1
|
Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods 2019; 326:108368. [DOI: 10.1016/j.jneumeth.2019.108368] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
|
2
|
Williams AR, Kim ES, Lattal KM. Behavioral and immunohistochemical characterization of rapid reconditioning following extinction of contextual fear. Learn Mem 2019; 26:1-16. [PMID: 31527183 PMCID: PMC6749931 DOI: 10.1101/lm.048439.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023]
Abstract
A fundamental property of extinction is that the behavior that is suppressed during extinction can be unmasked through a number of postextinction procedures. Of the commonly studied unmasking procedures (spontaneous recovery, reinstatement, contextual renewal, and rapid reacquisition), rapid reacquisition is the only approach that allows a direct comparison between the impact of a conditioning trial before or after extinction. Thus, it provides an opportunity to evaluate the ways in which extinction changes a subsequent learning experience. In five experiments, we investigate the behavioral and neurobiological mechanisms of postextinction reconditioning. We show that rapid reconditioning of unsignaled contextual fear after extinction in male Long-Evans rats is associative and not affected by the number or duration of extinction sessions that we examined. We then evaluate c-Fos expression and histone acetylation (H4K8) in the hippocampus, amygdala, prefrontal cortex, and bed nucleus of the stria terminalis. We find that in general, initial conditioning has a stronger impact on c-Fos expression and acetylation than does reconditioning after extinction. We discuss implications of these results for theories of extinction and the neurobiology of conditioning and extinction.
Collapse
Affiliation(s)
- Amy R Williams
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Earnest S Kim
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
3
|
Marshall HJ, Pezze MA, Fone KCF, Cassaday HJ. Age-related differences in appetitive trace conditioning and novel object recognition procedures. Neurobiol Learn Mem 2019; 164:107041. [PMID: 31351120 PMCID: PMC6857625 DOI: 10.1016/j.nlm.2019.107041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 11/25/2022]
Abstract
Longitudinal study of middle age in the rat with matched younger control cohort. Appetitive trace conditioning and novel object recognition tests of working memory. Transient between-groups working memory impairments aged 12 compared with 2 months. Object exploration reduced with age but working memory recovered. Object exploration and ITI nosepoking showed some correlation with 5-HIAA/5-HT.
Appetitive trace conditioning (TC) was examined over 6 months in younger-adult (2–8 months) and middle-aged (12–18 months) male Wistar RccHan rats, to test for early age-related impairment in working memory. Novel object recognition (NOR) was included as a comparison task, to provide a positive control in the event that the expected impairment in TC was not demonstrated. The results showed that TC improved at both ages at the 2 s but not at the 10 s trace interval. There was, however, evidence for reduced improvement from one day to the next in the middle-aged cohort tested with the 2 s trace conditioned stimulus. Moreover, within the 10 s trace, responding progressively distributed later in the trace interval, in the younger-adult but not the middle-aged cohort. Middle-aged rats showed NOR discriminative impairment at a 24 h but not at a 10 min retention interval. Object exploration was overall reduced in middle-aged rats and further reduced longitudinally. At the end of the study, assessing neurochemistry by HPLC-ED showed reduced 5-HIAA/5-HT in the dorsal striatum of the middle-aged rats and some correlations between striatal 5-HIAA/5-HT and activity parameters. Overall the results suggest that, taken in isolation, age-related impairments may be overcome by experience. This recovery in performance was seen despite the drop in activity levels in older animals, which might be expected to contribute to cognitive decline.
Collapse
Affiliation(s)
- Hayley J Marshall
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Marie A Pezze
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Kevin C F Fone
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Helen J Cassaday
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom.
| |
Collapse
|
4
|
Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 2018; 12:79. [PMID: 29755331 PMCID: PMC5932360 DOI: 10.3389/fnbeh.2018.00079] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
Many psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain including executive functions, emotional control and memory. However, memory deficits have been in many cases undervalued compared with other characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1 and arc are selectively and promptly upregulated in learning and memory among neuronal subpopulations in regions associated with these processes. Changes in expression in these genes have been observed in recognition, working and fear related memories across the brain. Despite the enormous amount of data supporting changes in their expression during learning and memory and the importance of those cognitive processes in psychiatric conditions, there are very few studies analyzing the direct implication of the IEGs in mental illnesses. In this review, we discuss the role of some of the most relevant IEGs in relation with memory processes affected in psychiatric conditions.
