1
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024; 12:5961-6005. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Dwivedi N, Patra B, Mentink-Vigier F, Wi S, Sinha N. Unveiling Charge-Pair Salt-Bridge Interaction Between GAGs and Collagen Protein in Cartilage: Atomic Evidence from DNP-Enhanced ssNMR at Natural Isotopic Abundance. J Am Chem Soc 2024; 146:23663-23668. [PMID: 38980938 PMCID: PMC11572119 DOI: 10.1021/jacs.4c05539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when 13C and 15N isotopes are at natural abundance. In this communication, this limitation is overcome by taking advantage of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) experiments to obtain two-dimensional (2D) 15N-13C and 13C-13C correlations on native samples at natural abundance. These experiments unveiled inter-residue correlations in the aliphatic regions of the collagen protein previously unobserved. Additionally, our findings provide direct evidence of charge-pair salt-bridge interactions between negatively charged GAGs and positively charged arginine (Arg) residues of collagen protein. We also identified potential hydrogen bonding interactions between hydroxyproline (Hyp) and GAGs, offering atomic insights into the biochemical interactions within the extracellular matrix of native cartilage. Our approach may provide a new avenue for the structural characterization of other native systems.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
| | - Bijaylaxmi Patra
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad −201002, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad −201002, India
| |
Collapse
|
3
|
Fan X, Lee KM, Jones MWM, Howard D, Sun AR, Crawford R, Prasadam I. Spatial distribution of elements during osteoarthritis disease progression using synchrotron X-ray fluorescence microscopy. Sci Rep 2023; 13:10200. [PMID: 37353503 PMCID: PMC10290122 DOI: 10.1038/s41598-023-36911-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
The osteochondral interface is a thin layer that connects hyaline cartilage to subchondral bone. Subcellular elemental distribution can be visualised using synchrotron X-ray fluorescence microscopy (SR-XFM) (1 μm). This study aims to determine the relationship between elemental distribution and osteoarthritis (OA) progression based on disease severity. Using modified Mankin scores, we collected tibia plates from 9 knee OA patients who underwent knee replacement surgery and graded them as intact cartilage (non-OA) or degraded cartilage (OA). We used a tape-assisted system with a silicon nitride sandwich structure to collect fresh-frozen osteochondral sections, and changes in the osteochondral unit were defined using quantified SR-XFM elemental mapping at the Australian synchrotron's XFM beamline. Non-OA osteochondral samples were found to have significantly different zinc (Zn) and calcium (Ca) compositions than OA samples. The tidemark separating noncalcified and calcified cartilage was rich in zinc. Zn levels in OA samples were lower than in non-OA samples (P = 0.0072). In OA samples, the tidemark had less Ca than the calcified cartilage zone and subchondral bone plate (P < 0.0001). The Zn-strontium (Sr) colocalisation index was higher in OA samples than in non-OA samples. The lead, potassium, phosphate, sulphur, and chloride distributions were not significantly different (P > 0.05). In conclusion, SR-XFM analysis revealed spatial elemental distribution at the subcellular level during OA development.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, QLD, 4059, Australia
| | - Kah Meng Lee
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4059, Australia
| | - Michael W M Jones
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, 4000, Australia
| | - Daryl Howard
- Australian Synchrotron, Melbourne, 3168, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, QLD, 4059, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, QLD, 4059, Australia
- The Prince Charles Hospital, Brisbane, 4032, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
4
|
Bernhard JC, Marolt Presen D, Li M, Monforte X, Ferguson J, Leinfellner G, Heimel P, Betti SL, Shu S, Teuschl-Woller AH, Tangl S, Redl H, Vunjak-Novakovic G. Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts. Cells 2022; 11:cells11193070. [PMID: 36231032 PMCID: PMC9564153 DOI: 10.3390/cells11193070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.
Collapse
Affiliation(s)
- Jonathan C. Bernhard
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ming Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xavier Monforte
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - James Ferguson
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Susanna L. Betti
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Shu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andreas H. Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (H.R.); (G.V.-N.); Tel.: +43-(0)-59393-41961 (H.R.); +1-212-305-2304 (G.V.-N.); Fax: +43-(0)-59393-41982 (H.R.); +1-212-305-4692 (G.V.-N.)
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- College of Dental Medicine, Columbia University, New York, NY 10032, USA
- Correspondence: (H.R.); (G.V.-N.); Tel.: +43-(0)-59393-41961 (H.R.); +1-212-305-2304 (G.V.-N.); Fax: +43-(0)-59393-41982 (H.R.); +1-212-305-4692 (G.V.-N.)
| |
Collapse
|
5
|
Roseren F, Roffino S, Pithioux M. Mechanical Characterization at the Microscale of Mineralized Bone Callus after Bone Lengthening. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6207. [PMID: 36143518 PMCID: PMC9501547 DOI: 10.3390/ma15186207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Distraction osteogenesis (DO) involves several processes to form an organized distracted callus. While bone regeneration during DO has been widely described, no study has yet focused on the evolution profile of mechanical properties of mineralized tissues in the distracted callus. The aim of this study was therefore to measure the elastic modulus and hardness of calcified cartilage and trabecular and cortical bone within the distracted callus during the consolidation phase. We used a microindentation assay to measure the mechanical properties of periosteal and endosteal calluses; each was subdivided into two regions. Histological sections were used to localize the tissues. The results revealed that the mechanical properties of calcified cartilage did not evolve over time. However, trabecular bone showed temporal variation. For elastic modulus, in three out of four regions, a similar evolution profile was observed with an increase and decrease over time. Concerning hardness, this evolves differently depending on the location in the distracted callus. We also observed spatial changes in between regions. A first duality was apparent between regions close to the native cortices and the central area, while latter differences were seen between periosteal and endosteal calluses. Data showed a heterogeneity of mechanical properties in the distracted callus with a specific mineralization profile.
Collapse
Affiliation(s)
- Flavy Roseren
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| | - Sandrine Roffino
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| |
Collapse
|
6
|
Park JS, Almer JD, James KC, Natanson LJ, Stock SR. Bioapatite in shark centra studied by wide-angle and by small-angle X-ray scattering. J R Soc Interface 2022; 19:20220373. [PMID: 36128705 PMCID: PMC9490346 DOI: 10.1098/rsif.2022.0373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/01/2022] [Indexed: 01/29/2023] Open
Abstract
Members of subclass Elasmobranchii possess cartilage skeletons; the centra of many species are mineralized with a bioapatite, but virtually nothing is known about the mineral's organization. This study employed high-energy, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS, i.e. X-ray diffraction) to investigate the bioapatite crystallography within blocks cut from centra of four species (two carcharhiniform families, one lamniform family and 1-ID of the Advanced Photon Source). All species' crystallographic quantities closely matched and indicated a bioapatite closely related to that in bone. The centra's lattice parameters a and c were somewhat smaller and somewhat larger, respectively, than in bone. Nanocrystallite sizes (WAXS peak widths) in shark centra were larger than typical of bone, and little microstrain was observed. Compared with bone, shark centra exhibited SAXS D-period peaks with larger D magnitudes, and D-period arcs with narrower azimuthal widths. The shark mineral phase, therefore, is closely related to that in bone but does possess real differences which probably affect mechanical property and which are worth further study.
