1
|
Makam AA, Dubey A, Maharana S, Gandasi NR. Algorithm for semi-automatic detection of insulin granule exocytosis in human pancreatic β-cells. Heliyon 2024; 10:e38307. [PMID: 39421365 PMCID: PMC11483283 DOI: 10.1016/j.heliyon.2024.e38307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Image processing and analysis are two significant areas that are highly important for interpreting enormous amounts of data obtained from microscopy-based experiments. Several image analysis tools exist for the general detection of fundamental cellular processes, but tools to detect highly distinct cellular functions are few. One such process is exocytosis, which involves the release of vesicular content out of the cell. The size of the vesicles and the inherent differences in the imaging parameters demand specific analysis platforms for detecting exocytosis. In this direction, we have developed an image-processing algorithm based on Lagrangian particle tracking. The tool was developed to ensure that there is efficient detection of punctate structures initially developed by mathematical equations, fluorescent beads and cellular images with fluorescently labelled vesicles that can exocytose. The detection of these punctate structures using the tool was compared with other existing tools, such as find maxima in ImageJ and manual detection. The tool not only met the precision of existing solutions but also expedited the process, resulting in a more time-efficient solution. During exocytosis, there is a sudden dip in the intensity of the fluorescently labelled vesicles that look like punctate structures. The algorithm precisely locates the vesicles' coordinates and quantifies the variations in their respective intensities. Subsequently, the algorithm processes and retrieves pertinent information from large datasets surpassing that of conventional methods under our evaluation, affirming its efficacy. Furthermore, the tool exhibits adaptability for the image analysis of diverse cellular processes, requiring only minimal modifications to ensure accurate detection of exocytosis.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Abhimanyu Dubey
- Department of Chemical Engineering, Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Shovamayee Maharana
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Nikhil R. Gandasi
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, 560012, India
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123, Uppsala, Sweden
| |
Collapse
|
2
|
Liu J, Verweij FJ, van Niel G, Galli T, Danglot L, Bun P. ExoJ - a Fiji/ImageJ2 plugin for automated spatiotemporal detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261938. [PMID: 39219469 DOI: 10.1242/jcs.261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task that is prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on Fiji/ImageJ2 software. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable for studying distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNARE protein reporters. Assessment of performance on synthetic data shows that ExoJ is a robust tool that is capable of correctly identifying exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.
Collapse
Affiliation(s)
- Junjun Liu
- Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | | | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
| | - Thierry Galli
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
| | - Lydia Danglot
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| |
Collapse
|
3
|
Bergeman MH, Velarde K, Hargis HL, Glenn HL, Hogue IB. The Rab6 post-Golgi secretory pathway contributes to herpes simplex virus 1 (HSV-1) egress. J Virol 2024; 98:e0059924. [PMID: 39136459 PMCID: PMC11406995 DOI: 10.1128/jvi.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host cell's post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and plays important, but non-essential, roles in vesicle traffic and exocytosis at the plasma membrane, therefore making it a useful marker of the Golgi and post-Golgi secretory pathway. We show that HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of people. It establishes a life-long latent infection and occasionally reactivates, typically causing characteristic oral or genital lesions. Rarely in healthy natural hosts, but more commonly in zoonotic infections and in elderly, newborn, or immunocompromised patients, HSV-1 can cause severe herpes encephalitis. The precise cellular mechanisms used by HSV-1 remain an important area of research. In particular, the egress pathways that newly assembled virus particles use to exit from infected cells are unclear. In this study, we used fluorescence microscopy to visualize individual virus particles exiting from cells and found that HSV-1 particles use the pre-existing cellular secretory pathway.
