1
|
Wiedemann TG, Jin HW, Gallagher B, Witek L, Miron RJ, Talib HS. Vitamin D Screening and Supplementation-A Novel Approach to Higher Success: An Update and Review of the Current Literature. J Biomed Mater Res B Appl Biomater 2025; 113:e35558. [PMID: 39976133 DOI: 10.1002/jbm.b.35558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
In recognizing the critical role of vitamin D in bone metabolism and osseointegration, research aims to identify whether preoperative vitamin D deficiency serves as a risk factor for early implant failure. By analyzing patient outcomes and their serum vitamin D levels, studies seek to establish evidence-based recommendations for vitamin D assessment and management in the preoperative period, with the ultimate goal of enhancing implant success rates and patient outcomes in dental implantology. Given these insights, it is important for clinicians to incorporate the preoperative evaluation of vitamin D serum levels into their standard protocol for patients undergoing dental implant procedures. The objective of this study is to review and investigate the correlation between early dental implant failure (EDIF) and reduced serum levels of vitamin D, and to evaluate the potential benefits of preoperative screening and supplementation of vitamin D in patients undergoing dental implant surgery. A literature review was performed using a selected database-PubMed, Google Scholar, Cochrane, and SCOPUS-to assess the effect of vitamin D3 level on EDIF and biological factors (i.e., peri-implant bone level). Studies were limited to peer-reviewed, indexed journals. Subsequently, a hypothesis was proposed that vitamin D3 supplementation would mitigate the negative effect of vitamin D3 deficiency. The potential benefit of vitamin D3 supplementation-systemic and topical-was assessed in terms of bone-to-implant contact (BIC) and peri-implant bone level. The deleterious effects of low vitamin D serum levels on osseointegration of dental implants and immune system modulation are increasingly accepted. Evidence has displayed that deficiency of this vitamin can result in impaired peri-implant bone formation. Vitamin D deficiency resulted in nearly a fourfold increase in overall EDIF incidence. Presurgical supplementation of vitamin D3 demonstrated increased levels of implant osseointegration, increased bone-implant contact, enhanced bone level maintenance, and decreased EDIF even in at-risk demographics (i.e., diabetic subjects). The findings of this study reinforce the role of vitamin D in dental implant osseointegration. Our study, particularly, emphasizes the necessity of vitamin D supplementation for individuals with sub-physiologic vitamin D serum levels (≤ 30 ng/mL) and those within specific risk categories: smokers, diabetics, obese individuals, and those with compromised immune systems. Adopting a proactive management plan, including screening and supplementation in these patients, may substantially enhance the clinical outcomes in dental implant surgery.
Collapse
Affiliation(s)
- Thomas G Wiedemann
- Department of Oral and Maxillofacial Surgery, NYU Dentistry, New York, New York, USA
| | - Hyun Woo Jin
- BA/DDS Joint Program, NYU Dentistry, New York, New York, USA
| | - Brendan Gallagher
- Department of Oral and Maxillofacial Surgery, NYU Langone Health/Bellevue Hospital Center, New York, New York, USA
| | - Lukasz Witek
- Biomaterials Division-NYU Dentistry, New York, New York, USA
- Hansjörg Wyss Department of Plastic Surgery - NYU Grossman School of Medicine, New York, New York, USA
- Department of Biomedical Engineering-NYU Tandon School of Engineering, New York, New York, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Huzefa S Talib
- Department of Oral and Maxillofacial Surgery, NYU Dentistry, New York, New York, USA
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Toy VE, Sabancı A. Resonance frequency analysis of dental implants in patients with vitamin D deficiency. Clin Oral Investig 2024; 28:682. [PMID: 39630320 DOI: 10.1007/s00784-024-06085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES Vitamin D deficiency may influence dental implant osseointegration unfavourably. The aim of this study was to compare dental implant stabilities of patients with different levels of vitamin D and investigate the effects of vitamin D supplementation. MATERIALS AND METHODS One hundred and twenty-nine patients who underwent dental implantation were grouped regarding vitamin D levels and supplement use: Group A; vitamin D deficiency and supplement usage, Group B; insufficiency with supplement usage, Group C; insufficiency without supplements and Group D; vitamin D sufficiency. Resonance frequency analysis (RFA) measurements were performed at baseline and 3 months. Patients with vitamin D deficiency (Group A) and insufficiency (Group B) were prescribed supplements by specialists. Pearson correlation analysis was used to examine an association between vitamin D levels and implant stability. RESULTS Primary stability of Group D (76.34 ± 6.55) was significantly higher than Groups A, B and C at baseline (p < 0.05). At 3 months, Group C scored significantly lower than the other groups (p < 0.05). The results revealed a correlation between serum levels of vitamin D and RFA measurements at 3 months (p < 0.05). CONCLUSION It was observed that high vitamin D levels influenced implant stabilities positively, as evidenced by higher Implant Stability Quotient values. Low levels of vitamin D may be associated with a decrease in implant stability. STATEMENT OF CLINICAL RELEVANCE Vitamin D, concerning its impact on bone metabolism, is currently of particular interest in implant dentistry. The lower stability scores in patients with vitamin D deficiency reinforce the recommendation of Vitamin D supplementation when treating those patients with dental implants.
Collapse
Affiliation(s)
- Vesile Elif Toy
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey.
| | - Arife Sabancı
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
4
|
Chen Z, Wang Y, Zhang G, Zheng J, Tian L, Song Y, Liu X. Role of LRP5/6/GSK-3β/β-catenin in the differences in exenatide- and insulin-promoted T2D osteogenesis and osteomodulation. Br J Pharmacol 2024; 181:3556-3575. [PMID: 38804080 DOI: 10.1111/bph.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin and exenatide are two hypoglycaemic agents that exhibit different osteogenic effects. This study compared the differences between exenatide and insulin in osseointegration in a rat model of Type 2 diabetes (T2D) and explored the mechanisms promoting osteogenesis in this model of T2D. EXPERIMENTAL APPROACH In vivo, micro-CT was used to detect differences in the peri-implant bone microstructure in vivo. Histology, dual-fluorescent labelling, immunofluorescence and immunohistochemistry were used to detect differences in tissue, cell and protein expression around the implants. In vitro, RT-PCR and western blotting were used to measure the expression of osteogenesis- and Wnt signalling-related genes and proteins in bone marrow mesenchymal stromal cells (BMSCs) from rats with T2D (TBMSCs) after PBS, insulin and exenatide treatment. RT-PCR was used to detect the expression of Wnt bypass cascade reactions under Wnt inactivation. KEY RESULTS Micro-CT and section staining showed exenatide extensively promoted peri-implant osseointegration. Both in vivo and in vitro experiments showed exenatide substantially increased the expression of osteogenesis-related and activated the LRP5/6/GSK-3β/β-catenin-related Wnt pathway. Furthermore, exenatide suppressed expression of Bmpr1a to inhibit lipogenesis and promoted expression of Btrc to suppress inflammation. CONCLUSION AND IMPLICATIONS Compared to insulin, exenatide significantly improved osteogenesis in T2D rats and TBMSCs. In addition to its dependence on LRP5/6/GSK-3β/β-catenin signalling for osteogenic differentiation, exenatide-mediated osteomodulation also involves inhibition of inflammation and adipogenesis by BMPR1A and β-TrCP, respectively.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yuxi Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Guanhua Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Jian Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Lei Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Xiangdong Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Tallon E, Macedo JP, Faria A, Tallon JM, Pinto M, Pereira J. Can Vitamin D Levels Influence Bone Metabolism and Osseointegration of Dental Implants? An Umbrella Review. Healthcare (Basel) 2024; 12:1867. [PMID: 39337208 PMCID: PMC11431482 DOI: 10.3390/healthcare12181867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Due to the large amount of scientific evidence on the subject and the limitations and incongruities in previous reviews, the primary aim of this umbrella review is to gather all the information regarding the importance of vitamin D levels in the osseointegration of dental implants. METHODS The literature search was performed in PubMed, Web of Science, CINAHL Plus, Cochrane Library, and Academic Search Complete throughout the search expression ["vitamin D" AND ("dental implant" OR "dental implants")]. RESULTS The initial search yielded 351 results, but at the end of the process, only five systematic reviews were selected. CONCLUSIONS Vitamin D seems to have a positive effect on the osseointegration of dental implants and on the reduction of dental implant failures; however, it is recommended that future studies take into account the limitations mentioned in this study in order to increase the validity and quality of scientific evidence on the subject.
