1
|
Wang XH, Wang M, Pan JB, Zhu JM, Cheng H, Dong HZ, Bi WJ, Yang SW, Chen YY, Xu F, Duan XJ. Fluorescent probe for imaging intercellular tension: molecular force approach. RSC Adv 2024; 14:22877-22881. [PMID: 39035717 PMCID: PMC11258865 DOI: 10.1039/d4ra02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Ming Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Jin-Miao Zhu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hu Cheng
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hua-Ze Dong
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Wen-Jie Bi
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Shi-Wei Yang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Yuan-Yuan Chen
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Fan Xu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Xiao-Jing Duan
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| |
Collapse
|
2
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
3
|
Berg A, Velayuthan LP, Tågerud S, Ušaj M, Månsson A. Probing actin-activated ATP turnover kinetics of human cardiac myosin II by single molecule fluorescence. Cytoskeleton (Hoboken) 2024. [PMID: 38623952 DOI: 10.1002/cm.21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Mechanistic insights into myosin II energy transduction in striated muscle in health and disease would benefit from functional studies of a wide range of point-mutants. This approach is, however, hampered by the slow turnaround of myosin II expression that usually relies on adenoviruses for gene transfer. A recently developed virus-free method is more time effective but would yield too small amounts of myosin for standard biochemical analyses. However, if the fluorescent adenosine triphosphate (ATP) and single molecule (sm) total internal reflection fluorescence microscopy previously used to analyze basal ATP turnover by myosin alone, can be expanded to actin-activated ATP turnover, it would appreciably reduce the required amount of myosin. To that end, we here describe zero-length cross-linking of human cardiac myosin II motor fragments (sub-fragment 1 long [S1L]) to surface-immobilized actin filaments in a configuration with maintained actin-activated ATP turnover. After optimizing the analysis of sm fluorescence events, we show that the amount of myosin produced from C2C12 cells in one 60 mm cell culture plate is sufficient to obtain both the basal myosin ATP turnover rate and the maximum actin-activated rate constant (kcat). Our analysis of many single binding events of fluorescent ATP to many S1L motor fragments revealed processes reflecting basal and actin-activated ATPase, but also a third exponential process consistent with non-specific ATP-binding outside the active site.
Collapse
Affiliation(s)
- Albin Berg
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Science, Linnaeus University, Kalmar, Sweden
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Science, Linnaeus University, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Science, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Science, Linnaeus University, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Stilgoe A, Favre-Bulle IA, Watson ML, Gomez-Godinez V, Berns MW, Preece D, Rubinsztein-Dunlop H. Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond. ACS PHOTONICS 2024; 11:917-940. [PMID: 38523746 PMCID: PMC10958612 DOI: 10.1021/acsphotonics.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
Collapse
Affiliation(s)
- Alexander
B. Stilgoe
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| | - Itia A. Favre-Bulle
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, 4074, Australia
| | - Mark L. Watson
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
| | - Veronica Gomez-Godinez
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
| | - Michael W. Berns
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Daryl Preece
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Halina Rubinsztein-Dunlop
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| |
Collapse
|
5
|
Xiao J, Plaskocinski T, Biabanifard M, Persheyev S, Di Falco A. On-Chip Optical Trapping with High NA Metasurfaces. ACS PHOTONICS 2023; 10:1341-1348. [PMID: 37215320 PMCID: PMC10197168 DOI: 10.1021/acsphotonics.2c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 05/24/2023]
Abstract
Optical trapping of small particles typically requires the use of high NA microscope objectives. Photonic metasurfaces are an attractive alternative to create strongly focused beams for optical trapping applications in an integrated platform. Here, we report on the design, fabrication, and characterization of optical metasurfaces with a numerical aperture up to 1.2 and trapping stiffness greater than 400 pN/μm/W. We demonstrate that these metasurfaces perform as well as microscope objectives with the same numerical aperture. We systematically analyze the impact of the metasurface dimension on the trapping performance and show efficient trapping with metasurfaces with an area as small as 0.001 mm2. Finally, we demonstrate the versatility of the platform by designing metasurfaces able to create multisite optical tweezers for the trapping of extended objects.
Collapse
|
6
|
Gokulu IS, Banta S. Biotechnology applications of proteins functionalized with DNA oligonucleotides. Trends Biotechnol 2023; 41:575-585. [PMID: 36115723 DOI: 10.1016/j.tibtech.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
The functionalization of proteins with DNA through the formation of covalent bonds enables a wide range of biotechnology advancements. For example, single-molecule analytical methods rely on bioconjugated DNA as elastic biolinkers for protein immobilization. Labeling proteins with DNA enables facile protein identification, as well as spatial and temporal organization and control of protein within DNA-protein networks. Bioconjugation reactions can target native, engineered, and non-canonical amino acids (NCAAs) within proteins. In addition, further protein engineering via the incorporation of peptide tags and self-labeling proteins can also be used for conjugation reactions. The selection of techniques will depend on application requirements such as yield, selectivity, conjugation position, potential for steric hindrance, cost, commercial availability, and potential impact on protein function.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
7
|
Riccardi M, Martin OJF. Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers. Chem Rev 2023; 123:1680-1711. [PMID: 36719985 PMCID: PMC9951227 DOI: 10.1021/acs.chemrev.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/02/2023]
Abstract
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.
Collapse
Affiliation(s)
- Marco Riccardi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| |
Collapse
|
8
|
Fernández-Ramírez MDC, Ng KKS, Menéndez M, Laurents DV, Hervás R, Carrión-Vázquez M. Expanded Conformations of Monomeric Tau Initiate Its Amyloidogenesis. Angew Chem Int Ed Engl 2022; 62:e202209252. [PMID: 36542681 DOI: 10.1002/anie.202209252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.
