1
|
Carson L, Parlatini V, Safa T, Baig B, Shetty H, Phillips-Owen J, Prasad V, Downs J. The association between early childhood onset epilepsy and attention-deficit hyperactivity disorder (ADHD) in 3237 children and adolescents with Autism Spectrum Disorder (ASD): a historical longitudinal cohort data linkage study. Eur Child Adolesc Psychiatry 2023; 32:2129-2138. [PMID: 35927526 PMCID: PMC10576710 DOI: 10.1007/s00787-022-02041-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
Children and young people with Autism Spectrum Disorder (ASD) have an increased risk of comorbidities, such as epilepsy and Attention-Deficit/Hyperactivity Disorder (ADHD). However, little is known about the relationship between early childhood epilepsy (below age 7) and later ADHD diagnosis (at age 7 or above) in ASD. In this historical cohort study, we examined this relationship using an innovative data source, which included linked data from routinely collected acute hospital paediatric records and childhood community and inpatient psychiatric records. In a large sample of children and young people with ASD (N = 3237), we conducted a longitudinal analysis to examine early childhood epilepsy as a risk factor for ADHD diagnosis while adjusting for potential confounders, including socio-demographic characteristics, intellectual disability, family history of epilepsy and associated physical conditions. We found that ASD children and young people diagnosed with early childhood epilepsy had nearly a twofold increase in risk of developing ADHD later in life, an association which persisted after adjusting for potential confounders (adjusted OR = 1.72, CI95% = 1.13-2.62). This study suggests that sensitive monitoring of ADHD symptoms in children with ASD who have a history of childhood epilepsy may be important to promote early detection and treatment. It also highlights how linked electronic health records can be used to examine potential risk factors over time for multimorbidity in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Lauren Carson
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Tara Safa
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Benjamin Baig
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hitesh Shetty
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jacqueline Phillips-Owen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Vibhore Prasad
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Johnny Downs
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Ashmawi NS, Hammoda MA. Early Prediction and Evaluation of Risk of Autism Spectrum Disorders. Cureus 2022; 14:e23465. [PMID: 35481307 PMCID: PMC9034898 DOI: 10.7759/cureus.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
Autism is a neuro-developmental condition that first appears at less than three years of age. Autism spectrum disorders (ASD) include several symptoms, such as social communication impairment, stereotyping behaviors, speech abnormalities, and impairment of eye contact. Its prevalence has increased recently, and several factors play a role in increasing the risk of autism. Multiple studies and research explain the factors affecting the rate of autism, and in this article, we will review most of these factors. The aim of this review article is to increase awareness of the problem of autism and provide scientifically relevant information about the etiology, pathogenesis, risk factors, and management of ASD. Our perception of autism has evolved over time. A few years ago, the condition was nothing more than an unrecognized developmental delay, generally with intellectual disabilities. Today, it is recognized as a major public health issue and a topic of much research. Researchers have struggled to find a cause for ASD, and numerous treatments have been developed to maximize the potential to learn and become socially fluent, no matter how strong the impairments may be. Although there is no cure, there have been significant strides in identifying and developing treatments. Early prediction of autism is beneficial in an individual's treatment, which can be carried out by recognizing the risk factors of infants, thus leading to improved outcomes or even a complete cure. The prevalence of ASD has increased, and earlier prediction leads to the best outcomes.
Collapse
|
3
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Aykan S, Puglia MH, Kalaycıoğlu C, Pelphrey KA, Tuncalı T, Nalçacı E. Right Anterior Theta Hypersynchrony as a Quantitative Measure Associated with Autistic Traits and K-Cl Cotransporter KCC2 Polymorphism. J Autism Dev Disord 2022; 52:61-72. [PMID: 33635423 DOI: 10.1007/s10803-021-04924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to use theta coherence as a quantitative trait to investigate the relation of the polymorphisms in NKCC1 (rs3087889) and KCC2 (rs9074) channel protein genes to autistic traits (AQ) in neurotypicals. Coherence values for candidate connection regions were calculated from eyes-closed resting EEGs in two independent groups. Hypersynchrony within the right anterior region was related to AQ in both groups (p < 0.05), and variability in this hypersynchrony was related to the rs9074 polymorphism in the total group (p < 0.05). In conclusion, theta hypersynchrony within the right anterior region during eyes-closed rest can be considered a quantitative measure for autistic traits. Replicating our findings in two independent populations with different backgrounds strengthens the validity of the current study.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Canan Kalaycıoğlu
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Erhan Nalçacı
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Braun CM, Elie-Fortier J. Epilepsy and autism: How does age at seizure onset factor in? JOURNAL OF EPILEPTOLOGY 2021. [DOI: 10.21307/jepil-2021-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Reduced hippocampal inhibition and enhanced autism-epilepsy comorbidity in mice lacking neuropilin 2. Transl Psychiatry 2021; 11:537. [PMID: 34663783 PMCID: PMC8523694 DOI: 10.1038/s41398-021-01655-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.
Collapse
|
7
|
Tunç G, Uzun Çiçek A, Kılıçbay F. Risk of autism spectrum disorder in children with a history of hospitalization for neonatal jaundice. Turk J Med Sci 2021; 51:2657-2665. [PMID: 34344142 PMCID: PMC8742497 DOI: 10.3906/sag-2103-263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Limited research has focused explicitly on the association between neonatal jaundice and autism spectrum disorder (ASD), and inconclusive evidence exists in the literature within this framework. This study aimed specifically to investigate whether neonatal jaundice is a potential risk factor for ASD and whether there is a connection between the types of neonatal jaundice and the severity of ASD. METHODS This study involved 119 children with ASD [90 males (75.6%), 29 females (24.4%), mean age: 45.39 ± 11.29 months] and 133 healthy controls [100 males (75.2%), 33 females (24.8%), mean age: 46.92 ± 11.42 months]. Psychiatric disorders were diagnosed through the Diagnostic and Statistical Manual of Mental Disorders criteria. Childhood Autism Rating Scale (CARS) was used to assess the screening and diagnosis of autism. A specially prepared personal information sheet was employed to investigate sociodemographic characteristics and birth and clinical histories. RESULTS The rate of the history of jaundice and pathological jaundice requiring hospitalization and phototherapy were significantly higher in the ASD group compared to the controls. CARS total score and the mean scores of nearly all items were statistically higher in children with a history of pathological jaundice than those with a history of physiological jaundice. DISCUSSION Neonatal jaundice, depends on its severity, seems to be one of the possible biological factors associated with subsequent development of and the severity of ASD. Establishing a causal relationship between neonatal jaundice and ASD by more comprehensive studies may contribute to alleviating of the severity of ASD for individuals at risk.