Collapse
Affiliation(s)
- J. S. Park
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - J. D. Almer
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - K. C. James
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - L. J. Natanson
- (retired) Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Narragansett, RI, USA
| | - S. R. Stock
- Department of Cell and Developmental Biology, Feinberg School of Medicine, and Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Wang X, Lin J, Li Z, Ma Y, Zhang X, He Q, Wu Q, Yan Y, Wei W, Yao X, Li C, Li W, Xie S, Hu Y, Zhang S, Hong Y, Li X, Chen W, Duan W, Ouyang H. Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. NANO LETTERS 2022; 22:2309-2319. [PMID: 35238577 DOI: 10.1021/acs.nanolett.1c04649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cartilage adheres to subchondral bone via a specific osteochondral interface tissue where forces are transferred from soft cartilage to hard bone without conferring fatigue damage over a lifetime of load cycles. However, the fine structure and mechanical properties of the osteochondral interface tissue remain unclear. Here, we identified an ultrathin ∼20-30 μm graded calcified region with two-layered micronano structures of osteochondral interface tissue in the human knee joint, which exhibited characteristic biomolecular compositions and complex nanocrystals assembly. Results from finite element simulations revealed that within this region, an exponential increase of modulus (3 orders of magnitude) was conducive to force transmission. Nanoscale heterogeneity in the hydroxyapatite, coupled with enrichment of elastic-responsive protein-titin, which is usually present in muscle, endowed the osteochondral tissue with excellent mechanical properties. Collectively, these results provide novel insights into the potential design for high-performance interface materials for osteochondral interface regeneration.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Zonghao Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wenyue Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Weiqiu Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| |
Collapse
|
8
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
9
|
Schulze S, Rothe R, Neuber C, Hauser S, Ullrich M, Pietzsch J, Rammelt S. Men who stare at bone: multimodal monitoring of bone healing. Biol Chem 2021; 402:1397-1413. [PMID: 34313084 DOI: 10.1515/hsz-2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Knowledge of the physiological and pathological processes, taking place in bone during fracture healing or defect regeneration, is essential in order to develop strategies to enhance bone healing under normal and critical conditions. Preclinical testing allows a wide range of imaging modalities that may be applied both simultaneously and longitudinally, which will in turn lower the number of animals needed to allow a comprehensive assessment of the healing process. This work provides an up-to-date review on morphological, functional, optical, biochemical, and biophysical imaging techniques including their advantages, disadvantages and potential for combining them in a multimodal and multiscale manner. The focus lies on preclinical testing of biomaterials modified with artificial extracellular matrices in various animal models to enhance bone remodeling and regeneration.
Collapse
Affiliation(s)
- Sabine Schulze
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany
| | - Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), D-01307Dresden, Germany
| |
Collapse
|
10
|
Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 2020; 10:8277. [PMID: 32427838 PMCID: PMC7237416 DOI: 10.1038/s41598-020-65050-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
For the generation of multi-layered full thickness osteochondral tissue substitutes with an individual geometry based on clinical imaging data, combined extrusion-based 3D printing (3D plotting) of a bioink laden with primary chondrocytes and a mineralized biomaterial phase was introduced. A pasty calcium phosphate cement (CPC) and a bioink based on alginate-methylcellulose (algMC) - both are biocompatible and allow 3D plotting with high shape fidelity - were applied in monophasic and combinatory design to recreate osteochondral tissue layers. The capability of cells reacting to chondrogenic biochemical stimuli inside the algMC-based 3D hydrogel matrix was assessed. Towards combined osteochondral constructs, the chondrogenic fate in the presence of CPC in co-fabricated and biphasic mineralized pattern was evaluated. Majority of expanded and algMC-encapsulated cells survived the plotting process and the cultivation period, and were able to undergo redifferentiation in the provided environment to produce their respective extracellular matrix (ECM) components (i.e. sulphated glycosaminoglycans, collagen type II), examined after 3 weeks. The presence of a mineralized zone as located in the physiological calcified cartilage region suspected to interfere with chondrogenesis, was found to support chondrogenic ECM production by altering the ionic concentrations of calcium and phosphorus in in vitro culture conditions.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Chaumel J, Schotte M, Bizzarro JJ, Zaslansky P, Fratzl P, Baum D, Dean MN. Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage. Bone 2020; 134:115264. [PMID: 32058019 DOI: 10.1016/j.bone.2020.115264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the functions of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue and that cells maintain similar volume even when they have been incorporated into tesserae. Our findings support previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes, being flatter further from and more spherical closer to the unmineralized cartilage matrix, and larger in the center of tesserae. The lacunae show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact, and that pores may contain a nutrient source. We propose that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongated series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.
Collapse
Affiliation(s)
- Júlia Chaumel
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Merlind Schotte
- Visual Data Analysis Department, Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany.
| | - Joseph J Bizzarro
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Universitätsmedizin Berlin, Aßmannshauser Str. 4-6 14197 Berlin, Germany.
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Daniel Baum
- Visual Data Analysis Department, Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany.
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
12
|
Das Gupta S, Finnilä MA, Karhula SS, Kauppinen S, Joukainen A, Kröger H, Korhonen RK, Thambyah A, Rieppo L, Saarakkala S. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: A pilot study. Acta Biomater 2020; 106:145-155. [PMID: 32081781 DOI: 10.1016/j.actbio.2020.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the influence of osteoarthritis (OA) disease severity on the bio-composition of the osteochondral junction at the human tibial plateau using Raman microspectroscopy. We specifically aim to analyze the spatial composition of mineralized osteochondral tissues, i.e., calcified cartilage (CC) and subchondral bone plate (SBP) from unfixed, hydrated specimens. We hypothesize that the mineralization of CC and SBP decreases in advanced OA. Twenty-eight cylindrical osteochondral samples (d = 4 mm) from tibial plateaus of seven cadaveric donors were harvested and sorted into three groups following histopathological grading: healthy (n = 5), early OA (n = 8), and advanced OA (n = 15). Raman spectra were subjected to multivariate cluster analyses to identify different tissues. Finally, the tissue-specific composition was analyzed, and the impact of OA was statistically evaluated with linear mixed models. Cluster analyses of Raman spectra successfully distinguished CC and SBP as well as a tidemark region and uncalcified cartilage. CC was found to be more mineralized and the mineral was more crystalline compared with SBP. Both tissues exhibited similar compositional changes as a function of histopathological OA severity. In early OA, the mineralization tends to increase, and the mineral contains fewer carbonate substitutions. Compared with early OA, mineral crystals are rich in carbonate while the overall mineralization decreases in advanced OA. This Raman spectroscopic study advances the methodology for investigating the complex osteochondral junction from native tissue. The developed methodology can be used to elucidate detailed tissue-specific changes in the chemical composition with advancing OA. STATEMENT OF SIGNIFICANCE: In this study, Raman microspectroscopy was utilized to investigate the influence of osteoarthritic degeneration on the tissue-specific biochemical composition of the human osteochondral junction. Multivariate cluster analyses allowed us to characterize subtle compositional changes in the calcified cartilage and subchondral bone plate as well as in the tidemark region. The compositional differences found between the calcified cartilage and subchondral bone plate in both organic and mineral phases will serve as critical benchmark parameters when designing biomaterials for osteochondral repair. We found tissue-specific changes in the mineralization and carbonate substitution as a function of histopathological OA severity. Our developed methodology can be used to investigate the metabolic changes in the osteochondral junction associated with osteoarthritis.
