1
|
Mateos N, Gutierrez-Martinez E, Angulo-Capel J, Carlon-Andres I, Padilla-Parra S, Garcia-Parajo MF, Torreno-Pina JA. Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells. ACS NANO 2024; 18:28881-28893. [PMID: 39387532 PMCID: PMC11503779 DOI: 10.1021/acsnano.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.
Collapse
Affiliation(s)
- Nicolas Mateos
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Enric Gutierrez-Martinez
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jessica Angulo-Capel
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Irene Carlon-Andres
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
| | - Sergi Padilla-Parra
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Maria F. Garcia-Parajo
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Juan A. Torreno-Pina
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
2
|
Keiser PT, Zhang W, Ricca M, Wacquiez A, Grimins A, Cencic R, Patten JJ, Shah P, Padilha E, Connor JH, Pelletier J, Lyons SM, Saeed M, Brown LE, Porco JA, Davey RA. Amidino-rocaglates (ADRs), a class of synthetic rocaglates, are potent inhibitors of SARS-CoV-2 replication through inhibition of viral protein synthesis. Antiviral Res 2024; 230:105976. [PMID: 39117283 PMCID: PMC11434215 DOI: 10.1016/j.antiviral.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.
Collapse
Affiliation(s)
- Patrick T Keiser
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Wenhan Zhang
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Michael Ricca
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Alan Wacquiez
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Autumn Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Regina Cencic
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Pranav Shah
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - Elias Padilha
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - John H Connor
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Jerry Pelletier
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lauren E Brown
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA.
| |
Collapse
|
3
|
Panda K, Alagarasu K, Tagore R, Paingankar M, Kumar S, Jeengar MK, Cherian S, Parashar D. RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward? Viruses 2024; 16:1489. [PMID: 39339965 PMCID: PMC11437507 DOI: 10.3390/v16091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Rajarshee Tagore
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Mandar Paingankar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Satyendra Kumar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Manish Kumar Jeengar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
4
|
Xu L, Yu D, Xu M, Liu Y, Yang LX, Zou QC, Feng XL, Li MH, Sheng N, Yao YG. Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2. EBioMedicine 2024; 107:105281. [PMID: 39142074 PMCID: PMC11367481 DOI: 10.1016/j.ebiom.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Min Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China
| | - Qing-Cui Zou
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ming-Hua Li
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
5
|
Chauhan N, Gaur KK, Asuru TR, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
6
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
7
|
Pandey K, Acharya A, Pal D, Jain P, Singh K, Durden DL, Kutateladze TG, Deshpande AJ, Byrareddy SN. SRX3177, a CDK4/6-PI3K-BET inhibitor, in combination with an RdRp inhibitor, Molnupiravir, or an entry inhibitor MU-UNMC-2, has potent antiviral activity against the Omicron variant of SARS-CoV-2. Antiviral Res 2024; 227:105904. [PMID: 38729306 DOI: 10.1016/j.antiviral.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.
Collapse
Affiliation(s)
- Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Prashant Jain
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aniruddha J Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA.
| |
Collapse
|
8
|
Glitscher M, Benz NI, Sabino C, Murra RO, Hein S, Zahn T, Mhedhbi I, Stefanova D, Bender D, Werner S, Hildt E. Inhibition of Pim kinases triggers a broad antiviral activity by affecting innate immunity and via the PI3K-Akt-mTOR axis the endolysosomal system. Antiviral Res 2024; 226:105891. [PMID: 38649071 DOI: 10.1016/j.antiviral.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Zoonoses such as ZIKV and SARS-CoV-2 pose a severe risk to global health. There is urgent need for broad antiviral strategies based on host-targets filling gaps between pathogen emergence and availability of therapeutic or preventive strategies. Significant reduction of pathogen titers decreases spread of infections and thereby ensures health systems not being overloaded and public life to continue. Based on previously observed interference with FGFR1/2-signaling dependent impact on interferon stimulated gene (ISG)-expression, we identified Pim kinases as promising druggable cellular target. We therefore focused on analyzing the potential of pan-Pim kinase inhibition to trigger a broad antiviral response. The pan-Pim kinase inhibitor AZD1208 exerted an extraordinarily high antiviral effect against various ZIKV isolates, SARS-CoV-2 and HBV. This was reflected by strong reduction in viral RNA, proteins and released infectious particles. Especially in case of SARS-CoV-2, AZD1208 led to a complete removal of viral traces in cells. Kinome-analysis revealed vast changes in kinase landscape upon AZD1208 treatment, especially for inflammation and the PI3K/Akt-pathway. For ZIKV, a clear correlation between antiviral effect and increase in ISG-expression was observed. Based on a cell culture model with impaired ISG-induction, activation of the PI3K-Akt-mTOR axis, leading to major changes in the endolysosomal equilibrium, was identified as second pillar of the antiviral effect triggered by AZD1208-dependent Pim kinase inhibition, also against HBV. We identified Pim-kinases as cellular target for a broad antiviral activity. The antiviral effect exerted by inhibition of Pim kinases is based on at least two pillars: innate immunity and modulation of the endolysosomal system.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Robin Oliver Murra
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sascha Hein
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Tobias Zahn
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Ines Mhedhbi
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Debora Stefanova
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany.