Collapse
Affiliation(s)
- Melissa H Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Hailee L Hargis
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Honor L Glenn
- Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ian B Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Peng X, Ren H, Yang L, Tong S, Zhou R, Long H, Wu Y, Wang L, Wu Y, Zhang Y, Shen J, Zhang J, Qiu G, Wang J, Han C, Zhang Y, Zhou M, Zhao Y, Xu T, Tang C, Chen Z, Liu H, Chen L. Readily releasable β cells with tight Ca 2+-exocytosis coupling dictate biphasic glucose-stimulated insulin secretion. Nat Metab 2024; 6:238-253. [PMID: 38278946 DOI: 10.1038/s42255-023-00962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Biphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet β cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable β cells (RRβs), are responsible for 80% of insulin exocytosis events. Although glucose up to 18.2 mM fully mobilized RRβs to release insulin synchronously (first phase), even higher glucose concentrations enhanced the sustained secretion from these cells (second phase). Release-incompetent β cells show similarities to RRβs in glucose-evoked Ca2+ transients but exhibit Ca2+-exocytosis coupling deficiency. A decreased number of RRβs and their altered secretory ability are associated with impaired GSIS progression in ob/ob mice. Our data reveal functional heterogeneity at the level of exocytosis among β cells and identify RRβs as a subpopulation of β cells that make a disproportionally large contribution to biphasic GSIS from mouse islets.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Bioland Laboratory, Guangzhou, China
| | - Huixia Ren
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shiyan Tong
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Haochen Long
- School of Software and Microelectronics, Peking University, Beijing, China
| | - Yunxiang Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Lifen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Shen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Junwei Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Guohua Qiu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Jianyong Wang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Chengsheng Han
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Mengxuan Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yiwen Zhao
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhixing Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Liangyi Chen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| |
Collapse
|
5
|
Maas DA, Manot-Saillet B, Bun P, Habermacher C, Poilbout C, Rusconi F, Angulo MC. Versatile and automated workflow for the analysis of oligodendroglial calcium signals. Cell Mol Life Sci 2024; 81:15. [PMID: 38194116 PMCID: PMC11073395 DOI: 10.1007/s00018-023-05065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.
Collapse
Affiliation(s)
- Dorien A Maas
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Blandine Manot-Saillet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "NeurImag Platform", 75014, Paris, France
| | - Chloé Habermacher
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
- SynapCell, Bâtiment Synergy Zac Isiparc, 38330, Saint Ismier, France
| | - Corinne Poilbout
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Filippo Rusconi
- IDEEV, GQE, Université Paris-Saclay, CNRS, INRAE, AgroParisTech, 12, Route 128, 91272, Gif-sur-Yvette, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, 75006, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France.
- GHU PARIS Psychiatrie and Neurosciences, 75014, Paris, France.
| |
Collapse
|
6
|
Harada K, Takashima M, Kitaguchi T, Tsuboi T. F-actin determines the time-dependent shift in docking dynamics of glucagon-like peptide-1 granules upon stimulation of secretion. FEBS Lett 2023; 597:657-671. [PMID: 36694275 DOI: 10.1002/1873-3468.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Although exocytosis can be categorized into several forms based on docking dynamics, temporal regulatory mechanisms of the exocytotic forms are unclear. We explored the dynamics of glucagon-like peptide-1 (GLP-1) exocytosis in murine GLUTag cells (GLP-1-secreting enteroendocrine L-cells) upon stimulation with deoxycholic acid (DCA) or high K+ to elucidate the mechanisms regulating the balance between the different types of exocytotic forms (pre-docked with the plasma membrane before stimulation; docked after stimulation and subsequently fused; or rapidly recruited and fused after stimulation, without stable docking). GLP-1 exocytosis showed a biphasic pattern, and we found that most exocytosis was from the pre-docked granules with the plasma membrane before stimulation, or granules rapidly fused to the plasma membrane without docking after stimulation. In contrast, granules docked with the plasma membrane after stimuli and eventually fused were predominant thereafter. Inhibition of actin polymerization suppressed exocytosis of the pre-docked granules. These results suggest that the docking dynamics of GLP-1 granules shows a time-dependent biphasic shift, which is determined by interaction with F-actin.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Maoko Takashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
7
|
Lachuer H, Le L, Lévêque-Fort S, Goud B, Schauer K. Spatial organization of lysosomal exocytosis relies on membrane tension gradients. Proc Natl Acad Sci U S A 2023; 120:e2207425120. [PMID: 36800388 PMCID: PMC9974462 DOI: 10.1073/pnas.2207425120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/17/2022] [Indexed: 02/18/2023] Open
Abstract
Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-β-cyclodextrin were found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allow to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs.
