1
|
Wang Y, Zhang R, Guo X, Xu Y, Sun W, Guo S, Wu J. Acyl hydrazone derivatives with trifluoromethylpyridine as potential agrochemical for controlling plant diseases. PEST MANAGEMENT SCIENCE 2024; 80:6322-6333. [PMID: 39114893 DOI: 10.1002/ps.8361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND Crops are consistently under siege by a multitude of pathogens. These pathogenic microorganisms, including viruses and bacteria, result in substantial reductions in quality and yield globally by inducing detrimental crop diseases, thus posing a significant challenge to global food security. However, the biological activity sepectrum of commercially available pesticides is limited and the pesticide efficacy is poor, necessitating the urgent development of broad-spectrum and efficient strategies for crop disease prevention and control. RESULTS The bioassay results revealed that certain target compounds demonstrated outstanding in vivo antiviral efficacy against cucumber mosaic virus and tobacco mosaic virus. In particular, compound D6 showed remarkable antiviral activity against CMV, significantly higher than that of the control agent ningnanmycin. Mechanism of action studies have shown that compound D6 could enhance the activity of defense enzymes and upregulate the expression of genes related to disease resistance, thereby enhancing the antiviral effects in plants. In addition, these compounds displayed superior inhibitory activity against plant bacterial diseases. For Xoo, compound D10 showed an excellent inhibitory effect that was better than that of the control agent bismerthiazol. Scanning electron microscopy and fluorescence double-staining experiments revealed that compound D10 effectively inhibited bacterial growth by disrupting the cell membrane. CONCLUSION A series of trifluoromethyl hydrazone derivatives were designed and synthesized, and it was found that they have control effects on plant viruses and bacterial diseases. In addition, this study revealed the mechanism of action of the active compounds and demonstrated their potential as multifunctional crop protectants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Renfeng Zhang
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Xiaoqiu Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Wei Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Wang Q, Xing L, Zhang Y, Gong C, Zhou Y, Zhang N, He B, Xue W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol Divers 2024; 28:1039-1055. [PMID: 36933104 DOI: 10.1007/s11030-023-10631-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
A variety of myricetin derivatives containing thioether quinoline moiety were designed and synthesized. Their structures of title compounds were determined by 1H NMR, 13C NMR, 19F NMR, and HRMS. Single-crystal X-ray diffraction experiments were carried out with B4. Antiviral activity indicated that some of the target compounds exhibited remarkable anti-tobacco mosaic virus (TMV) activity. In particular, compound B6 possessed significant activity. The half maximal effective concentration (EC50) value of the curative activity of compound B6 was 169.0 μg/mL, which was superior to the control agent ningnanmycin (227.2 μg/mL). Meanwhile, the EC50 value of the protective activity of compound B6 was 86.5 μg/mL, which was better than ningnanmycin (179.2 μg/mL). Microscale thermophoresis (MST) indicated that compound B6 had a strong binding capability to the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) value of 0.013 μmol/L, which was superior to that of myricitrin (61.447 μmol/L) and ningnanmycin (3.215 μmol/L). And the molecular docking studies were consistent with the experimental results. Therefore, these novel myricetin derivatives containing thioether quinoline moiety could become potential alternative templates for novel antiviral agents.
Collapse
Affiliation(s)
- Qifan Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Guo S, Sun W, Tu H, Tang Y, Xu Y, Guo R, Zhao Z, Yang Z, Wu J. Synthesis of 4 H-Pyrazolo[3,4- d]pyrimidin-4-one Hydrazine Derivatives as a Potential Inhibitor for the Self-Assembly of TMV Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2879-2887. [PMID: 38241724 DOI: 10.1021/acs.jafc.3c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Tobacco mosaic virus coat protein (TMV-CP), as a potential target for the development of antiviral agents, can assist in the long-distance movement of viruses and plays an extremely important role in virus replication and propagation. This work focuses on the synthesis and the action mechanism of novel 4H-pyrazolo[3,4-d] pyrimidin-4-one hydrazine derivatives. The synthesized compounds exhibited promising antiviral activity on TMV. Specifically, compound G2 exhibited high inactivating activity (93%) toward TMV, slightly better than commercial reagent NNM (90%). The action of mechanism was further explored by employed molecular docking, molecular dynamics simulation, microscale thermophoresis, qRT-PCR, and transmission electron microscopy. Results indicated that G2 had the capability to interact with amino acid residues such as Trp352, Tyr139, and Asn73 in the active pocket of TMV-CP, creating strong hydrophobic interactions and thus obstructing the virus's self-assembly.
Collapse
Affiliation(s)
- Ya Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hong Tu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yao Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ying Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Renjiang Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhaokai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
4
|
Gong C, Meng K, Sun Z, Zeng W, An Y, Zou H, Qiu Y, Liu D, Xue W. Flavonol Derivatives Containing a Quinazolinone Moiety: Design, Synthesis, and Antiviral Activity. Chem Biodivers 2024; 21:e202301737. [PMID: 38204291 DOI: 10.1002/cbdv.202301737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 μg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 μg/mL, and the EC50 value of protective activity of K5 was 120.6 μg/mL, which was superior to that of NNM 207.0 μg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.