Collapse
Affiliation(s)
- Francisco T Gallo
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juan F Morici
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos (UBA), Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
5
|
Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, Montani C, Mossa A, Vezzoli E, Ippolito G, Zapata J, Barrera I, Ryazanov AG, Cook J, Poe M, Stephen MR, Kopanitsa M, Benfante R, Rusconi F, Braida D, Francolini M, Proud CG, Valtorta F, Passafaro M, Sala M, Bachi A, Verpelli C, Rosenblum K, Sala C. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cereb Cortex 2017; 27:2226-2248. [PMID: 27005990 PMCID: PMC5963824 DOI: 10.1093/cercor/bhw075] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.
Collapse
Affiliation(s)
| | - Elham Taha
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Luca Murru
- CNR Neuroscience Institute, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | - Elena Vezzoli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | - Iliana Barrera
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Alexey G. Ryazanov
- The Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Maksym Kopanitsa
- Synome, Babraham Research Campus, Cambridge CB22 3AT, UK
- Charles River Discovery Research Services, 70210 Kuopio, Finland
| | - Roberta Benfante
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Maura Francolini
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Christopher G. Proud
- University of Southampton, Centre for Biological Sciences, Southampton SO17 1BJ, UK
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, Australia
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Kobi Rosenblum
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
7
|
Pezze MA, Marshall HJ, Cassaday HJ. Dopaminergic modulation of appetitive trace conditioning: the role of D1 receptors in medial prefrontal cortex. Psychopharmacology (Berl) 2015; 232:2669-80. [PMID: 25820982 PMCID: PMC4502294 DOI: 10.1007/s00213-015-3903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/23/2015] [Indexed: 11/06/2022]
Abstract
RATIONALE Trace conditioning may provide a behavioural model suitable to examine the maintenance of 'on line' information and its underlying neural substrates. OBJECTIVES Experiment la was run to establish trace conditioning in a shortened procedure which would be suitable to test the effects of dopamine (DA) D1 receptor agents administered by microinjection directly into the brain. Experiment lb examined the effects of the DA D1 agonist SKF81297 and the DA D1 antagonist SCH23390 following systemic administration in pre-trained animals. Experiment 2 went on to test the effects of systemically administered SKF81297 on the acquisition of trace conditioning. In experiment 3, SKF81297 was administered directly in prelimbic (PL) and infralimbic (IL) sub-regions of medial prefrontal cortex (mPFC) to compare the role of different mPFC sub-regions. RESULTS Whilst treatment with SCH23390 impaired motor responding and/or motivation, SKF81297 had relatively little effect in the pre-trained animals tested in experiment 1b. However, systemic SKF81297 depressed the acquisition function at the 2-s trace interval in experiment 2. Similarly, in experiment 3, SKF81297 (0.1 μg in 1.0 μl) microinjected into either PL or IL mPFC impaired appetitive conditioning at the 2-s trace interval. CONCLUSIONS Impaired trace conditioning under SKF81297 is likely to be mediated in part (but not exclusively) within the IL and PL mPFC sub-regions. The finding that trace conditioning was impaired rather than enhanced under SKF81297 provides further evidence for the inverse U-function which has been suggested to be characteristic of mPFC DA function.
Collapse
Affiliation(s)
- M. A. Pezze
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - H. J. Marshall
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - H. J. Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
8
|
Pierson JL, Pullins SE, Quinn JJ. Dorsal hippocampus infusions of CNQX into the dentate gyrus disrupt expression of trace fear conditioning. Hippocampus 2015; 25:779-85. [DOI: 10.1002/hipo.22413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Jamie L. Pierson
- Department of Psychology and Center for Neuroscience & Behavior; Miami University; Oxford Ohio
| | - Shane E. Pullins
- Department of Psychology and Center for Neuroscience & Behavior; Miami University; Oxford Ohio
| | - Jennifer J. Quinn
- Department of Psychology and Center for Neuroscience & Behavior; Miami University; Oxford Ohio
| |
Collapse
|
9
|
Differential contribution of hippocampal subfields to components of associative taste learning. J Neurosci 2014; 34:11007-15. [PMID: 25122900 DOI: 10.1523/jneurosci.0956-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to associate the consumption of a taste with its positive or negative consequences is fundamental to survival and influences the behavior of species ranging from invertebrate to human. As a result, for both research and clinical reasons, there has been a great effort to understand the neuronal circuits, as well as the cellular and molecular mechanisms, underlying taste learning. From a neuroanatomical perspective, the contributions of the cortex and amygdala are well documented; however, the literature is riddled with conflicting results regarding the role of the hippocampus in different facets of taste learning. Here, we use conditional genetics in mice to block NMDA receptor-dependent plasticity individually in each of the three major hippocampal subfields, CA1, CA3, and the dentate gyrus, via deletion of the NR1 subunit. Across the CA1, CA3, and dentate gyrus NR1 knock-out lines, we uncover a pattern of differential deficits that establish the dispensability of hippocampal plasticity in incidental taste learning, the requirement of CA1 plasticity for associative taste learning, and a specific requirement for plasticity in the dentate gyrus when there is a long temporal gap between the taste and its outcome. Together, these data establish that the hippocampus is involved in associative taste learning and suggest an episodic component to this type of memory.