Collapse
Affiliation(s)
- Gaffari Tunç
- Department of Neonatology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayla Uzun Çiçek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Fatih Kılıçbay
- Department of Neonatology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Arteaga A, Vélez E, Cornejo W, Solarte R, Lobo A, Jaramillo V, Otero J. Epilepsy and electroencephalographic abnormalities in patients with diagnosis of idiopathic autism spectrum disorder in Medellín. Int J Psychol Res (Medellin) 2021; 14:115-120. [PMID: 34306584 PMCID: PMC8297578 DOI: 10.21500/20112084.5335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of the present study was to make a clinical and electroencephalographic characterization of the electrical findings and types of seizures in patients with idiopathic autism. Pediatric patients of any age, with the diagnosis of idiopathic ASD, contained within the database of the research “Genetic in autism” were included. An electroencephalographic recording with epilepsy protocol was performed in all the patients. 20 pediatric patients were included with an age media of 10.5 years, SD 5.48 years. The median age for the diagnosis of ASD was 53 months, and epileptic seizures were documented in 45%. 66.6% of patients with epileptic events had anti-epileptic treatment, and only 33.3% had achieved seizure control with medication. Interictal abnormal EEG records were found in 8 patients (40%), with 6 of them having epileptic seizures. The abnormal EEG activity was multifocal in 62.5%, focal in 25% and generalized in 12.5% of the cases. The most frequently compromised location was the temporal lobe.
Collapse
Affiliation(s)
- Angélica Arteaga
- Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad de Medicina, Universidadde Antioquia. Medellín, Colombia. Universidad de Antioquia Universidadde Antioquia Medellín Colombia
| | - Elizabeth Vélez
- Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad de Medicina, Universidadde Antioquia. Medellín, Colombia. Universidad de Antioquia Universidadde Antioquia Medellín Colombia.,Facultad de Psicología, Universidad CES. Universidad CES Universidad CES Colombia
| | - William Cornejo
- Chief of Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad deMedicina, Universidad de Antioquia. Medellín, Colombia. Universidad de Antioquia Universidad de Antioquia Medellín Colombia
| | - Rodrigo Solarte
- Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad de Medicina, Universidadde Antioquia. Medellín, Colombia. Universidad de Antioquia Universidadde Antioquia Medellín Colombia
| | - Angélica Lobo
- Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia. Universidad de Antioquia Universidad de Antioquia Medellín Colombia
| | - Verónica Jaramillo
- Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad de Medicina, Universidadde Antioquia. Medellín, Colombia. Universidad de Antioquia Universidadde Antioquia Medellín Colombia
| | - Julissa Otero
- Grupo de Investigación Clínica en Enfermedades del Niño y del Adolescente (Pediaciencias), Departamento de Pediatría, Facultad de Medicina, Universidadde Antioquia. Medellín, Colombia. Universidad de Antioquia Universidadde Antioquia Medellín Colombia
| |
Collapse
|
10
|
Hodges SL, Womble PD, Kwok EM, Darner AM, Senger SS, Binder MS, Faust AM, Condon SM, Nolan SO, Quintero SI, Lugo JN. Rapamycin, but not minocycline, significantly alters ultrasonic vocalization behavior in C57BL/6J pups in a flurothyl seizure model. Behav Brain Res 2021; 410:113317. [PMID: 33910029 DOI: 10.1016/j.bbr.2021.113317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Eliesse M Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Alyssa M Darner
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Savannah S Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Amanda M Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Siena M Condon
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Saul I Quintero
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
11
|
Karunakaran S, Menon RN, Nair SS, Santhakumar S, Nair M, Sundaram S. Clinical and Genetic Profile of Autism Spectrum Disorder-Epilepsy (ASD-E) Phenotype: Two Sides of the Same Coin! Clin EEG Neurosci 2020; 51:390-398. [PMID: 32114799 DOI: 10.1177/1550059420909673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical phenotype of autism spectrum disorder and epilepsy (ASD-E) is a common neurological presentation in various genetic disorders, irrespective of the underlying pathophysiological mechanisms. Here we describe the demographic and clinical profiles, coexistent neurological conditions, type of seizures, epilepsy syndrome, and EEG findings in 11 patients with ASD-E phenotype with proven genetic etiology. The commonest genetic abnormality noted was CDKL5 mutation (3), MECP2 mutation (2), and 1p36 deletion (2). The median age of onset of clinical seizures was 6 months (range, 10 days to 11 years). The most common seizure type was focal onset seizures with impaired awareness, observed in 7 (63.6%) patients followed by epileptic spasms in 4 (30.8%), generalized tonic-clonic and atonic seizures in 3 (27.3%) patients each and tonic seizures in 2 (18.2%) patients and myoclonic seizures in 1 (9.1%) patient. Focal and multifocal interictal epileptiform abnormalities were seen in 6 (54.6%) and 5 (45.5%) patients, respectively. Epileptic encephalopathy and focal epilepsy were seen in 7 (63.6%) and 4 (36.4%) patients, respectively. The diagnostic yield of genetic testing was 44% (11 of 25 patients) and when variants of unknown significance and metabolic defects were included, the yield increased to 60% (15 of 25 patients). We conclude that in patients with ASD-E phenotype with an underlying genetic basis, the clinical seizure type, epilepsy syndrome, and EEG patterns are variable. Next-generation exome sequencing and chromosomal microarray need to be considered in clinical practice as part of evaluation of children with ASD-E phenotype.
Collapse
Affiliation(s)
- Sudhakar Karunakaran
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - S Santhakumar
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Muralidharan Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
12
|
Besag FMC, Vasey MJ. Social cognition and psychopathology in childhood and adolescence. Epilepsy Behav 2019; 100:106210. [PMID: 31196824 DOI: 10.1016/j.yebeh.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/04/2019] [Accepted: 03/10/2019] [Indexed: 11/16/2022]
Abstract
There is a substantial body of research on social cognition in adults with epilepsy, and in broad categories such as focal and generalized epilepsies, but much less has been written about social cognition in children with epilepsy (CWE), and in childhood-onset epilepsy syndromes specifically. In several of these syndromes, autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), two disorders with social cognitive impairments, are reported. There is strong evidence for social cognitive deficits in juvenile myoclonic epilepsy (JME). There is also a considerable amount of evidence for such deficits in a number of syndromes that may be associated with ASD or ADHD, including West syndrome (WS), Dravet syndrome (DS), and the Landau-Kleffner syndrome (LKS). However, the evidence is of variable quality and incomplete across the range of childhood epilepsy syndromes. In some syndromes, childhood epilepsy substantially increases the risk of severe social cognitive impairment, which may persist after the seizures remit. This paper presents an overview of current research on social cognition in childhood epilepsy, with a particular focus on syndromes with a high prevalence of autistic and behavioral comorbidities. Social cognitive impairments represent a considerable additional challenge for patients and caregivers. Early diagnosis and intervention might significantly improve long-term social cognitive outcomes, highlighting the need for greater awareness among clinicians of this important topic. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan".
Collapse
Affiliation(s)
- Frank M C Besag
- East London Foundation NHS Trust, 5-7 Rush Court, Bedford MK40 3JT, UK; University College, London, UK; King's College, London, UK.
| | | |
Collapse
|
13
|
Abstract
After been exposed to the visual input, in the first year of life, the brain experiences subtle but massive changes apparently crucial for communicative/emotional and social human development. Its lack could be the explanation of the very high prevalence of autism in children with total congenital blindness. The present theory postulates that the superior colliculus is the key structure for such changes for several reasons: it dominates visual behavior during the first months of life; it is ready at birth for complex visual tasks; it has a significant influence on several hemispheric regions; it is the main brain hub that permanently integrates visual and non-visual, external and internal information (bottom-up and top-down respectively); and it owns the enigmatic ability to take non-conscious decisions about where to focus attention. It is also a sentinel that triggers the subcortical mechanisms which drive social motivation to follow faces from birth and to react automatically to emotional stimuli. Through indirect connections it also activates simultaneously several cortical structures necessary to develop social cognition and to accomplish the multiattentional task required for conscious social interaction in real life settings. Genetic or non-genetic prenatal or early postnatal factors could disrupt the SC functions resulting in autism. The timing of postnatal biological disruption matches the timing of clinical autism manifestations. Astonishing coincidences between etiologies, clinical manifestations, cognitive and pathogenic autism theories on one side and SC functions on the other are disclosed in this review. Although the visual system dependent of the SC is usually considered as accessory of the LGN canonical pathway, its imprinting gives the brain a qualitatively specific functions not supplied by any other brain structure.