Collapse
Affiliation(s)
- Eduardo Tallon
- Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Oporto, Portugal;
| | - José Paulo Macedo
- Department of Oral Medicine, Surgery and Implantology, Faculty of Health Sciences, Fernando Pessoa University, FP-I3ID, 4249-004 Oporto, Portugal;
| | - Ana Faria
- Ana Faria Dental Clinic, 15220 Bertamiráns, Spain;
| | | | - Marta Pinto
- School of Medicine and Biomedical Sciences, Fernando Pessoa University, 4249-004 Oporto, Portugal;
| | - Jorge Pereira
- Department of Oral Medicine, Surgery and Implantology, Faculty of Health Sciences, Fernando Pessoa University, FP-I3ID, 4249-004 Oporto, Portugal;
| |
Collapse
|
6
|
Wang X, Xiang C, Huang C, Cheng H, Zhou Z, Zhang J, Xie H. The treatment efficacy of bone tissue engineering strategy for repairing segmental bone defects under diabetic condition. Front Bioeng Biotechnol 2024; 12:1379679. [PMID: 38737542 PMCID: PMC11082311 DOI: 10.3389/fbioe.2024.1379679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Background Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.
Collapse
Affiliation(s)
- Xiangsheng Wang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Xiang
- Department of Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhua Huang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Xie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Buzatu BLR, Buzatu R, Luca MM. Impact of Vitamin D on Osseointegration in Dental Implants: A Systematic Review of Human Studies. Nutrients 2024; 16:209. [PMID: 38257102 PMCID: PMC10819660 DOI: 10.3390/nu16020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This systematic review evaluates the impact of Vitamin D levels on dental implant osseointegration, hypothesizing that optimal Vitamin D enhances success rates, and aims to synthesize data on its relationship with clinical outcomes in implantology. A comprehensive search across PubMed, Cochrane Library, and Web of Science databases included seven peer-reviewed articles meeting the criteria for the review. These studies, conducted between 2008 and 2021, included human subjects and explicitly correlated serum Vitamin D levels with dental implant outcomes, following PRISMA guidelines. The selected studies involved 1462 participants and examined 4450 dental implants. Key findings included a varied implant loss rate ranging from 3.9% to 11.4% across the studies. One study reported a 9.8% implant loss rate, yet found no significant association between Vitamin D receptor polymorphism and implant success. Another study indicated successful implantation following Vitamin D3 supplementation, even in severe deficiency cases. The highest implant loss rate (11.1%) was observed in severely Vitamin D-deficient patients, particularly when compounded by risk factors such as smoking and periodontal disease. Additionally, one study noted significantly improved bone density following post-surgical Vitamin D supplementation for up to 12 weeks. The review supports a link between sufficient Vitamin D levels and successful dental implant osseointegration, suggesting Vitamin D deficiency as a potential risk factor for increased failure and advocating for Vitamin D evaluations in pre-surgical planning to potentially enhance implantology outcomes.
Collapse
Affiliation(s)
- Berivan Laura Rebeca Buzatu
- Doctoral School, Department of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Magda Mihaela Luca
- Department of Pediatric Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
8
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
9
|
The role of Vitamin D as an adjunct for bone regeneration: A systematic review of literature. Saudi Dent J 2023; 35:220-232. [PMID: 37091280 PMCID: PMC10114593 DOI: 10.1016/j.sdentj.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Background and objectives In spite of bone's healing capacity, critical-size bone defect regeneration and peri-implant osseointegration are challenging. Tissue engineering provides better outcomes, but requires expensive adjuncts like stem cells, growth factors and bone morphogenic proteins. Vitamin D (Vit.D) regulates calcium and phosphorus metabolism, and helps maintain bone health. Vit.D supplements in deficient patients, accentuates bone healing and regeneration. Therefore the aim of this systematic review was to evaluate the role of adjunctive Vit.D on bone defect regeneration. Methods Comprehensive database search of indexed literature, published between January 1990 and June 2022, was carried out. English language articles fulfilling inclusion criteria (clinical/in vivo studies evaluating bone regeneration including osseointegration and in vitro studies assessing osteogenic differentiation, with adjunct Vit.D) were identified and screened. Results Database search identified 384 titles. After sequential title, abstract and full-text screening, 23 studies (in vitro - 9/in vivo - 14) were selected for review. Vit.D as an adjunct with stem cells and osteoblasts resulted in enhanced osteogenic differentiation and upregulation of genes coding for bone matrix proteins and alkaline phosphatase. When used in vivo, Vit.D resulted in early and increased new bone formation and mineralization within osseous defects, and better bone implant contact and osseointegration, around implants. Adjunct Vit.D in animals with induced systemic illnesses resulted in bone defect regeneration and osseointegration comparable to healthy animals. While systemic and local administration of Vit.D resulted in enhanced bone defect healing, outcomes were superior with systemic route. Conclusions Based on this review, adjunct Vit.D enhances bone defect regeneration and osseointegration. In vitro application of Vit.D to stem cells and osteoblasts enhances osteogenic differentiation. Vit.D is a potentially non-invasive and inexpensive adjunct for clinical bone regeneration and osseointegration. Long term clinical trials are recommended to establish protocols relating to type, dosage, frequency, duration and route of administration.
Collapse
|
10
|
Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front Mol Biosci 2022; 9:965753. [PMID: 36188222 PMCID: PMC9522461 DOI: 10.3389/fmolb.2022.965753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.
Collapse
Affiliation(s)
- Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zeying Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
11
|
Xiao L, Zhou YJ, Jiang YB, Tam MS, Cheang LH, Wang HJ, Zha ZG, Zheng XF. Effect of Diabetes Mellitus on Implant Osseointegration of Titanium Screws: An Animal Experimental Study. Orthop Surg 2022; 14:1217-1228. [PMID: 35451209 PMCID: PMC9163984 DOI: 10.1111/os.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To explore the effect of diabetes mellitus (DM) on implant osseointegration of titanium screws. Methods Sixty rats were randomly divided into a DM group and a control group (each group, n = 30). DM group rats were injected with 1% Streptozotocin solution at 65 mg/kg to establish a DM model. Titanium screws were implanted into the rats' distal femurs in both groups. The rats were sacrificed for micro‐CT scanning, micro‐indentation, biomechanical detection, confocal Raman microspectroscopy, and histological and histomorphometric analysis at 4, 8, and 12 weeks post‐implantation, respectively. Messenger RNA (mRNA) expression and protein expression of the related growth factors around the implant were analyzed using real‐time polymerase chain reaction and Western blots. Results At 4, 8 and 12 weeks, micro‐CT scanning, hematoxylin‐eosin (HE) staining, Gieson's acid‐magenta staining, and fluorescent labeled staining showed disorder in the bone tissue arrangement, a lack of new bone tissue, poor maturity and continuity, and poor trabecular bone parameters around the implant in the DM group. At 4, 8, and 12 weeks, the interfacial bone binding rate in the DM group was significantly lower (16.2% ± 4.8%, 25.7% ± 5.7%, 42.5% ± 5.8%, respectively) than that in the control group (23.6% ± 5.2%, 40.8% ± 6.3%, 64.2% ± 7.3%, respectively; P < 0.05). At 8 and 12 weeks, the elastic modulus (17.0 ± 1.8 and 15.1 ± 1.5 GPa, respectively) and trabecular bone hardness (571 ± 39 and 401 ± 37 MPa, respectively) in the DM group were significantly lower than the elastic modulus (23.4 ± 2.3 and 23.8 ± 1.8 GPa, respectively) and trabecular bone hardness (711 ± 45 and 719 ± 46 MPa, respectively) in the control group (P < 0.05). The maximum load required for the prosthesis pull‐out experiment in the DM group at 4, 8, and 12 weeks (55.14 ± 6.74 N, 73.34 ± 8.43 N, and 83.45 ± 8.32 N, respectively) was significantly lower than that in the control group (77.45 ± 7.48 N, 93.28 ± 8.29 N, and 123.62 ± 9.43 N, respectively, P < 0.05). At 8 and 12 weeks, the mineral‐to‐collagen ratio in the DM group (6.56 % ± 1.35% and 4.45%± 1.25%, respectively) was significantly higher than that in the control group (5.31% ± 1.42% and 3.62% ± 1.33%, respectively, P < 0.05). At 12 weeks, mRNA and protein expression levels of bone morphogenetic protein 2, transforming growth factor‐β1, vascular endothelial growth factor, osteopontin, osteocalcin, and runt‐related transcription factor 2 in the DM group were significantly lower than that in the control group. Conclusions DM can negatively affect bone osseointegration, manifesting as disorder in bone tissue arrangement around the implant, a lack of new bone tissue, poor maturity and continuity, poor trabecular bone parameters and lower expression of the related growth factors.
