1
|
Kawada K, Takahashi I, Takei S, Nomura A, Seto Y, Fukui K, Asami T. The Evaluation of Debranone Series Strigolactone Agonists for Germination Stimulants in Orobanche Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19517-19525. [PMID: 39155455 DOI: 10.1021/acs.jafc.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Strigolactones (SLs) are plant hormones that regulate shoot branching. In addition, SLs act as compounds that stimulate the germination of root parasitic weeds, such as Striga spp. and Orobanche spp., which cause significant damage to agriculture worldwide. Thus, SL agonists have the potential to induce suicidal germination, thereby reducing the seed banks of root parasitic weeds in the soil. Particularly, phenoxyfuranone-type SL agonists, known as debranones, exhibit SL-like activity in rice and Striga hermonthica. However, little is known about their effects on Orobanche spp. In this study, we evaluated the germination-inducing activity of debranones against Orobanche minor. Analysis of structure-activity relationships revealed that debranones with electron-withdrawing substituents at the 2,4- or 2,6-position strongly induced the germination of Orobanche minor. Lastly, biological assays indicated that 5-(2-fluoro-4-nitrophenoxy)-3-methylfuran-2(5H)-one (test compound 61) induced germination to a comparable or even stronger extent than GR24, a well-known synthetic SL. Altogether, our data allowed us to infer that this enhanced activity was due to the recognition of compound 61 by the SLs receptor, KAI 2d, in Orobanche minor.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Takei
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akifumi Nomura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Melville KT, Kamran M, Yao J, Costa M, Holland M, Taylor NL, Fritz G, Flematti GR, Waters MT. Perception of butenolides by Bacillus subtilis via the α/β hydrolase RsbQ. Curr Biol 2024; 34:623-631.e6. [PMID: 38183985 DOI: 10.1016/j.cub.2023.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The regulation of behavioral and developmental decisions by small molecules is common to all domains of life. In plants, strigolactones and karrikins are butenolide growth regulators that influence several aspects of plant growth and development, as well as interactions with symbiotic fungi.1,2,3 DWARF14 (D14) and KARRIKIN INSENSITIVE2 (KAI2) are homologous enzyme-receptors that perceive strigolactones and karrikins, respectively, and that require hydrolase activity to effect signal transduction.4,5,6,7 RsbQ, a homolog of D14 and KAI2 from the gram-positive bacterium Bacillus subtilis, regulates growth responses to nutritional stress via the alternative transcription factor SigmaB (σB).8,9 However, the molecular function of RsbQ is unknown. Here, we show that RsbQ perceives butenolide compounds that are bioactive in plants. RsbQ is thermally destabilized by the synthetic strigolactone GR24 and its desmethyl butenolide equivalent dGR24. We show that, like D14 and KAI2, RsbQ is a functional butenolide hydrolase that undergoes covalent modification of the catalytic histidine residue. Exogenous application of both GR24 and dGR24 inhibited the endogenous signaling function of RsbQ in vivo, with dGR24 being 10-fold more potent. Application of dGR24 to B. subtilis phenocopied loss-of-function rsbQ mutations and led to a significant downregulation of σB-regulated transcripts. We also discovered that exogenous butenolides promoted the transition from planktonic to biofilm growth. Our results suggest that butenolides may serve as inter-kingdom signaling compounds between plants and bacteria to help shape rhizosphere communities.
Collapse
Affiliation(s)
- Kim T Melville
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Jiaren Yao
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Marianne Costa
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Madeleine Holland
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia; Institute of Agriculture, The University of Western Australia, Perth WA 6009, Australia
| | - Georg Fritz
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia.
| |
Collapse
|
4
|
Popa DG, Georgescu F, Dumitrascu F, Shova S, Constantinescu-Aruxandei D, Draghici C, Vladulescu L, Oancea F. Novel Strigolactone Mimics That Modulate Photosynthesis and Biomass Accumulation in Chlorella sorokiniana. Molecules 2023; 28:7059. [PMID: 37894539 PMCID: PMC10609326 DOI: 10.3390/molecules28207059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In terrestrial plants, strigolactones act as multifunctional endo- and exo-signals. On microalgae, the strigolactones determine akin effects: induce symbiosis formation with fungi and bacteria and enhance photosynthesis efficiency and accumulation of biomass. This work aims to synthesize and identify strigolactone mimics that promote photosynthesis and biomass accumulation in microalgae with biotechnological potential. Novel strigolactone mimics easily accessible in significant amounts were prepared and fully characterized. The first two novel compounds contain 3,5-disubstituted aryloxy moieties connected to the bioactive furan-2-one ring. In the second group of compounds, a benzothiazole ring is connected directly through the cyclic nitrogen atom to the bioactive furan-2-one ring. The novel strigolactone mimics were tested on Chlorella sorokiniana NIVA-CHL 176. All tested strigolactones increased the accumulation of chlorophyll b in microalgae biomass. The SL-F3 mimic, 3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-3H-benzothiazol-2-one (7), proved the most efficient. This compound, applied at a concentration of 10-7 M, determined a significant biomass accumulation, higher by more than 15% compared to untreated control, and improved the quantum yield efficiency of photosystem II. SL-F2 mimic, 5-(3,5-dibromophenoxy)-3-methyl-5H-furan-2-one (4), applied at a concentration of 10-9 M, improved protein production and slightly stimulated biomass accumulation. Potential utilization of the new strigolactone mimics as microalgae biostimulants is discussed.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania; (D.G.P.); (D.C.-A.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Florentina Georgescu
- Enpro Soctech Com., Str. Elefterie Nr. 51, Sector 5, 050524 Bucharest, Romania; (F.G.); (L.V.)
| | - Florea Dumitrascu
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania; (D.G.P.); (D.C.-A.)
| | - Constantin Draghici
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Lucian Vladulescu
- Enpro Soctech Com., Str. Elefterie Nr. 51, Sector 5, 050524 Bucharest, Romania; (F.G.); (L.V.)
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania; (D.G.P.); (D.C.-A.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
5
|
Guercio AM, Palayam M, Shabek N. Strigolactones: diversity, perception, and hydrolysis. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:339-360. [PMID: 37201177 PMCID: PMC10191409 DOI: 10.1007/s11101-023-09853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/03/2023] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Okabe S, Kitaoka K, Suzuki T, Kuruma M, Hagihara S, Yamaguchi S, Fukui K, Seto Y. Desmethyl type germinone, a specific agonist for the HTL/KAI2 receptor, induces the Arabidopsis seed germination in a gibberellin-independent manner. Biochem Biophys Res Commun 2023; 649:110-117. [PMID: 36764113 DOI: 10.1016/j.bbrc.2023.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
DWARF14 (D14) and HTL/KAI2 (KAI2) are paralogous receptors in the α/β-hydrolase superfamily. D14 is the receptor for a class of plant hormones, strigolactones (SLs), and KAI2 is the receptor for the smoke-derived seed germination inducer, Karrikin (KAR), in Arabidopsis. Germinone (Ger) was previously reported as a KAI2 agonist with germination-inducing activity for thermo-inhibited Arabidopsis seed. However, Ger was not specific to KAI2, and could also bind to D14. It was reported that SL analogs with a desmethyl-type D-ring structure are specifically recognized by KAI2. On the basis of this observation, we synthesized a desmethyl-type germinone (dMGer). We found that dMGer is highly specific to KAI2. Moreover, dMGer induced Arabidopsis seed germination more effectively than did Ger. In addition, dMGer induced the seed germination of Arabidopsis in a manner independently of GA, a well-known germination inducer in plants.