Collapse
Affiliation(s)
- Hugo Lachuer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Laurent Le
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Sandrine Lévêque-Fort
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Bruno Goud
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Kristine Schauer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
- Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif94800, France
| |
Collapse
|
8
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
9
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
10
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
11
|
Urbina FL, Menon S, Goldfarb D, Edwards R, Ben Major M, Brennwald P, Gupton SL. TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47. Cell Rep 2021; 34:108743. [PMID: 33567284 PMCID: PMC7941186 DOI: 10.1016/j.celrep.2021.108743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR, a transient fusion pore secretes cargo but closes without membrane addition. In contrast, fusion modes are not described in developing neurons. Here, we resolve individual exocytic events in developing murine cortical neurons and use classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and, thus, SNAP47 involvement in exocytosis. Urbina et al. identify four exocytic modes in developing neurons: KNRd, KNRi, FVFd, FVFi. Simulations and experiments suggest that FVFi and FVFd provide material for plasma membrane expansion. Deletion of Trim67 decreases FVFi and FVFd while reducing surface area. SNAP47 incorporation into SNARE complexes alters fusion pore behavior, increasing KNRd.
Collapse
Affiliation(s)
- Fabio L Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Reginald Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
14
|
Guille-Collignon M, Lemaître F. Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Stephens DC, Powell TW, Taraska JW, Harris DA. Imaging the rapid yet transient accumulation of regulatory lipids, lipid kinases, and protein kinases during membrane fusion, at sites of exocytosis of MMP-9 in MCF-7 cells. Lipids Health Dis 2020; 19:195. [PMID: 32829709 PMCID: PMC7444259 DOI: 10.1186/s12944-020-01374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. Methods Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. Results Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. Conclusions This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Collapse
Affiliation(s)
- Dominique C Stephens
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Tyrel W Powell
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dinari A Harris
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA.
| |
Collapse
|
16
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Bebelman MP, Bun P, Huveneers S, van Niel G, Pegtel DM, Verweij FJ. Real-time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from single cells. Nat Protoc 2019; 15:102-121. [DOI: 10.1038/s41596-019-0245-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
|
18
|
Stephens DC, Osunsanmi N, Sochacki KA, Powell TW, Taraska JW, Harris DA. Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells. J Gen Physiol 2019; 151:1386-1403. [PMID: 31676484 PMCID: PMC6888755 DOI: 10.1085/jgp.201812299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
This paper describes the dynamics of proteins and lipids during exocytosis of MMP-9 from cancer cells in real time using fluorescence microscopy. Stephens et al. find that core exocytic proteins, accessory proteins, and lipids are involved at sites of secretory vesicle fusion. Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosis of secretory vesicle cargo. In these cancers, up-regulation of trafficking and secretion of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, is responsible for degrading the extracellular matrix, a necessary step in tumor progression. Using TIRF microscopy, we identified proteins associated with secretory vesicles containing MMP-9 and imaged the local dynamics of these proteins at fusion sites during regulated exocytosis of MMP-9 from MCF-7 breast cancer cells. We found that many regulators of exocytosis, including several Rab GTPases, Rab effector proteins, and SNARE/SNARE modulator proteins, are stably assembled on docked secretory vesicles before exocytosis. At the moment of fusion, many of these components are quickly lost from the vesicle, while several endocytic proteins and lipids are simultaneously recruited to exocytic sites at precisely that moment. Our findings provide insight into the dynamic behavior of key core exocytic proteins, accessory proteins, lipids, and some endocytic proteins at single sites of secretory vesicle fusion in breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Tyrel W Powell