| |
Collapse
|
9
|
Chen S, Jiang Z, Li Q, Pan W, Chen Y, Liu J. Viral RNA capping: Mechanisms and antiviral therapy. J Med Virol 2024; 96:e29622. [PMID: 38682614 DOI: 10.1002/jmv.29622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.
Collapse
Affiliation(s)
- Saini Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhimin Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenliang Pan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Castañeda Cataña MA, Dodes Traian MM, Rivas Marquina AP, Marquez AB, Arrúa EC, Carlucci MJ, Damonte EB, Pérez OE, Sepúlveda CS. Design and characterization of BSA-mycophenolic acid nanocomplexes: Antiviral activity exploration. Int J Biol Macromol 2024; 265:131023. [PMID: 38513897 DOI: 10.1016/j.ijbiomac.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) μM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Mayra A Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Andrea P Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - Agostina B Marquez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Eva C Arrúa
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - María J Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina.
| |
Collapse
|
11
|
Almoyad MAA, Alsayari A, Wahab S, Chandra S. Hematopoietic cell kinase as a nexus for drug repurposing: implications for cancer and HIV therapy. J Biomol Struct Dyn 2024:1-11. [PMID: 38529911 DOI: 10.1080/07391102.2024.2331092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Hematopoietic cell kinase (HCK) has emerged as a potential target for therapeutic intervention in cancer and HIV infection because of its critical role in critical signaling pathways. Repurposing FDA-approved drugs offers an efficient strategy to identify new treatment options. Here, we address the need for novel therapies in cancer and HIV by investigating the potential of repurposed drugs against HCK. Our goal was to identify promising drug candidates with high binding affinities and specific interactions within the HCK binding pocket. We employed an integrated computational approach combining molecular docking and extensive molecular dynamics (MD) simulations. Initially, we analyzed the binding affinities and interaction patterns of a library of FDA-approved drugs sourced from DrugBank. After careful analysis, we focused on two compounds, Nilotinib and Radotinib, which exhibit exceptional binding affinities and specificity to the HCK binding pocket, including the active site. Additionally, we assessed the pharmacological properties of Nilotinib and Radotinib, making them attractive candidates for further drug development. Extensive all-atom MD simulations spanning 200 nanoseconds (ns) elucidated the conformational dynamics and stability of the HCK-Nilotinib and HCK-Radotinib complexes. These simulations demonstrate the robustness of these complexes over extended timescales. Our findings highlighted the potential of Nilotinib and Radotinib as promising candidates against HCK that offer valuable insights into their binding mechanisms. This computational approach provides a comprehensive understanding of drug interactions with HCK and sets the stage for future experimental validation and drug development endeavors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushyt, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Saudi Arabia
| | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora, India
| |
Collapse
|
12
|
Kumar S, Dubey R, Mishra R, Gupta S, Dwivedi VD, Ray S, Jha NK, Verma D, Tsai LW, Dubey NK. Repurposing of SARS-CoV-2 compounds against Marburg Virus using MD simulation, mm/GBSA, PCA analysis, and free energy landscape. J Biomol Struct Dyn 2024:1-20. [PMID: 38450706 DOI: 10.1080/07391102.2024.2323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
The significant mortality rate associated with Marburg virus infection made it the greatest hazard among infectious diseases. Drug repurposing using in silico methods has been crucial in identifying potential compounds that could prevent viral replication by targeting the virus's primary proteins. This study aimed at repurposing the drugs of SARS-CoV-2 for identifying potential candidates against the matrix protein VP40 of the Marburg virus. Virtual screening was performed where the control compound, Nilotinib, showed a binding score of -9.99 kcal/mol. Based on binding scores, hit compounds 9549298, 11960895, 44545852, 51039094, and 89670174 were selected that had a lower binding score than the control. Subsequent molecular dynamics (MD) simulation revealed that compound 9549298 consistently formed a hydrogen bond with the residue Gln290. This was observed both in molecular docking and MD simulation poses, indicating a strong and significant interaction with the protein. 11960895 had the most stable and consistent RMSD pattern exhibited in 100 ns simulation, while 9549298 had the most identical RMSD plot compared to the control molecule. MM/PBSA analysis showed that the binding free energy (ΔG) of 9549298 and 11960895 was lower than the control, with -30.84 and -38.86 kcal/mol, respectively. It was observed by the PCA (principal component analysis) and FEL (free energy landscape) analysis that compounds 9549298 and 11960895 had lesser conformational variation. Overall, this study proposed 9549298 and 11960895 as potential binders of VP40 MARV that can cause its inhibition, however it inherently lacks experimental validation. Furthermore, the study proposes in-vitro experiments as the next step to validate these computational findings, offering a practical approach to further explore these compounds' potential as antiviral agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, UP, India