Collapse
Affiliation(s)
- Shoma Okabe
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Kana Kitaoka
- Department of Biochemistry, Okayama University of Science, Okayama City, Okayama, 700-0005, Japan
| | - Taiki Suzuki
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Michio Kuruma
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama City, Okayama, 700-0005, Japan.
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, School of Agriculture, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
7
|
Waters MT, Nelson DC. Karrikin perception and signalling. THE NEW PHYTOLOGIST 2023; 237:1525-1541. [PMID: 36333982 DOI: 10.1111/nph.18598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Karrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire-following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery that Arabidopsis thaliana responds to KARs laid the foundation for identifying mutants with altered KAR responses. Genetic analysis of KAR signalling revealed an unexpected link to strigolactones (SLs), a class of carotenoid-derived plant hormones. Substantial progress has since been made towards understanding how KARs are perceived and regulate plant growth, in no small part due to advances in understanding SL perception. KAR and SL signalling systems are evolutionarily related and retain a high degree of similarity. There is strong evidence that KARs are natural analogues of an endogenous signal(s), KAI2 ligand (KL), which remains unknown. KAR/KL signalling regulates many developmental processes in plants including germination, seedling photomorphogenesis, and root and root hair growth. KAR/KL signalling also affects abiotic stress responses and arbuscular mycorrhizal symbiosis. Here, we summarise the current knowledge of KAR/KL signalling and discuss current controversies and unanswered questions in this field.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
8
|
Ito S. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Biosci Biotechnol Biochem 2023; 87:247-255. [PMID: 36610999 DOI: 10.1093/bbb/zbac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Root parasitic weeds such as Striga spp. and Orobanche spp. dramatically reduce the yields of important agricultural crops and cause economic losses of over billions of US dollars worldwide. One reason for the damage by root parasitic weeds is that they germinate after specifically recognizing the host cues, strigolactones (SLs). SLs were identified ˃50 years ago as germination stimulants for root parasitic weeds, and various studies have been conducted to control parasitic weeds using SLs and related chemicals. Recently, biochemical and molecular biological approaches have revealed the SL biosynthesis and SL receptors; using these findings, various SL-related chemicals have been developed. This review summarizes recent research on SLs and their related chemicals for controlling root parasitic weeds.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, Japan
| |
Collapse
|
9
|
Kawada K, Koyama T, Takahashi I, Nakamura H, Asami T. Emerging technologies for the chemical control of root parasitic weeds. JOURNAL OF PESTICIDE SCIENCE 2022; 47:101-110. [PMID: 36479457 PMCID: PMC9706279 DOI: 10.1584/jpestics.d22-045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/17/2023]
Abstract
Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomoyuki Koyama
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Ikuo Takahashi
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Hidemitsu Nakamura
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tadao Asami
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
10
|
Suzuki T, Kuruma M, Seto Y. A New Series of Strigolactone Analogs Derived From Cinnamic Acids as Germination Inducers for Root Parasitic Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:843362. [PMID: 35422835 PMCID: PMC9002265 DOI: 10.3389/fpls.2022.843362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Root parasitic plants such as Striga and Orobanche cause significant damage on crop production, particularly in sub-Saharan Africa. Their seeds germinate by sensing host root-derived signaling molecules called strigolactones (SLs). SL mimics can be used as suicidal germination inducers for root parasitic plants. Previous attempts to develop such chemicals have revealed that the methylbutenolide ring (D-ring), a common substructure in all the naturally occurring SLs, is critical for SL agonistic activity, suggesting that it should be possible to generate new SL mimics simply by coupling a D-ring with another molecule. Because structural information regarding SLs and their receptor interaction is still limited, such an approach might be an effective strategy to develop new potent SL agonists. Here, we report development of a series of new SL analogs derived from cinnamic acid (CA), the basis of a class of phenylpropanoid natural products that occur widely in plants. CA has an aromatic ring and a double-bond side-chain structure, which are advantageous for preparing structurally diverse derivatives. We prepared SL analogs from cis and trans configuration CA, and found that all the cis-CA-derived SL analogs had stronger activities as seed germination inducers for the root parasitic plants, Orobanche minor and Striga hermonthica, compared with the corresponding trans-CA-derived analogs. Moreover, introduction of a substitution at the C-4 position increased the germination-stimulating activity. We also found that the SL analogs derived from cis-CA were able to interact directly with SL receptor proteins more effectively than the analogs derived from trans-CA. The cis isomer of CA was previously reported to have a growth promoting effect on non-parasitic plants such as Arabidopsis. We found that SL analogs derived from cis-CA also showed growth promoting activity toward Arabidopsis, suggesting that these new SL agonists might be useful not only as suicidal germination inducers for root parasitic weeds, but also as plant growth promoters for the host plants.
Collapse
|
11
|
Patel R, Mehta K, Goswami D, Saraf M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Mol Biotechnol 2021; 64:109-129. [PMID: 34561838 DOI: 10.1007/s12033-021-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein-ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
12
|
Li S, Li Y, Chen L, Zhang C, Wang F, Li H, Wang M, Wang Y, Nan F, Xie D, Yan J. Strigolactone mimic 2-nitrodebranone is highly active in Arabidopsis growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:67-76. [PMID: 33860570 DOI: 10.1111/tpj.15274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Strigolactones play crucial roles in regulating plant architecture and development, as endogenous hormones, and orchestrating symbiotic interactions with fungi and parasitic plants, as components of root exudates. rac-GR24 is currently the most widely used strigolactone analog and serves as a reference compound in investigating the action of strigolactones. In this study, we evaluated a suite of debranones and found that 2-nitrodebranone (2NOD) exhibited higher biological activity than rac-GR24 in various aspects of plant growth and development in Arabidopsis, including hypocotyl elongation inhibition, root hair promotion and senescence acceleration. The enhanced activity of 2NOD in promoting AtD14-SMXL7 and AtD14-MAX2 interactions indicates that the molecular structure of 2NOD is a better match for the ligand perception site pocket of D14. Moreover, 2NOD showed lower activity than rac-GR24 in promoting Orobanche cumana seed germination, suggesting its higher ability to control plant architecture than parasitic interactions. In combination with the improved stability of 2NOD, these results demonstrate that 2NOD is a strigolactone analog that can specifically mimic the activity of strigolactones and that 2NOD exhibits strong potential as a tool for studying the strigolactone signaling pathway in plants.