- Department of Chemistry, Howard University, Washington, DC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
19
|
Fu J, Githaka JM, Dai X, Plummer G, Suzuki K, Spigelman AF, Bautista A, Kim R, Greitzer-Antes D, Fox JEM, Gaisano HY, MacDonald PE. A glucose-dependent spatial patterning of exocytosis in human β-cells is disrupted in type 2 diabetes. JCI Insight 2019; 5:127896. [PMID: 31085831 DOI: 10.1172/jci.insight.127896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Impaired insulin secretion in type 2 diabetes (T2D) is linked to reduced insulin granule docking, disorganization of the exocytotic site, and an impaired glucose-dependent facilitation of insulin exocytosis. We show in β-cells from 80 human donors that the glucose-dependent amplification of exocytosis is disrupted in T2D. Spatial analyses of granule fusion, visualized by total internal reflection fluorescence (TIRF) microscopy in 24 of these donors, demonstrate that these are non-random across the surface of β-cells from donors with no diabetes (ND). The compartmentalization of events occurs within regions defined by concurrent or recent membrane-resident secretory granules. This organization, and the number of membrane-associated granules, is glucose-dependent and notably impaired in T2D β-cells. Mechanistically, multi-channel Kv2.1 clusters contribute to maintaining the density of membrane-resident granules and the number of fusion 'hotspots', while SUMOylation sites at the channel N- (K145) and C-terminus (K470) determine the relative proportion of fusion events occurring within these regions. Thus, a glucose-dependent compartmentalization of fusion, regulated in part by a structural role for Kv2.1, is disrupted in β-cells from donors with type 2 diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Xiaoqing Dai
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Gregory Plummer
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Kunimasa Suzuki
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Firlar E, Ouy M, Covnot L, Xing Y, Lee D, Chan A, He Y, Song B, Afelik S, Wang Y, Shahbazian-Yassar R, Oberholzer J, Shokuhfar T. In situ graphene liquid cell-transmission electron microscopy study of insulin secretion in pancreatic islet cells. Int J Nanomedicine 2019; 14:371-382. [PMID: 30662261 PMCID: PMC6327893 DOI: 10.2147/ijn.s169506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Islet cell transplantation is one of the key treatments for type 1 diabetes. Understanding the mechanisms of insulin fusion and exocytosis are of utmost importance for the improvement of the current islet cell transplantation and treatment of diabetes. These phenomena have not been fully evaluated due either to the lack of proper dynamic imaging, or the lack of proper cell preservation during imaging at nanoscales. METHODS By maintaining the native environment of pancreatic β-cells between two graphene monolayer sheets, we were able to monitor the subcellular events using in situ graphene liquid cell (GLC)-transmission electron microscopy (TEM) with both high temporal and high spatial resolution. RESULTS For the first time, the nucleation and growth of insulin particles until the later stages of fusion were imaged at nanometer scales. The release of insulin from plasma membrane involves the degradation of plasma membrane and drastic reductions in the shorter axis of the insulin particles. Sequential exocytosis results indicated the nucleation, growth and attachment of the new insulin particles to the already anchored ones, which is thermodynamically favorable due to the reduction in total surface, further reducing the Gibbs free energy. The retraction of the already anchored insulin toward the cell is also monitored for the first time live at nanoscale resolution. CONCLUSION Investigation of insulin granule dynamics in β-cells can be investigated via GLC-TEM. Our findings with this technology open new realms for the development of novel drugs on pathological pancreatic β-cells, because this approach facilitates observing the effects of the stimuli on the live cells and insulin granules.