Collapse
|
13
|
Venkatesh A, Hung I, Boteju KC, Sadow AD, Gor'kov PL, Gan Z, Rossini AJ. Suppressing 1H Spin Diffusion in Fast MAS Proton Detected Heteronuclear Correlation Solid-State NMR Experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 105:101636. [PMID: 31816590 DOI: 10.1016/j.ssnmr.2019.101636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Fast magic angle spinning (MAS) and indirect detection by high gyromagnetic ratio (γ) nuclei such as proton or fluorine are increasingly utilized to obtain 2D heteronuclear correlation (HETCOR) solid-state NMR spectra of spin-1/2 nuclei by using cross polarization (CP) for coherence transfer. However, one major drawback of CP HETCOR pulse sequences is that 1H spin diffusion during the back X→1H CP transfer step may result in relayed correlations. This problem is particularly pronounced for the indirect detection of very low-γ nuclei such as 89Y, 103Rh, 109Ag and 183W where long contact times on the order of 10-30 ms are necessary for optimal CP transfer. Here we propose two methods that eliminate relayed correlations and allow more reliable distance information to be obtained from 2D HETCOR NMR spectra. The first method uses Lee-Goldburg (LG) CP during the X→1H back-transfer step to suppress 1H spin diffusion. We determine LG conditions compatible with fast MAS frequencies (νrot) of 40-95 kHz and show that 1H spin diffusion can be efficiently suppressed at low effective radiofrequency (RF) fields (ν1,eff ≪ 0.5νrot) and also at high effective RF fields (ν1,eff ≫ 2νrot). We describe modified Hartmann-Hahn LG-CP match conditions compatible with fast MAS and suitable for indirect detection of moderate-γ nuclei such as 13C, and low-γ nuclei such as 89Y. The second method uses D-RINEPT (dipolar refocused insensitive nuclei enhanced by polarization transfer) during the X→1H back-transfer step of the HETCOR pulse sequence. The effectiveness of these methods for acquiring HETCOR spectra with reduced relayed signal intensities is demonstrated with 1H{13C} HETCOR NMR experiments on l-histidine⋅HCl⋅H2O and 1H{89Y} HETCOR NMR experiments on an organometallic yttrium complex.
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Kasuni C Boteju
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Aaron D Sadow
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.
| |
Collapse
|
14
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
15
|
You F, Chen X, Cooper DML, Chang T, Eames BF. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabrication 2018; 11:015015. [PMID: 30524110 DOI: 10.1088/1758-5090/aaf44a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival and proliferation, extracellular matrix production, and mineralization potential were evaluated in the presence or absence of the HAP phase. Chondrocytes in ALG/HAP constructs survived well and proliferated, but also expressed higher levels of calcified cartilage markers compared to controls, including Collagen type X secretion, alkaline phosphatase (ALP) activity, and mineral deposition. Compared to controls, ALG/HAP constructs also showed an elevated level of mineralized matrix in vivo when implanted subcutaneously in mice. The printability of ALG/HAP composite hydrogel precursors was verified by 3D printing of ALG/HAP hydrogel scaffolds with a porous structure. In summary, these results confirm the hypothesis that HAP in ALG hydrogel stimulates chondrocytes to secrete calcified matrix in vitro and in vivo and reveal that ALG/HAP composites have the potential for 3D bioprinting and osteochondral regeneration.
Collapse
Affiliation(s)
- Fu You
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N5A9, Canada. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
16
|
Arthroscopic Cartilage Lesion Preparation in the Human Cadaveric Knee Using a Curette Technique Demonstrates Clinically Relevant Histologic Variation. Arthroscopy 2018; 34:2179-2188. [PMID: 29653795 DOI: 10.1016/j.arthro.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the quality of arthroscopic cartilage debridement using a curette technique by comparing regional and morphologic variations within cartilage lesions prepared in human cadaveric knee specimens for the purpose of cartilage repair procedures. A secondary aim was to compare the histologic properties of cartilage lesions prepared by surgeons of varying experience. METHODS Standardized cartilage lesions (8 mm × 15 mm), located to the medial/lateral condyle and medial/lateral trochlea were created within 12 human cadaver knees by 40 orthopaedic surgeons. Participants were instructed to create full-thickness cartilage defects within the marked area, shouldered by uninjured vertical walls of cartilage, and to remove the calcified cartilage layer, without violating the subchondral plate. Histologic specimens were prepared to examine the verticality of surrounding cartilage walls at the front and rear aspects of the lesions, and to characterize the properties of the surrounding cartilage, the cartilage wall profile, the debrided lesion depth, bone sinusoid access, and the bone surface profile. Comparative analysis of cartilage wall verticality measured as deviation from perpendicular was performed, and Spearman's rank correlation analysis was used to examine associations between debrided wall verticality and surgeon experience. RESULTS Mean cartilage wall verticality relative to the base of the lesion was superior at the rear aspect of the lesion compared to the front aspect (12.9° vs 29.2°, P < .001). Variability was identified in the morphology of the surrounding cartilage (P < .001), cartilage wall profile (P = .016), debrided lesion depth (P = .028), bone surface profile (P = .040), and bone sinusoid access (P = .009), with sinusoid access identified in 42% of cases. There was no significant association of cartilage lesion wall verticality and surgeon years in practice (rs = 0.161, P = .065) or arthroscopic caseload (rs = -0.071, P = .419). CONCLUSIONS Arthroscopic cartilage lesion preparation using standard curette technique in a human cadaveric knee model results in inferior perpendicularity of the surrounding cartilage walls at the front aspect of the defect, compared to the rear aspect. This technique has shown significant variability in the depth of debridement, with debridement depths identified as either too superficial or too deep to the calcified cartilage layer in more than 60% of cases in this study. Surgeon experience does not appear to impact the morphologic properties of cartilage lesions prepared arthroscopically using ring curettes. CLINICAL RELEVANCE: To optimize restoration of hyaline-like cartilage tissue, careful attention to prepared cartilage lesion morphology is advised when arthroscopically performing cartilage repair, given the tendency for standard curette technique to create inferior verticality of cartilage walls at the front of the lesion, and the variable depth of debridement achieved.
Collapse
|
17
|
Bernhard JC, Hulphers E, Rieder B, Ferguson J, Rünzler D, Nau T, Redl H, Vunjak-Novakovic G. Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation. Tissue Eng Part A 2018; 24:1022-1033. [PMID: 29373945 DOI: 10.1089/ten.tea.2017.0356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Perfusion bioreactors have been an effective tool in bone tissue engineering. Improved nutrient delivery and the application of shear forces have stimulated osteoblast differentiation and matrix production, allowing for generation of large, clinically sized constructs. Differentiation of hypertrophic chondrocytes has been considered an alternative strategy for bone tissue engineering. We studied the effects of perfusion on hypertrophic chondrocyte differentiation, matrix production, and subsequent bone formation. Hypertrophic constructs were created by differentiation in chondrogenic medium (2 weeks) and maturation in hypertrophic medium (3 weeks). Bioreactors were customized to study a range of flow rates (0-1200 μm/s). During chondrogenic differentiation, increased flow rates correlated with cartilage matrix deposition and the presence of collagen type X. During induced hypertrophic maturation, increased flow rates correlated with bone template deposition and the increased secretion of chondroprotective cytokines. Following an 8-week implantation into the critical-size femoral defect in nude rats, nonperfused constructs displayed larger bone volume, more compact mineralized matrix, and better integration with the adjacent native bone. Therefore, although medium perfusion stimulated the formation of bone template in vitro, it failed to enhance bone regeneration in vivo. However, the promising results of the less developed template in the critical-sized defect warrant further investigation, beyond interstitial flow, into the specific environment needed to optimize hypertrophic chondrocyte-based constructs for bone repair.