Collapse
Affiliation(s)
- Suhua Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuwen Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Linhai Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chi Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Fei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiou Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Ming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210000, China
| | - Yupei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
13
|
Wang S, Guo T, Shen Y, Wang Z, Kang J, Zhang J, Yi F, Yang Q, Long R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:154-165. [PMID: 33845331 DOI: 10.1016/j.plaphy.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Related to ABI3/VP1 (RAV) transcription factors play important roles in regulating plant growth and stress tolerance, which have been studied in many plant species, but have remained largely unidentified in legumes. To functionally characterize RAV in legumes, MtRAV3 from legume model plant Medicago truncatula was isolated and its function was investigated by overexpressing MtRAV3 in M. truncatula. Expression analysis demonstrated that MtRAV3 was markedly induced by NaCl and polyethylene glycol (PEG). MtRAV3 overexpression enhanced tolerance of transgenic M. truncatula to mannitol, drought and salt stresses, and induced the expression of adversity-related genes, including MtWRKY76, MtMYB61, cold-acclimation specific protein 31 (MtCAS31), alternative oxidase 1 (MtAOX1) and ethylene response factor 1 (MtERF1). There were lower relative electrolyte leakage and higher chlorophyll content of leaves in the MtRAV3 overexpression plants than in wild type plants under both salt and drought stress. MtRAV3 overexpression M. truncatula were featured by some phenotypes of dwarfing, late flowering, more branches, smaller flower and leaf organs. Further investigations showed that the expression levels of DWARF14 (MtD14), CAROTENOID CLEAVAGE DIOXYGENASES 7 (MtCCD7) and GA3-oxidase1 (MtGA3ox1), which related to dwarf and branch phenotype, were obviously reduced, as well as MtGA3ox1' (MTR_1g011580), GA20-oxidase1 (MtGA20ox1), MtGA20ox1' (MTR_1g102070) and GA20-oxidase2 (MtGA20ox2) involved in gibberellins (GAs) pathway. Overall, our results revealed that MtRAV3 exerted an important role in adversity response and plant growth, was a multifunctional gene in M. truncatula, which provided reference for genetic improvement of alfalfa (Medicago sativa).
Collapse
Affiliation(s)
- Shumin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Shen
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Synthesis of Simple Strigolactone Mimics. Methods Mol Biol 2021. [PMID: 34028677 DOI: 10.1007/978-1-0716-1429-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Strigolactones (SLs) are natural compounds occurring in plants which have a numerous functions in plant development; therefore, they are plant hormones. Unfortunately, their natural abundance is very low and because of their structure complexity it is difficult to prepare them in big quantities; alternatives with simpler structures and similar biological activity was developed. SLs mimics are compounds with simple synthesis. Methods for preparation of basic SLs mimics are described here.
Collapse
|
15
|
On improving strigolactone mimics for induction of suicidal germination of the root parasitic plant Striga hermonthica. ABIOTECH 2021; 2:1-13. [PMID: 36304477 PMCID: PMC9590581 DOI: 10.1007/s42994-020-00031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Strigolactones (SLs) are plant hormones that regulate the branching of plants and seed germination stimulants of root parasitic plants. As root parasites are a great threat to agricultural production, the use of SL agonists could be anticipated to provide an efficient method for regulating root parasites as suicidal germination inducers. A series of phenoxyfuranone-type SL mimics, termed debranones, has been reported to show potent bioactivities, including reduction of the tiller number on rice, and stimulation of seed germination in the root parasite Striga hermonthica. To exert both activities, two substituents on the phenyl ring of the molecules were important but at least a substituent at the 2-position must be an electron-withdrawing group. However, little is known about the effect of the properties of the substituents at the 2-position on bioactivities. Here, we found that different substituents at the 2-position give different preferences for bioactivities. Halogenated debranones were more effective than the others and SL agonist GR24 for inhibiting rice tiller but far less effective in the induction of S. hermonthica germination. Meanwhile, nitrile and methyl derivatives clearly stimulated the germination of S. hermonthica seeds. Although their IC50 values were 100 times higher than that of GR24 in the receptor competitive binding assay, their physiological activities were approximately 1/10 of GR24. These differences could be due to their uptake in plants and/or their physicochemical stability under our experimental conditions. These findings could support the design of more potent and selective SL agonists that could contribute to solving big agricultural issues.
Collapse
|
16
|
Yoneyama K. Recent progress in the chemistry and biochemistry of strigolactones. JOURNAL OF PESTICIDE SCIENCE 2020; 45:45-53. [PMID: 32508512 PMCID: PMC7251197 DOI: 10.1584/jpestics.d19-084] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are plant secondary metabolites derived from carotenoids. SLs play important roles in the regulation of plant growth and development in planta and coordinate interactions between plants and other organisms including root parasitic plants, and symbiotic and pathogenic microbes in the rhizosphere. In the 50 years since the discovery of the first SL, strigol, our knowledge about the chemistry and biochemistry of SLs has advanced explosively, especially over the last two decades. In this review, recent advances in the chemistry and biology of SLs are summarized and possible future outcomes are discussed.
Collapse
Affiliation(s)
- Koichi Yoneyama
- Women’s Future Development Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790–8577, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Miyakawa T, Xu Y, Tanokura M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci 2020; 77:1103-1113. [PMID: 31587093 PMCID: PMC11104851 DOI: 10.1007/s00018-019-03318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
18
|
Jamil M, Kountche BA, Wang JY, Haider I, Jia KP, Takahashi I, Ota T, Asami T, Al-Babili S. A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. FRONTIERS IN PLANT SCIENCE 2020; 11:434. [PMID: 32373143 PMCID: PMC7179673 DOI: 10.3389/fpls.2020.00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Strigolactones (SLs) are a group of carotenoid derived plant hormones that play a key role in establishing plant architecture and adapting it to environmental changes, and are involved in plants response to biotic and abiotic stress. SLs are also released into the soil to serve as a chemical signal attracting beneficial mycorrhizal fungi. However, this signal also induces seed germination in root parasitic weeds that represent a major global threat for agriculture. This wide spectrum of biological functions has made SL research one of the most important current topics in fundamental and applied plant science. The availability of SLs is crucial for investigating SL biology as well as for agricultural application. However, natural SLs are produced in very low amounts, and their organic synthesis is quite difficult, which creates a need for efficient and easy-to-synthesize analogs and mimics. Recently, we have generated a set of SL analogs, Methyl Phenlactonoates (MPs), which resemble the non-canonical SL carlactonoic acid. In this paper, we describe the development and characterization of a new series of easy-to-synthesize MPs. The new analogs were assessed with respect to regulation of shoot branching, impact on leaf senescence, and induction of seed germination in different root parasitic plants species. Some of the new analogs showed higher efficiency in inhibiting shoot branching as well as in triggering parasitic seed germination, compared to the commonly used GR24. MP16 was the most outstanding analog showing high activity in different SL biological functions. In summary, our new analogs series contains very promising candidates for different applications, which include the usage in studies for understanding different aspects of SL biology as well as large scale field application for combating root parasitic weeds, such as Striga hermonthica that devastates cereal yields in sub-Saharan Africa.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
19
|
Synthetic agonist of HTL/KAI2 shows potent stimulating activity for Arabidopsis seed germination. Bioorg Med Chem Lett 2019; 29:2487-2492. [PMID: 31345632 DOI: 10.1016/j.bmcl.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
HTL/KAI2, a member of the α/β-fold hydrolase superfamily, is known to be a receptor-like protein of lactone compounds and that triggers seed germination of Arabidopsis. However, the endogenous ligand and physiological roles of HTL/KAI2 have remained unclear. To understand the mechanism underlying seed germination involved in HTL/KAI2 signaling, it is necessary to identify the endogenous ligand of HTL/KAI2. To date, even a biosynthetic mutant of the ligand has not yet been isolated. Because exogenous agonistic chemicals can only be purchased in small amounts at high prices, the limited supply of those chemicals has hampered any large-scale experiments, such as mutant screening. Therefore, easily synthesized and scalable artificial agonist would remove the limitation of the chemical supply and contribute to the identification of the endogenous ligand of HTL/KAI2 and/or the biosynthetic mutants. In this study, we demonstrated that designed chemicals with a phenoxyfuranone scaffold potently stimulated seed germination via HTL/KAI2 in Arabidopsis. As a result of screening of these chemicals, we selected a representative compound with convincing selectivity. Here in, we provide a new promising synthetic agonist of HTL/KAI2.