Collapse
Affiliation(s)
- Rubin Jure
- Centro Privado de Neurología y Neuropsicología Infanto Juvenil WERNICKE, Córdoba, Argentina
| |
Collapse
|
14
|
Chen C, Chen D, Xue H, Liu X, Zhang T, Tang S, Li W, Xu X. IDGenetics: a comprehensive database for genes and mutations of intellectual disability related disorders. Neurosci Lett 2018; 685:96-101. [PMID: 30144540 DOI: 10.1016/j.neulet.2018.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/22/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022]
Abstract
Intellectual disability (ID) is one of the most prevalent chronic developmental brain disorders or phenotype of syndromic ID, affecting nearly 1-2% of the general population worldwide. Over recent decades, tremendous effort and high-throughput platforms have been devised to explore the complex heterogeneity, numerous genes and variants have been associated with the ID, especially de novo mutations and copy number variants. An organized resource containing the increasing genetic data is imperative to assist ID research. In this study, the integrative and annotated intellectual disability database has been developed, named 'IDGenetics', which contains known information about ID, including 815 genes and 17102 variants associated with 918 clinical diseases (3001 clinical phenotype) collected from 3822 publications and ID-related databases. Furthermore, in-depth data mining was performed to obtain an understanding of each entry, including functional annotation, gene/disease/phenotype network establishment and overlap analysis focusing on comorbidity. 1478 candidate genes (483 high-confidence and 995 low-confidence) were collected and prioritized by adopting the annotations of 12 functional prediction tools and algorithm. In addition, IDGenetics database provides concise search methods, convenient browsing functions, intuitive graphical displays and constantly updated features. IDGenetics will be a valuable and integrative resource for deciphering the genetic and functional architecture of ID and the improvement of clinical diagnosis, intervention and treatment.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Denghui Chen
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huangqi Xue
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinting Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China; Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Li
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Cabana J, Gilbert G, Létourneau‐Guillon L, Safi D, Rouleau I, Cossette P, Nguyen DK. Effects of SYN1 Q555X mutation on cortical gray matter microstructure. Hum Brain Mapp 2018; 39:3428-3448. [PMID: 29671924 PMCID: PMC6866302 DOI: 10.1002/hbm.24186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Jean‐François Cabana
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
| | - Guillaume Gilbert
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Philips Healthcare CanadaMarkhamQuébec
| | - Laurent Létourneau‐Guillon
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dima Safi
- Université du Québec à Trois‐Rivières (UQTR), Trois‐RivièresQuébec
- Groupe de recherche CogNAC (UQTR), Trois‐RivièresQuébec
| | - Isabelle Rouleau
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
- Université du Québec à Montréal (UQAM), MontréalQuébec
| | - Patrick Cossette
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dang Khoa Nguyen
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| |
Collapse
|
16
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
17
|
Gao K, Zhang Y, Zhang L, Kong W, Xie H, Wang J, Wu Y, Wu X, Liu X, Zhang Y, Zhang F, Yu ACH, Jiang Y. Large De Novo Microdeletion in Epilepsy with Intellectual and Developmental Disabilities, with a Systems Biology Analysis. ADVANCES IN NEUROBIOLOGY 2018; 21:247-266. [DOI: 10.1007/978-3-319-94593-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front Psychiatry 2018; 9:751. [PMID: 30733689 PMCID: PMC6354568 DOI: 10.3389/fpsyt.2018.00751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Co-occurring medical disorders and associated physiological abnormalities in individuals with autism spectrum disorder (ASD) may provide insight into causal pathways or underlying biological mechanisms. Here, we review medical conditions that have been repeatedly highlighted as sharing the strongest associations with ASD-epilepsy, sleep, as well as gastrointestinal and immune functioning. We describe within each condition their prevalence, associations with behavior, and evidence for successful treatment. We additionally discuss research aiming to uncover potential aetiological mechanisms. We then consider the potential interaction between each group of conditions and ASD and, based on the available evidence, propose a model that integrates these medical comorbidities in relation to potential shared aetiological mechanisms. Future research should aim to systematically examine the interactions between these physiological systems, rather than considering these in isolation, using robust and sensitive biomarkers across an individual's development. A consideration of the overlap between medical conditions and ASD may aid in defining biological subtypes within ASD and in the development of specific targeted interventions.
Collapse
Affiliation(s)
- Charlotte Tye
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Abigail K Runicles
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| |
Collapse
|
19
|
Ortega-Moreno L, Giráldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, Sánchez-Martín G, Díaz-Gómez E, Guerrero-López R, Serratosa JM. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. PLoS One 2017; 12:e0188978. [PMID: 29190809 PMCID: PMC5708701 DOI: 10.1371/journal.pone.0188978] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Pediatric epilepsies are a group of disorders with a broad phenotypic spectrum that are associated with great genetic heterogeneity, thus making sequential single-gene testing an impractical basis for diagnostic strategy. The advent of next-generation sequencing has increased the success rate of epilepsy diagnosis, and targeted resequencing using genetic panels is the a most cost-effective choice. We report the results found in a group of 87 patients with epilepsy and developmental delay using targeted next generation sequencing (custom-designed Haloplex panel). Using this gene panel, we were able to identify disease-causing variants in 17 out of 87 (19.5%) analyzed patients, all found in known epilepsy-associated genes (KCNQ2, CDKL5, STXBP1, SCN1A, PCDH19, POLG, SLC2A1, ARX, ALG13, CHD2, SYNGAP1, and GRIN1). Twelve of 18 variants arose de novo and 6 were novel. The highest yield was found in patients with onset in the first years of life, especially in patients classified as having early-onset epileptic encephalopathy. Knowledge of the underlying genetic cause provides essential information on prognosis and could be used to avoid unnecessary studies, which may result in a greater diagnostic cost-effectiveness.