| | - Subhasree Ray
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
13
|
G Vishakantegowda A, Hwang D, Chakrasali P, Jung E, Lee JY, Shin JS, Jung YS. Highly potent and selective phosphatidylinositol 4-kinase IIIβ inhibitors as broad-spectrum anti-rhinoviral agents. RSC Med Chem 2024; 15:704-719. [PMID: 38389877 PMCID: PMC10880896 DOI: 10.1039/d3md00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024] Open
Abstract
Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIβ inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 μM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 μM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIβ inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIβ was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 μM for PI4KIIIβ, but not for PI4KIIIα (>10 μM). Therefore, 7f represents a highly potent and selective PI4KIIIβ inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.
Collapse
Affiliation(s)
- Avinash G Vishakantegowda
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University Cheongju 28644 Republic of Korea
| | - Prashant Chakrasali
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
14
|
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol 2024; 436:168380. [PMID: 38061626 DOI: 10.1016/j.jmb.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.
Collapse
|
15
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
16
|
Zhang J, Xiao Y, Zhang J, Yang Y, Zhang L, Liang F. Recent advances of engineered oncolytic viruses-based combination therapy for liver cancer. J Transl Med 2024; 22:3. [PMID: 38167076 PMCID: PMC10763442 DOI: 10.1186/s12967-023-04817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is a major malignant tumor, which seriously threatens human health and increases the economic burden on patients. At present, gene therapy has been comprehensively studied as an excellent therapeutic measure in liver cancer treatment. Oncolytic virus (OV) is a kind of virus that can specifically infect and kill tumor cells. After being modified by genetic engineering, the specificity of OV infection to tumor cells is increased, and its influence on normal cells is reduced. To date, OV has shown its effectiveness and safety in experimental and clinical studies on a variety of tumors. Thus, this review primarily introduces the current status of different genetically engineered OVs used in gene therapy for liver cancer, focuses on the application of OVs and different target genes for current liver cancer therapy, and identifies the problems encountered in OVs-based combination therapy and the corresponding solutions, which will provide new insights into the treatment of liver cancer.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Jie Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| |
Collapse
|
17
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
18
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
19
|
Mohammed HS, Taha EFS, Mahrous FS, Sabour R, Abdel-Aziz MM, Ismail LD. Antimicrobial and antiviral evaluation of compounds from Holoptelea integrifolia: in silico supported in vitro study. RSC Adv 2023; 13:32473-32486. [PMID: 37928846 PMCID: PMC10624013 DOI: 10.1039/d3ra05978b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023] Open
Abstract
Holoptelea integrifolia, also known as the Indian Elm Tree, has been used in Ayurvedic medicine for its medicinal properties. In this study, two biologically active metabolites, 5(6) dihydrostigmast 22en 3-O-β-glucoside (DHS) and 1-O-eicosanoyl glycerol-2'-O-β-galactouronic (EGG), were isolated for the first time from the n-butanol fraction of H. integrifolia using a chromatographic technique and identified by NMR, and HRESI-MS. The antiviral and multidrug-resistant activities of these metabolites were evaluated as well as the n-butanol fraction. The n-butanol fraction of H. integrifolia exhibited weak antiviral effects, but DHS and EGG demonstrated significant antiviral activity against herpes simplex type-1 (HSV-1) and Coxsackie (CoxB4) viruses. Both metabolites showed lower IC50 values than the standard antiviral drug acyclovir, indicating their potency in inhibiting viral replication. EGG showed potent antiviral activity with minimal cytotoxicity at the highest concentration tested, presenting a selectivity index (SI) of 18.18 and 15.58 against HSV-1 and CoxB4 viruses, respectively. A preliminary assessment of the antibacterial activity of the n-butanol fraction and metabolites revealed that DHS had the highest inhibitory potency against drug-resistant strains, including MRSA and Carbapenem-resistant Klebsiella pneumonia. It also exhibited significant inhibitions against Fluconazole-resistant Candida albicans and ESBL - Escherichia coli. DHS displayed the lowest minimum inhibitory concentration (MIC) values, indicating its superiority as an antibacterial agent compared to EGG and the n-butanol fraction. Molecular docking analysis confirmed the antiviral and antibacterial actions of DHS and EGG by demonstrating their strong binding.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University Cairo (11311) Egypt