Collapse
Affiliation(s)
- Lei Xiao
- Emergency Department, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Orthopaedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Juan Zhou
- Emergency Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Bin Jiang
- Emergency Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | | | - Lek Hang Cheang
- Macau Medical Science and Technology Research Association, Macau, China
| | - Hua-Jun Wang
- Department of Orthopaedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhen-Gang Zha
- Department of Orthopaedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Fei Zheng
- Department of Orthopaedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Werny JG, Sagheb K, Diaz L, Kämmerer PW, Al-Nawas B, Schiegnitz E. Does vitamin D have an effect on osseointegration of dental implants? A systematic review. Int J Implant Dent 2022; 8:16. [PMID: 35403929 PMCID: PMC9001786 DOI: 10.1186/s40729-022-00414-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Purpose
The aim of this study was to systematically review the available evidence to evaluate the efficacy of vitamin D supplementation or vitamin D depletion on the osseointegration of implants in animals and humans.
Methods
The focus questions addressed were “Do vitamin D deficient subjects treated with (dental) implants have an inferior osseointegration than subjects with adequate serum vitamin D level?” and “Do vitamin D supplemented subjects treated with (dental) implants have a superior osseointegration than subjects with adequate serum vitamin D level?” Humans and animals were considered as subjects in this study. Databases were searched from 1969 up to and including March 2021 using different combination of the following terms: “implant”, “bone to implant contact”, “vitamin D” and “osseointegration”. Letters to the editor, historic reviews, commentaries and articles published in languages other than English and German were excluded. The pattern of the present systematic review was customize to primarily summarize the pertinent data.
Results
Thirteen experimental studies with animals as subject, two clinical studies and three case reports, with humans as subjects, were included. The amount of inserted titanium implants ranged between 24 and 1740. Results from three animal studies showed that vitamin D deficiency has a negative effect on new bone formation and/or bone to implant contact (BIC). Eight animal studies showed that vitamin D supplementation has a enhancing effect on BIC and/or new bone formation around implants. Furthermore, enhancing the impact of vitamin D supplementation on the osseointegration of implants in subjects with diabetes mellitus, osteoporosis and chronic kidney disease (CKD) were assessed. Studies and case reports involving human subjects showed that patients with a low serum vitamin D level have a higher tendency to exhibit an early dental implant failure. When supplemented with vitamin D the osseointegration was successful in the case reports and a beneficial impact on the changes in the bone level during the osseointegration were determined.
Conclusions
Vitamin D deficiency seems to have a negative effect on the osseointegration of implants in animals. The supplementation of vitamin D appears to improve the osseointegration in animals with systemic diseases, such as vitamin D deficiency, diabetes mellitus, osteoporosis, and CKD. Slight evidence supports the hypothesis that humans similarly benefit from vitamin D supplementation in terms of osseointegration. Further investigation is required to maintain these assumptions.
Collapse
|
13
|
Anderson KD, Ko FC, Fullam S, Virdi AS, Wimmer MA, Sumner D, Ross RD. The relative contribution of bone microarchitecture and matrix composition to implant fixation strength in rats. J Orthop Res 2022; 40:862-870. [PMID: 34061392 PMCID: PMC8633073 DOI: 10.1002/jor.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.
Collapse
Affiliation(s)
- Kyle D. Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Spencer Fullam
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Markus A. Wimmer
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - D.R. Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
14
|
Vitamin D Supplementation for Prevention of Dental Implant Failure: A Systematic Review. Int J Dent 2022; 2022:2845902. [PMID: 35069741 PMCID: PMC8769861 DOI: 10.1155/2022/2845902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Many factors play a significant role in osseointegration and healing after dental implant insertion and restoration. Some factors are related to dental biomaterials, such as the dental implant, prosthesis, and grafting materials. Other factors can be connected to operator skills and accumulated experience. Local and systemic patient-related factors are crucial in determining the success of the dental implant. Thorough examination and analysis of local factors using available examination tools are vital to prepare the implant candidate for such treatment. The patient's systemic condition directly affects the healing of the dental implant. One of the most overlooked systemic factors is the patients' vitamin D level, which influences bone formation around the implant and subsequent osseointegration. The current review examined the available literature regarding the association between vitamin D supplementation and dental implant osseointegration. Methods Data of this review were derived from recent research available on PubMed, Google Scholar, and Scopus. Inclusion criteria were the relation between the vitamin D serum and dental implant osseointegration or failure. The Systematic Reviews and Meta-Analyses (PRISMA) checklist was followed to perform the review. The study's outcome was the need for vitamin D supplementation to prevent implant failure. Results Five human studies (including case reports, case series, and retrospective studies) and six animal studies. All included studies discussed the relationship between vitamin D, early dental implant failure, and bone implant contact. Three retrospective studies found no significant relationship between vitamin D supplementation and EDIFs in humans. On the other hand, one retrospective study showed a significant relationship in humans. A case report and case series claimed that the implant was successfully placed after vitamin D supplementation. A total of four animal studies showed a significant relationship between vitamin D supplementation and osseointegration of the dental implant. Two animal studies showed no significant association. Conclusion To ensure optimal treatment outcomes, it is recommended to supplement the patient with vitamin D if the serum level is not within the normal range. Further clinical studies and case reports are needed to confirm the association between serum vitamin D levels and osseointegration.
Collapse
|
15
|
Wang L, Liang C, Lin X, Liu C, Li J. microRNA-491-5p regulates osteogenic differentiation of bone marrow stem cells in type 2 diabetes. Oral Dis 2021; 29:308-321. [PMID: 34618998 DOI: 10.1111/odi.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Osseointegration of oral implants has a low success rate in patients with type 2 diabetes. This is because of the inhibition of osteogenic differentiation in the jawbone marrow mesenchymal stem cells, in which the expression of microRNA(miR)-491-5p is significantly downregulated, as ascertained through gene chip screening. However, the underlying mechanisms are unclear. Here, we aimed to clarify the mechanisms involved in the influence of miR-491-5p on osteogenic differentiation. SUBJECTS AND METHODS Jawbone marrow mesenchymal stem cells were isolated from jawbones of patients with type 2 diabetes and subjected to bioinformatics and functional analyses. Osteogenesis experiments were conducted using the isolated cells and an in vivo model. RESULTS Knockdown and overexpression experiments revealed the positive effects of miR-491-5p expression on osteogenic differentiation in vivo and in vitro. Additionally, a dual-luciferase assay revealed that miR-491-5p targeted the SMAD/RUNX2 pathway by inhibiting the expression of epidermal growth factor receptor. CONCLUSIONS miR-491-5p is vital in osteogenic differentiation of jawbone mesenchymal stem cells; its downregulation in type 2 diabetes could be a major cause of decreased osteogenic differentiation. Regulation of miR-491-5p expression could improve osteogenic differentiation of jawbone mesenchymal stem cells in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Chao Liang
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Changying Liu
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Markopoulos G, Lepetsos P, Perrea DN, Iliopoulos DC, Nikolaou VS. Possible Roles of Vitamin D in Bone Grafting. Cureus 2021; 13:e14688. [PMID: 34055532 PMCID: PMC8150679 DOI: 10.7759/cureus.14688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone grafting is one of the most commonly used options to treat large bone defects. Evidence has shown that vitamin D may affect osseointegration, a major component for successful bone grafting. In vitro studies have proved that implants coated with activated vitamin D stimulate bone production and reduce bone resorption around implants. Animal studies have noticed that oral administration of vitamin D may stimulate bone formation as well as strengthen and support the interaction between bone and implants. Vitamin D insufficiency may affect negatively the cortical peri-implant bone formation, suggesting a negative effect in graft incorporation. Few clinical studies have observed that vitamin D administration enhanced graft incorporation and bone formation, while severe vitamin D deficiency is associated with failed implant osseointegration. Even though there are encouraging results of vitamin D supplementation on graft incorporation in animal studies, the use of vitamin D as an adjuvant in bone grafting procedures cannot be fully supported at the moment. However, there is theoretical support in the use of vitamin D after surgery and the use of bone grafts to support the bone structure, relieve pain and increase graft absorption. Further experimental and clinical studies are required to support the administration of vitamin D and its analogues in such cases.