Collapse
|
20
|
Yoneyama K, Xie X, Yoneyama K, Nomura T, Takahashi I, Asami T, Mori N, Akiyama K, Kusajima M, Nakashita H. Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds. PEST MANAGEMENT SCIENCE 2019; 75:2353-2359. [PMID: 30843315 DOI: 10.1002/ps.5401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant secondary metabolites that play important roles in various aspects of plant growth and development as plant hormones, and in rhizosphere communications with symbiotic microbes and also root parasitic weeds. Therefore, sophisticated regulation of the biosynthesis, perception and functions of SLs is expected to promote symbiosis of beneficial microbes including arbuscular mycorrhizal (AM) fungi and also to retard parasitism by devastating root parasitic weeds. We have developed SL mimics with different skeletons, SL biosynthesis inhibitors acting at different biosynthetic steps, SL perception inhibitors that covalently bind to the SL receptor D14, and SL function inhibitors that bind to the serine residue at the catalytic site. In greenhouse pot tests, TIS108, an azole-type SL biosynthesis inhibitor effectively reduced numbers of attached root parasites Orobanche minor and Striga hermonthica without affecting their host plants; tomato and rice, respectively. AM colonization resulted in weak but distinctly enhanced plant resistance to pathogens. SL mimics can be used to promote AM symbiosis and to reduce the application rate of systemic-acquired resistance inducers which are generally phytotoxic to horticultural crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Kaori Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Narumi Mori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Hideo Nakashita
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| |
Collapse
|
21
|
Hagihara S, Yamada R, Itami K, Torii KU. Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:32-37. [PMID: 30248557 DOI: 10.1016/j.pbi.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/09/2023]
Abstract
Synthetic molecules can be powerful tools to overcome the limitations of the biological approaches. Especially redundancy, lethality, and intractability of the target genes, which often hamper the progress of plant science, could be bypassed by elaborately designed small molecules. In this review, we discuss how synthetic chemistry can contribute to increasing our understanding of plant hormone signaling. Specific focus will be on the visualization and hijacking of hormone signaling with novel synthetic chemicals, with emphasis on perception of ABA, strigolactones, and auxins.
Collapse
Affiliation(s)
- Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, Saitama, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan; PRESTO, JST, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Japan.
| | - Ryotaro Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800, USA; Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| |
Collapse
|
22
|
Hýlová A, Pospíšil T, Spíchal L, Mateman JJ, Blanco-Ania D, Zwanenburg B. New hybrid type strigolactone mimics derived from plant growth regulator auxin. N Biotechnol 2019; 48:76-82. [PMID: 30077756 DOI: 10.1016/j.nbt.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/26/2022]
Abstract
Strigolactones (SLs) constitute a new class of plant hormones of increasing importance in plant science. The structure of natural SLs is too complex for ready access by synthesis. Therefore, much attention is being given to design of SL analogues and mimics with a simpler structure but with retention of bioactivity. Here new hybrid type SL mimics have been designed derived from auxins, the common plant growth regulators. Auxins were simply coupled with the butenolide D-ring using bromo (or chloro) butenolide. D-rings having an extra methyl group at the vicinal C-3' carbon atom, or at the C-2' carbon atom, or at both have also been studied. The new hybrid type SL mimics were bioassayed for germination activity of seeds of the parasitic weeds S. hermonthica, O. minor and P. ramosa using the classical method of counting germinated seeds and a colorimetric method. For comparison SL mimics derived from phenyl acetic acid were also investigated. The bioassays revealed that mimics with a normal D-ring had appreciable to good activity, those with an extra methyl group at C-2' were also appreciably active, whereas those with a methyl group in the vicinal C-3' position were inactive (S. hermonthica) or only slightly active. The new hybrid type mimics may be attractive as potential suicidal germination agents in agronomic applications.
Collapse
Affiliation(s)
- Adéla Hýlová
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic.
| | - Lukáš Spíchal
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic
| | - Jurgen J Mateman
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| | - Binne Zwanenburg
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic; Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
23
|
Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 2019; 10:191. [PMID: 30643123 PMCID: PMC6331613 DOI: 10.1038/s41467-018-08124-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/β-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.
Collapse
Affiliation(s)
- Yoshiya Seto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Rei Yasui
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hiromu Kameoka
- Graduate School of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Graduates School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Muluneh Tamiru
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
- Department of Animal, Plant and Soil Sciences AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Melbourne, VIC, 3086, Australia
| | - Mengmeng Cao
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, 617-0001, Japan
| | - Akane Sakurada
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Rena Hirano
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takaya Kisugi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Atsushi Hanada
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikihisa Umehara
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Eunjoo Seo
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kohki Akiyama
- Graduates School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Jason Burke
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Weiqiang Li
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoshinori Hirano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takeyama, Ikoma, Nara, 630-0192, Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takeyama, Ikoma, Nara, 630-0192, Japan
| | - Kiyoshi Mashiguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Junko Kyozuka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Graduate School of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Shinjiro Yamaguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
24
|
Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 2019. [PMID: 30643123 DOI: 10.1038/s41467-018-08124-8127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/β-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.
Collapse
Affiliation(s)
- Yoshiya Seto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Rei Yasui
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hiromu Kameoka
- Graduate School of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- Graduates School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Muluneh Tamiru
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
- Department of Animal, Plant and Soil Sciences AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Melbourne, VIC, 3086, Australia
| | - Mengmeng Cao
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, 617-0001, Japan
| | - Akane Sakurada
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Rena Hirano
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takaya Kisugi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Atsushi Hanada
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikihisa Umehara
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Eunjoo Seo
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kohki Akiyama
- Graduates School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Jason Burke
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Weiqiang Li
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoshinori Hirano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takeyama, Ikoma, Nara, 630-0192, Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takeyama, Ikoma, Nara, 630-0192, Japan
| | - Kiyoshi Mashiguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Junko Kyozuka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Graduate School of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Shinjiro Yamaguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
25
|
Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T. Triazole Ureas Covalently Bind to Strigolactone Receptor and Antagonize Strigolactone Responses. MOLECULAR PLANT 2019; 12:44-58. [PMID: 30391752 DOI: 10.1016/j.molp.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones, a class of plant hormones with multiple functions, mediate plant-plant and plant-microorganism communications in the rhizosphere. In this study, we developed potent strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing an array of triazole urea compounds. Using yeast two-hybrid and rice-tillering assays, we identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. Liquid chromatography-tandem mass spectrometry analysis and X-ray crystallography revealed that KK094 was hydrolyzed by D14, and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic triad of D14. Furthermore, we identified two triazole urea compounds KK052 and KK073, whose effects on D14-D53/D14-SLR1 complex formation were opposite due to the absence (KK052) or presence (KK073) of a trifluoromethyl group on their phenyl ring. These results demonstrate that triazole urea compounds are potentially powerful tools for agricultural application and may be useful for the elucidation of the complicated mechanism underlying strigolactone perception.