Collapse
|
10
|
Raybuck JD, Lattal KM. Bridging the interval: theory and neurobiology of trace conditioning. Behav Processes 2014; 101:103-11. [PMID: 24036411 PMCID: PMC3943893 DOI: 10.1016/j.beproc.2013.08.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
An early finding in the behavioral analysis of learning was that conditioned responding weakens as the conditioned stimulus (CS) and unconditioned stimulus (US) are separated in time. This "trace" conditioning effect has been the focus of years of research in associative learning. Theoretical accounts of trace conditioning have focused on mechanisms that allow associative learning to occur across long intervals between the CS and US. These accounts have emphasized degraded contingency effects, timing mechanisms, and inhibitory learning. More recently, study of the neurobiology of trace conditioning has shown that even a short interval between the CS and US alters the circuitry recruited for learning. Here, we review some of the theoretical and neurobiological mechanisms underlying trace conditioning with an emphasis on recent studies of trace fear conditioning. Findings across many studies have implications not just for how we think about time and conditioning, but also for how we conceptualize fear conditioning in general, suggesting that circuitry beyond the usual suspects needs to be incorporated into current thinking about fear, learning, and anxiety.
Collapse
Affiliation(s)
- Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
11
|
Almada RC, Albrechet-Souza L, Brandão ML. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats. J Psychopharmacol 2013; 27:1160-8. [PMID: 23535348 DOI: 10.1177/0269881113482840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.
Collapse
Affiliation(s)
- Rafael C Almada
- 1Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
12
|
Fournier NM, Botterill JJ, Marks WN, Guskjolen AJ, Kalynchuk LE. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling. Exp Neurol 2013; 244:96-104. [DOI: 10.1016/j.expneurol.2012.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/17/2012] [Accepted: 11/21/2012] [Indexed: 02/04/2023]
|
13
|
Brzózka MM, Rossner MJ. Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res 2012; 237:348-56. [PMID: 23069005 DOI: 10.1016/j.bbr.2012.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/27/2012] [Accepted: 10/04/2012] [Indexed: 01/23/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor TCF4 was confirmed in the combined analysis of several large genome-wide association studies (GWAS) as one of the rare highly replicated significant schizophrenia (SZ) susceptibility genes in large case-control cohorts. Focused genetic association studies showed that TCF4 influences verbal learning and memory, and modulates sensorimotor gating. Mice overexpressing Tcf4 in the forebrain (Tcf4tg) display cognitive deficits in hippocampus-dependent learning tasks and impairment of prepulse inhibition, a well-established endophenotype of SZ. The spectrum of cognitive deficits in SZ subjects, however, is broad and covers attention, working memory, and anticipation. Collectively, these higher order cognitive processes and the recall of remote memories are thought to depend mainly on prefrontal cortical networks. To further investigate cognitive disturbances in Tcf4tg mice, we employed the trace fear conditioning paradigm that requires attention and critically depends on the anterior cingulate cortex (ACC). We show that Tcf4tg mice display deficits in recent and remote trace fear memory and are impaired at anticipating aversive stimuli. We also assessed mRNA expression of the neuronal activity-regulated gene Fos in the ACC and hippocampus. Upon trace conditioning, Fos expression is reduced in Tcf4tg mice as compared to controls, which parallels cognitive impairments in this learning paradigm. Collectively, these data indicate that the reduced cognitive performance in Tcf4tg mice includes deficits at the level of attention and behavioral anticipation.