Collapse
Affiliation(s)
- Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongqian Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yujiao Qiu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Da Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, 418008, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
6
|
Manzoor S, Adnan Tahir R, Adnan Younis M, Cao WL, Tariq QUN, Ali A, Ahmad N, Qiu C, Tian B, Zhang JG. Synthesis, biological and molecular docking studies of pyrimidine-derived bioactive Schiff bases. Bioorg Chem 2023; 140:106822. [PMID: 37666111 DOI: 10.1016/j.bioorg.2023.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Pyrimidine which is an important constituent of the genetic material of deoxyribonucleic acid, is identified with a large number of biological activities. Based on this, pyrimidine-derived Schiff bases (1-6) of hydroxy-1-naphthaldehyde were synthesized by using the condensation method. In addition, the molecular docking studies against topoisomerase II DNA gyrase, human hematopoietic cell kinase, urate oxidase from Aspergillus flavus, and cyclin-dependent kinase 8 to explore the antibacterial, antioxidant, antifungal, and anticancer properties respectively and binding affinities through bioinformatics approaches to determine the interaction among active molecules with the receptor. Hence, the computational docking analyses identified that all synthesized pyrimidine Schiff bases (1-6) are active and exhibited better binding affinities as compared to the standard drugs. Furthermore, all the prepared materials were characterized by using nuclear magnetic resonance, infrared, and elemental analysis. Additionally, the phase-transition and thermal decomposition temperatures were determined by differential scanning calorimetry and thermo-gravimetric analysis measurements. Moreover, the structures of pyrimidine-derived Schiff bases 1, 2, 3, 4, and 5 were also confirmed by the X-ray single-crystal diffraction technique. The pyrimidine-derived Schiff bases 5 possess significant antibacterial, antioxidant, antifungal, and anticancer agent properties which confirms its promising biological activities over standard drugs.
Collapse
Affiliation(s)
- Saira Manzoor
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Adnan Younis
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Wen-Li Cao
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Qamar-Un-Nisa Tariq
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Amjad Ali
- Institute of chemistry, University of Silesia, Szkolna 9, 40-600 Katowice, Poland
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chuntian Qiu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Erdoğan H, Yılmaz Ö, Çevik PK, Doğan M, Özen R. Synthesis of Schiff Bases and Secondary Amines with Indane Skeleton; Evaluation of Their Antioxidant, Antibiotic, and Antifungal Activities. Chem Biodivers 2023; 20:e202300684. [PMID: 37535863 DOI: 10.1002/cbdv.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
In this study, Schiff bases were synthesized by utilizing the reaction of 4- and 5-aminoindane with substituted benzaldehydes. After the reduction of isolated Schiff bases with NaBH4 , the corresponding secondary amine derivatives were obtained. The structures of all synthesized molecules were confirmed by 1 H-NMR, 13 C-NMR, FT-IR, and ESI-MS. Antioxidant activities of all synthesized molecules were investigated by DPPH method, and IC50 values were calculated. In addition, antibacterial activities of targets were investigated by the well diffusion method, and then MIC99 values were calculated. While only four of the sixteen synthesized molecules showed a high level of antioxidant activity, all of the molecules exhibited biological activity against Gram-positive and Gram-negative bacteria to varying degrees. In addition, all the synthesized molecules showed high antifungal activity. In antioxidant capacity studies, the IC50 values of 2-(((2,3-dihydro-1H-inden-5-yl)amino)methyl)-6-methoxyphenol (4 d) and 2-(((2,3-dihydro-1H-inden-4-yl)amino)methyl)-6-methoxyphenol (7 d) were determined to be 18.1 μg and 35.1 μg, respectively, and these values are much stronger than BHT (butylated hydroxytoluene) and BHA (butylated hydroxyanisole) used as positive controls. The fact that targets have the same core structure with different substituents has revealed a good structure-activity relationship.
Collapse
Affiliation(s)
- Helin Erdoğan
- Department of Chemistry, Faculty of Sciences, Mersin University, 33343, Mersin, Turkey
| | - Özgür Yılmaz
- Department of Chemistry, Faculty of Sciences, Mersin University, 33343, Mersin, Turkey
| | - Pınar Küce Çevik
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Harran University, 63290, Sanliurfa, Turkey
| | - Merve Doğan
- Department of Chemistry, Faculty of Sciences, Mersin University, 33343, Mersin, Turkey
| | - Recep Özen
- Department of Chemistry, Faculty of Sciences, Mersin University, 33343, Mersin, Turkey
| |
Collapse
|
8
|
Ünlü S, Yaşa Atmaca G, Tuncel Elmalı F, Erdoğmuş A. Comparing Singlet Oxygen Generation of Schiff Base Substituted Novel Silicon Phthalocyanines by Sonophotochemical and Photochemical Applications. Photochem Photobiol 2023; 99:1233-1239. [PMID: 36691298 DOI: 10.1111/php.13782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
Although the sonophotodynamic method has an effective therapeutic outcome for anticancer treatment compared with the photodynamic method, there are not enough related studies in the literature and this study aims to contribute to the development of sonophotodynamic studies. For this purpose, the Schiff base substituted silicon phthalocyanines were designed and synthesized as effective sensitizer candidates and the photophysicochemical and sonophotochemical features of the phthalocyanines were examined to increase singlet oxygen efficiency. The calculated ΦΔ values indicate that the contribution of substituent groups improved the production of singlet oxygen compared with silicon (IV) phthalocyanine dichloride (SiPcCI2 ) and also the sonophotochemical applications increased the singlet oxygen yields. The ΦΔ values (ΦΔ = 0.76 for axially bis-{4-[(E)-(pyridin-3-ylimino)methyl]phenol} substituted silicon (IV) phthalocyanine (2a), 0.68 for axially bis-4-[(E)-{[(pyridin-3-yl)methyl]imino}methyl]phenol substituted silicon (IV) phthalocyanine (2b) in photochemical study) reached to ΦΔ = 0.98 for 2a, 0.94 for 2b in sonophotochemical study. This article will enrich the literature on increasing singlet oxygen yield.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | | | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Zhao M, Yang K, Zhu X, Gao T, Yu W, Liu H, You Z, Liu Z, Qiao X, Song Y. Design, synthesis and biological evaluation of dual Topo II/HDAC inhibitors bearing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs. Eur J Med Chem 2023; 252:115303. [PMID: 36996717 DOI: 10.1016/j.ejmech.2023.115303] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Both topoisomerase II (Topo II) and histone deacetylase (HDAC) are important therapeutic targets for cancer. In this study, two series of novel compounds containing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs were designed and synthesized as dual Topo II/HDAC inhibitors. MTT assay indicated that all the compounds displayed potential antiproliferative activity against three cancer cell lines (MGC-803, MCF-7 and U937) and low cytotoxicity on normal cell line (3T3). In the enzyme activity inhibition experiments, compounds 7d and 8d exhibited excellent dual inhibitory activities against Topo II and HDAC. Cleavage reaction assay showed that 7d was a Topo II poison, which was consistent with the docking results. Further experimental results revealed that compounds 7d and 8d could promote apoptosis and significantly inhibit the migration in MCF-7 cells. Molecular docking showed that compounds 7d and 8d bind Topo II and HDAC at the active sites. Molecular dynamics simulation showed that 7d can stably bind to Topo II and HDAC.
