecific binding. Binding saturation analysis gave an apparent binding constant for 11 in whole cells of 21.4±1.1 nM, with a t1/2 of association at 50 nM 11 of 23.9 min. Known P2Y14R agonists and PPTN inhibited cell binding of 11 with the expected rank order of potency. The success in the identification of a new P2Y14R fluorescent agonist with low nonspecific binding illustrates the advantages of rational design based on recently determined GPCR X-ray structures. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa Uliassi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin Trujillo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vsevolod Katritch
- The Bridge Institute, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Eva Hammes
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raymond C Stevens
- The Bridge Institute, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; The Bridge Institute, Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, Stevens RC, Kiselev E. Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Mol Pharmacol 2015; 88:220-30. [PMID: 25837834 DOI: 10.1124/mol.114.095711] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/02/2015] [Indexed: 12/23/2022] Open
Abstract
Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Vsevolod Katritch
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Beili Wu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Qiang Zhao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Raymond C Stevens
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| |
Collapse
|
15
|
Lazarowski ER, Harden TK. UDP-Sugars as Extracellular Signaling Molecules: Cellular and Physiologic Consequences of P2Y14 Receptor Activation. Mol Pharmacol 2015; 88:151-60. [PMID: 25829059 DOI: 10.1124/mol.115.098756] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
UDP-sugars, which are indispensable for protein glycosylation reactions in cellular secretory pathways, also act as important extracellular signaling molecules. We discuss here the broadly expressed P2Y14 receptor, a G-protein-coupled receptor targeted by UDP sugars, and the increasingly diverse set of physiologic responses discovered recently functioning downstream of this receptor in many epithelia as well as in immune, inflammatory, and other cells.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - T Kendall Harden
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Trujillo K, Paoletta S, Kiselev E, Jacobson KA. Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands. Bioorg Med Chem 2015; 23:4056-64. [PMID: 25868749 DOI: 10.1016/j.bmc.2015.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
The P2Y14 receptor (P2Y14R) is a Gi protein-coupled receptor that is activated by uracil nucleotides UDP and UDP-glucose. The P2Y14R structure has yet to be solved through X-ray crystallography, but the recent agonist-bound crystal structure of the P2Y12R provides a potentially suitable template for its homology modeling for rational structure-based design of selective and high-affinity ligands. In this study, we applied ligand docking and molecular dynamics refinement to a P2Y14R homology model to qualitatively explain structure-activity relationships of previously published synthetic nucleotide analogues and to probe the quality of P2Y14R homology modeling as a template for structure-based design. The P2Y14R model supports the hypothesis of a conserved binding mode of nucleotides in the three P2Y12-like receptors involving functionally conserved residues. We predict phosphate group interactions with R253(6.55), K277(7.35), Y256(6.58) and Q260(6.62), nucleobase (anti-conformation) π-π stacking with Y102(3.33) and the role of F191(5.42) as a means for selectivity among P2Y12-like receptors. The glucose moiety of UDP-glucose docked in a secondary subpocket at the P2Y14R homology model. Thus, P2Y14R homology modeling may allow detailed prediction of interactions to facilitate the design of high affinity, selective agonists as pharmacological tools to study the P2Y14R.
Collapse
Affiliation(s)
- Kevin Trujillo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810, USA
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
17
|
Kiselev E, Barrett MO, Katritch V, Paoletta S, Weitzer CD, Brown KA, Hammes E, Yin AL, Zhao Q, Stevens RC, Harden TK, Jacobson KA. Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. ACS Chem Biol 2014; 9:2833-42. [PMID: 25299434 PMCID: PMC4273980 DOI: 10.1021/cb500614p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The P2Y14 receptor (P2Y14R), one of eight
P2Y G protein-coupled receptors (GPCR), is involved in inflammatory,
endocrine, and hypoxic processes and is an attractive pharmaceutical
target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective
antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic
acid (6, PPTN). A model of hP2Y14R based on
recent hP2Y12R X-ray structures together with simulated
antagonist docking suggested that the piperidine ring is suitable
for fluorophore conjugation while preserving affinity. Chain-elongated
alkynyl or amino derivatives of 6 for click or amide