Collapse
Affiliation(s)
- Emre Firlar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL, USA,
| | - Meagan Ouy
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| | - Leigha Covnot
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| | - Yuan Xing
- University of Virginia, Department of Surgery, Charlottesville, VA, USA
| | - Daniel Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
- University of Illinois at Chicago, Department of Surgery, Chicago, IL, USA
| | - Alessandro Chan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
- University of Illinois at Chicago, Department of Surgery, Chicago, IL, USA
| | - Yi He
- University of Virginia, Department of Surgery, Charlottesville, VA, USA
| | - Boao Song
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL, USA,
| | - Solomon Afelik
- University of Illinois at Chicago, Department of Surgery, Chicago, IL, USA
| | - Yong Wang
- University of Virginia, Department of Surgery, Charlottesville, VA, USA
| | - Reza Shahbazian-Yassar
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL, USA,
| | - Jose Oberholzer
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
- University of Virginia, Department of Surgery, Charlottesville, VA, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
21
|
Actin Remodeling in Regulated Exocytosis: Toward a Mesoscopic View. Trends Cell Biol 2018; 28:685-697. [DOI: 10.1016/j.tcb.2018.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023]
|
22
|
Urbina FL, Gomez SM, Gupton SL. Spatiotemporal organization of exocytosis emerges during neuronal shape change. J Cell Biol 2018; 217:1113-1128. [PMID: 29351997 PMCID: PMC5839795 DOI: 10.1083/jcb.201709064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Urbina et al. use a new computer-vision image analysis tool and extended clustering statistics to demonstrate that the spatiotemporal distribution of constitutive VAMP2-mediated exocytosis is dynamic in developing neurons. The exocytosis pattern is modified by both developmental time and the guidance cue netrin-1, regulated differentially in the soma and neurites, and distinct from exocytosis in nonneuronal cells. Neurite elongation and branching in developing neurons requires plasmalemma expansion, hypothesized to occur primarily via exocytosis. We posited that exocytosis in developing neurons and nonneuronal cells would exhibit distinct spatiotemporal organization. We exploited total internal reflection fluorescence microscopy to image vesicle-associated membrane protein (VAMP)–pHluorin—mediated exocytosis in mouse embryonic cortical neurons and interphase melanoma cells, and developed computer-vision software and statistical tools to uncover spatiotemporal aspects of exocytosis. Vesicle fusion behavior differed between vesicle types, cell types, developmental stages, and extracellular environments. Experiment-based mathematical calculations indicated that VAMP2-mediated vesicle fusion supplied excess material for the plasma membrane expansion that occurred early in neuronal morphogenesis, which was balanced by clathrin-mediated endocytosis. Spatial statistics uncovered distinct spatiotemporal regulation of exocytosis in the soma and neurites of developing neurons that was modulated by developmental stage, exposure to the guidance cue netrin-1, and the brain-enriched ubiquitin ligase tripartite motif 9. In melanoma cells, exocytosis occurred less frequently, with distinct spatial clustering patterns.
Collapse
Affiliation(s)
- Fabio L Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shawn M Gomez
- University of North Carolina at Chapel Hill/North Carolina State University Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
23
|
Ashdown GW, Williamson DJ, Soh GHM, Day N, Burn GL, Owen DM. Membrane lipid order of sub-synaptic T cell vesicles correlates with their dynamics and function. Traffic 2017; 19:29-35. [PMID: 28981993 DOI: 10.1111/tra.12532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
During an immune response, T cells survey antigen presenting cells for antigenic peptides via the formation of an interface known as an immunological synapse. Among the complex and dynamic biophysical phenomena occurring at this interface is the trafficking of sub-synaptic vesicles carrying a variety of proximal signalling molecules. Here, we show that rather than being a homogeneous population, these vesicles display a diversity of membrane lipid order profiles, as measured using the environmentally sensitive dye di-4-ANEPPDHQ and multi-spectral TIRF microscopy. Using live-cell imaging, vesicle tracking and a variety of small molecule drugs to manipulate components of the actin and tubulin cytoskeleton, we show that the membrane lipid order of these vesicles correlate with their dynamics. Furthermore, we show that the key proximal signalling molecule Linker for Activation of T cells (LAT) is enriched in specific vesicle populations as defined by their higher membrane order. These results imply that vesicle lipid order may represent a novel regulatory mechanism for the sorting and trafficking of signalling molecules at the immunological synapse, and, potentially, other cellular structures.