| | - Eman F S Taha
- Department of Health Radiation Research, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Fatma S Mahrous
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University Cairo (11311) Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa M Abdel-Aziz
- The Regional Centre for Mycology and Biotechnology, Al-Azhar University Cairo Egypt
| | - Lotfy D Ismail
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University Cairo Egypt
| |
Collapse
|
20
|
Idrees S, Paudel KR, Sadaf T, Hansbro PM. How different viruses perturb host cellular machinery via short linear motifs. EXCLI JOURNAL 2023; 22:1113-1128. [PMID: 38054205 PMCID: PMC10694346 DOI: 10.17179/excli2023-6328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The virus interacts with its hosts by developing protein-protein interactions. Most viruses employ protein interactions to imitate the host protein: A viral protein with the same amino acid sequence or structure as the host protein attaches to the host protein's binding partner and interferes with the host protein's pathways. Being opportunistic, viruses have evolved to manipulate host cellular mechanisms by mimicking short linear motifs. In this review, we shed light on the current understanding of mimicry via short linear motifs and focus on viral mimicry by genetically different viral subtypes by providing recent examples of mimicry evidence and how high-throughput methods can be a reliable source to study SLiM-mediated viral mimicry.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Tayyaba Sadaf
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Souza BGD, Choudhary S, Vilela GG, Passos GFS, Costa CACB, Freitas JDD, Coelho GL, Brandão JDA, Anderson L, Bassi ÊJ, Araújo-Júnior JXD, Tomar S, Silva-Júnior EFD. Design, synthesis, antiviral evaluation, and In silico studies of acrylamides targeting nsP2 from Chikungunya virus. Eur J Med Chem 2023; 258:115572. [PMID: 37364511 DOI: 10.1016/j.ejmech.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 μM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 μM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 μM. Even at 50 μM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 μM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 μM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/μL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.
Collapse
Affiliation(s)
- Beatriz Gois de Souza
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gabriel Gomes Vilela
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Alagoas, Maceió, Brazil
| | - Grazielle Lobo Coelho
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Júlia de Andrade Brandão
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Leticia Anderson
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; CESMAC University Center, 57051-160, Alagoas, Maceió, Brazil
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil.
| |
Collapse
|
22
|
Chilingaryan G, Izmailyan R, Grigoryan R, Shavina A, Arabyan E, Khachatryan H, Abelyan N, Matevosyan M, Harutyunyan V, Manukyan G, Hietel B, Shtro A, Danilenko D, Zakaryan H. Advanced virtual screening enables the discovery of a host-targeting and broad-spectrum antiviral agent. Antiviral Res 2023; 217:105681. [PMID: 37499699 DOI: 10.1016/j.antiviral.2023.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty. Then, we conducted in vitro experiments to investigate the antiviral activity of selected compounds on HSV-1 infection, which is susceptible to DHODH inhibitors. Among the tested compounds, seven displayed statistically significant antiviral effects, with Comp 19 being the most potent inhibitor. We found that Comp 19 exerted its antiviral effect in a dose-dependent manner (IC50 = 1.1 μM) and exhibited the most significant antiviral effect when added before viral infection. In the biochemical assay, Comp 19 inhibited human DHODH in a dose-dependent manner with the IC50 value of 7.3 μM. Long-timescale molecular dynamics simulations (1000 ns) revealed that Comp 19 formed a very stable complex with human DHODH. Comp 19 also displayed broad-spectrum antiviral activity and suppressed cytokine production in THP-1 cells. Overall, our study provides evidence that AVS could be successfully implemented to discover novel DHODH inhibitors with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Biocentric.AI, 0051, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Hamlet Khachatryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Narek Abelyan
- Biocentric.AI, 0051, Yerevan, Armenia; Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051, Yerevan, Armenia
| | | | | | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology IZI Department of Drug Design and Target Validation MWT Biocenter, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia.