coupling were synthesized, and their antagonist activities were measured
in hP2Y14R-expressing CHO cells. Moreover, a new Alexa
Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity,
as compared to 13 nM for the alkyne precursor 22. A flow
cytometry assay employing 30 as a fluorescent probe was
used to quantify specific binding to P2Y14R. Known P2Y
receptor ligands inhibited binding of 30 with properties
consistent with their previously established receptor selectivities
and affinities. These results illustrate that potency in this series
of 2-naphthoic acid derivatives can be preserved by chain functionalization,
leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the
SAR of this receptor, which still lacks chemical diversity in its
collective ligands. This approach demonstrates the predictive power
of GPCR homology modeling and the relevance of newly determined X-ray
structures to GPCR medicinal chemistry.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matthew O. Barrett
- Department
of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Vsevolod Katritch
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Silvia Paoletta
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clarissa D. Weitzer
- Department
of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kyle A. Brown
- Department
of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Eva Hammes
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andrew L. Yin
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiang Zhao
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Raymond C. Stevens
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - T. Kendall Harden
- Department
of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Alsaqati M, Latif ML, Chan SLF, Ralevic V. Novel vasocontractile role of the P2Y₁₄ receptor: characterization of its signalling in porcine isolated pancreatic arteries. Br J Pharmacol 2014; 171:701-13. [PMID: 24138077 DOI: 10.1111/bph.12473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 09/04/2013] [Accepted: 10/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The P2Y₁₄ receptor is the newest member of the P2Y receptor family; it is G(i/o) protein-coupled and is activated by UDP and selectively by UDP-glucose and MRS2690 (2-thiouridine-5'-diphosphoglucose) (7-10-fold more potent than UDP-glucose). This study investigated whether P2Y₁₄ receptors were functionally expressed in porcine isolated pancreatic arteries. EXPERIMENTAL APPROACH Pancreatic arteries were prepared for isometric tension recording and UDP-glucose, UDP and MRS2690 were applied cumulatively after preconstriction with U46619, a TxA₂ mimetic. Levels of phosphorylated myosin light chain 2 (MLC2) were assessed with Western blotting. cAMP concentrations were assessed using a competitive enzyme immunoassay kit. KEY RESULTS Concentration-dependent contractions with a rank order of potency of MRS2690 (10-fold) > UDP-glucose ≥ UDP were recorded. These contractions were reduced by PPTN {4-[4-(piperidin-4-yl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthoic acid}, a selective antagonist of P2Y₁₄ receptors, which did not affect responses to UTP. Contraction to UDP-glucose was not affected by MRS2578, a P2Y₆ receptor selective antagonist. Raising cAMP levels and forskolin, in the presence of U46619, enhanced contractions to UDP-glucose. In addition, UDP-glucose and MRS2690 inhibited forskolin-stimulated cAMP levels. Removal of the endothelium and inhibition of endothelium-derived contractile agents (TxA₂, PGF(2α) and endothelin-1) inhibited contractions to UDP glucose. Y-27632, nifedipine and thapsigargin also reduced contractions to the agonists. UDP-glucose and MRS2690 increased MLC2 phosphorylation, which was blocked by PPTN. CONCLUSIONS AND IMPLICATIONS P2Y₁₄ receptors play a novel vasocontractile role in porcine pancreatic arteries, mediating contraction via cAMP-dependent mechanisms, elevation of intracellular Ca²⁺ levels, activation of RhoA/ROCK signalling and MLC2, along with release of TxA₂, PGF(2α) and endothelin-1.
Collapse
Affiliation(s)
- M Alsaqati
- Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
19
|
Characterization of the contractile P2Y14 receptor in mouse coronary and cerebral arteries. FEBS Lett 2014; 588:2936-43. [PMID: 24911208 DOI: 10.1016/j.febslet.2014.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 01/12/2023]
Abstract
Extracellular UDP-glucose can activate the purinergic P2Y14 receptor. The aim of the present study was to examine the physiological importance of P2Y14 receptors in the vasculature. The data presented herein show that UDP-glucose causes contraction in mouse coronary and basilar arteries. The EC50 values and immunohistochemistry illustrated the strongest P2Y14 receptor expression in the basilar artery. In the presence of pertussis toxin, UDP-glucose inhibited contraction in coronary arteries and in the basilar artery it surprisingly caused relaxation. After organ culture of the coronary artery, the EC50 value decreased and an increased staining for the P2Y14 receptor was observed, showing receptor plasticity.