Collapse
Affiliation(s)
- Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Hirabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Kikuzato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wenqian Hu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuqun Xu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruri Niiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
26
|
Jamil M, Kountche B, Haider I, Wang J, Aldossary F, Zarban R, Jia KP, Yonli D, Shahul Hameed U, Takahashi I, Ota T, Arold S, Asami T, Al-Babili S. Methylation at the C-3' in D-Ring of Strigolactone Analogs Reduces Biological Activity in Root Parasitic Plants and Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:353. [PMID: 31001294 PMCID: PMC6455008 DOI: 10.3389/fpls.2019.00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Faisal Aldossary
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Randa A. Zarban
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Djibril Yonli
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso
| | - Umar F. Shahul Hameed
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Stefan T. Arold
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
27
|
Dvorakova M, Hylova A, Soudek P, Retzer K, Spichal L, Vanek T. Resorcinol-Type Strigolactone Mimics as Potent Germinators of the Parasitic Plants Striga hermonthica and Phelipanche ramosa. JOURNAL OF NATURAL PRODUCTS 2018; 81:2321-2328. [PMID: 30362743 DOI: 10.1021/acs.jnatprod.8b00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Strigolactones are a particular class of plant metabolites with diverse biological functions starting from the stimulation of parasitic seed germination to phytohormonal activity. The expansion of parasitic weeds in the fields of developing countries is threatening the food supply and calls for simple procedures to combat these weeds. Strigolactone analogues represent a promising approach for such control through suicidal germination, i.e., parasitic seed germination without the presence of the host causing parasite death. In the present work, the synthesis of resorcinol-type strigolactone mimics related to debranones is reported. These compounds were highly stable even at alkaline pH levels and able to induce seed germination of parasitic plants Striga hermonthica and Phelipanche ramosa at low concentrations, EC50 ≈ 2 × 10-7 M ( Striga) and EC50 ≈ 2 × 10-9 M ( Phelipanche). On the other hand, the mimics had no significant effect on root architecture of Arabidopsis plants, suggesting a selective activity for parasitic seed germination, making them a primary target as suicidal germinators.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Institute of Experimental Botany, Czech Academy of Sciences , v.v.i., Rozvojova 263 , 16502 , Prague 6 , Czech Republic
| | - Adela Hylova
- Centre of the Region Hana for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science , Palacky University , Slechtitelu 241/27 , 783 71 , Olomouc , Czech Republic
| | - Petr Soudek
- Institute of Experimental Botany, Czech Academy of Sciences , v.v.i., Rozvojova 263 , 16502 , Prague 6 , Czech Republic
| | - Katarzyna Retzer
- Institute of Experimental Botany, Czech Academy of Sciences , v.v.i., Rozvojova 263 , 16502 , Prague 6 , Czech Republic
| | - Lukas Spichal
- Centre of the Region Hana for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science , Palacky University , Slechtitelu 241/27 , 783 71 , Olomouc , Czech Republic
| | - Tomas Vanek
- Institute of Experimental Botany, Czech Academy of Sciences , v.v.i., Rozvojova 263 , 16502 , Prague 6 , Czech Republic
| |
Collapse
|
28
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Takeuchi J, Jiang K, Hirabayashi K, Imamura Y, Wu Y, Xu Y, Miyakawa T, Nakamura H, Tanokura M, Asami T. Rationally Designed Strigolactone Analogs as Antagonists of the D14 Receptor. PLANT & CELL PHYSIOLOGY 2018; 59:1545-1554. [PMID: 29727000 DOI: 10.1093/pcp/pcy087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are plant hormones that inhibit shoot branching and act as signals in communications with symbiotic fungi and parasitic weeds in the rhizosphere. SL signaling is mediated by DWARF14 (D14), which is an α/β-hydrolase that cleaves SLs into an ABC tricyclic lactone and a butenolide group (i.e. D-ring). This cleavage reaction (hydrolysis and dissociation) is important for inducing the interaction between D14 and its target proteins, including D3 and D53. In this study, a hydrolysis-resistant SL analog was predicted to inhibit the activation of the D14 receptor, thereby disrupting the SL signaling pathway. To test this prediction, carba-SL compounds, in which the ether oxygen of the D-ring or the phenol ether oxygen of the SL agonist (GR24 or 4-bromo debranone) was replaced with a methylene group, were synthesized as novel D14 antagonists. Subsequent biochemical and physiological studies indicated that carba-SLs blocked the interaction between D14 and D53 by inhibiting D14 hydrolytic activity. They also suppressed the SL-induced inhibition of rice tiller outgrowths. Additionally, carba-SLs antagonized the SL response in a Striga parasitic weed species. Structural analyses revealed that the D-ring of 7'-carba-4BD was hydrolyzed by D14 but did not dissociate from the 4BD skeleton. Thus, 7'-carba-4BD functioned as an antagonist rather than an agonist. Thus, the hydrolysis of the D-ring of SLs may be insufficient for activating the receptor. This study provides data relevant to designing SL receptor antagonists.
Collapse
Affiliation(s)
- Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kai Jiang
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kei Hirabayashi
- Department of Applied Biological Chemistry, Laboratory of Basic Science on Healthy Longevity, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yusaku Imamura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yashan Wu
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Laboratory of Basic Science on Healthy Longevity, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Laboratory of Basic Science on Healthy Longevity, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hidemitsu Nakamura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Laboratory of Basic Science on Healthy Longevity, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Tsuchiya Y. Small Molecule Toolbox for Strigolactone Biology. PLANT & CELL PHYSIOLOGY 2018; 59:1511-1519. [PMID: 29931079 DOI: 10.1093/pcp/pcy119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are plant hormones associated with diverse developmental processes including plant architecture and stress responses. SLs are exuded to the soil as an ecological signal to attract symbiotic arbuscular-mycorrhizal fungi. This ecological mechanism is also used by parasitic plants to detect the presence of host plants and initiate germination. The functional diversity of SLs makes SL biology so extensive that a single methodology is not sufficient to comprehend it. This review describes the theoretical and practical aspects of the design of small molecule probes that have been used to elucidate the functions of SLs. The lessons from the development of small molecules to tackle the unique questions in SL biology might be instructive in the extending field of chemical biology in plants.