Collapse
Affiliation(s)
- Georgios Markopoulos
- Second Department of Orthopaedics, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | | | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Vasileios S Nikolaou
- Second Department of Orthopaedics, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| |
Collapse
|
17
|
Zhang J, Wang YN, Jia T, Huang H, Zhang D, Xu X. Genipin and insulin combined treatment improves implant osseointegration in type 2 diabetic rats. J Orthop Surg Res 2021; 16:59. [PMID: 33446235 PMCID: PMC7809857 DOI: 10.1186/s13018-021-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has a harmful effect on the stability and osseointegration of dental implants. T2DM induces mitochondrial damage by inhibiting AMPK signaling, resulting in oxidative stress and poor osteogenesis in the peri-implant bone area. Genipin is a major component of gardenia fruits with strong antioxidant, anti-inflammation, and antidiabetic actions, and it also can activate mitochondrial quality control via the AMPK pathway. The purpose of this study was to investigate the effects of genipin and insulin treatment on implant osseointegration in T2DM rats and explore the underlying mechanisms. METHODS Streptozotocin-induced diabetic rats received implant surgery in their femurs and were then assigned to five groups that were subjected to different treatments for three months: control group, T2DM group, insulin-treated T2DM group (10 IU/kg), genipin-treated T2DM group (50 mg/kg), and the genipin and insulin combination-treated T2DM group. Then, we regularly assessed the weight and glucose levels of the animals. Rats were euthanized at 3 months after the implantation procedure, and the femora were harvested for microscopic computerized tomography analysis, biomechanical tests, and different histomorphometric assessment. RESULTS The results indicated that the highest blood glucose and oxidative stress levels were measured for the T2DM group, resulting in the poorest osseointegration. The combination-treated T2DM group mitigated hyperglycemia and normalized, reactivated AMPK signaling, and alleviated oxidative stress as well as reversed the negative effect of osseointegration. There were beneficial changes observed in the T2DM-genipin and T2DM-insulin groups, but these were less in comparison to the combination treatment group. CONCLUSION Our study suggests that treatment with genipin in combination with insulin could be an effective method for promoting implant osseointegration in T2DM rats, which may be related to AMPK signaling.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Haiyun Huang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China.
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
18
|
Mahri M, Shen N, Berrizbeitia F, Rodan R, Daer A, Faigan M, Taqi D, Wu KY, Ahmadi M, Ducret M, Emami E, Tamimi F. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence. Acta Biomater 2021; 119:284-302. [PMID: 33181361 DOI: 10.1016/j.actbio.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic reviews. However, assessment of all known medications requires the use of evidence mapping methods. These methods allow assessment of complex questions, but they are very resource intensive when done manually. The objective of this study was to develop a machine learning algorithm to automatically map the literature assessing the effect of medications on osseointegration. Datasets of articles classified manually were used to train a machine-learning algorithm based on Support Vector Machines. The algorithm was then validated and used to screen 599,604 articles identified with an extremely sensitive search strategy. The algorithm included 281 relevant articles that described the effect of 31 different drugs on osseointegration. This approach achieved an accuracy of 95%, and compared to manual screening, it reduced the workload by 93%. The systematic mapping revealed that the treatment outcomes of osseointegrated medical devices could be influenced by drugs affecting homeostasis, inflammation, cell proliferation and bone remodeling. The effect of all known medications on the performance of osseointegrated medical devices can be assessed using evidence mappings executed with highly accurate machine learning algorithms.
Collapse
|
19
|
Bone regeneration in a mouse model of type 1 diabetes: Influence of sex, vitamin D3, and insulin. Life Sci 2020; 263:118593. [PMID: 33069738 DOI: 10.1016/j.lfs.2020.118593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
AIM This study set forth a question: are there any differences in bone responses to insulin and/or vitamin D3 treatment in female and male type 1 diabetic (T1D) mice? MAIN METHODS To address this issue, a non-critical sized femur defect was created in streptozotocin (STZ)-T1D mice. Control non-diabetic and T1D female and male mice received: saline; vitamin D3; insulin; or vitamin D3 plus insulin, for 21 days. KEY FINDINGS Female and male T1D mice showed impaired bone healing, as indicated by histological and micro-computed tomography (micro-CT) analysis. Vitamin D3 or insulin improved the bone regeneration in T1D mice, irrespective of sex. Vitamin D3 plus insulin did not exhibit any additional effects. There were no differences regarding the numbers of TRAP-stained osteoclasts in either evaluated groups. The osteoblast-related gene osterix was upregulated in vitamin D3-treated male T1D mice, as revealed by RT-qPCR. Female T1D mice treated with vitamin D3, insulin, or vitamin D3 plus insulin presented an increased expression of insulin growth factor-1 (IGF-1) mRNA. Conversely, IGF-1 mRNA levels were reduced by the same treatments in male TD1 mice. SIGNIFICANCE Altogether, the results suggested that T1D similarly delayed the osseous healing in female and male mice, with beneficial effects for either vitamin D3 or insulin in T1D mice of both sexes. However, data indicated marked sex differences regarding the expression of genes implicated in bone formation, in T1D mice treated with vitamin D3 and/or insulin.
Collapse
|
20
|
Hua Y, Bi R, Li Z, Li Y. Resveratrol treatment promotes titanium implant osseointegration in diabetes mellitus rats. J Orthop Res 2020; 38:2113-2119. [PMID: 32141632 DOI: 10.1002/jor.24651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/04/2019] [Accepted: 03/01/2020] [Indexed: 02/05/2023]
Abstract
Type II diabetes mellitus (T2DM) is the most common metabolic disorder; it is characterized by hyperglycemia and causes implant failure by influencing implant osseointegration. Resveratrol promotes bone formation, but it is unclear if resveratrol improves implant osseointegration. Thirty 12-week-old Sprague-Dawley rats were divided into control (CTL), diabetes mellitus (DM), and resveratrol treatment (DM + Res) groups. In the DM and DM + Res groups (n = 10 each), T2DM was induced via streptozotocin injections; the remaining 10 rats were considered the CTL group. Eight weeks after the insertion of a rod-like Ti implant with a 12-mm length and 1-mm diameter in the left leg, the rats were euthanized. We analyzed implant osseointegration using microcomputed tomography (micro-CT), histological analyses, and biomechanical tests. The parameters showed that T2DM negatively influenced implant osseointegration in the tibia. Compared to that in the DM group, the bone loss of peri-implant bone mass in the DM + Res group was decreased significantly. However, resveratrol still did not induce the same level of implant osseointegration as that observed in the CTL group according to the histological and micro-CT analyses. These results indicated that resveratrol reduced the influence of DM in implant osseointegration, resulting in increased peri-implant bone density, improved trabecular architecture, and enhanced biomechanical fixation.
Collapse
Affiliation(s)
- Yunwei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zheru Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Khorsand B, Acri TM, Do A, Femino JE, Petersen E, Fredericks DC, Salem AK. A Multi-Functional Implant Induces Bone Formation in a Diabetic Model. Adv Healthc Mater 2020; 9:e2000770. [PMID: 32815306 DOI: 10.1002/adhm.202000770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Patients with diabetes mellitus (DM) have defective healing of bone fractures. It was previously shown that nonviral gene delivery of plasmid DNA (pDNA) that independently encodes bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2), acts synergistically to promote bone regeneration in a DM animal model. Additionally, both insulin (INS) and the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ) (VD3) have independently been shown to play key roles in regulating bone fracture healing in DM patients. However, these individual therapies fail to adequately stimulate bone regeneration, illustrating a need for novel treatment of bone fractures in diabetic patients. Here, the ability of local delivery of INS and VD3 along with BMP-2 and FGF-2 genes is investigated to promote bone formation ectopically in Type-2 diabetic rats. A composite consisting of VD3 and INS is developed that contains poly(lactic-co-glycolic acid) microparticles (MPs) embedded in a fibrin gel surrounded by a collagen matrix that is permeated with polyethylenimine (PEI)-(pBMP-2+pFGF-2) nanoplexes. Using a submuscular osteoinduction model, it is demonstrated that local delivery of INS, VD3, and PEI-(pBMP-2+pFGF-2) significantly improves bone generation compared to other treatments, thusimplicating this approach as a method to promote bone regeneration in DM patients with bone fractures.