Collapse
|
20
|
Abstract
G-protein–coupled receptors (GPCRs) still offer enormous scope for new therapeutic targets. Currently marketed agents are dominated by those with activity at aminergic receptors and yet they account for only ~10% of the family. Progress up until now with other subfamilies, notably orphans, Family A/peptide, Family A/lipid, Family B, Family C, and Family F, has been, at best, patchy. This may be attributable to the heterogeneous nature of GPCRs, their endogenous ligands, and consequently their binding sites. Our appreciation of receptor similarity has arguably been too simplistic, and screening collections have not necessarily been well suited to identifying leads in new areas. Despite the relative shortage of high-quality tool molecules in a number of cases, there is an emerging, and increasingly substantial, body of evidence associating many as yet “undrugged” receptors with a very wide range of diseases. Significant advances in our understanding of receptor pharmacology and technical advances in screening, protein X-ray crystallography, and ligand design methods are paving the way for new successes in the area. Exploitation of allosteric mechanisms; alternative signaling pathways such as G12/13, Gβγ, and β-arrestin; the discovery of “biased” ligands; and the emergence of GPCR-protein complexes as potential drug targets offer scope for new and much improved drugs.
Collapse
|
21
|
Dabrowski-Tumanski P, Kowalska J, Jemielity J. Efficient and Rapid Synthesis of Nucleoside Diphosphate Sugars from Nucleoside Phosphorimidazolides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Mohamady S, Desoky A, Taylor SD. Sulfonyl imidazolium salts as reagents for the rapid and efficient synthesis of nucleoside polyphosphates and their conjugates. Org Lett 2011; 14:402-5. [PMID: 22188478 DOI: 10.1021/ol203178k] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A procedure for the synthesis of nucleoside polyphosphates and their conjugates using sulfonylimidazolium salts as key reagents is described. The procedure is rapid and high yielding, does not require prior protection and subsequent deprotection of the donors or acceptors, and can be used to activate nucleoside mono-, di- and triphosphates, and a wide variety of acceptors and donors can be used.
Collapse
Affiliation(s)
- Samy Mohamady
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt 41522
| | | | | |
Collapse
|
23
|
Gantt RW, Peltier-Pain P, Cournoyer WJ, Thorson JS. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat Chem Biol 2011; 7:685-91. [PMID: 21857660 PMCID: PMC3177962 DOI: 10.1038/nchembio.638] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022]
Abstract
We report that simple glycoside donors can drastically shift the equilibria of glycosyltransferase-catalyzed reactions, transforming NDP-sugar formation from an endothermic to an exothermic process. To demonstrate the utility of this thermodynamic adaptability, we highlight the glycosyltransferase-catalyzed synthesis of 22 sugar nucleotides from simple aromatic sugar donors, as well as the corresponding in situ formation of sugar nucleotides as a driving force in the context of glycosyltransferase-catalyzed reactions for small-molecule glycodiversification. These simple aromatic donors also enabled a general colorimetric assay for glycosyltransfer, applicable to drug discovery, protein engineering and other fundamental sugar nucleotide-dependent investigations. This study directly challenges the general notion that NDP-sugars are 'high-energy' sugar donors when taken out of their traditional biological context.
Collapse
Affiliation(s)
- Richard W. Gantt
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Pauline Peltier-Pain
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - William J. Cournoyer
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Jon S. Thorson
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| |
Collapse
|
24
|
Maruoka H, Barrett MO, Ko H, Tosh DK, Melman A, Burianek LE, Balasubramanian R, Berk B, Costanzi S, Harden TK, Jacobson KA. Pyrimidine ribonucleotides with enhanced selectivity as P2Y(6) receptor agonists: novel 4-alkyloxyimino, (S)-methanocarba, and 5'-triphosphate gamma-ester modifications. J Med Chem 2010; 53:4488-501. [PMID: 20446735 DOI: 10.1021/jm100287t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC(50) = 0.30 microM). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC(50) = 0.042 microM). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N(4)-Benzyloxy-CDP (15, MRS2964) and N(4)-methoxy-Cp(3)U (23, MRS2957) were potent, selective P2Y(6) receptor agonists (EC(50) of 0.026 and 0.012 microM, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N(4)-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC(50) of 2.47 and 0.18 microM, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.
Collapse
Affiliation(s)
- Hiroshi Maruoka
- Molecular Recognition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Harden TK, Sesma JI, Fricks IP, Lazarowski ER. Signalling and pharmacological properties of the P2Y receptor. Acta Physiol (Oxf) 2010; 199:149-60. [PMID: 20345417 DOI: 10.1111/j.1748-1716.2010.02116.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P2Y(14) receptor is a relatively broadly expressed G protein-coupled receptor that is prominently associated with immune and inflammatory cells as well as with many epithelia. This receptor historically was thought to be activated selectively by UDP-glucose and other UDP-sugars. However, UDP is also a very potent agonist of this receptor, and may prove to be one of its most important cognate activators.