Collapse
Affiliation(s)
- Jonathan C Bernhard
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Elizabeth Hulphers
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Bernhard Rieder
- 2 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Austrian Cluster for Tissue Regeneration Vienna, Vienna, Austria
| | - James Ferguson
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Rünzler
- 2 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Austrian Cluster for Tissue Regeneration Vienna, Vienna, Austria
| | - Thomas Nau
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
- 4 Department of Medicine, Columbia University , New York, New York
| |
Collapse
|
18
|
Blasiak A, Whyte GP, Matlak A, Brzóska R, Sadlik B. Morphologic Properties of Cartilage Lesions in the Knee Arthroscopically Prepared by the Standard Curette Technique Are Inferior to Lesions Prepared by Specialized Chondrectomy Instruments. Am J Sports Med 2018; 46:908-914. [PMID: 29281796 DOI: 10.1177/0363546517745489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cartilage lesion preparation is an important component to cartilage repair procedures, given the effect of prepared lesion morphology on the formation of durable and well-integrated repair tissue. PURPOSE To compare the quality of arthroscopic cartilage lesion debridement performed by (1) the standard curette (SC) technique and (2) specialized chondrectomy (CM) instruments, to provide technical guidance for optimization of cartilage lesion preparation in the setting of arthroscopic cartilage repair. STUDY DESIGN Controlled laboratory study. METHODS Articular cartilage lesions of standardized size (8 × 15 mm) were demarcated within the trochlea and femoral condyles of 20 human cadaver knee specimens. Orthopaedic surgeons performed arthroscopic lesion preparation using 2 techniques that consisted of SC preparation and preparation by CM instruments. A histologic comparative analysis was performed within each treatment group and between treatment groups to evaluate the morphology of prepared cartilage defects. RESULTS The mean angle deviation from perpendicular of the cartilage wall at the front of the prepared cartilage lesions was significantly greater in the SC group versus the CM group (29.8° ± 21.4° vs 7.7° ± 7.6°, P < .001). In lesions prepared via the SC technique, the cartilage walls at the front of the prepared lesions were significantly less perpendicular than the cartilage walls at the rear of the lesions (29.8° ± 21.4° vs 11.0° ± 10.3°, P < .001), whereas lesions prepared by the CM technique demonstrated comparable verticality of surrounding cartilage walls at the front and rear aspects of the lesions (7.7° ± 7.6° vs 9.4° ± 12.3°, P = .827). Depth of lesion debridement was accomplished to the target level by the CM technique in 86% of prepared lesions, compared with 34% of lesions in the SC group. The prepared cartilage wall profile was characterized as the most ideal morphology in 55% of prepared lesions in the CM group, as opposed to 10% in the SC group. CONCLUSION Arthroscopic cartilage lesion preparation with SC instruments results in superior perpendicularity of surrounding cartilage walls to subchondral bone and greater consistency of debrided lesion depth, as compared with the standard debridement technique with curettes. CLINICAL RELEVANCE Arthroscopic preparation using standard curette technique leads to suboptimal morphologic characteristics of prepared lesions that likely affect the quality of repair tissue, compared to preparation using specialized chondrectomy instruments.
Collapse
Affiliation(s)
- Adrian Blasiak
- Biological Joint Reconstruction Department, St Luke's Hospital, Bielsko-Biała, Poland
| | - Graeme P Whyte
- Weill Medical College, Cornell University, New York Presbyterian Hospital/Queens, New York, NY, USA.,Orthopaedic Arthroscopic Surgery International Bioresearch Foundation, Milan, Italy
| | - Adrian Matlak
- Biological Joint Reconstruction Department, St Luke's Hospital, Bielsko-Biała, Poland
| | - Roman Brzóska
- Department of Upper Limb Surgery, St Luke's Hospital, Bielsko-Biała, Poland
| | - Boguslaw Sadlik
- Biological Joint Reconstruction Department, St Luke's Hospital, Bielsko-Biała, Poland
| |
Collapse
|
19
|
Early Stages of Biomineral Formation—A Solid-State NMR Investigation of the Mandibles of Minipigs. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry3040039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Abstract
Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone. Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how to integrate the graft seamlessly with surrounding host cartilage and/or bone. This review centers on current approaches to promote cartilage graft integration. It begins with an overview of articular cartilage structure and function, as well as degenerative changes to this relationship attributed to aging, disease, and trauma. A discussion of the current progress in integrative cartilage repair follows, focusing on graft or scaffold design strategies targeting cartilage-cartilage and/or cartilage-bone integration. It is emphasized that integrative repair is required to ensure long-term success of the cartilage graft and preserve the integrity of the newly engineered articular cartilage. Studies involving the use of enzymes, choice of cell source, biomaterial selection, growth factor incorporation, and stratified versus gradient scaffolds are therefore highlighted. Moreover, models that accurately evaluate the ability of cartilage grafts to enhance tissue integrity and prevent ectopic calcification are also discussed. A summary and future directions section concludes the review.
Collapse
Affiliation(s)
- Margaret K Boushell
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| | - Clark T Hung
- b Cellular Engineering Laboratory , Department of Biomedical Engineering Columbia University , New York , NY , USA
| | - Ernst B Hunziker
- c Department of Orthopaedic Surgery & Department of Clinical Research, Center of Regenerative Medicine for Skeletal Tissues , University of Bern , Bern , Switzerland
| | - Eric J Strauss
- d Department of Orthopaedic Surgery, Langone Medical Center , New York University , New York , NY , USA
| | - Helen H Lu
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| |
Collapse
|
21
|
Almhöjd US, Lingström P, Nilsson Å, Norén JG, Siljeström S, Östlund Å, Bernin D. Molecular Insights into Covalently Stained Carious Dentine Using Solid-State NMR and ToF-SIMS. Caries Res 2017; 51:255-263. [PMID: 28501859 DOI: 10.1159/000460828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Dyes currently used to stain carious dentine have a limited capacity to discriminate normal dentine from carious dentine, which may result in overexcavation. Consequently, finding a selective dye is still a challenge. However, there is evidence that hydrazine-based dyes, via covalent bonds to functional groups, bind specifically to carious dentine. The aim of this study was to investigate the possible formation of covalent bonds between carious dentine and 15N2-hydrazine and the hydrazine-based dye, 15N2-labelled Lucifer Yellow, respectively. Powdered dentine from extracted carious and normal teeth was exposed to the dyes, and the staining reactions were analysed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), solid-state 13C-labelled nuclear magnetic resonance (NMR) and 15N-NMR spectroscopy. The results showed that 15N2-hydrazine and 15N2-labelled Lucifer Yellow both bind to carious dentine but not to normal dentine. It can thus be concluded that hydrazine-based dyes can be used to stain carious dentine and leave normal dentine unstained.