Collapse
Affiliation(s)
- Laura Ortega-Moreno
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz G. Giráldez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Victor Soto-Insuga
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - María Rodrigo-Moreno
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Cristina Alarcón-Morcillo
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gema Sánchez-Martín
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Esther Díaz-Gómez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosa Guerrero-López
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M. Serratosa
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
20
|
Tuchman R. What is the Relationship Between Autism Spectrum Disorders and Epilepsy? Semin Pediatr Neurol 2017; 24:292-300. [PMID: 29249509 DOI: 10.1016/j.spen.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The association of epilepsy and autism spectrum disorders (ASD) is best understood by examining the relationship between social cognition, nonsocial cognition, and epilepsy. The relationship between ASD and epilepsy is bidirectional and is strongly linked to intellectual disability (ID). The risk of developing ASD in children with epilepsy is highest in children with early onset seizures, with a high prevalence in children with infantile spasms. The risk of developing epilepsy in children first diagnosed with ASD is highest in those with ID. The prevalence of seizures in ASD increases with age. When epilepsy and ASD coexist, they share common pathophysiological mechanisms. In epilepsy with and without ID, social-cognitive deficits are an important determinant of neurodevelopmental outcomes. Early recognition of social deficits is an important aspect of the comprehensive management of children with epilepsy. Treating the seizures in individuals with epilepsy and ASD is crucial but interventions that address social-cognitive deficits are necessary to maximize neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Roberto Tuchman
- From the Department of Neurology, Nicklaus Children's Hospital Miami Children's Health System, Miami, FL.
| |
Collapse
|
21
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
22
|
Chen W, Chalhub EG. Inattention and Poor Eye Contact Is Not All Autism. Clin Pediatr (Phila) 2017; 56:873-875. [PMID: 28720033 DOI: 10.1177/0009922817715939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wen Chen
- 1 University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
23
|
Sourbron J, Klinkenberg S, Kessels A, Schelhaas HJ, Lagae L, Majoie M. Vagus Nerve Stimulation in children: A focus on intellectual disability. Eur J Paediatr Neurol 2017; 21:427-440. [PMID: 28188025 DOI: 10.1016/j.ejpn.2017.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Vagus Nerve Stimulation (VNS) can be an efficacious add-on treatment in patients with drug-resistant epilepsy, who are not eligible for surgery. Evidence of VNS efficacy in children with intellectual disability (ID) is scarce. OBJECTIVES The purpose of this study was to review all available VNS data in the pediatric population (≤18 years old) and focus on the subpopulation with ID since appropriate treatment of these children is often challenging and complex. METHODS Cochrane, EMBASE, PubMed and MEDLINE were used to collect all research associated to VNS and ID (or synonyms) leading to a total of 37 studies. Seven studies showed the results of patients with ID and those without separately; thereby only these studies were included in the VNS meta-analysis. RESULTS Our meta-analysis showed that VNS was less effective in pediatric epilepsy patients with ID compared to those without ID (Mantel-Haenszel meta-analysis; p = 0.028, OR 0.18 (CI 95% 0.039-0.84)). However, there were no prospective controlled studies. Numerous studies reported quality of life (QoL) improvements in this subpopulation. The most common adverse events were transient and well tolerated. Side effects on cognition and behavior were not reported. DISCUSSION These results might be a reason to consider VNS early on in the treatment of this subgroup. The significantly greater amount of retrospective studies, differences in follow-up (FU), lack of control data, heterogeneous series and limited number of patients could have biased the outcome measurements. Hence, current data do not exclude VNS for children with drug-resistant epilepsy and ID but should be interpreted with caution.
Collapse
Affiliation(s)
- Jo Sourbron
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sylvia Klinkenberg
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons Kessels
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht, The Netherlands
| | | | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium
| | - Marian Majoie
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neurology, Epilepsy Center Kempenhaeghe, The Netherlands.
| |
Collapse
|
24
|
Bosl WJ, Loddenkemper T, Nelson CA. Nonlinear EEG biomarker profiles for autism and absence epilepsy. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40810-017-0023-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Smith G, Ahmed N, Arbuckle E, Lugo JN. Early-life status epilepticus induces long-term deficits in anxiety and spatial learning in mice. INTERNATIONAL JOURNAL OF EPILEPSY 2017; 4:36-45. [PMID: 31890565 PMCID: PMC6936764 DOI: 10.1016/j.ijep.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND One of the most devastating aspects of developmental epilepsy is the long-term impact on behavior. Children with epilepsy show a high co-morbidity with anxiety disorders and autism. METHODS To examine whether early-life status epilepticus results in altered anxiety, repetitive behavior, social behavior, and learning and memory, we induced status epilepticus in male C57BL/6 mice on postnatal day (PD) 10. The mice received intraperitoneal injections of either kainic acid (2mg/kg) or 0.9% normal saline. We also included a nontreated control group. Kainic acid induced status epilepticus for approximately 1.5 hrs. At PD60, the adult mice were then tested in a battery of behavioral tasks, including open field activity, elevated-plus maze, light-dark test, marble burying, social chamber, social partition, conditioned fear, novel object recognition, and Morris water maze. RESULTS The early-life seizure group showed consistent increases in anxiety in the open field test (p < 0.05), elevated plus maze (p < 0.05), and light-dark task (p < 0.01). The seizure group showed significant (p < 0.01) impairment in the Morris water maze. There were no differences observed in marble burying, social partition, social chamber, novel object recognition, or delay fear conditioning tasks. CONCLUSIONS These results demonstrate that a single insult of status epilepticus during the neonatal period is sufficient to cause specific, long-term impairments in anxiety and spatial learning.
Collapse
Affiliation(s)
- Gregory Smith
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Nowrin Ahmed
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Erin Arbuckle
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Joaquin N. Lugo
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
26
|
Peripheral Inflammatory Markers Contributing to Comorbidities in Autism. Behav Sci (Basel) 2016; 6:bs6040029. [PMID: 27983615 PMCID: PMC5197942 DOI: 10.3390/bs6040029] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
This study evaluates the contribution of peripheral biomarkers to comorbidities and clinical findings in autism. Seventeen autistic children and age-matched typically developing (AMTD), between three to nine years old were evaluated. The diagnostic followed the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DMS-IV) and the Childhood Autism Rating Scale (CARS) was applied to classify the severity. Cytokine profile was evaluated in plasma using a sandwich type ELISA. Paraclinical events included electroencephalography (EEG) record. Statistical analysis was done to explore significant differences in cytokine profile between autism and AMTD groups and respect clinical and paraclinical parameters. Significant differences were found to IL-1β, IL-6, IL-17, IL-12p40, and IL-12p70 cytokines in individuals with autism compared with AMTD (p < 0.05). All autistic patients showed interictalepileptiform activity at EEG, however, only 37.5% suffered epilepsy. There was not a regional focalization of the abnormalities that were detectable with EEG in autistic patients with history of epilepsy. A higher IL-6 level was observed in patients without history of epilepsy with interictalepileptiform activity in the frontal brain region, p < 0.05. In conclusion, peripheral inflammatory markers might be useful as potential biomarkers to predict comorbidities in autism as well as reinforce and aid informed decision-making related to EEG findings in children with Autism spectrum disorders (ASD).
Collapse
|
27
|
Webster R, Cho MT, Retterer K, Millan F, Nowak C, Douglas J, Ahmad A, Raymond GV, Johnson MR, Pujol A, Begtrup A, McKnight D, Devinsky O, Chung WK. De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females. Clin Genet 2016; 91:756-763. [PMID: 27568816 DOI: 10.1111/cge.12854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Intellectual disability (ID) affects about 3% of the population and has a male gender bias. Of at least 700 genes currently linked to ID, more than 100 have been identified on the X chromosome, including KIAA2022. KIAA2022 is located on Xq13.3 and is expressed in the developing brain. The protein product of KIAA2022, X‐linked Intellectual Disability Protein Related to Neurite Extension (XPN), is developmentally regulated and is involved in neuronal migration and cell adhesion. The clinical manifestations of loss‐of‐function KIAA2022 mutations have been described previously in 15 males, born from unaffected carrier mothers, but few females. Using whole‐exome sequencing, we identified a cohort of five unrelated female patients with de novo probably gene damaging variants in KIAA2022 and core phenotypic features of ID, developmental delay, epilepsy refractory to treatment, and impaired language, of similar severity as reported for male counterparts. This study supports KIAA2022 as a novel cause of X‐linked dominant ID, and broadens the phenotype for KIAA2022 mutations.