Collapse
Affiliation(s)
- George W Ashdown
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - David J Williamson
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Gary H M Soh
- Friedrich Miescher Laboratory, University of Tübingen, Tübingen, Germany
| | - Nathan Day
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Garth L Burn
- Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
24
|
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab 2017; 19 Suppl 1:115-123. [PMID: 28880475 DOI: 10.1111/dom.13001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β-cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β-cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi-SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non-fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub-PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β-cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β-cells.
Collapse
|
25
|
Li H, Mao Y, Yin Z, Xu Y. A Hierarchical Convolutional Neural Network for vesicle fusion event classification. Comput Med Imaging Graph 2017; 60:22-34. [PMID: 28669577 DOI: 10.1016/j.compmedimag.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 02/15/2017] [Accepted: 04/05/2017] [Indexed: 11/17/2022]
Abstract
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods.
Collapse
Affiliation(s)
- Haohan Li
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Yunxiang Mao
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Zhaozheng Yin
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
26
|
Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE. Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction. Diabetes 2017; 66:1890-1900. [PMID: 28607108 PMCID: PMC5482075 DOI: 10.2337/db16-1170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
Insulin exocytosis is regulated by ion channels that control excitability and Ca2+ influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K+ (Kv) channel Kv2.1 (KCNB1) facilitates depolarization-induced exocytosis in INS 832/13 cells and β-cells from human donors with and without type 2 diabetes (T2D). We find that Kv2.1, but not Kv2.2 (KCNB2), forms clusters of 6-12 tetrameric channels at the plasma membrane and facilitates insulin exocytosis. Knockdown of Kv2.1 expression reduces secretory granule targeting to the plasma membrane. Expression of the full-length channel (Kv2.1-wild-type) supports the glucose-dependent recruitment of secretory granules. However, a truncated channel (Kv2.1-ΔC318) that retains electrical function and syntaxin 1A binding, but lacks the ability to form clusters, does not enhance granule recruitment or exocytosis. Expression of KCNB1 appears reduced in T2D islets, and further knockdown of KCNB1 does not inhibit Kv current in T2D β-cells. Upregulation of Kv2.1-wild-type, but not Kv2.1-ΔC318, rescues the exocytotic phenotype in T2D β-cells and increases insulin secretion from T2D islets. Thus, the ability of Kv2.1 to directly facilitate insulin exocytosis depends on channel clustering. Loss of this structural role for the channel might contribute to impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Githaka
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mette Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In this review, we summarize recent developments in single-cell technologies that can be employed for the functional and molecular classification of endocrine cells in normal and neoplastic tissue. RECENT FINDINGS The emergence of new platforms for the isolation, analysis, and dynamic assessment of individual cell identity and reactive behavior enables experimental deconstruction of intratumoral heterogeneity and other contexts where variability in cell signaling and biochemical responsiveness inform biological function and clinical presentation. These tools are particularly appropriate for examining and classifying endocrine neoplasias, as the clinical sequelae of these tumors are often driven by disrupted hormonal responsiveness secondary to compromised cell signaling. Single-cell methods allow for multidimensional experimental designs incorporating both spatial and temporal parameters with the capacity to probe dynamic cell signaling behaviors and kinetic response patterns dependent upon sequential agonist challenge. SUMMARY Intratumoral heterogeneity in the provenance, composition, and biological activity of different forms of endocrine neoplasia presents a significant challenge for prognostic assessment. Single-cell technologies provide an array of powerful new approaches uniquely well suited for dissecting complex endocrine tumors. Studies examining the relationship between clinical behavior and tumor compositional variations in cellular activity are now possible, providing new opportunities to deconstruct the underlying mechanisms of endocrine neoplasia.