Collapse
Affiliation(s)
- Ulrica S Almhöjd
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Stape THS, Tjäderhane L, Tezvergil-Mutluay A, Yanikian CRF, Szesz AL, Loguercio AD, Martins LRM. Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study. Dent Mater 2016; 32:1472-1481. [DOI: 10.1016/j.dental.2016.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 09/03/2016] [Indexed: 10/20/2022]
|
23
|
Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515627471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scaffolds used in tissue engineering applications should have high biocompatibility with minimum allergic, toxic, apoptotic, or necrotic effects on the growing cells and newly forming tissue and, if possible, have antimicrobial property to prevent infection at the host site. In this study, novel micro-fibrous chitosan scaffolds, having mineralized bioactive surface to enhance cell adhesion and a model antibiotic (gentamicin) to prevent bacterial attack, were prepared. The effects of the scaffolds on proliferation, viability, apoptosis, and necrosis of Saos-2 cells are reported for the first time. Wet spinning technique was used in the scaffold preparation and biomineralization was achieved by incubating them in five-time concentrated simulated body fluid for 2, 7, or 14 days (coded as CH-BM/2, CH-BM/7, and CH-BM/14, respectively). Gentamicin, an effectively used antibiotic in bone treatments, was loaded by vacuum-pressure cycle. Energy-dispersive X-ray results demonstrated that Ca/P ratio of the mineral phase varies depending on the incubation period. When the scaffolds were cultured with Saos-2 cells, cell adhesion and extracellular matrix formation occurred on all types of scaffolds. Alamar Blue cytotoxicity tests showed correlation among mineral concentration and cytotoxicity where CH-BM/2 had significantly more favorable properties. For all types of scaffolds, apoptosis and necrosis were less than 10%, meaning the samples are biocompatible. Gentamicin-loaded scaffolds showed high antimicrobial efficacy against Escherichia coli. The presence of mineral phase enhanced the adhesive capacity of cells and entrapment efficiency of antibiotic. These results suggest that the bioactive and antimicrobial scaffolds prepared in this study can act as promising matrices in bone tissue engineering applications.
Collapse
|
24
|
Singh C, Rai RK, Kayastha AM, Sinha N. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:132-135. [PMID: 26352739 DOI: 10.1002/mrc.4331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
Collapse
Affiliation(s)
- Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| | - Arvind M Kayastha
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| |
Collapse
|
25
|
Vyalikh A, Simon P, Rosseeva E, Buder J, Scheler U, Kniep R. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals. Sci Rep 2015; 5:15797. [PMID: 26515127 PMCID: PMC4626803 DOI: 10.1038/srep15797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.
Collapse
Affiliation(s)
- Anastasia Vyalikh
- Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg, Germany.,Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Elena Rosseeva
- University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| | - Jana Buder
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| |
Collapse
|
26
|
Itkis DM, Velasco-Velez JJ, Knop-Gericke A, Vyalikh A, Avdeev MV, Yashina LV. Probing Operating Electrochemical Interfaces by Photons and Neutrons. ChemElectroChem 2015. [DOI: 10.1002/celc.201500155] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniil M. Itkis
- Department of Chemistry; Moscow State University; Leninskie gory 1 Moscow 119991 Russia
| | - Juan Jesus Velasco-Velez
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion; Stiftstrasse 34-36 Mülheim an der Ruhr 45470 Germany
| | - Axel Knop-Gericke
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 Berlin 1495 Germany
| | - Anastasia Vyalikh
- Institut für Experimentelle Physik; Technische Universität Bergakademie Freiberg; Leipziger Str. 23, EG02 Freiberg 09599 Germany
| | - Mikhail V. Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Joliot-Curie str. 6 Dubna, Moscow reg. 141980 Russia
| | - Lada V. Yashina
- Department of Inorganic Chemistry; Moscow State University; Leninskie gory 1 Moscow 119991 Russia
| |
Collapse
|
27
|
Ruiz Hernandez SE, Streeter I, de Leeuw NH. The effect of water on the binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a molecular dynamics study. Phys Chem Chem Phys 2015; 17:22377-88. [PMID: 26247336 DOI: 10.1039/c5cp02630j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classical molecular dynamics (MD) simulations have been employed to study the interaction of the saccharides glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) with the (0001) and (011̄0) surfaces of the mineral hydroxyapatite (HAP). GlcA and GalNAc are the two constituent monosaccharides of the glycosaminoglycan chondroitin sulfate, which is commonly found in bone and cartilage and has been implicated in the modulation of the hydroxyapatite biomineralization process. MD simulations of the mineral surfaces and the saccharides in the presence of solvent water allowed the calculation of the adsorption energies of the saccharides on the HAP surfaces. The calculations show that GalNAc interacts with HAP principally through the sulfate and the carbonyl of acetyl amine groups, whereas the GlcA interacts primarily through the carboxylate functional groups. The mode and strength of the interaction depends on the orientation of the saccharide with respect to the surface and the level of disruption of the layer of water competing with the saccharide for adsorption sites on the HAP surface, suggesting that chondroitin 4-sulfate binds to the layer of solvent water rather than to HAP.
Collapse
|
28
|
Aminova RM, Galiullina LF, Klochkov VV, Aganov AV. A quantum chemical study of an interaction between collagen fragments and calcium ions using calculations of model complexes. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J Bone Miner Res 2014; 29:2643-52. [PMID: 24839262 PMCID: PMC4963234 DOI: 10.1002/jbmr.2284] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 12/18/2022]
Abstract
Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair.
Collapse
Affiliation(s)
- Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Margaret K Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jeffrey P Spalazzi
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Pleshko
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Mroue KH, Zhang R, Zhu P, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 244:90-7. [PMID: 24881032 PMCID: PMC4094129 DOI: 10.1016/j.jmr.2014.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/27/2014] [Accepted: 04/27/2014] [Indexed: 05/05/2023]
Abstract
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.
Collapse
Affiliation(s)
- Kamal H Mroue
- Biophysics, The University of Michigan, Ann Arbor, MI 48109-1055, United States; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Rongchun Zhang
- Biophysics, The University of Michigan, Ann Arbor, MI 48109-1055, United States; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States; School of Physics, Nankai University, Tianjin 300071, PR China
| | - Peizhi Zhu
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Erin McNerny
- School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - David H Kohn
- School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Michael D Morris
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, The University of Michigan, Ann Arbor, MI 48109-1055, United States; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
31
|
Touaitahuata H, Cres G, de Rossi S, Vives V, Blangy A. The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth. Dev Biol 2014; 393:57-70. [PMID: 24992711 DOI: 10.1016/j.ydbio.2014.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5(-/-) mice have increased trabecular bone mass. We used Dock5(-/-) mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5(-/-) mice. We demonstrate that Dock5(-/-) mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5(-/-) growing mice as compared to Dock5(+/+) animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5(-/-) osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.
Collapse
Affiliation(s)
- Heiani Touaitahuata
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | - Gaelle Cres
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | | | - Virginie Vives
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France.
| |
Collapse
|
32
|
Goobes G. Past and Future Solid-State NMR Spectroscopy Studies at the Convergence Point between Biology and Materials Research. Isr J Chem 2014. [DOI: 10.1002/ijch.201300113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
34
|
Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D. NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13873-82. [PMID: 24128197 PMCID: PMC3901427 DOI: 10.1021/la403203w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mechanical resilience of bone tissue decreases with age. The ability to comprehensively probe and understand bone properties could help alleviate this problem. One important aspect of bone quality that has recently been made evident is the presence of dilatational bands formed by osteocalcin (OC) and osteopontin (OPN), which contribute to fracture toughness. However, experimental evidence of the structural role of these two proteins at the organic-mineral interface in bone is still needed. Solid state nuclear magnetic resonance (SSNMR) is emerging as a useful technique in probing molecular level aspects of bone. Here, we present the first SSNMR study of bone tissue from genetically modified mice lacking OC and/or OPN. Probing the mineral phase, the organic matrix and their interface revealed that, despite the absence of OC and OPN, the organic matrix and mineral were well preserved, and the overall exposure of collagen to hydroxyapatite (HA) nanoparticles was hardly affected. However, the proximity to the HA surface was slightly increased for a number of bone components including less abundant amino acids like lysine, suggesting that this is how the tissue compensates for the lack of OC and OPN. Taken together, the NMR data supports the recently proposed model, in which the contribution of OC-OPN to fracture toughness is related to their presence at the extrafibrillar organic-mineral interfaces, where they reinforce the network of mineralized fibrils and form dilatational bands. In an effort toward further understanding the structural role of individual amino acids of low abundance in bone, we then explored the possibility of specific (13)C enrichment of mouse bone, and report the first SSNMR spectra of 97% (13)C lysine-enriched tissue. Results show that such isotopic enrichment allows valuable molecular-level structural information to be extracted, and sheds light on post-translational modifications undergone by specific amino acids in vivo.