Collapse
Affiliation(s)
- María Del Carmen Fernández-Ramírez
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, 28002, Madrid, Spain.,Current address: Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Kan-Shing Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
9
|
Shen Y, Weitz DA, Forde NR, Shayegan M. Line optical tweezers as controllable micromachines: techniques and emerging trends. SOFT MATTER 2022; 18:5359-5365. [PMID: 35819100 DOI: 10.1039/d2sm00259k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three decades, the technology of optical tweezers has made significant contributions in various scientific areas, including optics, photonics, and nanosciences. Breakthroughs include manipulating particles in both static and dynamic ways, particle sorting, and constructing controllable micromachines. Advances in shaping and controlling the laser beam profile enable control over the position and location of the trap, which has many possible applications. A line optical tweezer (LOT) can be created by rapidly moving a spot optical tweezer using a tool such as a galvanometer mirror or an acousto-optic modulator. By manipulating the intensity profile along the beam line to be asymmetric or non-uniform, the technique can be adapted to various specific applications. Among the many exciting applications of line optical tweezers, in this work, we discuss in detail applications of LOT, including probing colloidal interactions, transporting and sorting of colloidal microspheres, self-propelled motions, trapping anisotropic particles, exploring colloidal interactions at fluid-fluid interfaces, and building optical thermal ratchets. We further discuss prospective applications in each of these areas of soft matter, including polymeric and biological soft materials.
Collapse
Affiliation(s)
- Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Marjan Shayegan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
10
|
Yadav S, Devi A, De AK. Enhanced optical force on multilayered dielectric nanoparticles by tuning material properties and nature of excitation: a theoretical investigation. NANOSCALE ADVANCES 2022; 4:2979-2987. [PMID: 36133514 PMCID: PMC9419164 DOI: 10.1039/d2na00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 06/16/2023]
Abstract
Using dipole approximation, a comparative study of trapping force/potential on different types of dielectric nanoparticles is presented. The trapping force for multilayered nanoparticles, i.e. core-shell-shell type nanoparticles, is found to be enhanced compared with both core-only type and core-shell type nanoparticles. It is shown that an appropriate choice of material and thickness of the middle layer results in tuning the polarizability, thereby playing a vital role in determining the trapping efficiency for core-shell-shell type nanoparticles. Further, the effect of optical nonlinearity under femtosecond pulsed excitation is investigated and it is elucidated that depending on the specific need (i.e. high force versus long confinement time), the nature of excitation (i.e. pulsed excitation or continuous-wave excitation) can be judiciously chosen. These findings are promised to open up new prospects for controlled nanoscale trapping and manipulation across different fields of nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Sumit Yadav
- Condensed Phase Dynamics Group, Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Anita Devi
- Condensed Phase Dynamics Group, Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| |
Collapse
|
11
|
Pérez-Domínguez S, Caballero-Mancebo S, Marcuello C, Martínez-Júlvez M, Medina M, Lostao A. Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+. Antioxidants (Basel) 2022; 11:antiox11030537. [PMID: 35326186 PMCID: PMC8944804 DOI: 10.3390/antiox11030537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Plastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+ complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached to AFM tips. Force–distance curves were collected for different loading rates and specific unbinding forces were analyzed under the Bell–Evans model to obtain the mechanostability parameters associated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical stability than that reported for the complexes with protein partners, corroborating the stronger affinity of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for achieving catalytically competent active site geometry, also regulates the concerted dissociation of the bipartite nucleotide moieties of the coenzyme.
Collapse
Affiliation(s)
- Sandra Pérez-Domínguez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
| | - Silvia Caballero-Mancebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain;
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain;
- Correspondence: (M.M.); (A.L.); Tel.: +34-976762476 (M.M.); +34-876555357 (A.L.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-976762476 (M.M.); +34-876555357 (A.L.)
| |
Collapse
|
12
|
Bonfanti A, Duque J, Kabla A, Charras G. Fracture in living tissues. Trends Cell Biol 2022; 32:537-551. [DOI: 10.1016/j.tcb.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
13
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
14
|
Paul A, Alper J. Calculating the force-dependent unbinding rate of biological macromolecular bonds from force-ramp optical trapping assays. Sci Rep 2022; 12:82. [PMID: 34996945 PMCID: PMC8741823 DOI: 10.1038/s41598-021-03690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
The non-covalent biological bonds that constitute protein–protein or protein–ligand interactions play crucial roles in many cellular functions, including mitosis, motility, and cell–cell adhesion. The effect of external force (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F$$\end{document}F) on the unbinding rate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{\text{off}}\left(F\right)$$\end{document}koffF) of macromolecular interactions is a crucial parameter to understanding the mechanisms behind these functions. Optical tweezer-based single-molecule force spectroscopy is frequently used to obtain quantitative force-dependent dissociation data on slip, catch, and ideal bonds. However, analyses of this data using dissociation time or dissociation force histograms often quantitatively compare bonds without fully characterizing their underlying biophysical properties. Additionally, the results of histogram-based analyses can depend on the rate at which force was applied during the experiment and the experiment’s sensitivity. Here, we present an analytically derived cumulative distribution function-like approach to analyzing force-dependent dissociation force spectroscopy data. We demonstrate the benefits and limitations of the technique using stochastic simulations of various bond types. We show that it can be used to obtain the detachment rate and force sensitivity of biological macromolecular bonds from force spectroscopy experiments by explicitly accounting for loading rate and noisy data. We also discuss the implications of our results on using optical tweezers to collect force-dependent dissociation data.
Collapse
Affiliation(s)
- Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA.,Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. .,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
15
|
Tripathy SK, Demidov VM, Gonchar IV, Wu S, Ataullakhanov FI, Grishchuk EL. Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins. Methods Mol Biol 2022; 2478:609-650. [PMID: 36063336 PMCID: PMC9662813 DOI: 10.1007/978-1-0716-2229-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.