Collapse
Affiliation(s)
- Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
31
|
Lombardi C, Artuso E, Grandi E, Lolli M, Spyrakis F, Priola E, Prandi C. Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step. Org Biomol Chem 2018; 15:8218-8231. [PMID: 28880031 DOI: 10.1039/c7ob01917c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this paper, we synthesized and evaluated the biological activity of structural analogues of natural strigolactones in which the butenolide D-ring has been replaced with a γ-lactam. The key step to obtain the α,β-unsaturated-γ-lactam was an RCM on suitably substituted amides. Strigolactones (SLs) are plant hormones with various developmental functions. As soil signaling chemicals, they are required for establishing beneficial mycorrhizal plant/fungus symbiosis. Beside these auxinic roles, recently SLs have been successfully investigated as antitumoral agents. Peculiar to the SL perception system is the enzymatic activity of the hormone receptor. SARs data have shown that the presence of the butenolide D-ring is crucial to retain the biological activity. The substitution of the butenolide with a lactam might shed light on the mechanism of perception. In the following, a dedicated in silico study suggested the binding modes of the synthesized compounds to the receptor of SLs in plants.
Collapse
Affiliation(s)
- Chiara Lombardi
- Department of Chemistry, University of Turin, via P. Giuria 7 10125, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Brun G, Braem L, Thoiron S, Gevaert K, Goormachtig S, Delavault P. Seed germination in parasitic plants: what insights can we expect from strigolactone research? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2265-2280. [PMID: 29281042 DOI: 10.1093/jxb/erx472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Obligate root-parasitic plants belonging to the Orobanchaceae family are deadly pests for major crops all over the world. Because these heterotrophic plants severely damage their hosts even before emerging from the soil, there is an unequivocal need to design early and efficient methods for their control. The germination process of these species has probably undergone numerous selective pressure events in the course of evolution, in that the perception of host-derived molecules is a necessary condition for seeds to germinate. Although most of these molecules belong to the strigolactones, structurally different molecules have been identified. Since strigolactones are also classified as novel plant hormones that regulate several physiological processes other than germination, the use of autotrophic model plant species has allowed the identification of many actors involved in the strigolactone biosynthesis, perception, and signal transduction pathways. Nevertheless, many questions remain to be answered regarding the germination process of parasitic plants. For instance, how did parasitic plants evolve to germinate in response to a wide variety of molecules, while autotrophic plants do not? What particular features are associated with their lack of spontaneous germination? In this review, we attempt to illustrate to what extent conclusions from research into strigolactones could be applied to better understand the biology of parasitic plants.
Collapse
Affiliation(s)
- Guillaume Brun
- Laboratoire de Biologie et Pathologie Végétales, EA, Université de Nantes, BP Nantes Cedex, France
| | - Lukas Braem
- VIB-UGent Center for Plant Systems Biology, Technologiepark Zwijnaarde, Belgium
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai Ghent, Belgium
| | - Séverine Thoiron
- Laboratoire de Biologie et Pathologie Végétales, EA, Université de Nantes, BP Nantes Cedex, France
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai Ghent, Belgium
| | - Sofie Goormachtig
- VIB-UGent Center for Plant Systems Biology, Technologiepark Zwijnaarde, Belgium
| | - Philippe Delavault
- Laboratoire de Biologie et Pathologie Végétales, EA, Université de Nantes, BP Nantes Cedex, France
| |
Collapse
|
33
|
Sanchez E, Artuso E, Lombardi C, Visentin I, Lace B, Saeed W, Lolli ML, Kobauri P, Ali Z, spyrakis F, Cubas P, Cardinale F, Prandi C. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2333-2343. [PMID: 29554337 PMCID: PMC5913603 DOI: 10.1093/jxb/ery092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 06/01/2023]
Abstract
Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.
Collapse
Affiliation(s)
- Elena Sanchez
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Emma Artuso
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Chiara Lombardi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Ivan Visentin
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Beatrice Lace
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr., Freiburg, Germany
| | - Wajeeha Saeed
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Piermichele Kobauri
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Francesca spyrakis
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Pilar Cubas
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Francesca Cardinale
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Cristina Prandi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| |
Collapse
|
34
|
Zwanenburg B, Blanco-Ania D. Strigolactones: new plant hormones in the spotlight. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2205-2218. [PMID: 29385517 DOI: 10.1093/jxb/erx487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
The development and growth of plants are regulated by interplay of a plethora of complex chemical reactions in which plant hormones play a pivotal role. In recent years, a group of new plant hormones, namely strigolactones (SLs), was discovered and identified. The first SL, strigol, was isolated in 1966, but it took almost 20 years before the details of its structure were fully elucidated. At present, two families of SLs are known, one having the stereochemistry of (+)-strigol and the other that of (-)-orobanchol, the most abundant naturally occurring SL. The most well-known bioproperty of SLs is the germination of seeds of the parasitic weeds Striga and Orobanche. It is evident that SLs are going to play a prominent role in modern molecular botany. In this review, relevant molecular and bioproperties of SLs are discussed. Items of importance are the effect of stereochemistry, structure-activity relationships, design and synthesis of analogues with a simple structure, but with retention of bioactivity, introduction of fluorescent labels into SLs, biosynthetic origin of SLs, mode of action in plants, application in agriculture for the control of parasitic weeds, stimulation of the branching of arbuscular mycorrhizal (AM) fungi, and the control of plant architecture. The future potential of SLs in molecular botany is highlighted.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| |
Collapse
|
35
|
Tsuchiya Y, Yoshimura M, Hagihara S. The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2281-2290. [PMID: 29474634 DOI: 10.1093/jxb/ery061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Plant-derived strigolactones have diverse functions at ecological scale, including effects upon the growth of plants themselves. The parasitic plants from the family Orobanchaceae interfere with the ecological and hormonal functions of strigolactones to generate unique germination abilities based on the sensing of host-derived strigolactones. Although the recent discovery of strigolactone receptors has enabled us to begin elucidating the mechanism of strigolactone perception, how perception relates to plant parasitism is still a mystery. In this review, we explore emerging questions by introducing recent advances in strigolactone research in parasitic plants. We also attempt to construct a conceptual framework for the unique in planta dynamics of strigolactone perception uncovered through the use of fluorescent probes for strigolactone receptors. Understanding the mechanisms of strigolactone-related processes is essential for controlling the parasitic plant Striga hermonthica, which has caused devastating damage to crop production in Africa.
Collapse
Affiliation(s)
- Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan
| | - Masahiko Yoshimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Shinya Hagihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
36
|
Synthetic Access to Noncanonical Strigolactones: Syntheses of Carlactonic Acid and Methyl Carlactonoate. J Org Chem 2017; 83:125-135. [DOI: 10.1021/acs.joc.7b02465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Abstract
Strigolactones (SLs) are a collection of related small molecules that act as hormones in plant growth and development. Intriguingly, SLs also act as ecological communicators between plants and mycorrhizal fungi and between host plants and a collection of parasitic plant species. In the case of mycorrhizal fungi, SLs exude into the soil from host roots to attract fungal hyphae for a beneficial interaction. In the case of parasitic plants, however, root-exuded SLs cause dormant parasitic plant seeds to germinate, thereby allowing the resulting seedling to infect the host and withdraw nutrients. Because a laboratory-friendly model does not exist for parasitic plants, researchers are currently using information gleaned from model plants like
Arabidopsis in combination with the chemical probes developed through chemical genetics to understand SL perception of parasitic plants. This work first shows that understanding SL signaling is useful in developing chemical probes that perturb SL perception. Second, it indicates that the chemical space available to probe SL signaling in both model and parasitic plants is sizeable. Because these parasitic pests represent a major concern for food insecurity in the developing world, there is great need for chemical approaches to uncover novel lead compounds that perturb parasitic plant infections.