Collapse
|
29
|
Wang Y, Han C, Zhu W, Wu Z, Liu Y, Chen L. An optical method to evaluate both mass and functional competence of pancreatic α- and β-cells. J Cell Sci 2016; 129:2462-71. [PMID: 27173492 DOI: 10.1242/jcs.184523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
Imbalanced glucagon and insulin release leads to the onset of type 2 diabetes. To pinpoint the underlying primary driving force, here we have developed a fast, non-biased optical method to measure ratios of pancreatic α- and β-cell mass and function simultaneously. We firstly label both primary α- and β-cells with the red fluorescent probe ZinRhodaLactam-1 (ZRL1), and then highlight α-cells by selectively quenching the ZRL1 signal from β-cells. Based on the signals before and after quenching, we calculate the ratio of the α-cell to β-cell mass within live islets, which we found matched the results from immunohistochemistry. From the same islets, glucagon and insulin release capability can be concomitantly measured. Thus, we were able to measure the ratio of α-cell to β-cell mass and their function in wild-type and diabetic Lepr(db)/Lepr(db) (denoted db/db) mice at different ages. We find that the initial glucose intolerance that appears in 10-week-old db/db mice is associated with further expansion of α-cell mass prior to deterioration in functional β-cell mass. Our method is extendable to studies of islet mass and function in other type 2 diabetes animal models, which shall benefit mechanistic studies of imbalanced hormone secretion during type 2 diabetes progression.
Collapse
Affiliation(s)
- Yi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Chengsheng Han
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhengxing Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Wigström J, Dunevall J, Najafinobar N, Lovrić J, Wang J, Ewing AG, Cans AS. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis. Anal Chem 2016; 88:2080-7. [PMID: 26771211 DOI: 10.1021/acs.analchem.5b03316] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the lithographic microfabrication of a movable thin film microelectrode array (MEA) probe consisting of 16 platinum band electrodes placed on top of a supporting borosilicate glass substrate. These 1.2 μm wide electrodes were tightly packed and positioned parallel in two opposite rows within a 20 μm × 25 μm square area and with a distance less than 10 μm from the edge of the glass substrate. We demonstrate the ability to control and place the probe in close proximity to the surface of adherent bovine chromaffin cells and to amperometrically record single exocytosis release events with high spatiotemporal resolution. The two-dimensional position of single exocytotic events occurring in the center gap area separating the two rows of MEA band electrodes and that were codetected by electrodes in both rows was determined by analysis of the fractional detection of catecholamine released between electrodes and exploiting random walk simulations. Hence, two-dimensional electrochemical imaging recording of exocytosis release between the electrodes within this area was achieved. Similarly, by modeling the current spikes codetected by parallel adjacent band electrodes positioned in the same electrode row, a one-dimensional imaging of exocytosis with submicrometer resolution was accomplished within the area. The one- and two-dimensional electrochemical imaging using the MEA probe allowed for high spatial resolution of exocytosis activity and revealed heterogeneous release of catecholamine at the chromaffin cell surface.
Collapse
Affiliation(s)
- Joakim Wigström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Jelena Lovrić
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Jun Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
31
|
Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling. Dev Cell 2015; 35:120-30. [PMID: 26439397 DOI: 10.1016/j.devcel.2015.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5β/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations.
Collapse
|
32
|
Fan F, Ji C, Wu Y, Ferguson SM, Tamarina N, Philipson LH, Lou X. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest 2015; 125:4026-41. [PMID: 26413867 DOI: 10.1172/jci80652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus.
Collapse
|