Collapse
Affiliation(s)
- Ondřej Nikel
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Caren M. Gundberg
- Yale School Of Medicine, Yale University, New Haven, Connecticut, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
35
|
Aminova R, Galiullina L, Silkin N, Ulmetov A, Klochkov V, Aganov A. Investigation of complex formation between hydroxyapatite and fragments of collagen by NMR spectroscopy and quantum-chemical modeling. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Reid DG, Duer MJ, Jackson GE, Murray RC, Rodgers AL, Shanahan CM. Citrate occurs widely in healthy and pathological apatitic biomineral: mineralized articular cartilage, and intimal atherosclerotic plaque and apatitic kidney stones. Calcif Tissue Int 2013; 93:253-60. [PMID: 23780351 DOI: 10.1007/s00223-013-9751-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing ¹³C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate.
Collapse
Affiliation(s)
- David G Reid
- Department of Chemistry, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
37
|
Colas H, Bonhomme-Coury L, Diogo CC, Tielens F, Babonneau F, Gervais C, Bazin D, Laurencin D, Smith ME, Hanna JV, Daudon M, Bonhomme C. Whewellite, CaC2O4⋅H2O: structural study by a combined NMR, crystallography and modelling approach. CrystEngComm 2013. [DOI: 10.1039/c3ce41201f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Campbell SE, Ferguson VL, Hurley DC. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomater 2012; 8:4389-96. [PMID: 22877818 DOI: 10.1016/j.actbio.2012.07.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/03/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The bone-cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M=22.8±1.8GPa) to that of hyaline articular cartilage embedded in PMMA (M=5.7±1.0GPa) across a narrow transition region <5μm wide. Contact resonance force microscopy (CR-FM), which measures the frequency and quality factor of the AFM cantilever's vibrational resonance in contact mode, was used to determine the relative storage modulus and loss tangent of the osteochondral interface. With better spatial resolution than nanoindentation, CR-FM measurements indicated an even narrower interface width of 2.3±1.2μm. Furthermore, CR-FM revealed a 24% increase in the viscoelastic loss tangent from the articular calcified cartilage into the PMMA-embedded hyaline articular cartilage. Quantitative backscattered electron imaging provided complementary measurement of mineral content. Our results provide insight into the multiscale functionality of the osteochondral interface that will advance understanding of disease states such as osteoarthritis and aid in the development of biomimetic interfaces.
Collapse
|
39
|
Mroue KH, MacKinnon N, Xu J, Zhu P, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. High-resolution structural insights into bone: a solid-state NMR relaxation study utilizing paramagnetic doping. J Phys Chem B 2012; 116:11656-61. [PMID: 22953757 PMCID: PMC3460063 DOI: 10.1021/jp307935g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hierarchical heterogeneous architecture of bone imposes significant challenges to structural and dynamic studies conducted by traditional biophysical techniques. High-resolution solid-state nuclear magnetic resonance (SSNMR) spectroscopy is capable of providing detailed atomic-level structural insights into such traditionally challenging materials. However, the relatively long data-collection time necessary to achieve a reliable signal-to-noise ratio (S/N) remains a major limitation for the widespread application of SSNMR on bone and related biomaterials. In this study, we attempt to overcome this limitation by employing the paramagnetic relaxation properties of copper(II) ions to shorten the (1)H intrinsic spin-lattice (T(1)) relaxation times measured in natural-abundance (13)C cross-polarization (CP) magic-angle-spinning (MAS) NMR experiments on bone tissues for the purpose of accelerating the data acquisition time in SSNMR. To this end, high-resolution solid-state (13)C CPMAS experiments were conducted on type I collagen (bovine tendon), bovine cortical bone, and demineralized bovine cortical bone, each in powdered form, to measure the (1)H T(1) values in the absence and in the presence of 30 mM Cu(II)(NH(4))(2)EDTA. Our results show that the (1)H T(1) values were successfully reduced by a factor of 2.2, 2.9, and 3.2 for bovine cortical bone, type I collagen, and demineralized bone, respectively, without reducing the spectral resolution and thus enabling faster data acquisition. In addition, paramagnetic quenching of particular (13)C NMR resonances on exposure to Cu(2+) ions in the absence of mineral was also observed, potentially suggesting the relative proximity of three main amino acids in the protein backbone (glycine, proline, and alanine) to the bone mineral surface.
Collapse
Affiliation(s)
- Kamal H. Mroue
- Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Neil MacKinnon
- Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Jiadi Xu
- Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Peizhi Zhu
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Erin McNerny
- School of Dentistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - David H. Kohn
- School of Dentistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Michael D. Morris
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| |
Collapse
|
40
|
Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, Lorenz A, Vashishth D. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:6320-6331. [PMID: 22822414 PMCID: PMC3399594 DOI: 10.1021/jp2125312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Age-related bone fragility fractures present a significant problem for public health. Measures of bone quality are increasingly recognized to complement the conventional bone mineral density (BMD) based assessment of fracture risk. The ability to probe and understand bone quality at the molecular level is desirable in order to unravel how the structure of organic matrix and its association with mineral contribute to the overall mechanical properties. The (13)C{(31)P} REDOR MAS NMR (Rotational Echo Double Resonance Magic Angle Spinning Nuclear Magnetic Resonance) technique is uniquely suited for the study of the structure of the organic-mineral interface in bone. For the first time, we have applied it successfully to analyze the structure of intact (non-powdered) human cortical bone samples, from young healthy and old osteoporotic donors. Loading problems associated with the rapid rotation of intact bone were solved using a Finite Element Analysis (FEA) approach, and a method allowing osteoporotic samples to be balanced and spun reproducibly is described. REDOR NMR parameters were set to allow insight into the arrangement of the amino acids at the mineral interface to be accessed, and SVD (Singular Value Decomposition) was applied to enhance the signal to noise ratio and enable a better analysis of the data. From the REDOR data, it was found that carbon atoms belonging to citrate/glucosaminoglycans (GAGs) are closest to the mineral surface regardless of age or site. In contrast, the arrangement of the collagen backbone at the interface varied with site and age. The relative proximity of two of the main amino acids in bone matrix proteins, hydroxyproline and alanine, with respect to the mineral phase was analyzed in more detail, and discussed in view of glycation measurements which were carried out on the tissues. Overall, this work shows that the (13)C{(31)P} REDOR NMR approach could be used as a complementary technique to assess a novel aspect of bone quality, the organic-mineral interface structure.