Collapse
Affiliation(s)
- Mengmiao Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xinyue Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Tian Gao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Wei Yu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
10
|
Cao X, He B, Liu F, Zhang Y, Xing L, Zhang N, Zhou Y, Gong C, Xue W. Design, synthesis and bioactivity of myricetin derivatives for control of fungal disease and tobacco mosaic virus disease. RSC Adv 2023; 13:6459-6465. [PMID: 36845581 PMCID: PMC9947517 DOI: 10.1039/d2ra08176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
A series of myricetin derivatives containing isoxazole were designed and synthesized. All the synthesized compounds were characterized by NMR and HRMS. In terms of antifungal activity, Y3 had a good inhibitory effect on Sclerotinia sclerotiorum (Ss), and the median effective concentration (EC50) value was 13.24 μg mL-1, which was better than azoxystrobin (23.04 μg mL-1) and kresoxim-methyl (46.35 μg mL-1). Release of cellular contents and cell membrane permeability experiments further revealed that Y3 causes the destruction of the cell membrane of the hyphae, which in turn plays an inhibitory role. The anti-tobacco mosaic virus (TMV) activity in vivo showed that Y18 had the best curative and protective activities, with EC50 values of 286.6 and 210.1 μg mL-1 respectively, the effect was better than ningnanmycin. Microscale thermophoresis (MST) data showed that Y18 had a strong binding affinity with tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (K d) value of 0.855 μM, which was better than ningnanmycin (2.244 μM). Further molecular docking revealed that Y18 interacts with multiple key amino acid residues of TMV-CP, which may hinder the self-assembly of TMV particles. Overall, after the introduction of isoxazole on the structure of myricetin, its anti-Ss and anti-TMV activities have been significantly improved, which can be further studied.
Collapse
Affiliation(s)
- Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
11
|
Wang Y, Guo S, Yu L, Zhang W, Wang Z, Chi YR, Wu J. Hydrazone derivatives in agrochemical discovery and development. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
12
|
Hamdy NA, El Sayed MT, Hussein HAR, Mounier MM, Anwar MM. Synthesis of novel heterocyclic compounds bearing tetralin moiety of potential anticancer activity targeting the intrinsic apoptotic pathway. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nehal A. Hamdy
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mardia T. El Sayed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hoda A. R. Hussein
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Marwa M. Mounier
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Manal M. Anwar
- Therapeutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Munir S, Khurshid M, Ahmad M, Ashfaq UA, Zaki MEA. Exploring the Antimicrobial and Pharmacological Potential of NF22 as a Potent Inhibitor of E. coli DNA Gyrase: An In Vitro and In Silico Study. Pharmaceutics 2022; 14:pharmaceutics14122768. [PMID: 36559262 PMCID: PMC9784730 DOI: 10.3390/pharmaceutics14122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Toward the search for novel antimicrobial agents to control pathogenic E. coli-associated infections, a series of novel norfloxacin derivatives were screened for antimicrobial activities. The norfloxacin derivative, 1-ethyl-6-fluoro-7-(4-(2-(2-(3-hydroxybenzylidene)hydrazinyl)-2-oxoethyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (NF22) demonstrated excellent antibacterial activities against E. coli ATCC 25922 (MIC = 0.0625 μg/mL) and MDR E. coli 1-3 (MIC = 1, 2 and 1 µg/mL). The time-kill kinetic studies have demonstrated that the NF22 was advantageous over norfloxacin and ciprofloxacin in killing the control and MDR E. coli strains. The checkerboard assay showed that NF22 in combination with tetracycline had a synergistic effect against the E. coli strains. The experimental findings are supported by molecular modeling studies on DNA gyrase, explaining the interactions involved for compound NF22, compared to norfloxacin and ciprofloxacin. Further, the compound was also evaluated for various pharmacokinetics (absorption, metabolism, distribution, toxicity and excretion) as well as drug-likeness properties. Our data have highlighted the potential of norfloxacin by restoring its efficacy against E. coli which could lead to the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (U.A.A.); (M.E.A.Z.)