Collapse
Affiliation(s)
- R Webster
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - M T Cho
- GeneDx, Gaithersburg, MD, USA
| | | | | | - C Nowak
- Boston Children's Hospital, Boston, MA, USA
| | - J Douglas
- Boston Children's Hospital, Boston, MA, USA
| | - A Ahmad
- University of Michigan, Ann Arbor, MI, USA
| | - G V Raymond
- Department of Neurology and Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - M R Johnson
- Department of Neurology and Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - A Pujol
- Neurometabolic Diseases Laboratory, ICREA/IDIBELL and CIBERER U759, Barcelona, Spain
| | | | | | - O Devinsky
- New York University School of Medicine, New York, NY, USA
| | - W K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Mullins C, Fishell G, Tsien RW. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 2016; 89:1131-1156. [PMID: 26985722 DOI: 10.1016/j.neuron.2016.02.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying autism spectrum disorders (ASDs) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry, and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops and provide detailed commentary for exemplar genes within each module.
Collapse
Affiliation(s)
- Caitlin Mullins
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
29
|
Villa C, Combi R. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci 2016; 10:81. [PMID: 27064559 PMCID: PMC4811893 DOI: 10.3389/fncel.2016.00081] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| |
Collapse
|
30
|
Johnson NL, Burkett K, Reinhold J, Bultas MW. Translating Research to Practice for Children With Autism Spectrum Disorder: Part I: Definition, Associated Behaviors, Prevalence, Diagnostic Process, and Interventions. J Pediatr Health Care 2016; 30:15-26. [PMID: 26530271 DOI: 10.1016/j.pedhc.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The number of children with autism spectrum disorder (ASD) is rising, along with the potential for challenging behaviors during health care encounters. METHOD We present an overview of the emerging science related to ASD diagnosis and interventions for children with ASD. RESULTS Emerging science on ASD reveals common associated challenging behaviors, increasing prevalence, emphasis on early diagnosis at 18 to 24 months of age, changes in the diagnostic process with criteria from the Diagnostic and Statistical Manual of Mental Disorders, 5th edition, and interventions with medication, education, and behavior management. DISCUSSION Family and health care provider preparation strategies facilitate care of children with ASD and their families. Early diagnosis at 18 to 24 months of age and evidence-based interventions contribute to best outcomes for children and families. Health care providers must be aware of the state of the science for diagnosis and best practices to provide family-centered care for this growing population.
Collapse
|
31
|
Valvo G, Baldini S, Retico A, Rossi G, Tancredi R, Ferrari AR, Calderoni S, Apicella F, Muratori F, Santorelli FM, Sicca F. Temporal lobe connects regression and macrocephaly to autism spectrum disorders. Eur Child Adolesc Psychiatry 2016; 25. [PMID: 26224585 PMCID: PMC4820486 DOI: 10.1007/s00787-015-0746-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interictal electroencephalogram (EEG) abnormalities are frequently associated with autism spectrum disorders (ASD), although their relationship with the clinical features of ASD, particularly the regressive onset, remains controversial. The aim of this study was to investigate whether the characteristics of interictal EEG abnormalities might help to distinguish and predict definite phenotypes within the heterogeneity of ASD. We reviewed the awake and sleep interictal EEGs of 220 individuals with idiopathic ASD, either with or without a history of seizures. EEG findings were analyzed with respect to a set of clinical variables to explore significant associations. A brain morphometry study was also carried out on a subgroup of patients. EEG abnormalities were seen in 154/220 individuals (70%) and were mostly focal (p < 0.01) with an anterior localization (p < 0.001). They were detected more frequently during sleep (p < 0.01), and were associated with a regressive onset of ASD (p < 0.05), particularly in individuals with focal temporal localization (p < 0.05). This association was also stronger in regressive patients with concurrent macrocephaly, together with a relative volumetric reduction of the right temporal cortex (p < 0.05). Indeed, concurrence of temporal EEG abnormalities, regression and macrocephaly might possibly define a distinct endophenotype of ASD. EEG-based endophenotypes could be useful to untangle the complexity of ASD, helping to establish anatomic or pathophysiologic subtypes of the disorder.
Collapse
Affiliation(s)
- Giulia Valvo
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Sara Baldini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | | | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Fabio Apicella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Filippo Maria Santorelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2 - Calambrone, 56128, Pisa, Italy.
| |
Collapse
|
32
|
Blackmon K, Ben-Avi E, Wang X, Pardoe HR, Di Martino A, Halgren E, Devinsky O, Thesen T, Kuzniecky R. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder. NEUROIMAGE-CLINICAL 2015; 10:36-45. [PMID: 26693400 PMCID: PMC4660377 DOI: 10.1016/j.nicl.2015.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD) than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC). Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE) open-access database, were analyzed to compare groups on (1) blinded review of high-resolution T1-weighted research sequences; and (2) quantitative measurement of white matter hypointensity (WMH) volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC), also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly. Periventricular white matter hypointensity (WMH) volume is elevated in autism. ASD-associated WMH volume elevations were observed in independent samples. WMH volume does not change with age in children/young adults. Periventricular WMH volume is associated with restricted repetitive behavior.
Collapse
Affiliation(s)
- Karen Blackmon
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Emma Ben-Avi
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA ; Department of Psychology, New York University, New York, NY 10003, USA
| | - Xiuyuan Wang
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Heath R Pardoe
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Adriana Di Martino
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - Eric Halgren
- Department of Radiology, University of California at San Diego, La Jolla, CA 92069, USA ; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92069, USA
| | - Orrin Devinsky
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Thesen
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA ; Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ruben Kuzniecky
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
33
|
Stafstrom CE, Benke TA. Autism and Epilepsy: Exploring the Relationship Using Experimental Models. Epilepsy Curr 2015; 15:206-10. [PMID: 26316869 PMCID: PMC4532234 DOI: 10.5698/1535-7511-15.4.206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common co-occurrence of autism and epilepsy suggests that certain neurobiological mechanisms are shared between these disorders. In particular, the profusion of novel genetic mutations being discovered in autism and epilepsy points to abnormalities in synapse formation and function that alter the balance between neuronal excitation and inhibition. Animal models can be informative in sorting out the medical and behavioral complexities in autism and epilepsy and the relationship between them. As mechanistic information accrues, it is anticipated that mutation- and pathway-specific targeted treatments can be developed.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tim A. Benke
- Division of Pediatric Neurology, University of Colorado, School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
34
|
An urgent need for experimental animal model of autism in drug development. Ann Neurosci 2015; 22:44-9. [PMID: 26124551 PMCID: PMC4410529 DOI: 10.5214/ans.0972.7531.220210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Construct, face and predictive validities are necessary for any disease model. Although rodent models are used to investigate the neurobiology of autism, however, till date there is no such ideal animal model which can fulfill all the above said validities. Available drug therapy to treat autism is very limited and less effective. In this review, we summarize the work done with rodent models of autism and highlight different validities. We found that, very few studies have studied all the validities in a single study and none of the study fulfilled all the validities. We also reviewed the drugs used in the treatment of autism. Here we propose the limitations of available animal models. We also propose the urgent need of additional models to fulfill all the validities and to understand autism in a better way.