Collapse
Affiliation(s)
- Behnoush Khorsand
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - Timothy M. Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - Anh‐Vu Do
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - John E. Femino
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Emily Petersen
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Douglas C. Fredericks
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| |
Collapse
|
22
|
Garg P, Ghalaut P, Dahiya K, Ravi R, Sharma A, Wakure P. Comparative evaluation of crestal bone level in patients having low level of Vitamin D treated with dental implant with or without Vitamin D3 supplements. Natl J Maxillofac Surg 2020; 11:199-206. [PMID: 33897181 PMCID: PMC8051646 DOI: 10.4103/njms.njms_49_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Vitamin D has been shown to play a vital role in bone mineral homeostasis by stimulating the intestinal absorption of calcium and phosphate. The critical role of Vitamin D in bone metabolism triggered the need to evaluate the effect of Vitamin D deficiency and hence replacement of the same on osseointegration of dental implants. This prospective study evaluated the crestal bone level in patients having low level of Vitamin D treated with dental implant with or without Vitamin D3 supplements. MATERIALS AND METHODS A prospective clinical study was conducted on 32 patients based on the inclusion and exclusion criteria. Patients were divided into two groups on the basis of Vitamin D level < 30 ng/ml (Group I: patients receiving Vitamin D3 supplements, i.e., cholecalciferol 1 g sachet 60,000 IU/month) or <30 ng/ml (Group II: not receiving Vitamin D3 supplements). The crestal bone level measurements were made with the help of Digimizer Image Analysis, MedCalc software. RESULTS All implants showed clinically acceptable crestal bone level at interval of 1 week (baseline), 3 months, and 6 months. There was a statistically nonsignificant difference seen for the values between the groups (P > 0.05) for all other values at various time intervals. However, there was a statistically significant/highly significant difference seen for the values between the groups (P < 0.01, 0.05) for 3 months distal with higher values for Group I as compared to Group II. CONCLUSION From the study, it can be concluded that cholecalciferol has systemic effects on accelerating bone formation around titanium implant.
Collapse
Affiliation(s)
- Pooja Garg
- Department of Prosthodontics, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
- Address for correspondence: Dr. Pooja Garg, Department of Prosthodontics, Post Graduate Institute of Dental Sciences, Pt. B.D. Sharma University of Health Sciences, Rohtak - 124 001, Haryana, India. E-mail:
| | - Pankaj Ghalaut
- Department of Prosthodontics, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Kiran Dahiya
- Department of Biochemistry, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Reena Ravi
- Department of Prosthodontics, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Anshu Sharma
- Department of Prosthodontics, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Poonam Wakure
- Department of Prosthodontics, Post Graduate Institute of Medical Sciences, Pt. B.D Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
23
|
Nastri L, Moretti A, Migliaccio S, Paoletta M, Annunziata M, Liguori S, Toro G, Bianco M, Cecoro G, Guida L, Iolascon G. Do Dietary Supplements and Nutraceuticals Have Effects on Dental Implant Osseointegration? A Scoping Review. Nutrients 2020; 12:E268. [PMID: 31968626 PMCID: PMC7019951 DOI: 10.3390/nu12010268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
Several factors affect dental implant osseointegration, including surgical issues, bone quality and quantity, and host-related factors, such as patients' nutritional status. Many micronutrients might play a key role in dental implant osseointegration by influencing some alveolar bone parameters, such as healing of the alveolus after tooth extraction. This scoping review aims to summarize the role of dietary supplements in optimizing osseointegration after implant insertion surgery. A technical expert panel (TEP) of 11 medical specialists with expertise in oral surgery, bone metabolism, nutrition, and orthopedic surgery performed the review following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) model. The TEP identified micronutrients from the "European Union (EU) Register of nutrition and health claims made on foods" that have a relationship with bone and tooth health, and planned a PubMed search, selecting micronutrients previously identified as MeSH (Medical Subject Headings) terms and adding to each of them the words "dental implants" and "osseointegration". The TEP identified 19 studies concerning vitamin D, magnesium, resveratrol, vitamin C, a mixture of calcium, magnesium, zinc, and vitamin D, and synthetic bone mineral. However, several micronutrients are non-authorized by the "EU Register on nutrition and health claims" for improving bone and/or tooth health. Our scoping review suggests a limited role of nutraceuticals in promoting osseointegration of dental implants, although, in some cases, such as for vitamin D deficiency, there is a clear link among their deficit, reduced osseointegration, and early implant failure, thus requiring an adequate supplementation.
Collapse
Affiliation(s)
- Livia Nastri
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Unit Endocrinology, University Foro Italico, 00135 Rome, Italy;
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Marco Annunziata
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Massimiliano Bianco
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Gennaro Cecoro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Luigi Guida
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.N.); (M.P.); (M.A.); (S.L.); (G.T.); (M.B.); (G.C.); (L.G.); (G.I.)
| |
Collapse
|
24
|
Wang X, Wang H, Zhang T, Cai L, Kong C, He J. Current Knowledge Regarding the Interaction Between Oral Bone Metabolic Disorders and Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:536. [PMID: 32903738 PMCID: PMC7438828 DOI: 10.3389/fendo.2020.00536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a major chronic disease affecting human health, has been increasing in prevalence in recent years. Diabetes mellitus can cause bone metabolic disorders in patients, leading to osteoporosis, a higher risk of traumatic fracture, and other bone diseases. Bone metabolic disorders in the oral cavity principally manifest as periodontitis, loss of alveolar bone, and failure of implant osseointegration. In recent years, numerous studies have shown that there is a complex interaction between bone metabolic disorders and diabetes mellitus. This paper reviews the adverse effects of diabetes on oral bone metabolism disorders such as alveolar osteoporosis and bone loss in patients with periodontitis, discusses the potential mechanisms of diabetic bone loss, and suggests potential ways to prevent and treat oral bone loss in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Pediatrics, Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, United States
| | - Huiyu Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianfu Zhang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, United States
- Departments of Radiation Oncology, Pharmacology, and Toxicology, University of Louisville, Louisville, KY, United States
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Chenfei Kong
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jinting He
| |
Collapse
|
25
|
Jia T, Wang YN, Zhang J, Hao X, Zhang D, Xu X. Cinaciguat in combination with insulin induces a favorable effect on implant osseointegration in type 2 diabetic rats. Biomed Pharmacother 2019; 118:109216. [PMID: 31319371 DOI: 10.1016/j.biopha.2019.109216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
The osseointegration process of implant is seriously impaired in type 2 diabetes mellitus (T2DM) that causes high failure rate, and insufficiency exists in current insulin therapy, creating a demand for new bone-synergistic agent. Cinaciguat, a novel type of soluble guanylate cyclase (sGC) activator, plays a vital role in glucose metabolism, inflammation control and bone regeneration. We hypothesized that the combined application of cinaciguat and insulin could reverse poor implant osseointegration in diabetes. To test this hypothesis, streptozotocin-induced diabetic rats were placed implants in the femur, and divided into five groups: control, T2DM, cinaciguat-treated T2DM (7 μg/kg), insulin-treated T2DM (12 IU/kg), cinaciguat plus insulin combination-treated T2DM (7 μg/kg and 12 IU/kg respectively), according to different treatment received. The weight and glucose levels of rats were evaluated at fixed times, and plasma level of cyclic guanosine monophosphate (cGMP) was determined before euthanasia. Three months after therapy, the femurs were isolated for pull-out test, environmental scanning electron microscope observation, microscopic computerized tomography evaluation and various histology analysis. Results revealed that diabetic rats showed the highest blood glucose level and lowest cGMP content, which led to the worst structural damage and least osseointegration. Combined treatment could attenuate the diabetes induced hyperglycemia to be normal, restore the cGMP content, protein kinase G II (PKG II) expression, phosphodiesterase-5 (PDE5) activity and ameliorate the mechanical strength, the impaired bone microarchitecture and osseointegration to the highest level. Meanwhile, monotreatment (insulin or cinaciguat) also showed restorative effect, but less. Our findings demonstrated that the cGMP/PKG II signaling pathway activated by cinaciguat mediated the favorable effects of the combined application on improving implant fixation under T2DM condition.