Collapse
Affiliation(s)
- Suvranta K Tripathy
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Vladimir M Demidov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan V Gonchar
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Shaowen Wu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Tych K, Rief M. Using Single-Molecule Optical Tweezers to Study the Conformational Cycle of the Hsp90 Molecular Chaperone. Methods Mol Biol 2022; 2478:401-425. [PMID: 36063329 DOI: 10.1007/978-1-0716-2229-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The heat shock protein 90 (Hsp90) family of chaperones are well-known, highly important components of the cellular systems which regulate protein homeostasis. Essential in eukaryotes, Hsp90s is also found in prokaryotes, including archaea. Hsp90 is a dimeric protein, with each monomer consisting of three separate structural domains, and undergoes large conformational changes as part of its functional cycle. This cycle is driven by interactions with nucleotides, cochaperone proteins, client proteins and allosteric effects enacted by these and by posttranslational modifications. All of these influence the rate and degree of the opening and closing of the dimer as well as the relative domain orientations and its overall rigidity. Optical tweezers, which can access many of these functionally important conformational changes, therefore provide a unique tool for the study of this large and complex molecular chaperone. Here, we provide protocols for the design and implementation of different Hsp90 constructs and optical tweezers experiments for addressing the many open questions about the function of this important molecular chaperone.
Collapse
Affiliation(s)
- Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| | - Matthias Rief
- Department of Physics, Technical University of Munich, Garching-bei-München, Germany.
| |
Collapse
|
17
|
Morin JA, Cerrón F, Cao-García FJ, Ibarra B. Optical Tweezers to Investigate the Structure and Energetics of Single-Stranded DNA-Binding Protein-DNA Complexes. Methods Mol Biol 2021; 2281:273-288. [PMID: 33847965 DOI: 10.1007/978-1-0716-1290-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical tweezers enable the isolation and mechanical manipulation of individual nucleoprotein complexes. Here, we describe how to use this technique to interrogate the mechanical properties of individual protein-DNA complexes and extract information about their overall structural organization.
Collapse
Affiliation(s)
- José A Morin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Fernando Cerrón
- Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Francisco J Cao-García
- Departamento Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain.
| |
Collapse
|
18
|
Maksudov F, Jones LK, Barsegov V. Statistical Learning from Single-Molecule Experiments: Support Vector Machines and Expectation-Maximization Approaches to Understanding Protein Unfolding Data. J Phys Chem B 2021; 125:5794-5808. [PMID: 34075752 DOI: 10.1021/acs.jpcb.1c02334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Single-molecule force spectroscopy has become a powerful tool for the exploration of dynamic processes that involve proteins; yet, meaningful interpretation of the experimental data remains challenging. Owing to low signal-to-noise ratio, experimental force-extension spectra contain force signals due to nonspecific interactions, tip or substrate detachment, and protein desorption. Unravelling of complex protein structures results in the unfolding transitions of different types. Here, we test the performance of Support Vector Machines (SVM) and Expectation Maximization (EM) approaches in statistical learning from dynamic force experiments. When the output from molecular modeling in silico (or other studies) is used as a training set, SVM and EM can be applied to understand the unfolding force data. The maximal margin or maximum likelihood classifier can be used to separate experimental test observations into the unfolding transitions of different types, and EM optimization can then be utilized to resolve the statistics of unfolding forces: weights, average forces, and standard deviations. We designed an EM-based approach, which can be directly applied to the experimental data without data classification and division into training and test observations. This approach performs well even when the sample size is small and when the unfolding transitions are characterized by overlapping force ranges.
Collapse
|
19
|
Lostao A, Medina M. Atomic Force Microscopy: Single-Molecule Imaging and Force Spectroscopy in the Study of Flavoproteins Ligand Binding and Reaction Mechanisms. Methods Mol Biol 2021; 2280:157-178. [PMID: 33751434 DOI: 10.1007/978-1-0716-1286-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy (AFM) is one of the most versatile tools currently used in nanoscience. AFM allows for performing nondestructive imaging of almost any sample in either air or liquid, regardless whether the specimen is insulating, conductive, transparent, or opaque. It also allows for measuring interaction forces between a sharp probe and a sample surface, therefore allowing to probe nanomechanical properties of the specimen by either applying a controlled force or pulling the sample. It can provide topography, mechanical, magnetic, and conductive maps for very different type of samples. Transferred to the field of biology, today, AFM is the only microscopy technique able to produce images from biomolecules to bacteria and cells with nanometric resolution in aqueous media. Here, we will focus on the biological applications of AFM to flavoproteins. Despite references in the literature are scarce in this particular field, here it is described how imaging with AFM can contribute to describe catalysis mechanisms of some flavoenzymes, how oxidation states or binding of relevant ligands influence the association state of molecules, the dynamics of functional quaternary assemblies, and even visualize structural differences of individual protein molecules. Furthermore, we will show how force spectroscopy can be used to obtain the kinetic parameters, the dissociation landscape and the mechanical forces that maintain flavoprotein complexes, including the possibility to specifically detect particular flavoproteins on a sample.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain. .,Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, Zaragoza, Spain. .,Fundación ARAID, Zaragoza, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
20
|
Lenton ICD, Scott EK, Rubinsztein-Dunlop H, Favre-Bulle IA. Optical Tweezers Exploring Neuroscience. Front Bioeng Biotechnol 2020; 8:602797. [PMID: 33330435 PMCID: PMC7732537 DOI: 10.3389/fbioe.2020.602797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, optical tweezers (OT) have been increasingly used in neuroscience for studies of molecules and neuronal dynamics, as well as for the study of model organisms as a whole. Compared to other areas of biology, it has taken much longer for OT to become an established tool in neuroscience. This is, in part, due to the complexity of the brain and the inherent difficulties in trapping individual molecules or manipulating cells located deep within biological tissue. Recent advances in OT, as well as parallel developments in imaging and adaptive optics, have significantly extended the capabilities of OT. In this review, we describe how OT became an established tool in neuroscience and we elaborate on possible future directions for the field. Rather than covering all applications of OT to neurons or related proteins and molecules, we focus our discussions on studies that provide crucial information to neuroscience, such as neuron dynamics, growth, and communication, as these studies have revealed meaningful information and provide direction for the field into the future.