Collapse
|
35
|
Bernard PB, Castano AM, Beitzel CS, Carlson VB, Benke TA. Behavioral changes following a single episode of early-life seizures support the latent development of an autistic phenotype. Epilepsy Behav 2015; 44:78-85. [PMID: 25659043 PMCID: PMC4405461 DOI: 10.1016/j.yebeh.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
Abstract
We probed the developmental and behavioral consequences of a single episode of kainic acid-induced early-life seizures (KA-ELS) in the rat on postnatal day 7. Correlates of developmental trajectory were not altered, demonstrating that long-term consequences following KA-ELS are not initiated by secondary causes, such as malnourishment or alterations in maternal care. We report reduced marble burying in adult rats, suggestive of restricted interests, a trait common to experimental and clinical autism. We did not detect increased repetitive grooming during habituated cage behavior. However, we did detect reduced grooming in adult KA-ELS rats in the presence of an unfamiliar rat, supporting altered social anxiety following KA-ELS. Reanalysis of a social approach task further indicated abnormal social interactions. Taken together with previous physiological and behavioral data, these data support the hypothesis that KA-ELS lead to a latent autistic phenotype in adult rats not attributable to other early alterations in development.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Anna M Castano
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Christy S Beitzel
- Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA
| | - Vivian B Carlson
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, USA; Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA; Department of Neurology, University of Colorado, School of Medicine, USA; Department of Pharmacology, University of Colorado, School of Medicine, USA; Department of Otolaryngology, University of Colorado, School of Medicine, USA.
| |
Collapse
|
36
|
Braida D, Guerini FR, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R, Fornasari D, Chiappedi M, Ghezzo A, Clerici M, Matteoli M, Sala M. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 2015; 5:e500. [PMID: 25629685 PMCID: PMC4312830 DOI: 10.1038/tp.2014.136] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25(+/-) adolescent mice (SNAP-25(+/+)) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25(+/-) hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione IRCCS Don Gnocchi, Milan, Italy
| | | | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione Fratelli Confalonieri, Milan, Italy
| | | | - S De Astis
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - L Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - R Benfante
- CNR—Neuroscience Institute, Milan, Italy
| | - D Fornasari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy
| | - M Chiappedi
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
| | - A Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy,Associazione Nazionale Famiglie di Persone con Disabilitá Affettiva e/o Relazionale (ANFFAS), Macerata, Italy
| | - M Clerici
- Fondazione IRCCS Don Gnocchi, Milan, Italy,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M Matteoli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Humanitas Clinical and Research Center, Rozzano, Italy
| | - M Sala
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milan 20129, Italy. E-mail:
| |
Collapse
|
37
|
Busch RM, Najm I, Hermann BP, Eng C. Genetics of cognition in epilepsy. Epilepsy Behav 2014; 41:297-306. [PMID: 24973143 PMCID: PMC4268334 DOI: 10.1016/j.yebeh.2014.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 01/19/2023]
Abstract
With the completion of the Human Genome Project and the advent of more advanced sequencing platforms capable of high throughput genotyping at reduced cost, research on the genetics/genomics of cognition has expanded rapidly over the past several decades. This has been facilitated even further by global consortia including HapMap, 1000 Genomes Project, ENCODE, and others, which have made information regarding genetic variation and genomic functional elements readily available to all researchers. Thus, the goal of this Targeted Review is not to provide an exhaustive review of the existing literature on the role of genetic factors in cognition. Rather, we will highlight some of the most consistent findings in this field, review the research in epilepsy to date, and provide a background within which to set forth unique opportunities epilepsy may provide to further elucidate the role of genetics in cognition.
Collapse
Affiliation(s)
- Robyn M Busch
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Psychiatry & Psychology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce P Hermann
- Charles Matthew Neuropsychology Section, Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
38
|
Ran X, Li J, Shao Q, Chen H, Lin Z, Sun ZS, Wu J. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. Nucleic Acids Res 2014; 43:D893-9. [PMID: 25324312 PMCID: PMC4384015 DOI: 10.1093/nar/gku943] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5–6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy.
Collapse
Affiliation(s)
- Xia Ran
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinchen Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qianzhi Shao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiqian Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China Beijing Institutes of Life Science, Chinese Academy of Science, Beijing 100101, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China Beijing Institutes of Life Science, Chinese Academy of Science, Beijing 100101, China
| |
Collapse
|
39
|
Ohmori I, Kawakami N, Liu S, Wang H, Miyazaki I, Asanuma M, Michiue H, Matsui H, Mashimo T, Ouchida M. Methylphenidate improves learning impairments and hyperthermia-induced seizures caused by an Scn1a mutation. Epilepsia 2014; 55:1558-67. [PMID: 25154505 DOI: 10.1111/epi.12750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Developmental disorders including cognitive deficit, hyperkinetic disorder, and autistic behaviors are frequently comorbid in epileptic patients with SCN1A mutations. However, the mechanisms underlying these developmental disorders are poorly understood and treatments are currently unavailable. Using a rodent model with an Scn1a mutation, we aimed to elucidate the pathophysiologic basis and potential therapeutic treatments for developmental disorders stemming from Scn1a mutations. METHODS We conducted behavioral analyses on rats with the N1417H-Scn1a mutation. With high-performance liquid chromatography, we measured dopamine and its metabolites in the frontal cortex, striatum, nucleus accumbens, and midbrain. Methylphenidate was administered intraperitoneally to examine its effects on developmental disorder-like behaviors and hyperthermia-induced seizures. RESULTS Behavioral studies revealed that Scn1a-mutant rats had repetitive behavior, hyperactivity, anxiety-like behavior, spatial learning impairments, and motor imbalance. Dopamine levels in the striatum and nucleus accumbens in Scn1a-mutant rats were significantly lower than those in wild-type rats. In Scn1a-mutant rats, methylphenidate, by increasing dopamine levels in the synaptic cleft, improved hyperactivity, anxiety-like behavior, and spatial learning impairments. Surprisingly, methylphenidate also strongly suppressed hyperthermia-induced seizures. SIGNIFICANCE Dysfunction of the mesolimbic dopamine reward pathway may contribute to the hyperactivity and learning impairments in Scn1a-mutant rats. Methylphenidate was effective for treating hyperactivity, learning impairments, and hyperthermia-induced seizures. We propose that methylphenidate treatment may ameliorate not only developmental disorders but also epileptic seizures in patients with SCN1A mutations.
Collapse
Affiliation(s)
- Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Medical Ethics, Graduate School and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism. Mol Autism 2014; 5:33. [PMID: 24834316 PMCID: PMC4022412 DOI: 10.1186/2040-2392-5-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023] Open
Abstract
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested.