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (U.A.A.); (M.E.A.Z.)
| |
Collapse
|
14
|
Nadar S, Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem Biol Drug Des 2022; 100:818-842. [PMID: 34914188 DOI: 10.1111/cbdd.14001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Heterocycles possessing a pyrimidine scaffold have piqued tremendous interest of organic and medicinal chemists owing to their privileged bioactivities. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities. This heterocycle, being a significant endogenous component of the body, the pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. The landscape of FDA approved drugs, presently marketed incorporating the pyrimidine scaffold continues to evolve in number and diversity. There is a tremendous surge in discovery of new targets across many diseases especially those involving emerging resistance to clinically used battery of drugs. Pyrimidine scaffolds will continue to be explored expanding their chemical space portfolio in an effort to find novel drugs impacting these targets. This review aims to provide an elaborate recapitulation of the recent trends adopted to synthesize propitious pyrimidine incorporated hits and also focuses on the clinical significance reported for functionalized pyrimidine analogues that would quintessentially aid medicinal chemists for new research explorations in this arena.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
15
|
Bentoumi H, Tliba S, K'tir H, Chohra D, Aouf Z, Adjeroud Y, Amira A, Zerrouki R, Ibrahim-Ouali M, Aouf NE, Liacha M. Experimental synthesis, biological evaluation, theoretical investigations of some novel benzoxazolinone based Schiff under eco-environmental conditions as potential antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
17
|
Design, synthesis, and antiviral activities of chalcone derivatives containing pyrimidine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS OMEGA 2022; 7:32418-32431. [PMID: 36120022 PMCID: PMC9475620 DOI: 10.1021/acsomega.2c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A Schiff base ligand of o-vanillin and 4-aminoazobenzene and its transition metal complexes of Ni(II), Co(II), Zn(II), Cu(II), Mn(II), and Zr(IV) were prepared under microwave irradiation as a green approach compared to the conventional method. The structures of new compounds have been characterized and elucidated via elemental and spectroscopic analyses. In addition, magnetic susceptibility, electron spin resonance, and electronic spectra of the synthesized complexes explained their geometrical structures. The thermal stability of Cu(II), Zn(II), and Zr(IV) complexes was studied by thermo-gravimetric analyses (TGA). Coats-Redfern and Horowitz-Metzger equations were used to calculate the thermal and dehydration decomposition activities of proposed structures kinetically. Surface morphologies of the solid compounds were imaged by scanning electron microscopy (SEM). The particle size of prepared complexes was measured by using a particle size analyzer at a diffraction angle of 10.9°. The geometry structures of the synthesized compounds were verified utilizing electronic spectra, ESR spectrum, and magnetic moment value. The newly synthesized compounds were screened for antimicrobial activity. Also, the anticancer activity of the free Schiff base ligand and its metal complexes were studied against two cell lines: human colon (HCT-116) and human liver cancer cells (HepG-2). The obtained results showed that the Cu(II) complex displayed the highest cytotoxic activity (IC50 = 18 and 22 μg/mL for HepG-2 and HCT, respectively) compared to the free Schiff base ligand.
Collapse
Affiliation(s)
- Ali M. Hassan
- Chemistry
Department, Faculty of Science, Al-Azhar
University, Nasr City 11884, Egypt
| | - Ahmed O. Said
- Senior
researcher chemist, Greater Cairo Water
Company, Cairo 11047, Egypt
| | - Bassem H. Heakal
- Research
Laboratory, Cairo Oil Refining Company, Mostorod 11757, Kaliobia, Egypt
| | - Ahmed Younis
- Department
of Green Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry
Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Mohamed F. Mady
- Department
of Green Chemistry, National Research Centre, Cairo 12622, Egypt
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| |
Collapse
|
19
|
Dong J, Zhu X, Yu W, Hu X, Zhang Y, Yang K, You Z, Liu Z, Qiao X, Song Y. Pyrazolo [3,4-d]pyrimidine-based dual HDAC/Topo II inhibitors: Design, synthesis, and biological evaluation as potential antitumor agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hussain Z, Ibrahim MA, El-Gohary NM, Badran AS. Synthesis, Characterization, DFT, QSAR, Antimicrobial, and Antitumor Studies of Some Novel Pyridopyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
22
|
The curative activity of some arylidene dihydropyrimidine hydrazone against Tobacco mosaic virus infestation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Development of Metal Complexes for Treatment of Coronaviruses. Int J Mol Sci 2022; 23:6418. [PMID: 35742870 PMCID: PMC9223400 DOI: 10.3390/ijms23126418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease (SARS-CoV-2) is a global epidemic. This pandemic, which has been linked to high rates of death, has forced some countries throughout the world to implement complete lockdowns in order to contain the spread of infection. Because of the advent of new coronavirus variants, it is critical to find effective treatments and vaccines to prevent the virus's rapid spread over the world. In this regard, metal complexes have attained immense interest as antibody modifiers and antiviral therapies, and they have a lot of promise towards SARS-CoV-2 and their suggested mechanisms of action are discussed, i.e., a new series of metal complexes' medicinal vital role in treatment of specific proteins or SARS-CoV-2 are described. The structures of the obtained metal complexes were fully elucidated by different analytical and spectroscopic techniques also. Molecular docking and pharmacophore studies presented that most of complexes studied influenced good binding affinity to the main protease SARS-CoV-2, which also was attained as from the RCSB pdb (Protein Data Bank) data PDB ID: 6 W41, to expect the action of metal complexes in contradiction of COVID-19. Experimental research is required to determine the pharmacokinetics of most of the complexes analyzed for the treatment of SARS-CoV-2-related disease. Finally, the toxicity of a metal-containing inorganic complex will thus be discussed by its capability to transfer metals which may bind with targeted site.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