Collapse
Affiliation(s)
- Magdalena M Brzózka
- Max-Planck-Institute of Experimental Medicine, Research Group Gene Expression and Signaling, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | | |
Collapse
|
14
|
c-Fos expression reveals aberrant neural network activity during cued fear conditioning in APPswe transgenic mice. Neurobiol Learn Mem 2012; 98:1-11. [DOI: 10.1016/j.nlm.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 01/28/2023]
|
15
|
Brady ML, Allan AM, Caldwell KK. A limited access mouse model of prenatal alcohol exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. Alcohol Clin Exp Res 2011; 36:457-66. [PMID: 21933200 DOI: 10.1111/j.1530-0277.2011.01644.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND It has been estimated that approximately 12% of women consume alcohol at some time during their pregnancy, and as many as 5% of children born in the United States are impacted by prenatal alcohol exposure (PAE). The range of physical, behavioral, emotional, and social dysfunctions that are associated with PAE are collectively termed fetal alcohol spectrum disorder (FASD). METHODS Using a saccharin-sweetened ethanol solution, we developed a limited access model of PAE. C57BL/6J mice were provided access to a solution of either 10% (w/v) ethanol and 0.066% (w/v) saccharin or 0.066% (w/v) saccharin (control) for 4 h/d. After establishing consistent drinking, mice were mated and continued drinking during gestation. Following parturition, solutions were decreased to 0% in a stepwise fashion over a period of 6 days. Characterization of the model included measurements of maternal consumption patterns, blood ethanol levels, litter size, pup weight, maternal care, and the effects of PAE on fear-conditioned and spatial learning, and locomotor activity. RESULTS Mothers had mean daily ethanol intake of 7.17 ± 0.17 g ethanol/kg body weight per day, with average blood ethanol concentrations of 68.5 ± 9.2 mg/dl after 2 hours of drinking and 88.3 ± 11.5 mg/dl after 4 hours of drinking. Food and water consumption, maternal weight gain, litter size, pup weight, pup retrieval times, and time on nest did not differ between the alcohol-exposed and control animals. Compared with control offspring, mice that were exposed to ethanol prenatally displayed no difference in spontaneous locomotor activity but demonstrated learning deficits in 3 hippocampal-dependent tasks: delay fear conditioning, trace fear conditioning, and the delay nonmatch to place radial-arm maze task. CONCLUSIONS These results indicate that this model appropriately mimics the human condition of PAE and will be a useful tool in studying the learning deficits seen in FASD.
Collapse
Affiliation(s)
- Megan L Brady
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
16
|
Albrechet-Souza L, Borelli KG, Almada RC, Brandão ML. Midazolam reduces the selective activation of the rhinal cortex by contextual fear stimuli. Behav Brain Res 2010; 216:631-8. [PMID: 20851717 DOI: 10.1016/j.bbr.2010.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/01/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022]
Abstract
Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations.
Collapse
|
17
|
Gao C, Gill MB, Tronson NC, Guedea AL, Guzmán YF, Huh KH, Corcoran KA, Swanson GT, Radulovic J. Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus 2010; 20:1072-82. [PMID: 19806658 PMCID: PMC2891656 DOI: 10.1002/hipo.20705] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of NMDA receptors (NMDAR) in the hippocampus is essential for the formation of contextual and trace memory. However, the role of individual NMDAR subunits in the molecular mechanisms contributing to these memory processes is not known. Here we demonstrate, using intrahippocampal injection of subunit-selective compounds, that the NR2A-preferring antagonist impaired contextual and trace fear conditioning as well as learning-induced increase of the nuclear protein c-Fos. The NR2B-specific antagonist, on the other hand, selectively blocked trace fear conditioning without affecting c-Fos levels. Studies with cultured primary hippocampal neurons, further showed that synaptic and extrasynaptic NR2A and NR2B differentially regulate the extracellular signal-regulated kinase 1 and 2/mitogen- and stress-activated protein kinase 1 (ERK1/2/MSK1)/c-Fos pathway. Activation of the synaptic population of NMDAR induced cytosolic, cytoskeletal, and perinuclear phosphorylation of ERK1/2 (pERK1/2). The nuclear propagation of pERK1/2 signals, revealed by upregulation of the downstream nuclear targets pMSK1 and c-Fos, was blocked by a preferential NR2A but not by a specific NR2B antagonist. Conversely, activation of total (synaptic and extrasynaptic) NMDAR engaged receptors with NR2B subunits, and resulted in membrane retention of pERK1/2 without inducing pMSK1 and c-Fos. Stimulation of extrasynaptic NMDAR alone was consistently ineffective at activating ERK signaling. The discrete contribution of synaptic and total NR2A- and NR2B-containing NMDAR to nuclear transmission vs. membrane retention of ERK signaling may underlie their specific roles in the formation of contextual and trace fear memory.