Collapse
Affiliation(s)
- Shelley Lumba
- Cell and Systems Biology, University of Toronto, and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Michael Bunsick
- Cell and Systems Biology, University of Toronto, and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Peter McCourt
- Cell and Systems Biology, University of Toronto, and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
38
|
Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu ML, Vladulescu MC, Vladulescu L, Deleanu C. New Strigolactone Mimics as Exogenous Signals for Rhizosphere Organisms. Molecules 2017; 22:E961. [PMID: 28598371 PMCID: PMC6152683 DOI: 10.3390/molecules22060961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
The importance of strigolactones in plant biology prompted us to synthesize simplified strigolactone mimics effective as exogenous signals for rhizosphere organisms. New strigolactone mimics easily derived from simple and available starting materials in significant amounts were prepared and fully characterized. These compounds contain an aromatic or heterocyclic ring, usually present in various bioactive molecules, connected by an ether link to a furan-2-one moiety. The new synthesized strigolactone mimics were confirmed to be active on plant pathogenic fungi and parasitic weed seeds.
Collapse
Affiliation(s)
- Florin Oancea
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, RO-240050 Ramnicu Valcea, Romania.
| | - Radoslava Matusova
- Plant Science and Biodiversity Center SAS, Institute of Plant Genetics and Biotechnology, PO Box 39A, 95007 Nitra, Slovakia.
| | - Florentina Georgescu
- Research Department Teso Spec S. R. L., Str. Muncii 53, RO-915200 Fundulea, Romania.
| | - Alina Nicolescu
- Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania.
- Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania.
| | - Iuliana Raut
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | - Maria-Luiza Jecu
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | | | - Lucian Vladulescu
- Research Department Teso Spec S. R. L., Str. Muncii 53, RO-915200 Fundulea, Romania.
| | - Calin Deleanu
- Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania.
- Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania.
| |
Collapse
|
39
|
Dvorakova M, Soudek P, Vanek T. Triazolide Strigolactone Mimics Influence Root Development in Arabidopsis. JOURNAL OF NATURAL PRODUCTS 2017; 80:1318-1327. [PMID: 28422493 DOI: 10.1021/acs.jnatprod.6b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strigolactones are the most recently recognized class of phytohormones, which are also known to establish plant symbiosis with arbuscular mycorhizal fungi or induce germination of parasitic plants. Their relatively complex structures and low stability urgently calls for simple derivatives with maintained biological function. We have prepared a series of triazolide strigolactone mimics and studied their ability to affect root development of Arabidopsis thaliana. The strigolactone mimics significantly induced root elongation and lateral root formation while resembling the effect of the reference compound GR24.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Academy of Sciences of the Czech Republic , v.v.i., Rozvojova 263, Prague 6 16502, Czech Republic
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Academy of Sciences of the Czech Republic , v.v.i., Rozvojova 263, Prague 6 16502, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Academy of Sciences of the Czech Republic , v.v.i., Rozvojova 263, Prague 6 16502, Czech Republic
| |
Collapse
|
40
|
Meng Y, Shuai H, Luo X, Chen F, Zhou W, Yang W, Shu K. Karrikins: Regulators Involved in Phytohormone Signaling Networks during Seed Germination and Seedling Development. FRONTIERS IN PLANT SCIENCE 2017; 7:2021. [PMID: 28174573 PMCID: PMC5258710 DOI: 10.3389/fpls.2016.02021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Seed germination and early seedling establishment are critical stages during a plant's life cycle. These stages are precisely regulated by multiple internal factors, including phytohormones and environmental cues such as light. As a family of small molecules discovered in wildfire smoke, karrikins (KARs) play a key role in various biological processes, including seed dormancy release, germination regulation, and seedling establishment. KARs show a high similarity with strigolactone (SL) in both chemical structure and signaling transduction pathways. Current evidence shows that KARs may regulate seed germination by mediating the biosynthesis and/or signaling transduction of abscisic acid (ABA), gibberellin (GA) and auxin [indoleacetic acid (IAA)]. Interestingly, KARs regulate seed germination differently in different species. Furthermore, the promotion effect on seedling establishment implies that KARs have a great potential application in alleviating shade avoidance response, which attracts more and more attention in plant molecular biology. In these processes, KARs may have complicated interactions with phytohormones, especially with IAA. In this updated review, we summarize the current understanding of the relationship between KARs and SL in the chemical structure, signaling pathway and the regulation of plant growth and development. Further, the crosstalk between KARs and phytohormones in regulating seed germination and seedling development and that between KARs and IAA during shade responses are discussed. Finally, future challenges and research directions for the KAR research field are suggested.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
41
|
Fukui K, Yamagami D, Ito S, Asami T. A Taylor-Made Design of Phenoxyfuranone-Type Strigolactone Mimic. FRONTIERS IN PLANT SCIENCE 2017; 8:936. [PMID: 28676802 PMCID: PMC5477565 DOI: 10.3389/fpls.2017.00936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/19/2017] [Indexed: 05/22/2023]
Abstract
Strigolactones are a class of plant hormones that inhibit axillary bud outgrowth and are released from plant roots to act as a rhizosphere communication signal. The Orobanchaceae parasitic plant Striga hermonthica perceives strigolactone as its germination signal, indicating host presence. After germination, the Striga plant parasitises the host plant and suppresses host growth by draining photosynthetic products, water and other essential nutrients. Because of this way of life, this parasite threatens crop production in sub-Saharan Africa with infestation in crop fields and crop devastation. Crop protection in such areas is among the most concerning problems to be dealt with as immediately as possible. With respect to crop protection from Striga, many strigolactone agonists have been developed and used in research to reveal Striga biology, and have contributed to development of crop protection methods. However, an effective method has yet to be found. In a previous study, we reported debranones as a group of strigolactone mimics that inhibit axillary buds outgrowth with moderate stimulation activity for Striga germination. Debranones would be accessible because they are simply synthesized from commercially available phenols and bromo butenolide. Taking this advantage of debranones for Striga research, we tried to find the debranones stimulating Striga seed germination. To modulate functional selectivity and to enhance germination inducing activity of debranones, we studied structure-activity relationships. We investigated effects of substituent position and functional group on debranone activity and selectivity as a strigolactone mimic. As a result, we improved stimulation activity of debranones for Striga seed germination by chemical modification, and demonstrated the pharmacophore of debranones for selective modulation of distinct strigolactone responses.