Collapse
Affiliation(s)
- Isaac C. D. Lenton
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Ethan K. Scott
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Itia A. Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Tang Y, Ha S, Begou T, Lumeau J, Urbach HP, Dekker NH, Adam AJ. Versatile Multilayer Metamaterial Nanoparticles with Tailored Optical Constants for Force and Torque Transduction. ACS NANO 2020; 14:14895-14906. [PMID: 33170655 PMCID: PMC7690042 DOI: 10.1021/acsnano.0c04233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/23/2020] [Indexed: 05/30/2023]
Abstract
The ability to apply force and torque directly to micro- and nanoscale particles in optical traps has a wide range of applications. While full control of both force and torque in three dimensions has been realized using top-down fabrication of rod-shaped particles composed of birefringent crystalline materials, widespread usage of such particles is limited as the optical constants of the predominant birefringent materials (quartz SiO2 and rutile TiO2) preclude coverage of the full application space of optical trapping. Here, we show that multilayer metamaterial nanoparticles provide access to a wide range of optical constants that can be specifically tuned for each application. Selecting the material pair Nb2O5/SiO2 from the library of amorphous dielectrics as our metamaterial, we show that its refractive index and birefringence can be designed by adapting the ratio of layer thicknesses. Using a robust top-down fabrication process, we show that uniformly sized, free-floating Nb2O5/SiO2 particles with high birefringence at moderate refractive index are obtained at high yield. Using an optical torque wrench, we show that these particles function as joint force and torque transducers while maintaining excellent stability in aqueous solutions and can be controllably optimized for particular physical characteristics such as maximal torque transfer or rapid response time. We expect that such customizable birefringent metamaterial nanoparticles whose properties surpass those of conventional crystalline particles will provide a means to unleash the full potential of optical trapping applications.
Collapse
Affiliation(s)
- Ying Tang
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Seungkyu Ha
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas Begou
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - H. Paul Urbach
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nynke H. Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Aurèle J.
L. Adam
- Optics Research
Group, Department of Imaging Physics, Delft
University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
22
|
Riesenberg C, Iriarte-Valdez CA, Becker A, Dienerowitz M, Heisterkamp A, Ngezahayo A, Torres-Mapa ML. Probing Ligand-Receptor Interaction in Living Cells Using Force Measurements With Optical Tweezers. Front Bioeng Biotechnol 2020; 8:598459. [PMID: 33282853 PMCID: PMC7705203 DOI: 10.3389/fbioe.2020.598459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
This work probes the binding kinetics of COOH-terminus of Clostridium perfringens enterotoxin (c-CPE) and claudin expressing MCF-7 cells using force spectroscopy with optical tweezers. c-CPE is of high biomedical interest due to its ability to specifically bind to claudin with high affinity as well as reversibly disrupt tight junctions whilst maintaining cell viability. We observed single-step rupture events between silica particles functionalized with c-CPE and MCF-7 cells. Extensive calibration of the optical tweezers' trap stiffness and displacement of the particle from trap center extracted a probable bond rupture force of ≈ 18 pN. The probability of rupture events with c-CPE functionalized silica particles increased by 50% compared to unfunctionalized particles. Additionally, rupture events were not observed when probing cells not expressing claudin with c-CPE coated particles. Overall, this work demonstrates that optical tweezers are invaluable tools to probe ligand-receptor interactions and their potential to study dynamic molecular events in drug-binding scenarios.
Collapse
Affiliation(s)
- Carolin Riesenberg
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christian Alejandro Iriarte-Valdez
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Annegret Becker
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Jena University Hospital, Jena, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
23
|
Sullivan RC, Boyer-Chelmo H, Gorkowski K, Beydoun H. Aerosol Optical Tweezers Elucidate the Chemistry, Acidity, Phase Separations, and Morphology of Atmospheric Microdroplets. Acc Chem Res 2020; 53:2498-2509. [PMID: 33035055 DOI: 10.1021/acs.accounts.0c00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusAerosol particles represent unique chemical environments because of their high surface area-to-volume ratio that promotes the effects of interfacial chemistry in confined environments. Properties such as viscosity, diffusivity, water content, pH, and morphology-following liquid-liquid phase separation-can strongly alter how a particle interacts with condensable vapors and reactive trace gases, thus modifying its continual evolution and environmental effects. Our understanding of this chemical evolution of atmospheric particulate matter and its environmental impacts is largely limited by our ability to directly observe how these critical particle properties respond to the addition or reactive uptake of new chemical components. Aerosol optical tweezers (AOT) stably trap particles in focused laser beams, providing positional control and the retrieval of many of these critical properties required to understand and predict the chemistry of aerosolized microdroplets. The analytical power of the AOT stems from the retrieval of the cavity-enhanced Raman spectrum induced by the trapping laser. Analysis of the whispering gallery modes (WGMs) that resonate as a standing wave around the droplet's interface, provide high accuracy measurements of the droplet's size, refractive index (and thus a measurement of composition), and can distinguish between core-shell, partially engulfed, and homogeneous morphologies. We have advanced the ability to determine the properties of the core and shell phases in biphasic droplets, including obtaining high-accuracy pH measurements. These capabilities were applied to perform AOT physical chemistry experiments on authentic secondary organic aerosol (SOA) produced directly in the AOT chamber by ozonolysis of terpene vapors. The propensity of the SOA to phase separate as a shell from a wide range of nonpolar to polar core phases was observed, along with the discovery of a stable emulsified state of SOA particles in an aqueous salt droplet. Micron-thick SOA shells did not impede the gain or loss of water or squalane from the core to the surrounding air, indicating no significant diffusional limitations to condensational growth or partitioning even under dry conditions. These experiments formed the foundation of a new framework that predicts how the phase-separated morphology of complex aerosols containing organic carbon evolves during continual atmospheric oxidation processes. Increases in oxidation state will quickly drive conversion from a partially engulfed to core-shell morphology that has dramatically different chemical reactivity since the core phase is completely concealed by the shell. The recent advances in the experimental capabilities of the AOT technique such as presented here enable novel experimental methodologies that provide insights into the chemistry and multidimensional properties of aerosol microdroplets, and how these coevolve and respond to continual chemical reactions.