24
|
Ergan E, Tozlu D. Synthesis of new Thiazine and Thiazole Derivatives via Cyclization Reactions; Investigating Their Electronic Properties and Determination of Antioxidant Properties. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erdem Ergan
- Van Security Vocational School, Van Yuzuncu Yil University Van Turkey
| | - Deniz Tozlu
- Department of Chemistry, Faculty of Science Van Yuzuncu Yil University Van Turkey
| |
Collapse
|
25
|
Xu F, Guo S, Zhang W, Wang Y, Wei P, Chen S, Wu J. Trifluoromethylpyridine thiourea derivatives: design, synthesis and inhibition of the self-assembly of tobacco mosaic virus particles. PEST MANAGEMENT SCIENCE 2022; 78:1417-1427. [PMID: 34908221 DOI: 10.1002/ps.6758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Devastating plant virus diseases leading to bad harvests and lower quality of crops have made feeding the beyond seven billion population a huge challenge. Nevertheless, growing resistance and cross resistance of crop protection agents have made this challenge harder. Therefore, an efficient crop protection agent with novel structure and mode of action showing higher efficiency and eco-friendly is urgently needed. RESULTS The coat protein (CP) of a virus is a potential target for the discovery of new antiviral agents. Antiviral molecules can inhibit infection by obstructing the assembly of virus particles. A series of novel phthalamide-like thiourea derivatives containing trifluoromethylpyridine was designed and synthesized. Most of the compounds exhibited good antiviral activity against tobacco mosaic virus (TMV). Compound 7b showed notable curative, protective and inactivation activities against TMV. Its inactivation half-maximal effective concentration (EC50 ) value (20.5 μg mL-1 ) was better even than commercial ningnanmycin (23.2 μg mL-1 ). Compound 7b also had stronger TMV-CP binding ability than ningnanmycin and destroyed the external shape of TMV particles and hindered the self-assembly of TMV-CP and TMV-RNA. CONCLUSION These phthalamide-like thiourea derivatives especially compound 7b containing trifluoromethylpyridine are potential lead compounds and inhibitors of TMV particle self-assembly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangzhou Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yanyan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Panpan Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shunhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
26
|
Fabrication of Ceftriaxone-Loaded Cellulose Acetate and Polyvinyl Alcohol Nanofibers and Their Antibacterial Evaluation. Antibiotics (Basel) 2022; 11:antibiotics11030352. [PMID: 35326815 PMCID: PMC8944567 DOI: 10.3390/antibiotics11030352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology provides solutions by combining the fields of textiles and medicine to prevent infectious microbial spread. Our study aimed to evaluate the antimicrobial activity of nanofiber sheets incorporated with a well-known antibiotic, ceftriaxone. It is a third-generation antibiotic that belongs to the cephalosporin group. Different percentages (0, 5%, 10%, 15%, and 20%; based on polymer wt%) of ceftriaxone were incorporated with a polymer such as polyvinyl alcohol (PVA) via electrospinning to fabricate nanofiber sheets. The Kirby-Bauer method was used to evaluate the antimicrobial susceptibility of the nanofiber sheets using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For the characterization of the nanofiber sheets incorporated with the drug, several techniques were used, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Our results showed that the nanofiber sheets containing ceftriaxone had potential inhibitory activity against E. coli and S. aureus as they had inhibition zones of approximately 20–25 mm on Mueller-Hinton-agar-containing plates. In conclusion, our nanofiber sheets fabricated with ceftriaxone have potential inhibitory effects against bacteria and can be used as a dressing to treat wounds in hospitals and for other biomedical applications.
Collapse
|
27
|
Dai A, Zheng Z, Yu L, Huang Y, Wu J. 1,3,4-Oxadiazole Contained Sesquiterpene Derivatives: Synthesis and Microbiocidal Activity for Plant Disease. Front Chem 2022; 10:854274. [PMID: 35273952 PMCID: PMC8902154 DOI: 10.3389/fchem.2022.854274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of 1,3,4-oxadiazole contained sesquiterpene derivatives were synthesized, and the activity of the target compounds against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and tobacco mosaic virus (TMV) were evaluated. The biological activity results showed that the EC50 values of compounds H4, H8, H11, H12, H14, H16, and H19 for Xac inhibitory activity were 33.3, 42.7, 56.1, 74.5, 37.8, 43.8, and 38.4 μg/ml, respectively. Compounds H4, H8, H15, H19, H22, and H23 had inhibitory effects on Xoo, with EC50 values of 51.0, 43.3, 43.4, 50.5, 74.6, and 51.4 μg/ml, respectively. In particular, the curative and protective activities of compound H8 against Xoo in vivo were 51.9 and 49.3%, respectively. In addition, the EC50 values of the inactivation activity of compounds H4, H5, H9, H10, and H16 against TMV were 69.6, 58.9, 69.4, 43.9, and 60.5 μg/ml, respectively. The results of molecular docking indicated that compound H10 exhibited a strong affinity for TMV-coat protein, with a binding energy of −8.88 kcal/mol. It may inhibit the self-assembly and replication of TMV particles and have an anti-TMV effect, which supports its potential usefulness as an antiviral agent.