Collapse
Affiliation(s)
- Ondrej Nikel
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, UPMC Univ. Paris 06, Paris, France
| | - Grażyna E. Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Silke Besdo
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, UPMC Univ. Paris 06, Paris, France
| | - Anna Lorenz
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
41
|
Brown SP. Applications of high-resolution 1H solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 41:1-27. [PMID: 22177472 DOI: 10.1016/j.ssnmr.2011.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 05/25/2023]
Abstract
This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-π interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described.
Collapse
Affiliation(s)
- Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
42
|
Chow WY, Taylor AM, Reid DG, Gallagher JA, Duer MJ. Collagen atomic scale molecular disorder in ochronotic cartilage from an alkaptonuria patient, observed by solid state NMR. J Inherit Metab Dis 2011; 34:1137-40. [PMID: 21735270 DOI: 10.1007/s10545-011-9373-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED In pilot studies of the usefulness of solid state nuclear magnetic resonance spectroscopy in characterizing chemical and molecular structural effects of alkaptonuria on connective tissue, we have obtained (13) C spectra from articular cartilage from an AKU patient. An apparently normal anatomical location yielded a cross polarization magic angle spinning spectrum resembling literature spectra and dominated by collagen and glycosaminoglycan signals. All spectral linewidths from strongly pigmented ochronotic cartilage however were considerably increased relative to the control indicating a marked increase in collagen molecular disorder. This disordering of cartilage structural protein parallels, at the atomic level, the disordering revealed at higher length scales by microscopy. We also demonstrate that the abnormal spectra from ochronotic cartilage fit with the abnormality in the structure of collagen fibres at the ultrastructural level, whereby large ochronotic deposits appear to alter the structure of the collagen fibre by invasion and cross linking. SUMMARY Increased signal linewidths in solid state NMR spectra of ochronotic articular cartilage from an AKU patient relative to linewidths in normal, control, cartilage reveals a marked decrease in collagen molecular order in the diseased tissue. This atomic level disordering parallels higher length scale disorder revealed by microscopic techniques.
Collapse
Affiliation(s)
- Wing Ying Chow
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | |
Collapse
|
43
|
Xu J, Zhu P, Morris MD, Ramamoorthy A. Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage. J Phys Chem B 2011; 115:9948-54. [PMID: 21786810 PMCID: PMC3158280 DOI: 10.1021/jp205663z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An atomic-level insight into the functioning of articular cartilage would be useful to develop prevention strategies and therapies for joint diseases such as osteoarthritis. However, the composition and structure of cartilage and their relationship to its unique mechanical properties are quite complex and pose tremendous challenges to most biophysical techniques. In this study, we present an investigation of the structure and dynamics of polymeric molecules of articular cartilage using time-resolved solid-state NMR spectroscopy during dehydration. Full-thickness cartilage explants were used in magic-angle spinning experiments to monitor the structural changes of rigid and mobile carbons. Our results reveal that the dehydration reduced the mobility of collagen amino acid residues and carbon sugar ring structures in glycosaminoglycans but had no effect on the trans-Xaa-Pro conformation. Equally interestingly, our results demonstrate that the dehydration effects are reversible, and the molecular structure and mobility are restored upon rehydration.
Collapse
Affiliation(s)
- Jiadi Xu
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Peizhi Zhu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Michael D. Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
44
|
Reid DG, Jackson GJ, Duer MJ, Rodgers AL. Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall's plaque, pathogenesis and prophylaxis. J Urol 2010; 185:725-30. [PMID: 21168873 DOI: 10.1016/j.juro.2010.09.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE We characterized the biomacromolecular composition of phosphatic urinary stones using solid state nuclear magnetic resonance spectroscopy. We identified possible parallels between the nature of the organic matrix-mineral interface in stones and that in other mineralized tissue using nuclear magnetic resonance spectroscopy rotational echo double resonance. MATERIALS AND METHODS We analyzed 28 phosphatic (apatite and mixed apatite-struvite) surgically removed stones by nuclear magnetic resonance spectroscopy using (31)P, (13)C and a 9.4 Tesla magnetic field. Ten samples had sufficient signal from biomacromolecular organic material to characterize the mineral/organic interface by (13)C{(31)P} rotational echo double resonance. RESULTS Biomacromolecular organic material was most abundant in phosphatic stones in which apatite predominated. Nuclear magnetic resonance spectroscopy detected variable proportions of protein, glycosaminoglycan, lipid and carbonate. Rotational echo double resonance revealed strong interaction between mineral and glycosaminoglycan molecules, and to a lesser extent protein molecules, on the sub-nm length scale, implying that glycosaminoglycan and protein are composited into or onto the mineral lattice by strong physicochemical interactions. Carbonate ions substituted into apatite crystal lattices also showed the expected strong (13)C{(31)P} rotational echo double resonance effects. Conversely when present, lipid, calcium oxalate hydrates and uric acid showed no rotational echo double resonance effects, proving that they exist as deposits or crystals distinct from phosphatic mineral/biomacromolecular composites. CONCLUSIONS The intimate coexistence of biomacromolecules, especially glycosaminoglycan, with apatite in phosphatic stones supports the notion that they may have a key role in stone pathogenesis. The underlying intermolecular relationships may reflect those governing the formation of Randall's plaque in nascent stones.
Collapse
Affiliation(s)
- David G Reid
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
45
|
Xu J, Zhu P, Gan Z, Sahar N, Tecklenburg M, Morris MD, Kohn DH, Ramamoorthy A. Natural-abundance 43Ca solid-state NMR spectroscopy of bone. J Am Chem Soc 2010; 132:11504-9. [PMID: 20681578 DOI: 10.1021/ja101961x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structural information about the coordination environment of calcium present in bone is highly valuable in understanding the role of calcium in bone formation, biomineralization, and bone diseases like osteoporosis. While a high-resolution structural study on bone has been considered to be extremely challenging, NMR studies on model compounds and bone minerals have provided valuable insight into the structure of bone. Particularly, the recent demonstration of (43)Ca solid-state NMR experiments on model compounds is an important advance in this field. However, application of (43)Ca NMR is hampered due to the low natural-abundance and poor sensitivity of (43)Ca. In this study, we report the first demonstration of natural-abundance (43)Ca magic angle spinning (MAS) NMR experiments on bone, using powdered bovine cortical bone samples. (43)Ca NMR spectra of bovine cortical bone are analyzed by comparing to the natural-abundance (43)Ca NMR spectra of model compounds including hydroxyapatite and carbonated apatite. While (43)Ca NMR spectra of hydroxyapatite and carbonated apatite are very similar, they significantly differ from those of cortical bone. Raman spectroscopy shows that the calcium environment in bone is more similar to carbonated apatite than hydroxyapatite. A close analysis of (43)Ca NMR spectra reveals that the chemical shift frequencies of cortical bone and 10% carbonated apatite are similar but the quadrupole coupling constant of cortical bone is larger than that measured for model compounds. In addition, our results suggest that an increase in the carbonate concentration decreases the observed (43)Ca chemical shift frequency. A comparison of experimentally obtained (43)Ca MAS spectra with simulations reveal a 3:4 mol ratio of Ca-I/Ca-II sites in carbonated apatite and a 2.3:3 mol ratio for hydroxyapatite. 2D triple-quantum (43)Ca MAS experiments performed on a mixture of carbonated apatite and the bone protein osteocalcin reveal the presence of protein-bound and free calcium sites, which is in agreement with a model developed from X-ray crystal structure of the protein.