Collapse
Affiliation(s)
- Ryan C. Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hallie Boyer-Chelmo
- Department of Mechanical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Kyle Gorkowski
- Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassan Beydoun
- Atmospheric, Earth, & Energy Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
24
|
Aermes C, Hayn A, Fischer T, Mierke CT. Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices. Sci Rep 2020; 10:13453. [PMID: 32778758 PMCID: PMC7417586 DOI: 10.1038/s41598-020-70428-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
The magnetic tweezer technique has become a versatile tool for unfolding or folding of individual molecules, mainly DNA. In addition to single molecule analysis, the magnetic tweezer can be used to analyze the mechanical properties of cells and extracellular matrices. We have established a magnetic tweezer that is capable of measuring the linear and non-linear viscoelastic behavior of a wide range of soft matter in precisely controlled environmental conditions, such as temperature, CO2 and humidity. The magnetic tweezer presented in this study is suitable to detect specific differences in the mechanical properties of different cell lines, such as human breast cancer cells and mouse embryonic fibroblasts, as well as collagen matrices of distinct concentrations in the presence and absence of fibronectin crosslinks. The precise calibration and control mechanism employed in the presented magnetic tweezer setup provides the ability to apply physiological force up to 5 nN on 4.5 µm superparamagnetic beads coated with fibronectin and coupled to the cells or collagen matrices. These measurements reveal specific local linear and non-linear viscoelastic behavior of the investigated samples. The viscoelastic response of cells and collagen matrices to the force application is best described by a weak power law behavior. Our results demonstrate that the stress stiffening response and the fluidization of cells is cell type specific and varies largely between differently invasive and aggressive cancer cells. Finally, we showed that the viscoelastic behavior of collagen matrices with and without fibronectin crosslinks measured by the magnetic tweezer can be related to the microstructure of these matrices.
Collapse
Affiliation(s)
- Christian Aermes
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Alexander Hayn
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32451857 DOI: 10.1007/978-3-030-38062-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Inside the cellular environment, molecular motors can work in concert to conduct a variety of important physiological functions and processes that are vital for the survival of a cell. However, in order to decipher the mechanism of how these molecular motors work, single-molecule microscopy techniques have been popular methods to understand the molecular basis of the emerging ensemble behavior of these motor proteins.In this chapter, we discuss various single-molecule biophysical imaging techniques that have been used to expose the mechanics and kinetics of myosins. The chapter should be taken as a general overview and introductory guide to the many existing techniques; however, since other chapters will discuss some of these techniques more thoroughly, the readership should refer to those chapters for further details and discussions. In particular, we will focus on scattering-based single-molecule microscopy methods, some of which have become more popular in the recent years and around which the work in our laboratories has been centered.
Collapse
|
26
|
Zhu R, Avsievich T, Popov A, Meglinski I. Optical Tweezers in Studies of Red Blood Cells. Cells 2020; 9:E545. [PMID: 32111018 PMCID: PMC7140472 DOI: 10.3390/cells9030545] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs' application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Alexey Popov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409 Moscow, Russia
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
27
|
From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical tweezers are a very well-established technique that have developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Although the nature of light enforces restrictions on the minimum particle size that can be efficiently trapped due to Abbe’s diffraction limit, scientists have managed to overcome this problem by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it relaxes the trapping requirements compared to conventional optical tweezers although problems may arise due to thermal heating of the metallic nanostructures. This could hinder efficient trapping and damage the trapped object. In this work, we review the fundamentals of conventional optical tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of the idea by Arthur Ashkin until recent improvements and applications, we present the principles of these techniques along with their limitations. Emphasis in this review is on the successive improvements of the techniques and the innovative aspects that have been devised to overcome some of the main challenges.
Collapse
|
28
|
Andrew PK, Williams MAK, Avci E. Optical Micromachines for Biological Studies. MICROMACHINES 2020; 11:mi11020192. [PMID: 32069922 PMCID: PMC7074663 DOI: 10.3390/mi11020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area.
Collapse
Affiliation(s)
- Philippa-Kate Andrew
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
| | - Martin A. K. Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence:
| |
Collapse
|
29
|
Bellino L, Florio G, Puglisi G. The influence of device handles in single-molecule experiments. SOFT MATTER 2019; 15:8680-8690. [PMID: 31621748 DOI: 10.1039/c9sm01376h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We deduce a fully analytical model to predict the artifacts of the device handles in single molecule force spectroscopy experiments. As we show, neglecting the handle stiffness can lead to crucial overestimation or underestimation of the stability properties and unfolding thresholds of multistable molecules.
Collapse
Affiliation(s)
- Luca Bellino
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy.
| | - Giuseppe Florio
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy. and INFN, Sezione di Bari, I-70126, Italy
| | - Giuseppe Puglisi
- Politecnico di Bari, (DICAR) Dipartimento di Scienza dell'Ingegneria Civile e dell'Architettura, Politecnico di Bari, Via Re David 200, 70126, Italy.
| |
Collapse
|
30
|
Arbore C, Perego L, Sergides M, Capitanio M. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 2019; 11:765-782. [PMID: 31612379 PMCID: PMC6815294 DOI: 10.1007/s12551-019-00599-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.