| |
Collapse
|
23
|
Suprewicz Ł, Szczepański A, Lenart M, Piktel E, Fiedoruk K, Barreto-Duran E, Kula-Pacurar A, Savage PB, Milewska A, Bucki R, Pyrć K. Ceragenins exhibit antiviral activity against SARS-CoV-2 by increasing the expression and release of type I interferons upon activation of the host's immune response. Antiviral Res 2023; 217:105676. [PMID: 37481038 DOI: 10.1016/j.antiviral.2023.105676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world socially and economically. Despite a generation of vaccines and therapeutics to confront infection, it remains a threat. Most available antivirals target viral proteins and block their activity or function. While such an approach is considered effective and safe, finding treatments for specific viruses of concern leaves us unprepared for developed resistance and future viral pandemics of unknown origin. Here, we propose ceragenins (CSAs), synthetic amphipathic molecules designed to mimic the properties of cationic antimicrobial peptides (cAMPs), as potential broad-spectrum antivirals. We show that selected CSAs exhibit antiviral activity against SARS-CoV-2 and low-pathogenic human coronaviruses 229E, OC43, and NL63. The mechanism of action of CSAs against coronaviruses is mainly attributed to the stimulation of antiviral cytokines, such as type I interferons or IL-6. Our study provides insight into a novel immunomodulatory strategy that might play an essential role during the current pandemic and future outbreaks.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland.
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
24
|
Pradeep P, Sivakumar KC, Sreekumar E. Host Factor Nucleophosmin 1 (NPM1/B23) Exerts Antiviral Effects against Chikungunya Virus by Its Interaction with Viral Nonstructural Protein 3. Microbiol Spectr 2023; 11:e0537122. [PMID: 37409962 PMCID: PMC10433958 DOI: 10.1128/spectrum.05371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | | | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, India
| |
Collapse
|
25
|
Chianese A, Gravina C, Morone MV, Ambrosino A, Formato M, Palma F, Foglia F, Nastri BM, Zannella C, Esposito A, De Filippis A, Piccolella S, Galdiero M, Pacifico S. Lavandula austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses 2023; 15:1648. [PMID: 37631991 PMCID: PMC10457779 DOI: 10.3390/v15081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Francesco Foglia
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Bianca Maria Nastri
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| |
Collapse
|
26
|
Yao YX, Chen Y, Huang D, Liu C, Sun H, Zhou Y, Pei R, Wang Y, Wen Z, Yang B, Chen X. RNA-binding motif protein 24 inhibits HBV replication in vivo. J Med Virol 2023; 95:e28969. [PMID: 37485644 DOI: 10.1002/jmv.28969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Despite the extensive use of effective vaccines and antiviral drugs, chronic hepatitis B virus (HBV) infection continues to pose a serious threat to global public health. Therapies with novel mechanisms of action against HBV are being explored for achieving a functional cure. In this study, five murine models of HBV replication were used to investigate the inhibitory effect of RNA binding motif protein 24 (RBM24) on HBV replication. The findings revealed that RBM24 serves as a host restriction factor and suppresses HBV replication in vivo. The transient overexpression of RBM24 in hydrodynamics-based mouse models of HBV replication driven by the CMV or HBV promoters suppressed HBV replication. Additionally, the ectopic expression of RBM24 decreased viral accumulation and the levels of HBV covalently closed circular DNA (cccDNA) in an rcccDNA mouse model. The liver-directed transduction of adeno-associated viruses (AAV)-RBM24 mediated the stable hepatic expression of RBM24 in pAAV-HBV1.2 and HBV/tg mouse models, and markedly reduced the levels of HBV cccDNA and other viral indicators. Altogether, these findings revealed that RBM24 inhibits the replication of HBV in vivo, and RBM24 may be a potential therapeutic target for combating HBV infections.