Collapse
Affiliation(s)
- Tingting Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Ya-Nan Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jiajia Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Xinyu Hao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
26
|
Hua Y, Bi R, Zhang Y, Xu L, Guo J, Li Y. Different bone sites-specific response to diabetes rat models: Bone density, histology and microarchitecture. PLoS One 2018; 13:e0205503. [PMID: 30346963 PMCID: PMC6197850 DOI: 10.1371/journal.pone.0205503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is the most common metabolic disorder that is characterized by hyperglycemia, it can be categorized by T1DM and T2DM. T1DM is also reported to cause bone loss. However, most reports regarding this aspect of T1DM have only investigated a single site; a comparison of bone loss from different areas of the body is still lacking. METHODS Thirty-five 12-week-old Sprague Dawley® (SD) rats were separated to seven groups. Five rats were euthanized without any surgery at 0 weeks for histological examination and determination of baseline characteristics. In 15 of the rats, DM was induced via Streptozotocin (STZ)-injection, and they were separated to 3 groups (4 weeks, 8 weeks and 12 weeks after STZ-injection). The remaining 15 rats were used as the control group (4 weeks, 8 weeks and 12 weeks after saline-injection). We tested bone-mass loss at four skeletal sites, the tibia, the femur greater trochanter, the spine, and the mandibular bones using micro-computed tomography (CT) and histological tests. RESULTS Tibia was influenced the most obvious(BV/TV decreased by 27.3%, 52.5%, and 81.2% at 4 weeks, 8 weeks, and 12 weeks, respectively. p<0.05). In contrast, the other three sites were influenced to a lesser extent and bone loss became prominent at a later time point according to the histological and micro-CT tests(Femur: BV/TV did not decrease significantly at the first month or second month. However, and decreased by 49.4% at the third month, P<0.05. Mandible: the BV/TV only decreased by 6.5% at 1 month after STZ-injection. There was still a significant difference between the second and third months. The BV/TV decreased by 47.0% and 68.1% at 2 months and 3 months, respectively, (p<0.05) Spine: the BV/TV only decreased by 6.7%. However, significant change was observed in the spine at the second month and third month after STZ injection. The BV/TV decreased by 45.4% and 64.3%, respectively, p<0.05). CONCLUSION The results indicate that T1DM can severely influence the bone structure of the 4 skeletal sites. Further, areas with dense trabecular bones were influenced less and at a later time point in comparison to the tibial region. CLINICAL RELEVANCE Our research can serve as a guide to help increase the success rate of implant treatment, and help decrease the fracture risk in different bone types with greater accuracy.
Collapse
Affiliation(s)
- Yunwei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Luchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaoyang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
27
|
Guido Mangano F, Ghertasi Oskouei S, Paz A, Mangano N, Mangano C. Low serum vitamin D and early dental implant failure: Is there a connection? A retrospective clinical study on 1740 implants placed in 885 patients. J Dent Res Dent Clin Dent Prospects 2018; 12:174-182. [PMID: 30443302 PMCID: PMC6231147 DOI: 10.15171/joddd.2018.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/26/2018] [Indexed: 01/21/2023] Open
Abstract
Background. Since osseointegration depends on bone metabolism, low levels of vitamin D in the blood may negatively
affect bone formation around dental implants. To date, only a few studies have investigated the possible connection between
serum levels of vitamin D and early dental implant failure (EDIF), i.e. failure that occurs within 4 months after placement,
before the connection of the prosthetic abutment. The aim of this study was to investigate whether there is a relationship
between low serum levels of vitamin D and EDIF.
Methods. Data used for this retrospective study were derived from the records of a private dental clinic. Inclusion criteria
were patients who had been treated with dental implants, inserted with a submerged technique from January 2003 to December
2017. EDIF was the outcome of this study. Chi-squared test was used to investigate the effect of patient-related variables (age,
gender, smoking habit, history of periodontal disease and serum levels of vitamin D) on EDIF.
Results. Originally, 885 patients treated with 1,740 fixtures were enrolled in this study. Overall, 35 EDIFs (3.9%) were
reported. No correlation was found between EDIF and the patients' gender (P=0.998), age (P=0.832), smoking habit (P=0.473)
or history of periodontal disease (P=0.386). Three EDIFs (11.1%) were reported in 27 patients with serum levels of vitamin
D <10 ng/mL, 20 EDIFs (4.4%) in 448 patients with levels between 10 and 30 ng/mL, and 12 EDIFs (2.9%) in 410 patients
with levels >30 ng/mL. Although there was a clear trend toward an increased incidence of EDIF with lowering of serum
vitamin D levels, no statistically significant difference (P=0.105) was found among these three groups.
Conclusion. Within its limitations (retrospective design, low number of patients with severe blood levels of vitamin D
enrolled), this study failed to demonstrate a significant relationship between low serum levels of vitamin D and increased risk
of EDIF. However, since a dramatic increase in EDIFs with lowering of vitamin D levels in the blood has been reported,
further clinical studies with appropriate design (prospective or randomized controlled studies on a larger sample of severely
deficient patients) are needed to better investigate this topic
Collapse
Affiliation(s)
| | | | - Ana Paz
- Private Practice, Lisbon, Portugal
| | - Natale Mangano
- Division of Endocrinology and Metabolism, Moriggia Pelascini Hospital, Gravedona ed Uniti, Italy
| | - Carlo Mangano
- Department of Dental Sciences, University Vita Salute San Raffaele, Milan, Italy
| |
Collapse
|
28
|
Jia T, Wang YN, Zhang D, Xu X. 1α,25-dihydroxyvitamin D3 promotes osseointegration of titanium implant via downregulating AGEs/RAGE pathway in T2DM. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0241.xml. [PMID: 30352411 PMCID: PMC6215803 DOI: 10.1530/ec-18-0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Diabetes-induced advanced glycation end products (AGEs) overproduction would result in compromised osseointegration of titanium implant and high rate of implantation failure. 1α,25-dihydroxyvitamin D3 (1,25VD3) plays a vital role in osteogenesis, whereas its effects on the osseointegration and the underlying mechanism are unclear. The purpose of this study was to investigate that 1,25VD3 might promote the defensive ability of osseointegration through suppressing AGEs/RAGE in type 2 diabetes mellitus. In animal study, streptozotocin-induced diabetic rats accepted implant surgery, with or without 1,25VD3 intervention for 12 weeks. After sacrificed, the serum AGEs level, bone microarchitecture and biomechanical index of rats were measured systematically. In vitro study, osteoblasts differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase assay and western blotting, after treated with BSA, AGEs, AGEs with RAGE inhibitor and AGEs with 1,25VD3. And the expression of RAGE protein was detected to explore the mechanism. Results showed that 1,25VD3 could reverse the impaired osseointegration and mechanical strength, which possibly resulted from the increased AGEs. Moreover, 1,25VD3 could ameliorate AGEs-induced damage of cell osteogenic differentiation, as well as downregulating the RAGE expression. These data may provide a theoretical basis that 1,25VD3 could work as an adjuvant treatment to against poor osseointegration in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Dongjiao Zhang
- D Zhang, School of Stomatology, Shandong University, Jinan, China
| | | |
Collapse
|
29
|
Guang M, Huang B, Yao Y, Zhang L, Yang B, Gong P. Effects of vascular endothelial growth factor on osteoblasts around dental implants in vitro and in vivo. J Oral Sci 2018. [PMID: 28637981 DOI: 10.2334/josnusd.16-0406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vasculogenesis is a pivotal procedure during dental implant osseointegration and bone repair process. Vascular endothelial growth factor (VEGF), regarded as one of the most important vasculogenesis factor, also plays a central role in bone repair, but its role around dental implants is still unknown. In the present study, rat primary osteoblasts seeded on titanium discs were tested using proliferation, enzyme-linked immunosorbent assay, Real-time PCR, and alkaline phosphatase (ALP) expression. Chicken embryo chorioallantoic membrane (CAM) was used to test the vasculogenesis property. In vivo VEGF-coated implants assay was used to test the osteocalcin (OCN)- and CD31-positive cells around an implant. VEGF could significantly promote osteoblasts seeded on titanium surfaces proliferation and secretion of VEGF protein (P < 0.05); increasing of VEGF, VEGFR1, VEGFR2, NRP-1, ALP and Runx2 mRNA expression (P < 0.05); up-regulating ALP expression on days 7 and 11 (P < 0.01). Supernatant of VEGF-induced osteoblasts could promote CAM vasculogenesis (P < 0.05). In vivo, VEGF-coated implants could promote OCN- and CD31-positive cells around bone lacunas. The present study shows that VEGF could induce primary rat osteoblasts proliferation, VEGF protein secretion, ALP expression, and VEGF-related mRNA expression in vitro. Osteoblasts co-cultured with VEGF could promote neovascularization in chicken embryos. In the in vivo experiments, coating the implant with VEGF could promote osteoblasts and endothelial cell expression.