Collapse
Affiliation(s)
- Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Laura Perego
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marios Sergides
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
31
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
32
|
Versatile and High-throughput Force Measurement Platform for Dorsal Cell Mechanics. Sci Rep 2019; 9:13286. [PMID: 31527594 PMCID: PMC6746792 DOI: 10.1038/s41598-019-49592-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023] Open
Abstract
We present a high-throughput microfluidics technique facilitating in situ measurements of cell mechanics parameters at the dorsal side of the cell, including molecular binding strengths, local traction forces, and viscoelastic properties. By adjusting the flow rate, the force magnitude exerted on the cell can be modulated ranging from ~14 pN to 2 nN to perturb various force-dependent processees in cells. Time-lapse images were acquired to record events due to such perturbation. The values of various mechanical parameters are subsequently obtained by single particle tracking. Up to 50 events can be measured simultaneously in a single experiment. Integrating the microfluidic techniques with the analytic framework established in computational fluid dynamics, our method is physiologically relevant, reliable, economic and efficient.
Collapse
|
33
|
Sosa-Costa A, Piechocka IK, Gardini L, Pavone FS, Capitanio M, Garcia-Parajo MF, Manzo C. PLANT: A Method for Detecting Changes of Slope in Noisy Trajectories. Biophys J 2019; 114:2044-2051. [PMID: 29742398 DOI: 10.1016/j.bpj.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 04/02/2018] [Indexed: 01/13/2023] Open
Abstract
Time traces obtained from a variety of biophysical experiments contain valuable information on underlying processes occurring at the molecular level. Accurate quantification of these data can help explain the details of the complex dynamics of biological systems. Here, we describe PLANT (Piecewise Linear Approximation of Noisy Trajectories), a segmentation algorithm that allows the reconstruction of time-trace data with constant noise as consecutive straight lines, from which changes of slopes and their respective durations can be extracted. We present a general description of the algorithm and perform extensive simulations to characterize its strengths and limitations, providing a rationale for the performance of the algorithm in the different conditions tested. We further apply the algorithm to experimental data obtained from tracking the centroid position of lymphocytes migrating under the effect of a laminar flow and from single myosin molecules interacting with actin in a dual-trap force-clamp configuration.
Collapse
Affiliation(s)
- Alberto Sosa-Costa
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Izabela K Piechocka
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; National Institute of Optics-National Research Council, Florence, Italy
| | - Francesco S Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; National Institute of Optics-National Research Council, Florence, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; Universitat de Vic - Universitat Central de Catalunya, Vic, Spain.
| |
Collapse
|
34
|
Ha S, Tang Y, van Oene MM, Janissen R, Dries RM, Solano B, Adam AJL, Dekker NH. Single-Crystal Rutile TiO 2 Nanocylinders are Highly Effective Transducers of Optical Force and Torque. ACS PHOTONICS 2019; 6:1255-1265. [PMID: 31119185 PMCID: PMC6524961 DOI: 10.1021/acsphotonics.9b00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 05/05/2023]
Abstract
Optical trapping of (sub)micron-sized particles is broadly employed in nanoscience and engineering. The materials commonly employed for these particles, however, have physical properties that limit the transfer of linear or angular momentum (or both). This reduces the magnitude of forces and torques, and the spatiotemporal resolution, achievable in linear and angular traps. Here, we overcome these limitations through the use of single-crystal rutile TiO2, which has an exceptionally large optical birefringence, a high index of refraction, good chemical stability, and is amenable to geometric control at the nanoscale. We show that rutile TiO2 nanocylinders form powerful joint force and torque transducers in aqueous environments by using only moderate laser powers to apply nN·nm torques at kHz rotational frequencies to tightly trapped particles. In doing so, we demonstrate how rutile TiO2 nanocylinders outperform other materials and offer unprecedented opportunities to expand the control of optical force and torque at the nanoscale.
Collapse
Affiliation(s)
- Seungkyu Ha
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ying Tang
- Optics
Research Group, Department of Imaging Physics, Delft University of Technology, van der Waalsweg 8, 2628 CH Delft, The Netherlands
| | - Maarten M. van Oene
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Richard Janissen
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Roland M. Dries
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Belen Solano
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Aurèle J. L. Adam
- Optics
Research Group, Department of Imaging Physics, Delft University of Technology, van der Waalsweg 8, 2628 CH Delft, The Netherlands
- E-mail:
| | - Nynke H. Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
35
|
Design and Fabrication by Thermal Imprint Lithography and Mechanical Characterization of a Ring-Based PDMS Soft Probe for Sensing and Actuating Forces in Biological Systems. Polymers (Basel) 2019; 11:polym11030424. [PMID: 30960408 PMCID: PMC6473920 DOI: 10.3390/polym11030424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, the design, fabrication and mechanical characterization of a novel polydimethylsiloxane (PDMS) soft probe for delivering and sensing forces in biological systems is proposed. On the basis of preliminary finite element (FEM) analysis, the design takes advantage of a suitable core geometry, characterized by a variable spring-like ring. The compliance of probes can be finely set in a wide range to measure forces in the micronewton to nanonewton range. In particular, this is accomplished by properly resizing the ring geometry and/or exploiting the mixing ratio-based elastic properties of PDMS. Fabrication by the thermal imprint lithography method allows fast and accurate tuning of ring sizes and tailoring of the contact section to their targets. By only varying geometrical parameters, the stiffness ranges from 1080 mNm-1 to 50 mNm-1, but by changing the base-curing agent proportion of the elastomer from 10:1 to 30:1, the stiffness drops to 37 mNm-1. With these compliances, the proposed device will provide a new experimental tool for investigating force-dependent biological functions in sensory systems.