Collapse
Affiliation(s)
- Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan ; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koji Ohno
- Department of Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Saori Yoshimura
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Hironori Takamura
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kohei Yamada
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Faculty of Contemporary Sociology, Chukyo University, Toyota, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiichi Katayama
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
41
|
Striano P, de Jonghe P, Zara F. Genetic epileptic encephalopathies: is all written into the DNA? Epilepsia 2014; 54 Suppl 8:22-6. [PMID: 24571113 DOI: 10.1111/epi.12419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epileptic encephalopathy is a condition in which epileptic activity, clinical or subclinical, is thought to be responsible for any disturbance of cognition, behavior, or motor control. However, experimental evidence supporting this clinical observation are still poor and the causal relationship between pharmacoresistant seizures and cognitive outcome is controversial. In the past two decades, genetic studies shed new light onto complex mechanisms underlying different severe epileptic conditions associated with intellectual disability and behavioral abnormalities, thereby providing important clues on the relationship between seizures and cognitive outcome. Dravet syndrome is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment, thus well illustrating the concept of epileptic encephalopathy. However, it is difficult to determine the causative role of the underlying sodium channel dysfunction and that of the consequent seizures in influencing cognitive outcome in these children. It is also difficult to demonstrate whether a recognizable profile of cognitive impairment or a definite behavioral phenotype exists. Data from the laboratory and the clinics may provide greater insight into the degree to which epileptic activity may contribute to cognitive impairment in individual syndromes.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, Institute "G. Gaslini", University of Genova, Genoa, Italy
| | | | | |
Collapse
|
42
|
Wilmshurst JM, Berg AT, Lagae L, Newton CR, Cross JH. The challenges and innovations for therapy in children with epilepsy. Nat Rev Neurol 2014; 10:249-60. [PMID: 24709890 DOI: 10.1038/nrneurol.2014.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances have been made in the diagnosis, evaluation and management of children with epilepsy over the past 15 years. There has been a marked increase in genetic diagnoses of a number of key childhood-onset epilepsy syndromes, such as Dravet syndrome, which has been linked to mutations in the SCN1A gene. The reorganization and reclassification of epilepsies, devised by the International League Against Epilepsy, has stimulated specialists to reassess their diagnostic practices; however, many studies have not addressed the global issues in treating children with epilepsy-specifically, the challenges of diagnosis through to optimal, and appropriate, therapeutic management. Also, Class I evidence-based data that are needed as a foundation for the development of treatment guidelines worldwide are lacking. Epilepsy is common, and the impact of this disease crosses age ranges and should be managed at all levels of care from community to quaternary care. In this Review, existing data and new therapeutic management approaches are discussed with the aim of highlighting the incidence of standard practices that may not be based on clinical evidence.
Collapse
Affiliation(s)
- Jo M Wilmshurst
- Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch 7700, South Africa
| | - Anne T Berg
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, USA
| | - Lieven Lagae
- Department of Pediatric Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Charles R Newton
- Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, PO Box 230, Kilifi 80108, Kenya
| | - J Helen Cross
- UCL Institute of Child Health, 4/5 Long Yard, London WC1N 3LU, UK
| |
Collapse
|
43
|
Lo-Castro A, Curatolo P. Epilepsy associated with autism and attention deficit hyperactivity disorder: is there a genetic link? Brain Dev 2014; 36:185-93. [PMID: 23726375 DOI: 10.1016/j.braindev.2013.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/26/2022]
Abstract
Autism Spectrum Disorders (ASDs) and Attention Deficit and Hyperactivity Disorder (ADHD) are the most common comorbid conditions associated with childhood epilepsy. The co-occurrence of an epilepsy/autism phenotype or an epilepsy/ADHD phenotype has a complex and heterogeneous pathogenesis, resulting from several altered neurobiological mechanisms involved in early brain development, and influencing synaptic plasticity, neurotransmission and functional connectivity. Rare clinically relevant chromosomal aberrations, in addition to environmental factors, may confer an increased risk for ASDs/ADHD comorbid with epilepsy. The majority of the candidate genes are involved in synaptic formation/remodeling/maintenance (NRX1, CNTN4, DCLK2, CNTNAP2, TRIM32, ASTN2, CTNTN5, SYN1), neurotransmission (SYNGAP1, GABRG1, CHRNA7), or DNA methylation/chromatin remodeling (MBD5). Two genetic disorders, such as Tuberous sclerosis and Fragile X syndrome may serve as models for understanding the common pathogenic pathways leading to ASDs and ADHD comorbidities in children with epilepsy, offering the potential for new biologically focused treatment options.
Collapse
Affiliation(s)
- Adriana Lo-Castro
- Neuroscience Department, Pediatric Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy.
| | - Paolo Curatolo
- Neuroscience Department, Pediatric Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy
| |
Collapse
|
44
|
Yoo J, Bakes J, Bradley C, Collingridge GL, Kaang BK. Shank mutant mice as an animal model of autism. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130143. [PMID: 24298145 PMCID: PMC3843875 DOI: 10.1098/rstb.2013.0143] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review, we focus on the role of the Shank family of proteins in autism. In recent years, autism research has been flourishing. With genetic, molecular, imaging and electrophysiological studies being supported by behavioural studies using animal models, there is real hope that we may soon understand the fundamental pathology of autism. There is also genuine potential to develop a molecular-level pharmacological treatment that may be able to deal with the most severe symptoms of autism, and clinical trials are already underway. The Shank family of proteins has been strongly implicated as a contributing factor in autism in certain individuals and sits at the core of the alleged autistic pathway. Here, we analyse studies that relate Shank to autism and discuss what light this sheds on the possible causes of autism.
Collapse
Affiliation(s)
- Juyoun Yoo
- Department of Biological Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Joseph Bakes
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Clarrisa Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
- Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| |
Collapse
|
45
|
Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 2014; 133:e54-63. [PMID: 24323995 PMCID: PMC3876178 DOI: 10.1542/peds.2013-0819] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The distinct trajectories of patients with autism spectrum disorders (ASDs) have not been extensively studied, particularly regarding clinical manifestations beyond the neurobehavioral criteria from the Diagnostic and Statistical Manual of Mental Disorders. The objective of this study was to investigate the patterns of co-occurrence of medical comorbidities in ASDs. METHODS International Classification of Diseases, Ninth Revision codes from patients aged at least 15 years and a diagnosis of ASD were obtained from electronic medical records. These codes were aggregated by using phenotype-wide association studies categories and processed into 1350-dimensional vectors describing the counts of the most common categories in 6-month blocks between the ages of 0 to 15. Hierarchical clustering was used to identify subgroups with distinct courses. RESULTS Four subgroups were identified. The first was characterized by seizures (n = 120, subgroup prevalence 77.5%). The second (n = 197) was characterized by multisystem disorders including gastrointestinal disorders (prevalence 24.3%) and auditory disorders and infections (prevalence 87.8%), and the third was characterized by psychiatric disorders (n = 212, prevalence 33.0%). The last group (n = 4316) could not be further resolved. The prevalence of psychiatric disorders was uncorrelated with seizure activity (P = .17), but a significant correlation existed between gastrointestinal disorders and seizures (P < .001). The correlation results were replicated by using a second sample of 496 individuals from a different geographic region. CONCLUSIONS Three distinct patterns of medical trajectories were identified by unsupervised clustering of electronic health record diagnoses. These may point to distinct etiologies with different genetic and environmental contributions. Additional clinical and molecular characterizations will be required to further delineate these subgroups.