Collapse
Affiliation(s)
- Yong-Xuan Yao
- Joint Center of Translational Precision Medicine, Guangzhou Women and Children Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Medical University, Guangzhou, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- GemPharmatech(Guangdong)Co., Ltd., Foshan, China
| | - Dan Huang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canyu Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Wen
- Joint Center of Translational Precision Medicine, Guangzhou Women and Children Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Bo Yang
- Joint Center of Translational Precision Medicine, Guangzhou Women and Children Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Medical University, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
27
|
Kelch MA, Vera-Guapi A, Beder T, Oswald M, Hiemisch A, Beil N, Wajda P, Ciesek S, Erfle H, Toptan T, Koenig R. Machine learning on large scale perturbation screens for SARS-CoV-2 host factors identifies β-catenin/CBP inhibitor PRI-724 as a potent antiviral. Front Microbiol 2023; 14:1193320. [PMID: 37342561 PMCID: PMC10277617 DOI: 10.3389/fmicb.2023.1193320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the virus evolves under selection pressure which already led to the emergence of several drug resistant strains. Broad spectrum host-directed antivirals (HDA) are promising therapeutic options, however the robust identification of relevant host factors by CRISPR/Cas9 or RNA interference screens remains challenging due to low consistency in the resulting hits. To address this issue, we employed machine learning, based on experimental data from several knockout screens and a drug screen. We trained classifiers using genes essential for virus life cycle obtained from the knockout screens. The machines based their predictions on features describing cellular localization, protein domains, annotated gene sets from Gene Ontology, gene and protein sequences, and experimental data from proteomics, phospho-proteomics, protein interaction and transcriptomic profiles of SARS-CoV-2 infected cells. The models reached a remarkable performance suggesting patterns of intrinsic data consistency. The predicted HDF were enriched in sets of genes particularly encoding development, morphogenesis, and neural processes. Focusing on development and morphogenesis-associated gene sets, we found β-catenin to be central and selected PRI-724, a canonical β-catenin/CBP disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV and IAV in different cell line models. We detected a concentration-dependent reduction in cytopathic effects, viral RNA replication, and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. Independent of virus infection, PRI-724 treatment caused cell cycle deregulation which substantiates its potential as a broad spectrum antiviral. Our proposed machine learning concept supports focusing and accelerating the discovery of host dependency factors and identification of potential host-directed antivirals.
Collapse
Affiliation(s)
- Maximilian A. Kelch
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marcus Oswald
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Alicia Hiemisch
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Nina Beil
- Advanced Biological Screening Facility (ABSF), High-Content Analysis of the Cell (HiCell), BioQuant, Heidelberg University, Heidelberg, Germany
| | - Piotr Wajda
- Advanced Biological Screening Facility (ABSF), High-Content Analysis of the Cell (HiCell), BioQuant, Heidelberg University, Heidelberg, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Infection Research (DZIF), External Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Holger Erfle
- Advanced Biological Screening Facility (ABSF), High-Content Analysis of the Cell (HiCell), BioQuant, Heidelberg University, Heidelberg, Germany
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Shi J, Du T, Wang J, Tang C, Lei M, Yu W, Yang Y, Ma Y, Huang P, Chen H, Wang X, Sun J, Wang H, Zhang Y, Luo F, Huang Q, Li B, Lu S, Hu Y, Peng X. Aryl hydrocarbon receptor is a proviral host factor and a candidate pan-SARS-CoV-2 therapeutic target. SCIENCE ADVANCES 2023; 9:eadf0211. [PMID: 37256962 PMCID: PMC10413656 DOI: 10.1126/sciadv.adf0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.
Collapse
Affiliation(s)
- Jiandong Shi
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyue Lei
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ma
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Chen
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzhang Hu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| |
Collapse
|
29
|
Valipour M, Di Giacomo S, Di Sotto A, Irannejad H. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Int J Mol Sci 2023; 24:ijms24108789. [PMID: 37240149 DOI: 10.3390/ijms24108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies indicated that natural-based chalcones have significant inhibitory effects on the coronavirus enzymes 3CLpro and PLpro as well as modulation of some host-based antiviral targets (HBATs). In this study, a comprehensive computational and structural study was performed to investigate the affinity of our compound library consisting of 757 chalcone-based structures (CHA-1 to CHA-757) for inhibiting the 3CLpro and PLpro enzymes and against twelve selected host-based targets. Our results indicated that CHA-12 (VUF 4819) is the most potent and multi-target inhibitor in our chemical library over all viral and host-based targets. Correspondingly, CHA-384 and its congeners containing ureide moieties were found to be potent and selective 3CLpro inhibitors, and benzotriazole moiety in CHA-37 was found to be a main fragment for inhibiting the 3CLpro and PLpro. Surprisingly, our results indicate that the ureide and sulfonamide moieties are integral fragments for the optimum 3CLpro inhibition while occupying the S1 and S3 subsites, which is fully consistent with recent reports on the site-specific 3CLpro inhibitors. Finding the multi-target inhibitor CHA-12, previously reported as an LTD4 antagonist for the treatment of inflammatory pulmonary diseases, prompted us to suggest it as a concomitant agent for relieving respiratory symptoms and suppressing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 1545913487, Iran
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4847116547, Iran
| |
Collapse
|
30
|
Sparrer KMJ, Kirchhoff F. Cap snatch prevention: a novel approach to tackle influenza viruses. Signal Transduct Target Ther 2023; 8:193. [PMID: 37156766 PMCID: PMC10166019 DOI: 10.1038/s41392-023-01474-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Affiliation(s)
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
31
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
32
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
33
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
34
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
35
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
36
|
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int J Mol Sci 2023; 24:ijms24021232. [PMID: 36674746 PMCID: PMC9860923 DOI: 10.3390/ijms24021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.