Collapse
|
36
|
Abstract
Mechanical transitions in molecular motors often occur on a submillisecond time scale and rapidly follow binding of the motor with its cytoskeletal filament. Interactions of nonprocessive molecular motors with their filament can be brief and last for few milliseconds or fraction of milliseconds. The investigation of such rapid events and their load dependence requires specialized single-molecule tools. Ultrafast force-clamp spectroscopy is a constant-force optical tweezers technique that allows probing such rapid mechanical transitions and submillisecond kinetics of biomolecular interactions, which can be particularly valuable for the study of nonprocessive motors, single heads of processive motors, or stepping dynamics of processive motors. Here we describe a step-by-step protocol for the application of ultrafast force-clamp spectroscopy to myosin motors. We give indications on optimizing the optical tweezers setup, biological constructs, and data analysis to reach a temporal resolution of few tens of microseconds combined with subnanometer spatial resolution. The protocol can be easily generalized to other families of motor proteins.
Collapse
|
37
|
Choudhary D, Mossa A, Jadhav M, Cecconi C. Bio-Molecular Applications of Recent Developments in Optical Tweezers. Biomolecules 2019; 9:E23. [PMID: 30641944 PMCID: PMC6359149 DOI: 10.3390/biom9010023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single molecule level. The steady improvement in OT's resolving power has progressively pushed the envelope of their applications; there are, however, some inherent limitations that are prompting researchers to look for alternatives to the conventional techniques. To begin with, OT are restricted by their one-dimensional approach, which makes it difficult to conjure an exhaustive three-dimensional picture of biological systems. The high-intensity trapping laser can damage biological samples, a fact that restricts the feasibility of in vivo applications. Finally, direct manipulation of biological matter at nanometer scale remains a significant challenge for conventional OT. A significant amount of literature has been dedicated in the last 10 years to address the aforementioned shortcomings. Innovations in laser technology and advances in various other spheres of applied physics have been capitalized upon to evolve the next generation OT systems. In this review, we elucidate a few of these developments, with particular focus on their biological applications. The manipulation of nanoscopic objects has been achieved by means of plasmonic optical tweezers (POT), which utilize localized surface plasmons to generate optical traps with enhanced trapping potential, and photonic crystal optical tweezers (PhC OT), which attain the same goal by employing different photonic crystal geometries. Femtosecond optical tweezers (fs OT), constructed by replacing the continuous wave (cw) laser source with a femtosecond laser, promise to greatly reduce the damage to living samples. Finally, one way to transcend the one-dimensional nature of the data gained by OT is to couple them to the other large family of single molecule tools, i.e., fluorescence-based imaging techniques. We discuss the distinct advantages of the aforementioned techniques as well as the alternative experimental perspective they provide in comparison to conventional OT.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy.
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | - Alessandro Mossa
- Istituto Statale di Istruzione Superiore "Leonardo da Vinci", Via del Terzolle 91, 50127 Firenze, Italy.
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy.
| | - Milind Jadhav
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy.
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
38
|
Killian JL, Inman JT, Wang MD. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap. ACS NANO 2018; 12:11963-11974. [PMID: 30457331 PMCID: PMC6857636 DOI: 10.1021/acsnano.8b03679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optical traps enable the nanoscale manipulation of individual biomolecules while measuring molecular forces and lengths. This ability relies on the sensitive detection of optically trapped particles, typically accomplished using laser-based interferometric methods. Recently, image-based particle tracking techniques have garnered increased interest as a potential alternative to laser-based detection; however, successful integration of image-based methods into optical trapping instruments for biophysical applications and force measurements has remained elusive. Here, we develop a camera-based detection platform that enables accurate and precise measurements of biological forces and interactions in a dual optical trap. In demonstration, we stretch and unzip DNA molecules while measuring the relative distances of trapped particles from their trapping centers with sub-nanometer accuracy and precision. We then use the DNA unzipping technique to localize bound proteins with sub-base-pair precision, revealing how thermal DNA "breathing" fluctuations allow an unzipping fork to detect and respond to the presence of a protein bound downstream. This work advances the capabilities of image tracking in optical traps, providing a state-of-the-art detection method that is accessible, highly flexible, and broadly compatible with diverse experimental substrates and other nanometric techniques.
Collapse
Affiliation(s)
- Jessica L. Killian
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Macdonald PJ, Ruan Q, Tetin SY. Direct single-molecule counting for immunoassay applications. Anal Biochem 2018; 566:139-145. [PMID: 30496720 DOI: 10.1016/j.ab.2018.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Single-molecule methods offer specificity in studying complex systems and dynamics, but they also offer high sensitivity for basic enumeration. We apply single-molecule TIRF to immunoassays by counting the number of target molecules captured on a streptavidin surface. We demonstrate the utility of using single-molecule counting on eluted detection conjugate, following the capture and sandwich formation portions of the assay having been completed on microparticles. This approach is simple and effective, and creates the opportunity for a universal detection platform that can be used to perform a variety of diagnostic and blood screening assays. We take advantage of the low volume requirements of single-molecule detection and apply a sample reloading approach to concentrate sample onto the detection surface. Due to the high affinity of the streptavidin-biotin reaction, concentration through reloading is both quick and robust. These findings are demonstrated on a model system and in an HIV p24 antigen assay. Single-molecule detection techniques do not need to be complex to exhibit power and flexibility, and so can become valuable in the field of immunoassay diagnostics.