Collapse
Affiliation(s)
- Can Gao
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Martin B. Gill
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Natalie C. Tronson
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Yomayra F. Guzmán
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Kyu Hwan Huh
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Kevin A. Corcoran
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| | - Geoffrey T. Swanson
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences and The Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, Chicago, Illinois
| |
Collapse
|
18
|
Mao R, Page DT, Merzlyak I, Kim C, Tecott LH, Janak PH, Rubenstein JLR, Sur M. Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons. J Neurodev Disord 2009; 1:224-36. [PMID: 19816534 PMCID: PMC2758250 DOI: 10.1007/s11689-009-9025-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 06/23/2009] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11689-009-9025-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Mao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Damon T. Page
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Irina Merzlyak
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608 USA
| | - Carol Kim
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158-2822 USA
| | - Patricia H. Janak
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608 USA
- Department of Neurology, University of California, San Francisco, CA 94143 USA
- Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, CA 94143 USA
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
19
|
Raybuck JD, Gould TJ. Nicotine withdrawal-induced deficits in trace fear conditioning in C57BL/6 mice--a role for high-affinity beta2 subunit-containing nicotinic acetylcholine receptors. Eur J Neurosci 2009; 29:377-87. [PMID: 19200240 DOI: 10.1111/j.1460-9568.2008.06580.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotine alters cognitive processes that include working memory and long-term memory. Trace fear conditioning may involve working memory during acquisition while also allowing the assessment of long-term memory. The present study used trace fear conditioning in C57BL/6 mice to investigate the effects of acute nicotine, chronic nicotine and withdrawal of chronic nicotine on processes active during acquisition and recall 24 h later and to examine the nicotinic acetylcholine receptor subtypes (nAChRs) involved in withdrawal deficits in trace fear conditioning. During training, acute nicotine (0.09 mg/kg) enhanced, but chronic nicotine (6.3 mg/kg/day, 13 days) and withdrawal of chronic nicotine (6.3 mg/kg/day, 12 days) had no significant effect on, acquisition of trace conditioning. At recall, acute treatment enhanced conditioning while chronic nicotine had no effect and withdrawal of chronic nicotine resulted in deficits. Antagonist-precipitated withdrawal was used to characterize the nAChRs involved in the withdrawal deficits. The low-affinity nAChR antagonist MLA (1.5, 3 or 9 mg/kg) had no effect on trace fear conditioning, but the high-affinity nAChR antagonist DHbetaE (3 mg/kg) precipitated deficits in trace fear conditioning if administered at training or training and testing, but not if administered at testing alone. The beta2 nAChR subunit is involved in the withdrawal effects as withdrawal of chronic nicotine produced deficits in trace fear conditioning in wildtype but not in beta2-knockout mice. Thus, nicotine alters processes involved in both acquisition and long-term memory of trace fear conditioning, and high-affinity beta2 subunit-containing nAChRs are critically involved in the effects of nicotine withdrawal on trace fear conditioning.
Collapse
Affiliation(s)
- J D Raybuck
- Center for Substance Abuse Research & Department of Psychology, 1701n 13th, Weiss Hall, 657, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
20
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
21
|
Lively S, Brown IR. Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 2008; 107:1335-46. [PMID: 18808451 DOI: 10.1111/j.1471-4159.2008.05696.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Poirier R, Cheval H, Mailhes C, Garel S, Charnay P, Davis S, Laroche S. Distinct functions of egr gene family members in cognitive processes. Front Neurosci 2008; 2:47-55. [PMID: 18982106 PMCID: PMC2570062 DOI: 10.3389/neuro.01.002.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/12/2008] [Indexed: 12/11/2022] Open
Abstract
The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain.
Collapse
Affiliation(s)
- Roseline Poirier
- Univ. Paris Sud, Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
24
|
Smith DR, Gallagher M, Stanton ME. Genetic background differences and nonassociative effects in mouse trace fear conditioning. Learn Mem 2007; 14:597-605. [PMID: 17823243 PMCID: PMC1994077 DOI: 10.1101/lm.614807] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.