Collapse
Affiliation(s)
- Kosuke Fukui
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Daichi Yamagami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shinsaku Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
- Bioactive Natural Products Research Group, King Abdulaziz UniversityJeddah, Saudi Arabia
- Biochemistry Department, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
- *Correspondence: Tadao Asami,
| |
Collapse
|
42
|
Vurro M, Prandi C, Baroccio F. Strigolactones: how far is their commercial use for agricultural purposes? PEST MANAGEMENT SCIENCE 2016; 72:2026-2034. [PMID: 26869010 DOI: 10.1002/ps.4254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 05/08/2023]
Abstract
Strigolactones are a class of natural and synthetic compounds that in the past decade have been exciting the scientific community not only for their intriguing biological properties but also for their potential applications in agriculture. These applications range from their use as hormones to modify and/or manage plant architecture, to their use as stimulants to induce seed germination of parasitic weeds and thus control their infestation by a reduced seed bank, to their use as 'biostimulants' of plant root colonisation by arbuscular mycorrhizal fungi, improving plant nutritional capabilities, to other still unknown effects on microbial soil communities. More recently, these compounds have also been attracting the interest of agrochemical companies. In spite of their biological attractiveness, practical applications are still greatly hampered by the low product yields obtainable by plant root exudates, by the costs of their synthesis, by the lack of knowledge of their off-target effects and by the not yet specified or properly identified legislation that could regulate the use of these compounds, depending on the agricultural purposes. The aim of this article is to discuss, in the light of current knowledge, the different scenarios that might play out in the near future with regard to the practical application of strigolactones. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | | | - Francesca Baroccio
- Central Inspectorate for Quality Control and Antifraud of Foodstuff and Agricultural Products, Laboratory of Rome, Ministry of Agriculture Food and Forestry, Rome, Italy
| |
Collapse
|
43
|
Cala A, Ghooray K, Fernández-Aparicio M, Molinillo JM, Galindo JC, Rubiales D, Macías FA. Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds. PEST MANAGEMENT SCIENCE 2016; 72:2069-2081. [PMID: 27218223 DOI: 10.1002/ps.4323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Broomrapes attack important crops, cause severe yield losses and are difficult to eliminate because their seed bank is virtually indestructible. In the absence of a host, the induction of seed germination leads to inevitable death due to nutrient starvation. Synthetic analogues of germination-inducing factors may constitute a cheap and feasible strategy to control the seed bank. These compounds should be easy and cheap to synthesise, as this will allow their mass production. The aim of this work is to obtain new synthethic germinating agents. RESULTS Nineteen N-substituted phthalimides containing a butenolide ring and different substituents in the aromatic ring were synthesised. The synthesis started with commercially available phthalimides. The complete collection was assayed against the parasitic weeds Orobanche minor, O. cumana, Phelipanche ramosa and P. aegyptiaca, with the synthetic strigolactone analogue GR24 used as a positive control. These compounds offered low EC50 values: O. cumana 38.3 μM, O. minor 3.77 μM, P. aegyptiaca 1.35 μM and P. ramosa 1.49 μM. CONCLUSIONS The synthesis was carried out in a few steps and provided the target compounds in good yields. The compounds tested showed great selectivity, and low EC50 values were obtained for structures that were simpler than GR24. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Cala
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Kala Ghooray
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | | | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Juan Cg Galindo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
44
|
Lace B, Prandi C. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. MOLECULAR PLANT 2016; 9:1099-1118. [PMID: 27378726 DOI: 10.1016/j.molp.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications.
Collapse
Affiliation(s)
- Beatrice Lace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
45
|
Zwanenburg B, Pospíšil T, Ćavar Zeljković S. Strigolactones: new plant hormones in action. PLANTA 2016; 243:1311-26. [PMID: 26838034 PMCID: PMC4875949 DOI: 10.1007/s00425-015-2455-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/18/2015] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| | - Tomáš Pospíšil
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Central Laboratories and Research Support, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
46
|
Abstract
The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| | - Tomáš Pospíšil
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Central Laboratories and Research Support, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
47
|
Screpanti C, Fonné-Pfister R, Lumbroso A, Rendine S, Lachia M, De Mesmaeker A. Strigolactone derivatives for potential crop enhancement applications. Bioorg Med Chem Lett 2016; 26:2392-2400. [PMID: 27036522 DOI: 10.1016/j.bmcl.2016.03.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/09/2023]
Abstract
New technologies able to mitigate the main abiotic stresses (i.e., drought, salinity, cold and heat) represent a substantial opportunity to contribute to a sustainable increase of agricultural production. In this context, the recently discovered phytohormone strigolactone is an important area of study which can underpin the quest for new anti-stress technologies. The pleiotropic roles played by strigolactones in plant growth/development and in plant adaptation to environmental changes can pave the way for new innovative crop enhancement applications. Although a significant scientific effort has been dedicated to the strigolactone subject, an updated review with emphasis on the crop protection perspective was missing. This paper aims to analyze the advancement in different areas of the strigolactone domain and the implications for agronomical applications.
Collapse
Affiliation(s)
- Claudio Screpanti
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Raymonde Fonné-Pfister
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Alexandre Lumbroso
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Mathilde Lachia
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| |
Collapse
|
48
|
Ma J, Yuan ZZ, Kong XW, Wang H, Li YM, Xiao H, Zhao G. Reagent-Controlled Tandem Reactions of Vinyl Epoxides: Access to Functionalized γ-Butenolides. Org Lett 2016; 18:1450-3. [DOI: 10.1021/acs.orglett.6b00392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Ma
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Zhe-zhe Yuan
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Xiang-wen Kong
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Huai Wang
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Yi-ming Li
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Hua Xiao
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Lu, Shanghai 200032, P. R. China
| | - Gang Zhao
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Lu, Shanghai 200032, P. R. China
| |
Collapse
|
49
|
Kapulnik Y, Koltai H. Fine-tuning by strigolactones of root response to low phosphate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:203-12. [PMID: 26667884 DOI: 10.1111/jipb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
50
|
Zwanenburg B, Ćavar Zeljković S, Pospíšil T. Synthesis of strigolactones, a strategic account. PEST MANAGEMENT SCIENCE 2016; 72:15-29. [PMID: 26304779 DOI: 10.1002/ps.4105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones (SLs) constitute a new class of plant hormones that have received growing interest in recent years. They firstly became known as signalling molecules for host recognition by parasitic plants, and for symbiosis of plants with arbuscular mycorrhizal fungi. Furthermore, they are involved in numerous physiological processes in plants, such as the regulation of plant architecture and the response to abiotic factors. SLs are produced by plants in extremely low quantities, and they may be unstable during the purification process. Therefore, their total synthesis is highly relevant for confirming the structures assigned on the basis of spectroscopic and other physical data. A second important theme in SL research is the design and synthesis of SL analogues that have a simplified structure while still featuring the essential bioproperties. This review summarises the strategy and synthesis of naturally occurring SLs, and the design and synthesis of SL analogues with appreciable bioactivity.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Radboud University Nijmegen, Institute for Molecules and Materials, Cluster of Organic Chemistry, Nijmegen, The Netherlands
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Department of Growth Regulators, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Department of Growth Regulators, Olomouc, Czech Republic
| |
Collapse
|