Collapse
|
37
|
Costa B, Vale N. Modulating Immune Response in Viral Infection for Quantitative Forecasts of Drug Efficacy. Pharmaceutics 2023; 15:pharmaceutics15010167. [PMID: 36678799 PMCID: PMC9867121 DOI: 10.3390/pharmaceutics15010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The antiretroviral drug, the total level of viral production, and the effectiveness of immune responses are the main topics of this review because they are all dynamically interrelated. Immunological and viral processes interact in extremely complex and non-linear ways. For reliable analysis and quantitative forecasts that may be used to follow the immune system and create a disease profile for each patient, mathematical models are helpful in characterizing these non-linear interactions. To increase our ability to treat patients and identify individual differences in disease development, immune response profiling might be useful. Identifying which patients are moving from mild to severe disease would be more beneficial using immune system parameters. Prioritize treatments based on their inability to control the immune response and prevent T cell exhaustion. To increase treatment efficacy and spur additional research in this field, this review intends to provide examples of the effects of modelling immune response in viral infections, as well as the impact of pharmaceuticals on immune response.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
38
|
Ohashi H, Nishioka K, Kurihara T, Nakamura K, Yamasaki M, Ibayashi Y, Fuchiyama K, Kamo S, Furuyama Y, Ohgane K, Okada M, Kamisuki S, Watashi K, Kuramochi K. Anti-hepatitis C Virus Activity of Juglorubin Derivatives. Chem Pharm Bull (Tokyo) 2023; 71:843-845. [PMID: 37914261 DOI: 10.1248/cpb.c23-00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Juglorubin is a natural dye isolated from the culture of Streptomyces sp. 3094, 815, and GW4184. It has been previously synthesized via the biomimetic dimerization of juglomycin C, a plausible genetic precursor. In this study, the derivatives of juglorubin, 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester, were found to exhibit antiviral activity against hepatitis C virus (HCV) without exerting any remarkable cytotoxicity against host Huh-7 cells. They also inhibited liver X receptor α activation and lipid droplet accumulation in Huh-7 cells. These findings suggest that 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester targeted the host factors required for HCV production.
Collapse
Affiliation(s)
- Hirofumi Ohashi
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | - Kazane Nishioka
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
| | - Tomoki Kurihara
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | | | - Masako Yamasaki
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | - Yuuka Ibayashi
- Department of Applied Biological Science, Tokyo University of Science
| | - Kanta Fuchiyama
- Department of Applied Biological Science, Tokyo University of Science
| | - Shogo Kamo
- Department of Applied Biological Science, Tokyo University of Science
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Yuuki Furuyama
- Department of Applied Biological Science, Tokyo University of Science
| | - Kenji Ohgane
- Department of Applied Biological Science, Tokyo University of Science
- Department of Chemistry, Ochanomizu University
| | - Maiko Okada
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Shinji Kamisuki
- School of Veterinary Medicine, Azabu University
- Center for Human and Animal Symbiosis Science, Azabu University
| | - Koichi Watashi
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science
| |
Collapse
|
39
|
Nugrahani I, Susanti E, Adawiyah T, Santosa S, Laksana AN. Non-Covalent Reactions Supporting Antiviral Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249051. [PMID: 36558183 PMCID: PMC9783875 DOI: 10.3390/molecules27249051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Viruses are the current big enemy of the world's healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development.