Collapse
|
28
|
Guo S, Yu B, Ahmed A, Cong H, Shen Y. Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127602. [PMID: 34749230 DOI: 10.1016/j.jhazmat.2021.127602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Emerging infectious diseases caused by the spread of bacteria and viruses are a major burden on global economic development and public health. At present, most personal protective equipment has weak antibacterial and anti-viral properties. The PAN/PTHP nanofibers reported in this article provide a new method for the development of personal protective equipment. In this study, a mixture of PTHP and PAN was prepared into PAN/PTHP nanofibers with high-efficiency and long-lasting antibacterial effects (>99.999%) through the electrospinning process. Live/dead staining and cell proliferation experiments showed that the preparation of PAN/PTHP nanofibers has good cell compatibility. In addition, PAN/PTHP nanofibers show obvious destructive effects on lentiviruses. Based on these characteristics, PAN/PTHP nanofibers were applied to facial masks, which can be used as the inflatable biocidal layer of facial masks and have an excellent interception effect on particles in the air. The successful synthesis of these fascinating materials may provide new insights for the development of new protective materials.
Collapse
Affiliation(s)
- Shuaibing Guo
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
29
|
Abdelgawad MA, Elkanzi NA, Nayl A, Musa A, Hadal Alotaibi N, Arafa W, Gomha SM, Bakr RB. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4(3H)-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Access to new Schiff bases tethered with pyrazolopyrimidinone as antibacterial agents: Design and synthesis, molecular docking and DFT analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Regioselective synthesis and theoretical calculations of Bis(pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidines) linked to benzofuran units via piperazine spacer: A DFT, MM2, and MMFF94 study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Gopalakrishnan AK, Angamaly SA, Velayudhan MP. An Insight into the Biological Properties of Imidazole‐Based Schiff Bases: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anjali K. Gopalakrishnan
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| | - Shanty A. Angamaly
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| | - Mohanan P. Velayudhan
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| |
Collapse
|
34
|
Synthesis and Antifungal and Insecticidal Activities of Novel N-Phenylbenzamide Derivatives Bearing a Trifluoromethylpyrimidine Moiety. J CHEM-NY 2021. [DOI: 10.1155/2021/8370407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seventeen novel N-phenylbenzamide derivatives bearing a trifluoromethylpyrimidine moiety were synthesized via four-step reactions. Their antifungal and insecticidal properties were evaluated. Antifungal test results demonstrated that some of the synthesized compounds showed better in vitro bioactivities against Phomopsis sp., Botryosphaeria dothidea (B. dothidea), and Botrytis cinerea (B. cinerea) at 50 μg/mL than pyrimethanil. Unfortunately, the synthesized compounds revealed lower insecticidal activities against Spodoptera frugiperda (S. frugiperda) and Mythimna separata (M. separata) at 500 μg/mL than chlorantraniliprole.
Collapse
|
35
|
Said MA, Khan DJO, Al-blewi FF, Al-Kaff NS, Ali AA, Rezki N, Aouad MR, Hagar M. New 1,2,3-Triazole Scaffold Schiff Bases as Potential Anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects. Vaccines (Basel) 2021; 9:vaccines9091012. [PMID: 34579249 PMCID: PMC8472185 DOI: 10.3390/vaccines9091012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Schiff bases encompassing a 1,2,3-triazole motif were synthesized using an efficient multi-step synthesis. The formations of targeted Schiff base ligands were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analysis). The spectral data analysis revealed that the newly designed hydrazones exist as a mixture of trans-E and cis-E diastereomers. Densityfunctional theory calculations (DFT) for the Schiff bases showed that the trans-trans form has the lowest energy structure with maximum stability compared to the other possible geometrical isomers that could be present due to the orientation of the amidic NH-C=O group. The energy differences between the trans-trans on one side and syn-syn and syn-trans isomers on the other side were 9.26 and 5.56 kcal/mol, respectively. A quantitative structure-activity relationship investigation was also performed in terms of density functional theory. The binding affinities of the newly synthesized bases are, maybe, attributed to the presence of hydrogen bonds together with many hydrophobic interactions between the ligands and the active amino acid residue of the receptor. The superposition of the inhibitor N3 and an example ligand into the binding pocket of 7BQY is also presented. Further interesting comparative docking analyses were performed. Quantitative structure-activity relationship calculations are presented, illustrating possible inhibitory activity. Further computer-aided cytotoxicity analysis by Drug2Way and PASS online software was carried out for Schiff base ligands against various cancer cell lines. Overall, the results of this study suggest that these Schiff base derivatives may be considered for further investigation as possible therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- Musa A. Said
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Daoud J. O. Khan
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Fawzia F. Al-blewi
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadia S. Al-Kaff
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Adeeb A. Ali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Mohamed Reda Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
36
|
CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Hamid AMA, Assy MG, Farid W, El-Azim MHMA. Functionalization of 2-Amino-6-thioxouracil as a Precursor for
the Synthesis of Some Novel Pyrimidine Heterocycles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Su Z, Zhang Q, Zhao Q, Liu W, Zhao T, Wang H, Li J, Xu J. Synthesis and properties of sildenafil isostere. Arch Pharm (Weinheim) 2021; 354:e2100145. [PMID: 34131943 DOI: 10.1002/ardp.202100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022]
Abstract
A series of novel pyrazolo[3,4-d]pyrimidin-4-one derivatives were synthesized and evaluated for their anti-phosphodiesterase-5 (PDE-5) activity. A total of 28 compounds, containing alkyl and aryl groups at the 1-N and 3-C positions on the pyrazole ring, and also bearing different alkyl substituents on the piperazine ring were synthesized. Four compounds (4d, 5d, 6d, and 5o) were found to have better inhibitory activity against PDE-5 (IC50 < 10 nM). All four of the most active compounds contain a phenyl ring at the N1 position. Compounds containing a 3,5-dimethylpiperazinyl group show better activity than others. These results suggest that compound 5o can be used as a lead structure for developing new inhibitors of PDE-5.