Collapse
Affiliation(s)
- Finale Doshi-Velez
- Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115.
| | - Yaorong Ge
- Center for Biomedical Informatics, Wake Forest University, Winston-Salem, North Carolina
| | - Isaac Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
46
|
High-functioning autism spectrum disorder as a basic disorder in adult psychiatry and psychotherapy: psychopathological presentation, clinical relevance and therapeutic concepts. Eur Arch Psychiatry Clin Neurosci 2013; 263 Suppl 2:S189-96. [PMID: 24105433 DOI: 10.1007/s00406-013-0459-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in social cognition and competence, communication, highly circumscribed interests and a strong desire for routines. Besides, there are specific abnormalities in perception and language. Typical symptoms are already present in early childhood. Traditionally autism has been regarded as a severe form of neurodevelopmental disorder which goes along with overtly abnormal language, learning difficulties and low IQ in the majority of cases. However, over the last decades, it has become clear that there are also many patients with high-functioning variants of ASD. These are patients with normal language at a superficial level of description and normal and sometimes above average intelligence. In high-functioning variants of the disease, they may run unrecognized until late in adult life. High-functioning ASD is associated with a very high prevalence of comorbid classical psychiatric disorders such as depression, anxiety, ADHD, tics, psychotic symptoms or emotionally unstable syndromes. In many such cases, there is a causal relationship between ASD and the comorbid psychiatric conditions in that the specific ASD symptoms result in chronic conflicts, misunderstandings and failure in private and vocational relationships. These problems in turn often lead to depression, anxiety and sometimes psychosis-like stress reactions. In this constellation, ASD has to be regarded as a basic disorder with causal relevance for secondary psychiatric syndromes. In this paper, we summarize the classical presentation of high-functioning ASD in adult psychiatry and psychotherapy and suggest a nosological model to classify different ASD conditions instead. To conclude, we outline first treatment concepts in out- and in-patient settings.
Collapse
|
47
|
Viscidi EW, Johnson AL, Spence SJ, Buka SL, Morrow EM, Triche EW. The association between epilepsy and autism symptoms and maladaptive behaviors in children with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2013; 18:996-1006. [PMID: 24165273 DOI: 10.1177/1362361313508027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epilepsy is common in children with autism spectrum disorder (ASD) but little is known about how seizures impact the autism phenotype. The association between epilepsy and autism symptoms and associated maladaptive behaviors was examined in 2,645 children with ASD, of whom 139 had epilepsy, from the Simons Simplex Collection. Children with ASD and epilepsy had significantly more autism symptoms and maladaptive behaviors than children without epilepsy. However, after adjusting for IQ, only hyperactivity symptoms remained significantly increased (13% higher) in the epilepsy group. Among children with ASD without co-occurring intellectual disability, children with epilepsy had significantly more irritability (20% higher) and hyperactivity (24% higher) symptoms. This is the largest study to date comparing the autism phenotype in children with ASD with and without epilepsy. Children with ASD and epilepsy showed greater impairment than children without epilepsy, which was mostly explained by the lower IQ of the epilepsy group. These findings have important clinical implications for patients with ASD.
Collapse
Affiliation(s)
| | - Ashley L Johnson
- Emma Pendleton Bradley Hospital, USA Brown University Medical School, USA
| | | | | | - Eric M Morrow
- Brown University School of Public Health, USA Emma Pendleton Bradley Hospital, USA Brown University Medical School, USA
| | | |
Collapse
|
48
|
Tuchman R, Hirtz D, Mamounas LA. NINDS epilepsy and autism spectrum disorders workshop report. Neurology 2013; 81:1630-6. [PMID: 24089385 DOI: 10.1212/wnl.0b013e3182a9f482] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The association of epilepsy and autism spectrum disorders (ASD), although well-recognized, is poorly understood. The purpose of this report is to summarize the discussion of a workshop sponsored by the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Human Development, Autism Speaks, and Citizens United for Research in Epilepsy, that took place in Bethesda, Maryland, on May 29 and 30, 2012. The goals of this workshop were to highlight the clinical and biological relationships between ASD and epilepsy, to determine both short- and long-term goals that address research and treatment conundrums in individuals with both ASD and epilepsy, and to identify resources that can further both clinical and basic research. Topics discussed included epidemiology, genetics, environmental factors, common mechanisms, neuroimaging, neuropathology, neurophysiology, treatment, and research gaps and challenges in this unique population.
Collapse
Affiliation(s)
- Roberto Tuchman
- From the Department of Neurology (R.T.), Miami Children's Hospital Dan Marino Center, Weston, FL; and National Institute of Neurological Disorders and Stroke (D.H., L.A.M.), National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|
49
|
Valvo G, Baldini S, Brachini F, Apicella F, Cosenza A, Ferrari AR, Guerrini R, Muratori F, Romano MF, Santorelli FM, Tancredi R, Sicca F. Somatic overgrowth predisposes to seizures in autism spectrum disorders. PLoS One 2013; 8:e75015. [PMID: 24086423 PMCID: PMC3781047 DOI: 10.1371/journal.pone.0075015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023] Open
Abstract
Background Comorbidity of Autism Spectrum Disorders with seizures or abnormal EEG (Autism-Epilepsy Phenotype) suggests shared pathomechanisms, and might be a starting point to identify distinct populations within the clinical complexity of the autistic spectrum. In this study, we tried to assess whether distinct subgroups, having distinctive clinical hallmarks, emerge from this comorbid condition. Methods Two-hundred and six individuals with idiopathic Autism Spectrum Disorders were subgrouped into three experimental classes depending on the presence of seizures and EEG abnormalities. Neurobehavioral, electroclinical and auxological parameters were investigated to identify differences among groups and features which increase the risk of seizures. Our statistical analyses used ANOVA, post-hoc multiple comparisons, and the Chi-squared test to analyze continuous and categorical variables. A correspondence analysis was also used to decompose significant Chi-squared and reduce variables dimensions. Results The high percentage of children with seizures (28.2% of our whole cohort) and EEG abnormalities (64.1%) confirmed that the prevalence of epilepsy in Autism Spectrum Disorders exceeds that of the general population. Seizures were associated with severe intellectual disability, and not with autism severity. Interestingly, tall stature (without macrocephaly) was significantly associated with EEG abnormalities or later onset seizures. However, isolated macrocephaly was equally distributed among groups or associated with early onset seizures when accompanied by tall stature. Conclusions Tall stature seems to be a phenotypic “biomarker” of susceptibility to EEG abnormalities or late epilepsy in Autism Spectrum Disorders and, when concurring with macrocephaly, predisposes to early onset seizures. Growth pattern might act as an endophenotypic marker in Autism-Epilepsy comorbidity, delineating distinct pathophysiological subtypes and addressing personalized diagnostic work-up and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Valvo
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Sara Baldini
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Francesca Brachini
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Fabio Apicella
- Developmental Psychiatry Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Angela Cosenza
- Developmental Psychiatry Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Anna Rita Ferrari
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Renzo Guerrini
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- Child Neurology Unit, A. Meyer Pediatric Hospital, University of Florence, Florence, Italy
| | - Filippo Muratori
- Developmental Psychiatry Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | | | - Raffaella Tancredi
- Developmental Psychiatry Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Federico Sicca
- Epilepsy, Neurophysiology and Neurogenetics Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- * E-mail:
| |
Collapse
|
50
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|