Collapse
|
40
|
de Padua RM, Kratz JM, Munkert J, Bertol JW, Rigotto C, Schuster D, Maltarollo VG, Kreis W, Simões CMO, Braga F. Effects of Lipophilicity and Structural Features on the Antiherpes Activity of Digitalis Cardenolides and Derivatives. Chem Biodivers 2022; 19:e202200411. [DOI: 10.1002/cbdv.202200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rodrigo Maia de Padua
- UFMG: Universidade Federal de Minas Gerais Pharmaceutical Products Av. Antônio Carlos 6627 Belo Horizonte BRAZIL
| | - Jadel Müller Kratz
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Jennifer Munkert
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | - Jéssica Wildgrube Bertol
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Caroline Rigotto
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Daniela Schuster
- Paracelsus Medical University Salzburg: Paracelsus Medizinische Privatuniversitat Department of Pharmaceutical and Medicinal Chemistry Strubergasse 21 Salzburg AUSTRIA
| | | | - Wolfgang Kreis
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | | | - Fernão Braga
- Universidade Federal de Minas Gerais Pharmaceutical Sciences Av. Antônio Carlos 6627 31270901 Belo Horizonte BRAZIL
| |
Collapse
|
41
|
LoMascolo NJ, Cruz-Pulido YE, Mounce BC. Bisacodyl Limits Chikungunya Virus Replication In Vitro and Is Broadly Antiviral. Antimicrob Agents Chemother 2022; 66:e0029222. [PMID: 35652314 PMCID: PMC9211418 DOI: 10.1128/aac.00292-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying novel antivirals requires significant time and resource investment, and the continuous threat of viruses to human health necessitates commitment to antiviral identification and development. Developing antivirals requires years of research and validation, and recent outbreaks have highlighted the need for preparedness in counteracting pandemics. One way to facilitate development is to repurpose molecules already used clinically. By screening such compounds, we can accelerate antiviral development. Here, we screened compounds from the National Institutes of Health's Developmental Therapeutic Program for activity against chikungunya virus, an alphavirus that is responsible for a significant outbreak in the Americas in 2013. Using this library, we identified several compounds with known antiviral activity, as well as several novel antivirals. Given its favorable in vitro activity and well-described in vivo activity, as well as its broad availability, we focused on bisacodyl, a laxative used for the treatment of constipation, for follow-up studies. We find that bisacodyl inhibits chikungunya virus infection in a variety of cell types, over a range of concentrations, and over several rounds of replication. We find that bisacodyl does not disrupt chikungunya virus particles or interfere with their ability to attach to cells, but, instead, bisacodyl inhibits virus replication. Finally, we find that bisacodyl is broadly antiviral against a variety of RNA viruses, including enteroviruses, flaviviruses, bunyaviruses, and alphaviruses; however, it exhibited no activity against the DNA virus vaccinia virus. Together, these data highlight the power of compound screening to identify novel antivirals and suggest that bisacodyl may hold promise as a broad-spectrum antiviral.
Collapse
Affiliation(s)
- Natalie J. LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
- Infectious Diseases and Immunology Research Institute, Maywood, Illinois, USA
| | - Yazmin E. Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
- Infectious Diseases and Immunology Research Institute, Maywood, Illinois, USA
| |
Collapse
|
42
|
Režen T, Martins A, Mraz M, Zimic N, Rozman D, Moškon M. Integration of omics data to generate and analyse COVID-19 specific genome-scale metabolic models. Comput Biol Med 2022; 145:105428. [PMID: 35339845 PMCID: PMC8940269 DOI: 10.1016/j.compbiomed.2022.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/16/2022]
Abstract
COVID-19 presents a complex disease that needs to be addressed using systems medicine approaches that include genome-scale metabolic models (GEMs). Previous studies have used a single model extraction method (MEM) and/or a single transcriptomic dataset to reconstruct context-specific models, which proved to be insufficient for the broader biological contexts. We have applied four MEMs in combination with five COVID-19 datasets. Models produced by GIMME were separated by infection, while tINIT preserved the biological variability in the data and enabled the best prediction of the enrichment of metabolic subsystems. Vitamin D3 metabolism was predicted to be down-regulated in one dataset by GIMME, and in all by tINIT. Models generated by tINIT and GIMME predicted downregulation of retinol metabolism in different datasets, while downregulated cholesterol metabolism was predicted only by tINIT-generated models. Predictions are in line with the observations in COVID-19 patients. Our data indicated that GIMME and tINIT models provided the most biologically relevant results and should have a larger emphasis in further analyses. Particularly tINIT models identified the metabolic pathways that are a part of the host response and are potential antiviral targets. The code and the results of the analyses are available to download from https://github.com/CompBioLj/COVID_GEMs_and_MEMs.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Nikolaj Zimic
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
43
|
da Silva-Júnior EF, Zhan P. Current trends in designing antiviral agents against emerging and re-emerging RNA viruses. Bioorg Med Chem 2022; 62:116741. [PMID: 35397970 PMCID: PMC8975753 DOI: 10.1016/j.bmc.2022.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Peng Zhan
- School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
44
|
Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. Int J Mol Sci 2022; 23:ijms23020919. [PMID: 35055105 PMCID: PMC8780509 DOI: 10.3390/ijms23020919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.
Collapse
|