Collapse
Affiliation(s)
- Ziqi Su
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qieqiang Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wenyi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Tao Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Huiping Wang
- National Research Institute for Family Planning, Beijing, China
| | - Jiarong Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Juan Xu
- National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
39
|
Yılmaz Ö. Synthesis of new
Schiff
bases; Investigation of their in situ catalytic activity for Suzuki
CC
coupling reactions and antioxidant activities. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Özgür Yılmaz
- Department of Chemistry, Faculty of Arts and Sciences Mersin University Mersin Turkey
| |
Collapse
|
40
|
GÜmÜŞ A, OkumuŞ V, GÜmÜŞ S. Synthesis, biological evaluation of antioxidant-antibacterial activities and computational studies of novel anthracene- and pyrene-based Schiff base derivatives. Turk J Chem 2021; 44:1200-1215. [PMID: 33488222 PMCID: PMC7751929 DOI: 10.3906/kim-2005-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Schiff base derivatives with anthracene- and pyrene-based units,
A1-A6
and
P1-P6
were synthesized (89%–99% yields). Schiff base derivatives were designed to possess an heterocyclic moiety on one side to enhance the coordination ability towards metals. To investigate the biological assay of the newly synthesized compounds, their DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging, metal chelating, reducing power, antibacterial and DNA binding activities were tested.
A6
(63.1%) showed the maximum free radical scavenging activity among all. However, compound
P3
at concentration of 200 μg/mL possessed the highest metal chelating (45.8%) activity and power of reduction. In addition,
P3
and
A6
showed antibacterial activity against all bacteria tested and both compounds were very well bound to CT-DNA. Density functional theory method with B3LYP/6-311++G(d,p) basis set was performed to get information about the structural and electronic properties of the present compounds. In addition, the metal coordination properties of the dimers of the parent Schiff bases were investigated through interactions with Zn2+.
Collapse
Affiliation(s)
- Ayşegül GÜmÜŞ
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van Turkey
| | - Veysi OkumuŞ
- Department of Biology, Faculty of Arts and Sciences, Siirt University, Siirt Turkey
| | - Selçuk GÜmÜŞ
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van Turkey
| |
Collapse
|
41
|
Synthesis and Structural Characterization of (E)-4-[(2-Hydroxy-3-methoxybenzylidene)amino]butanoic Acid and Its Novel Cu(II) Complex. MOLBANK 2021. [DOI: 10.3390/m1179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.
Collapse
|
42
|
Liu W, Wang G, Peng Z, Li Y. Design, Synthesis and Biological Evaluation of Novel 4-(4-Methoxynaphthalen-1-yl)-5-arylpyrimidin-2-amines as Tubulin Polymerization Inhibitors. Chem Pharm Bull (Tokyo) 2020; 68:1184-1192. [PMID: 32981901 DOI: 10.1248/cpb.c20-00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of 4-(4-methoxynaphthalen-1-yl)-5-arylpyrimidin-2-amines were designed, synthesized, and evaluated for their anticancer activities. Most of the synthesized compounds exhibited moderate to high antiproliferative activity in comparison to the standard drug cisplatin. Among them, 5i bearing ethoxy at the 4-position of the phenyl was found to be the most active on MCF-7 and HepG2 cancer cell lines, with IC50 values of 3.77 ± 0.36 and 3.83 ± 0.26 µM, respectively. Further mechanism study shown that 5i potently inhibited tubulin polymerization, induced cell cycle arrest at G2/M phase and cell apoptosis in MCF-7 cell line. Furthermore, molecular modeling study suggested that 5i probably binds to the colchicine site of tubulin.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University
| |
Collapse
|
43
|
Wu W, Chen M, Fei Q, Ge Y, Zhu Y, Chen H, Yang M, Ouyang G. Synthesis and Bioactivities Study of Novel Pyridylpyrazol Amide Derivatives Containing Pyrimidine Motifs. Front Chem 2020; 8:522. [PMID: 32850614 PMCID: PMC7411148 DOI: 10.3389/fchem.2020.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, thirteen new pyridylpyrazolamide derivatives containing pyrimidine motifs were synthesized via six-step reactions. Bioassay results showed that some of the synthesized compounds revealed good antifungal properties against Sclerotinia sclerotiorum, Phytophthora infestans, Thanatephorus cucumeris, Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica, Botryosphaeria dothidea, and Phompsis sp. at 50 μg/mL, which were similar to those of Kresoxim-methyl or Pyrimethanil. Meanwhile, bioassay results indicated that the synthesized compounds showed a certain insecticidal activity against Spodoptera litura, Mythimna separata, Pyrausta nubilalis, Tetranychus urticae, Rhopalosiphum maidis, and Nilaparvata lugens at 200 μg/mL, which was lower than that of Chlorantraniliprole. To the best of our knowledge, this study is the first report on the antifungal and insecticidal activities of pyridylpyrazol amide derivatives containing a pyrimidine moiety.