Collapse
Affiliation(s)
- Mengkai Guang
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University.,Stomatology Center, China-Japan Friendship Hospital
| | - Bo Huang
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Yang Yao
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Liang Zhang
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Bo Yang
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Ping Gong
- National Clinical Key Specialty for Oral Implantology, West China Hospital of Stomatology, Sichuan University.,Dental Implant Center, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
30
|
Xiong Y, Zhang Y, Xin N, Yuan Y, Zhang Q, Gong P, Wu Y. 1α,25-Dihydroxyvitamin D 3 promotes bone formation by promoting nuclear exclusion of the FoxO1 transcription factor in diabetic mice. J Biol Chem 2017; 292:20270-20280. [PMID: 29042442 PMCID: PMC5724012 DOI: 10.1074/jbc.m117.796367] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Indexed: 02/05/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of vitamin D, which is responsible for reducing the risk for diabetes mellitus (DM), decreasing insulin resistance, and improving insulin secretion. Previous studies have shown that 1,25(OH)2D3 inhibited the activity of FoxO1, which has been implicated in the regulation of glucose metabolism. However, its function and mechanism of action in DM-induced energy disorders and also in bone development remains unclear. Here, using in vitro and in vivo approaches including osteoblast-specific, conditional FoxO1-knock-out mice, we demonstrate that 1,25(OH)2D3 ameliorates abnormal osteoblast proliferation in DM-induced oxidative stress conditions and rescues the impaired glucose and bone metabolism through FoxO1 nuclear exclusion resulting from the activation of PI3K/Akt signaling. Using alizarin red staining, alkaline phosphatase assay, Western blot, and real-time qPCR techniques, we found that 1,25(OH)2D3 promotes osteoblast differentiation and expression of osteogenic phenotypic markers (i.e. alkaline phosphatase (1), collagen 1 (COL-1), osteocalcin (OCN), and osteopontin (OPN)) in a high-glucose environment. Moreover, 1,25(OH)2D3 increased both total OCN secretion and levels of uncarboxylated OCN (GluOC) by phosphorylating FoxO1 and promoting its nuclear exclusion, indicated by Western blot and cell immunofluorescence analyses. Taken together, our findings confirm that FoxO1 is a key mediator involved in glucose homeostasis and indicate that 1,25(OH)2D3 improves glucose metabolism and bone development via regulation of PI3K/Akt/FoxO1/OCN pathway.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China.
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; Department of Implantology, Chengdu 610041, China.
| |
Collapse
|
31
|
Xiong Y, Zhang Y, Guo Y, Yuan Y, Guo Q, Gong P, Wu Y. 1α,25-Dihydroxyvitamin D3 increases implant osseointegration in diabetic mice partly through FoxO1 inactivation in osteoblasts. Biochem Biophys Res Commun 2017; 494:626-633. [DOI: 10.1016/j.bbrc.2017.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
32
|
Xiong Y, Zhang Y, Xin N, Yuan Y, Zhang Q, Gong P, Wu Y. 1α,25-Dihydroxyvitamin D 3 promotes osteogenesis by promoting Wnt signaling pathway. J Steroid Biochem Mol Biol 2017; 174:153-160. [PMID: 28859991 DOI: 10.1016/j.jsbmb.2017.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) remarkably affects bone metabolism and causes multiple skeletal disorders, which are associated with the increased oxidative stress that activates Forkhead family of transcription factors (FoxOs). 1α,25-Dihydroxy vitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, plays a potential role in the prevention of glucose tolerance. However, its mechanism of action in high glucose-induced energy disorders remains unclear. In vitro study shows that 1,25(OH)2D3 promotes osteogenesis in high glucose-induced oxidative stress mainly results from increased osteoblasts proliferation and decreased apoptosis. Cells treated with 1,25(OH)2D3 exhibit an increased osteogenic differentiation capacity and an elevated level of osteogenic phenotype (i.e. alkaline phosphatase, collagen 1, osteocalcin, and osteopontin). We also found that the effect of 1,25(OH)2D3 on osteogenesis is achieved by FoxO1 inactivation and nuclear exclusion through PI3K/Akt pathway in a time- and dose-dependent manner. Moreover, the diversion of β-catenin from FoxO1- to Wnt/TCF4-mediated transcription was indirectly promoted by the inactivation of FoxO1. These data together reveals that the activated Wnt/β-catenin signaling is involved in the regulatory action of 1,25(OH)2D3 on osteogenesis in oxidative stress. This study also provides a novel understanding of the effect of 1,25(OH)2D3 on skeleton in oxidative stress condition.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Hassan N, McCarville K, Morinaga K, Mengatto CM, Langfelder P, Hokugo A, Tahara Y, Colwell CS, Nishimura I. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS One 2017; 12:e0183359. [PMID: 28817668 PMCID: PMC5560683 DOI: 10.1371/journal.pone.0183359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.
Collapse
Affiliation(s)
- Nathaniel Hassan
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kirstin McCarville
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kenzo Morinaga
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
- Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan
| | - Cristiane M. Mengatto
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Department of Conservative Dentistry, School of Dentistry Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Plastic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yu Tahara
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway. Int J Biochem Cell Biol 2016; 80:143-153. [DOI: 10.1016/j.biocel.2016.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023]
|
35
|
Is Low Serum Vitamin D Associated with Early Dental Implant Failure? A Retrospective Evaluation on 1625 Implants Placed in 822 Patients. Mediators Inflamm 2016; 2016:5319718. [PMID: 27738389 PMCID: PMC5055956 DOI: 10.1155/2016/5319718] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Aim. To investigate whether there is a correlation between early dental implant failure and low serum levels of vitamin D. Methods. All patients treated with dental implants in a single centre, in the period 2003–2015, were considered for enrollment in this study. The main outcome was early implant failure. The influence of patient-related variables on implant survival was calculated using the Chi-square test. Results. 822 patients treated with 1625 implants were selected for this study; 27 early failures (3.2%) were recorded. There was no link between gender, age, smoking, history of periodontitis, and an increased incidence of early failures. Statistical analysis reported 9 early failures (2.2%) in patients with serum levels of vitamin D > 30 ng/mL, 16 early failures (3.9%) in patients with levels between 10 and 30 ng/mL, and 2 early failures (9.0%) in patients with levels <10 ng/mL. Although there was an increasing trend in the incidence of early implant failures with the worsening of vitamin D deficiency, the difference between these 3 groups was not statistically significant (P = 0.15). Conclusions. This study failed in proving an effective link between low serum levels of vitamin D and an increased risk of early implant failure. Further studies are needed to investigate this topic.
Collapse
|
36
|
Fang K, Song W, Wang L, Xu X, Tan N, Zhang S, Wei H, Song Y. Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model. Mol Med Rep 2016; 14:2449-56. [PMID: 27484405 PMCID: PMC4991673 DOI: 10.3892/mmr.2016.5568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
Although titanium (Ti) implants are considered to be an optimal choice for the replacement of missing teeth, it remains difficult to obtain sufficient osseointegration in patients with type 2 diabetes mellitus (T2DM). The present study aimed to investigate whether adipose-derived stem cells (ASCs) may be used to improve Ti implant osseointegration in T2DM conditions with the addition of semaphorin 3A (Sema3A), a recently identified osteoprotective protein. Cell morphology was observed using a scanning electron microscope. Cell proliferation was determined using Cell Counting Kit-8. Osteogenic differentiation was confirmed by the staining of alkaline phosphatase, collagen secretion and calcium deposition. An in vivo evaluation was performed in the T2DM rat model, which was induced by a high-fat diet and a low-dose streptozotocin intraperitoneal injection. A Sema3A-modified ASC sheet was wrapped around the Ti implant, which was subsequently inserted into the tibia. The rats were then exposed to Sema3A stimulation. The morphology and proliferation ability of ASCs remained unchanged; however, their osteogenic differentiation ability was increased. Micro-computed tomography scanning and histological observations confirmed that formation of new bone was improved with the use of the Sema3A-modified ASCs sheet. The present study indicated that the Sema3A-modified ASCs sheet may be used to improve osseointegration under T2DM conditions.
Collapse
Affiliation(s)
- Kaixiu Fang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Song
- Department of Prosthodontics, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lifeng Wang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoru Xu
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Naiwen Tan
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sijia Zhang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongbo Wei
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yingliang Song
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
37
|
|
38
|
Satué M, Monjo M, Ronold HJ, Lyngstadaas SP, Ramis JM. Titanium implants coated with UV-irradiated vitamin D precursor and vitamin E: in vivo performance and coating stability. Clin Oral Implants Res 2016; 28:424-431. [PMID: 26926140 DOI: 10.1111/clr.12815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed at evaluating the biological response of titanium implants coated with UV-irradiated 7-dehydrocholesterol (7-DHC) and vitamin E (VitE) in vivo and analyzing the effects of aging on their stability and bioactivity in vitro. MATERIAL AND METHODS Titanium surfaces were coated with 7-DHC and VitE, UV-irradiated and incubated for 48 h at 23°C to allow cholecalciferol synthesis. The in vivo biological response was tested using a rabbit tibia model after 8 weeks of healing by analyzing the wound fluid and the mRNA levels of several markers at the bone-implant interface (N = 8). The stability of the coating after storage up to 12 weeks was determined using HPLC analysis, and the bioactivity of the stored modified implants was studied by an in vitro study with MC3T3-E1 cells (N = 6). RESULTS A significant increase in gene expression levels of osteocalcin was found in the bone tissue attached to implants coated with the low dose of 7-DHC and VitE, together with a higher ALP activity in the wound fluid. Implants treated with the high dose of 7-DHC and VitE showed increased tissue necrosis and inflammation. Regarding the aging effects, coated implants were stable and bioactive up to 12 weeks when stored at 4°C and avoiding oxygen, light and moisture. CONCLUSION This study demonstrates that Ti implants coated with UV-irradiated 7-DHC and VitE promote in vivo gene expression of bone formation markers and ALP activity, while they keep their osteopromotive potential in vitro and composition when stored up to 12 weeks at 4°C.