Collapse
Affiliation(s)
- Patrick J Macdonald
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA
| | - Qiaoqiao Ruan
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA
| | - Sergey Y Tetin
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.
| |
Collapse
|
40
|
|
41
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
42
|
Paluch P, Pawlak T, Ławniczak K, Trébosc J, Lafon O, Amoureux JP, Potrzebowski MJ. Simple and Robust Study of Backbone Dynamics of Crystalline Proteins Employing 1H- 15N Dipolar Coupling Dispersion. J Phys Chem B 2018; 122:8146-8156. [PMID: 30070484 DOI: 10.1021/acs.jpcb.8b04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new solid-state multidimensional NMR approach based on the cross-polarization with variable-contact pulse sequence [ Paluch , P. ; Pawlak , T. ; Amoureux , J.-P. ; Potrzebowski , M. J. J. Magn. Reson. 233 , 2013 , 56 ], with 1H inverse detection and very fast magic angle spinning (νR = 60 kHz), dedicated to the measurement of local molecular motions of 1H-15N vectors. The introduced three-dimensional experiments, 1H-15N-1H and hCA(N)H, are particularly useful for the study of molecular dynamics of proteins and other complex structures. The applicability and power of this methodology have been revealed by employing as a model sample the GB-1 small protein doped with Na2CuEDTA. The results clearly prove that the dispersion of 1H-15N dipolar coupling constants well correlates with higher order structure of the protein. Our approach complements the conventional studies and offers a fast and reasonably simple method.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Karol Ławniczak
- Department of Theoretical Physics, Faculty of Physics and Applied Informatics , University of Łódź , Pomorska 149/153 , PL-90236 Łódź , Poland
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Olivier Lafon
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France.,Bruker France , 34 rue de l'Industrie , F-67166 Wissembourg , France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| |
Collapse
|
43
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|
44
|
Tempestini A, Monico C, Gardini L, Vanzi F, Pavone FS, Capitanio M. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Nucleic Acids Res 2018; 46:5001-5011. [PMID: 29584872 PMCID: PMC6007606 DOI: 10.1093/nar/gky208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023] Open
Abstract
In any living cell, genome maintenance is carried out by DNA-binding proteins that recognize specific sequences among a vast amount of DNA. This includes fundamental processes such as DNA replication, DNA repair, and gene expression and regulation. Here, we study the mechanism of DNA target search by a single lac repressor protein (LacI) with ultrafast force-clamp spectroscopy, a sub-millisecond and few base-pair resolution technique based on laser tweezers. We measure 1D-diffusion of proteins on DNA at physiological salt concentrations with 20 bp resolution and find that sliding of LacI along DNA is sequence dependent. We show that only allosterically activated LacI slides along non-specific DNA sequences during target search, whereas the inhibited conformation does not support sliding and weakly interacts with DNA. Moreover, we find that LacI undergoes a load-dependent conformational change when it switches between sliding and strong binding to the target sequence. Our data reveal how DNA sequence and molecular switching regulate LacI target search process and provide a comprehensive model of facilitated diffusion for LacI.
Collapse
Affiliation(s)
- Alessia Tempestini
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Carina Monico
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics—National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Francesco Vanzi
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics—National Research Council, Largo Fermi 6, 50125 Florence, Italy
- International Center of Computational Neurophotonics, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Capitanio
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
45
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
46
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
van Oene MM, Ha S, Jager T, Lee M, Pedaci F, Lipfert J, Dekker NH. Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance. Biophys J 2018; 114:1970-1979. [PMID: 29694873 DOI: 10.1016/j.bpj.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023] Open
Abstract
Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application.
Collapse
Affiliation(s)
- Maarten M van Oene
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Seungkyu Ha
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Tessa Jager
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Mina Lee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Francesco Pedaci
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
48
|
Ishii S, Kawai M, Ishiwata S, Suzuki M. Estimation of actomyosin active force maintained by tropomyosin and troponin complex under vertical forces in the in vitro motility assay system. PLoS One 2018; 13:e0192558. [PMID: 29420610 PMCID: PMC5805308 DOI: 10.1371/journal.pone.0192558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/25/2018] [Indexed: 12/02/2022] Open
Abstract
The interaction between actin filaments and myosin molecular motors is a power source of a variety of cellular functions including cell division, cell motility, and muscular contraction. In vitro motility assay examines actin filaments interacting with myosin molecules that are adhered to a substrate (e.g., glass surface). This assay has been the standard method of studying the molecular mechanisms of contraction under an optical microscope. While the force generation has been measured through an optically trapped bead to which an actin filament is attached, a force vector vertical to the glass surface has been largely ignored with the in vitro motility assay. The vertical vector is created by the gap (distance) between the trapped bead and the glass surface. In this report, we propose a method to estimate the angle between the actin filament and the glass surface by optically determining the gap size. This determination requires a motorized stage in a standard epi-fluorescence microscope equipped with optical tweezers. This facile method is applied to force measurements using both pure actin filaments, and thin filaments reconstituted from actin, tropomyosin and troponin. We find that the angle-corrected force per unit filament length in the active condition (pCa = 5.0) decreases as the angle between the filament and the glass surface increases; i.e. as the force in the vertical direction increases. At the same time, we demonstrate that the force on reconstituted thin filaments is approximately 1.5 times larger than that on pure actin filaments. The range of angles we tested was between 11° and 36° with the estimated measurement error less than 6°. These results suggest the ability of cytoplasmic tropomyosin isoforms maintaining actomyosin active force to stabilize cytoskeletal architecture.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Madoka Suzuki
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
49
|
Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. Single-molecule techniques in biophysics: a review of the progress in methods and applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024601. [PMID: 28869217 DOI: 10.1088/1361-6633/aa8a02] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Collapse
Affiliation(s)
- Helen Miller
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Abstract
Here, we describe protocols for three-dimensional tracking of single quantum dot-conjugated molecules with nanometer accuracy in living cells using conventional fluorescence microscopy. The technique exploits out-of-focus images of single emitters combined with an automated pattern-recognition open-source software that fits the images with proper model functions to extract the emitter coordinates. We describe protocols for targeting quantum dots to both membrane components and cytosolic proteins.
Collapse
|