Collapse
Affiliation(s)
- Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China.,Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| | - Meihang Chen
- Material and Chemistry Engineering Institute, Tongren College, Tongren, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yonghui Ge
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yingying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Haijiang Chen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Maofa Yang
- Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| | - Guiping Ouyang
- Center for Research and Development of Fine Chemicals, School of Pharmaceutical Sciences, Entomology of Institute, Guizhou University, Guiyang, China
| |
Collapse
|
44
|
Luo D, Guo S, He F, Chen S, Dai A, Zhang R, Wu J. Design, Synthesis, and Bioactivity of α-Ketoamide Derivatives Bearing a Vanillin Skeleton for Crop Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7226-7234. [PMID: 32530620 DOI: 10.1021/acs.jafc.0c00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A series of novel α-ketoamide derivatives bearing a vanillin skeleton were designed and synthesized. Bioactivity tests on virus and bacteria were performed. The results indicated that some compounds exhibited excellent antitobacco mosaic virus (TMV) activities, such as compound 34 exhibited an inactivation activity of 90.1% and curative activity of 51.8% and compound 28 exhibited a curative activity of 54.8% at 500 μg mL-1, which is equivalent to that of the commercial ningnanmycin (inactivation of 91.9% and curative of 51.9%). Moreover, the in vitro antibacterial activity test illustrated that compounds 2, 22, and 33 showed much higher activities than commercial thiodiazole copper, which could be used as lead compounds or potential candidates. The findings of transmission electron microscopy and molecular docking indicated that the synthesized compounds exhibited strong and significant binding affinity to the TMV coat protein and could obstruct the self-assembly and increment of TMV particles. This study revealed that α-ketoamide derivatives bearing a vanillin skeleton could be used as a novel potential pesticide for controlling the plant diseases.
Collapse
Affiliation(s)
- Dexia Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shunhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Renfeng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
45
|
Wu WN, Fei Q, Ge YH, Gan XH. Crystal structure of 4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)oxy)benzoic acid, C 13H 9F 3N 2O 3. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C13H9F3N2O3, monoclinic, P21/c (no. 14), a = 8.6952(7) Å, b = 19.6715(18) Å, c = 8.0995(8) Å, β = 110.691(3)°, V = 1296.0(2) Å3, Z = 4, R
gt(F) = 0.0558, wR
ref(F
2) = 0.1358, T = 298(2) K.
Collapse
Affiliation(s)
- Wen-Neng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University , Guiyang 550003 , Guizhou , P.R. China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University , Guiyang 550003 , Guizhou , P.R. China
| | - Yong-Hui Ge
- Food and Pharmaceutical Engineering Institute, Guiyang University , Guiyang 550003 , Guizhou , P.R. China
| | - Xiu-Hai Gan
- Key Laboratory of Functional Organic Molecule, Guizhou Education University , Guiyang 550018 , Guizhou , P.R. China
| |
Collapse
|
46
|
4-(3-Phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)thieno[3,2-d]pyrimidine. MOLBANK 2020. [DOI: 10.3390/m1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hybrid compound, 4-(3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)thieno[3,2-d]pyrimidine 3, with promising biological activity was efficiently synthesized by the reaction of 3-phenyl-1-(thieno[3,2-d]pyrimidin-4-yl)-1H-pyrazol-5-amine with Vilsmeier–Haack reagent and subsequent treatment with ammonium carbonate. The structure of the synthesized compound was fully characterized by 1H-, 13C-NMR, IR spectroscopy, mass-spectrometry and elemental analysis.
Collapse
|
47
|
Shehta W, Hamid AMA. Heterocyclization of a Thiouracil Derivative as a Synthetic Entry to Novel Condensed Pyrimidines of Biological Interest. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Guo T, Xia R, Liu T, Peng F, Tang X, Zhou Q, Luo H, Xue W. Synthesis, Biological Activity and Action Mechanism Study of Novel Chalcone Derivatives Containing Malonate. Chem Biodivers 2020; 17:e2000025. [DOI: 10.1002/cbdv.202000025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringCenter for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 P. R. China
| |
Collapse
|
49
|
Zhao L, Zhang J, Liu T, Mou H, Wei C, Hu D, Song B. Design, Synthesis, and Antiviral Activities of Coumarin Derivatives Containing Dithioacetal Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:975-981. [PMID: 31891504 DOI: 10.1021/acs.jafc.9b06861] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a series of coumarin derivatives containing dithioacetals were synthesized, characterized, and assessed for their anti-tobacco mosaic virus (TMV) activities. Biological tests showed that most of the title compounds exhibited significant anti-TMV biological activities; in particular, compound b21 showed good inactivating activity anti-TMV, with an EC50 of 54.2 mg/L, superior to that of ribavirin (134.2 mg/L). Transmission electron microscopy analyses showed that compound 21 severely ruptured TMV particles. The interaction of compound b21 with TMV coat protein (TMV CP) was investigated using microscale thermophoresis and molecular docking. Compound b21 exhibited a strong binding ability to TMV CP, with a value of 2.9 μM, superior to ribavirin.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Honglan Mou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
50
|
Arshad M. Design, computational, synthesis, characterization, antimicrobial, MTT and molecular docking assessment of bipyrimidine derivatives possessing indole moiety. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|