Collapse
Affiliation(s)
- T K Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
26
|
Fast synthesis of uronamides by non-catalyzed opening of glucopyranurono-6,1-lactone with amines, amino acids, and aminosugars. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
McRobb FM, Capuano B, Crosby IT, Chalmers DK, Yuriev E. Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. J Chem Inf Model 2010; 50:626-37. [DOI: 10.1021/ci900444q] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fiona M. McRobb
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ben Capuano
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ian T. Crosby
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - David K. Chalmers
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
28
|
Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA. Polyamidoamine (PAMAM) dendrimer conjugates of "clickable" agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 2010; 21:372-84. [PMID: 20121074 PMCID: PMC2845915 DOI: 10.1021/bc900473v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - S. Michael Kilbey
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Matthew O. Barrett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ingrid P. Fricks
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
29
|
Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson KA. Human P2Y(14) receptor agonists: truncation of the hexose moiety of uridine-5'-diphosphoglucose and its replacement with alkyl and aryl groups. J Med Chem 2010; 53:471-80. [PMID: 19902968 DOI: 10.1021/jm901432g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Uridine-5'-diphosphoglucose (UDPG) activates the P2Y(14) receptor, a neuroimmune system GPCR. P2Y(14) receptor tolerates glucose substitution with small alkyl or aryl groups or its truncation to uridine 5'-diphosphate (UDP), a full agonist at the human P2Y(14) receptor expressed in HEK-293 cells. 2-Thiouracil derivatives displayed selectivity for activation of the human P2Y(14) vs the P2Y(6) receptor, such as 2-thio-UDP 4 (EC(50) = 1.92 nM at P2Y(14), 224-fold selectivity vs P2Y(6)) and its beta-propyloxy ester 18. EC(50) values of the beta-methyl ester of UDP and its 2-thio analogue were 2730 and 56 nM, respectively. beta-tert-Butyl ester of 4 was 11-fold more potent than UDPG, but beta-aryloxy or larger, branched beta-alkyl esters, such as cyclohexyl, were less potent. Ribose replacement of UDP with a rigid North or South methanocarba (bicyclo[3.1.0]hexane) group abolished P2Y(14) receptor agonist activity. alpha,beta-Methylene and difluoromethylene groups were well tolerated at the P2Y(14) receptor and are expected to provide enhanced stability in biological systems. alpha,beta-Methylene-2-thio-UDP 11 (EC(50) = 0.92 nM) was 2160-fold selective versus P2Y(6). Thus, these nucleotides and their congeners may serve as important pharmacological probes for the detection and characterization of the P2Y(14) receptor.
Collapse
Affiliation(s)
- Arijit Das
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochem Pharmacol 2009; 79:873-9. [PMID: 19896471 DOI: 10.1016/j.bcp.2009.10.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/21/2022]
Abstract
UDP-glucose (UDPG), a glycosyl donor in the biosynthesis of carbohydrates, is an endogenous agonist of the G protein-coupled P2Y(14) receptor. RBL-2H3 mast cells endogenously express a P2Y(14) receptor at which UDPG mediates degranulation as indicated by beta-hexosaminidase (HEX) release. Both UDPG and a more potent, selective 2-thio-modified UDPG analog, MRS2690 (diphosphoric acid 1-alpha-d-glucopyranosyl ester 2-[(2-thio)uridin-5''-yl] ester), caused a substantial calcium transient in RBL-2H3 cells, which was blocked by pertussis toxin, indicating the presence of the G(i)-coupled P2Y(14) receptor, supported also by quantitative detection of abundant mRNA. Expression of the closely related P2Y(6) receptor was over 100 times lower than the P2Y(14) receptor, and the P2Y(6) agonist 3-phenacyl-UDP was inactive in RBL-2H3 cells. P2Y(14) receptor agonists also induced [(35)S]GTPgammaS binding to RBL-2H3 cell membranes, and phosphorylation of ERK1/2, P38 and JNK. UDPG and MRS2690 concentration-dependently enhanced HEX release with EC(50) values of 1150+/-320 and 103+/-18nM, respectively. The enhancement was completely blocked by pertussis toxin and significantly diminished by P2Y(14) receptor-specific siRNA. Thus, mast cells express an endogenous P2Y(14) receptor, which mediates G(i)-dependent degranulation and is therefore a potential novel therapeutic target for allergic conditions.
Collapse
|
31
|
Das A, Zhou Y, Ivanov AA, Carter RL, Harden TK, Jacobson KA. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition. Bioconjug Chem 2009; 20:1650-9. [PMID: 19572637 DOI: 10.1021/bc900206g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.
Collapse
Affiliation(s)
- Arijit Das
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|