Collapse
Affiliation(s)
- Jiadi Xu
- Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the past decade, the prevalence, significance, and regulatory mechanisms of vascular calcification have gained increasing recognition. Over a century ago, pathologists recognized atherosclerotic calcification as a form of extraskeletal ossification. Studies are now identifying the mechanism of this remarkable process as a recapitulation of embryonic endochondral and membranous ossification through phenotypic plasticity of vascular cells that function as adult mesenchymal stem cells. These embryonic developmental programs, involving bone morphogenetic proteins and potent osteochondrogenic transcription factors, are triggered and modulated by a variety of inflammatory, metabolic, and genetic disorders, particularly hyperlipidemia, chronic kidney disease, diabetes, hyperparathyroidism, and osteoporosis. They are also triggered by loss of powerful inhibitors, such as fetuin A, matrix Gla protein, and pyrophosphate, which ordinarily restrict biomineralization to skeletal bone. Teleologically, soft-tissue calcification might serve to create a wall of bone to sequester noxious foci such as chronic infections, parasites, and foreign bodies. This Review focuses on atherosclerotic and medial calcification. The capacity of the vasculature to produce mineral in culture and to produce de novo, vascularized, trabecular bone and cartilage tissue, even in patients with osteoporosis, should intrigue investigators in tissue engineering and regenerative biology.
Collapse
|
47
|
Neary MT, Reid DG, Mason MJ, Friscic T, Duer MJ, Cusack M. Contrasts between organic participation in apatite biomineralization in brachiopod shell and vertebrate bone identified by nuclear magnetic resonance spectroscopy. J R Soc Interface 2010; 8:282-8. [PMID: 20610423 DOI: 10.1098/rsif.2010.0238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unusually for invertebrates, linguliform brachiopods employ calcium phosphate mineral in hard tissue formation, in common with the evolutionarily distant vertebrates. Using solid-state nuclear magnetic resonance spectroscopy (SSNMR) and X-ray powder diffraction, we compare the organic constitution, crystallinity and organic matrix-mineral interface of phosphatic brachiopod shells with those of vertebrate bone. In particular, the organic-mineral interfaces crucial for the stability and properties of biomineral were probed with SSNMR rotational echo double resonance (REDOR). Lingula anatina and Discinisca tenuis shell materials yield strikingly dissimilar SSNMR spectra, arguing for quite different organic constitutions. However, their fluoroapatite-like mineral is highly crystalline, unlike the poorly ordered hydroxyapatite of bone. Neither shell material shows (13)C{(31)P} REDOR effects, excluding strong physico-chemical interactions between mineral and organic matrix, unlike bone in which glycosaminoglycans and proteins are composited with mineral at sub-nanometre length scales. Differences between organic matrix of shell material from L. anatina and D. tenuis, and bone reflect evolutionary pressures from contrasting habitats and structural purposes. The absence of organic-mineral intermolecular associations in brachiopod shell argues that biomineralization follows different mechanistic pathways to bone; their details hold clues to the molecular structural evolution of phosphatic biominerals, and may provide insights into novel composite design.
Collapse
Affiliation(s)
- Marianne T Neary
- Department of Physiology, Development and Neuroscience, University of Cambridge, , Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | | | |
Collapse
|
48
|
Hanna JV, Smith ME. Recent technique developments and applications of solid state NMR in characterising inorganic materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2010; 38:1-18. [PMID: 20605082 DOI: 10.1016/j.ssnmr.2010.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 05/29/2010] [Accepted: 05/31/2010] [Indexed: 05/04/2023]
Abstract
A broad overview is given of some key recent developments in solid state NMR techniques that have driven enhanced applications to inorganic materials science. Reference is made to advances in hardware, pulse sequences and associated computational methods (e.g. first principles calculations, spectral simulation), along with their combination to provide more information about solid phases. The resulting methodology has allowed more nuclei to be observed and more structural information to be extracted. Cross referencing between experimental parameters and their calculation from the structure has given an added dimension to NMR as a characterisation probe of materials. Emphasis is placed on the progress made in the last decade especially from those nuclei that were little studied previously. The general points about technique development and the increased range of nuclei observed are illustrated through some specific exemplars from inorganic materials science.
Collapse
Affiliation(s)
- J V Hanna
- Department of Physics, University of Warwick, Coventry CV47AL, UK
| | | |
Collapse
|
49
|
Ironside MS, Duer MJ, Reid DG, Byard S. Bisphosphonate protonation states, conformations, and dynamics on bone mineral probed by solid-state NMR without isotope enrichment. Eur J Pharm Biopharm 2010; 76:120-6. [PMID: 20554022 DOI: 10.1016/j.ejpb.2010.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
Recognition of bone mineral by bisphosphonates is crucial to their targeting, efficacy, therapeutic and diagnostic applications, and pharmacokinetics. In a search for rapid and simple NMR approaches to assessing the bone recognition characteristics of bisphosphonates, we have studied alendronate, pamidronate, neridronate, zoledronate and tiludronate, in crystalline form and bound to the surface of pure bone mineral stripped of its organic matrix by a simple chemical process. (31)P NMR chemical shift anisotropies and asymmetries in the crystalline compounds cluster strongly into groupings corresponding to fully protonated, monoprotonated, and deprotonated phosphonate states. All the mineral-bound bisphosphonates cluster in the same anisotropy-asymmetry space as the deprotonated phosphonates. In (13)C{(31)P} rotational echo double resonance (REDOR) experiments, which are sensitive to carbon-phosphorus interatomic distances, the strongly mineral-bound alendronate displays very similar conformational and side chain dynamics to its crystalline state. Pamidronate and neridronate, with shorter and longer sidechains, respectively, and generally weaker mineral binding, display more dynamical sidechains in the mineral-bound state. The REDOR experiment provides a simple rationalization of bisphosphonate-mineral affinity in terms of molecular structure and dynamics, consistent with findings from much more labour- and time-intensive isotope labelling approaches.
Collapse
Affiliation(s)
- Matthew S Ironside
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Zhu P, Xu J, Sahar N, Morris MD, Kohn DH, Ramamoorthy A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J Am Chem Soc 2010; 131:17064-5. [PMID: 19894735 DOI: 10.1021/ja9081028] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the structure and structural changes of bone, a highly heterogeneous material with a complex hierarchical architecture, continues to be a significant challenge even for high-resolution solid-state NMR spectroscopy. While it is known that dehydration affects mechanical properties of bone by decreasing its strength and toughness, the underlying structural mechanism at the atomic level is unknown. Solid-state NMR spectroscopy, controlled dehydration, and H/D exchange were used for the first time to reveal the structural changes of an intact piece of bovine cortical bone. (1)H spectra were used to monitor the dehydration of the bone inside the rotor, and high-resolution (13)C chemical shift spectra obtained under magic-angle spinning were used evaluate the dehydration-induced conformational changes in the bone. The experiments revealed the slow denaturation of collagen due to dehydration while the trans-Xaa-Pro conformation in collagen remained unchanged. Our results suggest that glycosaminoglycans in the collagen fiber and mineral interface may chelate with a Ca(2+) ion present on the surface of the mineral through sulfate or carboxylate groups. These results provide insights into the role of water molecules in the bone structure and shed light on the relationship between the structure and mechanics of bone.
Collapse
Affiliation(s)
- Peizhi Zhu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|