Collapse
Affiliation(s)
- María Satué
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain
| | - Marta Monjo
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Hans Jacob Ronold
- Department of Prosthetics and Oral Function, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Joana M Ramis
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| |
Collapse
|
39
|
Xu X, Zhou J, Yang F, Wei S, Dai H. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model. PLoS One 2016; 11:e0150135. [PMID: 26930605 PMCID: PMC4773112 DOI: 10.1371/journal.pone.0150135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 02/09/2016] [Indexed: 01/16/2023] Open
Abstract
Objective To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force. Materials and Methods Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point. Results From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized. Conclusions The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jianping Zhou
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Fengxue Yang
- Department of Pediatric Dentistry, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shicheng Wei
- Department of Prosthodontics, School and Hospital of 7 Stomatology, Peking University, Beijing, China
| | - Hongwei Dai
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- * E-mail:
| |
Collapse
|
40
|
Guang M, Yao Y, Zhang L, Huang B, Ma L, Xiang L, Jin J, Gong P. The effects of nerve growth factor on endothelial cells seeded on different titanium surfaces. Int J Oral Maxillofac Surg 2015; 44:1506-13. [PMID: 26338076 DOI: 10.1016/j.ijom.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Angiogenesis is critical for peri-implant bone regeneration and osseointegration. Endothelial cells (ECs) play an important role in angiogenesis during the early stage of bone formation. Nerve growth factor (NGF) is also reported to function as an angiogenic growth factor. The effects of NGF on ECs seeded on titanium surfaces are unclear. This study was done to investigate the influence of NGF on peri-implant angiogenesis in vitro and in vivo. We used two different titanium surfaces. ECs seeded on these surfaces were treated with indicated concentrations of NGF or vascular endothelial growth factor (VEGF). Proliferation, differentiation, morphological features, and amounts attached were assessed. Chicken embryo chorioallantoic membrane (CAM) was adopted to evaluate the effect of NGF in vivo. The results showed that NGF could promote EC proliferation on both titanium surfaces (F1d=2.083, P=0.156; F3d=30.857, P=0.0002; F5d=4.440, P=0.041; F7d=11.065, P=0.001). NGF and the SLA surface upregulated mRNA of NGF, TrkA, and p75 expression (FNGF=11.941, P=0.003; FTrkA=28.514, P=0.004; Fp75=7.725, P=0.01). In vivo, the supernatants of the NGF-treated group could promote neovascularization in CAM (F=17.662, P=0.009). This study demonstrated that NGF could enhance EC proliferation, gene expression on different titanium surfaces, and neovascularization in CAM. This provides novel information in relation to the promotion of early dental implant osseointegration.
Collapse
Affiliation(s)
- M Guang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Y Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - B Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - J Jin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - P Gong
- Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
41
|
Effect of Increasing Doses of γ-Radiation on Bone Marrow Stromal Cells Grown on Smooth and Rough Titanium Surfaces. Stem Cells Int 2015; 2015:359416. [PMID: 26257788 PMCID: PMC4518184 DOI: 10.1155/2015/359416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023] Open
Abstract
Radiation therapy for oral and maxillofacial tumors could damage bone marrow stromal cells (BMSCs) in jaw, which caused dental implant failure. However, how radiation affects BMSCs on SLA (sandblasted with large-grits, acid-etched) surfaces is still unknown. The aim of this study was to investigate effect of different dose of γ-radiation on BMSCs on SLA and PT (polished titanium) surfaces. Rat BMSCs were radiated with 2, 4, and 8 Gy γ-radiation and then seeded on both surfaces. Cell adhesion, spreading, and proliferation were tested. The osteogenesis and the adipogenesis ability were examined by Alizarin-Red and Oil-Red staining, respectively. Real-time PCR was performed to detect osteogenic (osteocalcin, OCN; runt-related transcription factor 2, Runx2) and adipogenic (peroxisome proliferator-activated receptor gamma, PPARγ) gene expression at days 7 and 14 postirradiation. Results showed that γ-radiation reduced cell proliferation, adhesion, spreading, and osteogenic differentiation. 2 Gy radiation promoted adipogenic differentiation, but it was significantly decreased when dosage reached 4 Gy. In conclusion, results suggest that γ-radiation influenced BMSCs behaviors in a dosage-dependent manner except adipogenic differentiation, low dose promoted it, and high dose inhibited it. This effect was influenced by surface characteristics, which may explain the different failure rate of various implants in patients after radiation.
Collapse
|
42
|
The role of the microenvironment on the fate of adult stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:639-48. [PMID: 25985755 DOI: 10.1007/s11427-015-4865-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
Abstract
Adult stem cells (SCs) exist in all tissues that promote tissue growth, regeneration, and healing throughout life. The SC niche in which they reside provides signals that direct them to proliferate, differentiate, or remain dormant; these factors include neighboring cells, the extracellular matrix, soluble molecules, and physical stimuli. In disease and aging states, stable or transitory changes in the microenvironment can directly cause SC activation or inhibition in tissue healing as well as functional regulation. Here, we discuss the microenvironmental regulation of the behavior of SC and focus on plasticity approaches by which various environmental factors can enhance the function of SCs and more effectively direct the fate of SCs.
Collapse
|
43
|
Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 2014; 29:2307-22. [PMID: 25264148 PMCID: PMC4455538 DOI: 10.1002/jbmr.2373] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023]
Abstract
The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | | |
Collapse
|
44
|
Liu W, Zhang S, Zhao D, Zou H, Sun N, Liang X, Dard M, Lanske B, Yuan Q. Vitamin D supplementation enhances the fixation of titanium implants in chronic kidney disease mice. PLoS One 2014; 9:e95689. [PMID: 24752599 PMCID: PMC3994107 DOI: 10.1371/journal.pone.0095689] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/30/2014] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huawei Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ningyuan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michel Dard
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, United States of America
| | - Beate Lanske
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental medicine, Boston, Massachusetts, United States of America
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
45
|
Li JY, Pow EHN, Zheng LW, Ma L, Kwong DLW, Cheung LK. Dose-dependent effect of radiation on titanium implants: a quantitative study in rabbits. Clin Oral Implants Res 2013; 25:260-5. [PMID: 23413874 DOI: 10.1111/clr.12116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the dose-dependent effect of radiation on dental implant stability and osseointegration using a series of quantitative analyses. MATERIAL AND METHODS Six rabbits were randomly assigned to 15 and 30 Gy radiation groups. Each rabbit received radiation at the tibial and femoral metaphyseal region of left hind leg. The right leg was used as control. Implant surgery was performed on tibial and femoral metaphyses after 1 week. Totally 24 implants were inserted. The animals were killed at postoperative week four. Implant stability was measured using resonance frequency analysis. Ratio of bone volume to total volume (BV/TV), rate of bone growth, and bone-to-implant contact (BIC) were assessed using micro-computed tomography (micro-CT), fluorochrome labeling analysis, and histomorphometric analysis, respectively. RESULTS After 4 weeks of healing, all implants were integrated (n = 6). Implant stability was significantly compromised by 15 Gy (P = 0.010) and 30 Gy (P = 0.025) of radiation. Radiation decreased BV/TV, and the significant effect was detected at the dose of 15 Gy (P = 0.008) and 30 Gy (P < 0.001). Bone growth in osseointegration was impaired by radiation. In 15 Gy group, the radiation side showed significant lower rate of bone growth than the control side at week 3 (P = 0.001), while the undistinguishable signals on 30 Gy radiation side suggested the low rate of new bone formation at each time point. Histomorphological BIC had no significant difference between 15 Gy control side and 15 Gy radiation side. 30 Gy radiation side showed a significantly lower BIC than 30 Gy control side (P < 0.001) as well as 15 Gy radiation side (P < 0.001). CONCLUSIONS Implant stability and osseointegration were compromised by radiation. Radiation compromised osseointegration in a dose-dependent manner.
Collapse
Affiliation(s)
- Jun Yuan Li
- Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|