Collapse
Affiliation(s)
- Dani R Smith
- Neurogenetics and Behavior Center, Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
25
|
Gill KM, Bernstein IL, Mizumori SJY. Immediate early gene activation in hippocampus and dorsal striatum: Effects of explicit place and response training. Neurobiol Learn Mem 2007; 87:583-96. [PMID: 17317230 DOI: 10.1016/j.nlm.2006.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/26/2006] [Accepted: 12/29/2006] [Indexed: 11/26/2022]
Abstract
Evidence from lesion, electrophysiological, and neuroimaging studies support the hypothesis that the hippocampus and dorsal striatum process afferent inputs in such a way that each structure regulates expression of different behaviors in learning and memory. The present study sought to determine whether rats explicitly trained to perform one of two different learning strategies, spatial or response, would display disparate immediate early gene activation in hippocampus and striatum. c-Fos and Zif268 immunoreactivity (IR) was measured in both hippocampus and striatum 30 or 90 min following criterial performance on a standard plus-maze task (place learners) or a modified T-maze task (response learners). Place and response learning differentially affected c-Fos-IR in striatum but not hippocampus. Specifically, explicit response learning induced greater c-Fos-IR activation in two subregions of the dorsal striatum. This increased c-Fos-IR was dependent upon the number of trials performed prior to reaching behavioral criterion and accuracy of performance during post-testing probe trials. Quantification of Zif268-IR in both hippocampus and striatum failed to distinguish between place and response learners. The changes in c-Fos-IR occurred 30 min, but not 90 min, post-testing. The synthesis of c-Fos early in testing could reflect the recruitment of key structures in learning. Consequently, animals that were able to learn the response task efficiently displayed greater amounts of c-Fos-IR in dorsal striatum.
Collapse
Affiliation(s)
- Kathryn M Gill
- University of Washington, Department of Psychology, Guthrie Hall, Seattle, WA 98195, USA
| | | | | |
Collapse
|
26
|
|
27
|
Davis JA, Gould TJ. beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 2007; 190:343-52. [PMID: 17136517 PMCID: PMC2722435 DOI: 10.1007/s00213-006-0624-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Previous research indicates that acute nicotine administration enhances the acquisition of contextual fear conditioning and trace cued fear conditioning. Pharmacological inhibition of alpha4beta2 nicotinic acetylcholine receptors (nAChRs), but not alpha7 nAChRs, blocked the enhancing effect of nicotine on contextual fear conditioning. Similarly, genetic deletion of the beta2 nAChR subunit but not the alpha7 nAChR subunit blocked the enhancing effect of nicotine on contextual fear conditioning. OBJECTIVES In the present study, nAChR subunit knockout mice were used to compare the involvement of beta2 subunit-containing nAChRs and alpha7 subunit-containing nAChRs in the effects of nicotine on hippocampus-dependent trace cued fear conditioning and contextual fear conditioning. METHODS beta2 nAChR subunit knockout mice, alpha7 nAChR subunit knockout mice, and their wild-type littermates received either nicotine or saline 5 minutes before training and testing. Mice were trained using five conditioned stimulus (CS; 30 s, 85 dB white noise)--trace (30 s)--unconditioned stimulus (US; 2 s footshock) pairings. Freezing to the context and freezing to the CS were assessed 24 h later. RESULTS Both contextual and trace cued fear conditioning were enhanced by nicotine administration in wild-type littermates and in alpha7 nAChR subunit knockout mice. In contrast, neither contextual fear conditioning nor trace cued fear conditioning was enhanced by nicotine administration in beta2 nAChR subunit knockout mice. CONCLUSIONS These results suggest that beta2 subunit-containing nAChRs but not alpha7 nAChR subunit-containing nAChRs are critically involved in the enhancing effect of nicotine on contextual and trace cued fear conditioning.
Collapse
|
28
|
Conversi D, Bonito-Oliva A, Orsini C, Cabib S. Habituation to the test cage influences amphetamine-induced locomotion and Fos expression and increases FosB/DeltaFosB-like immunoreactivity in mice. Neuroscience 2006; 141:597-605. [PMID: 16713106 DOI: 10.1016/j.neuroscience.2006.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 11/16/2022]
Abstract
Pre-exposure to the testing cage (habituation or familiarization) is a common procedure aimed at reducing the interference of novelty-induced arousal and drug-independent individual differences on neural and behavioral measures. However, recent results suggest that this procedure might exert a major influence on the effects of addictive drugs. The present experiments tested the effects of repeated exposure to a test cage (1 h daily for four consecutive days) on amphetamine-induced locomotion and Fos expression as well as on FosB/DeltaFosB-like immunoreactivity in mice of the C57BL/6J and DBA/2J inbred strains that differ for the response to amphetamine, stress and novelty. Daily experiences with the test cage increased FosB/DeltaFosB-like immunoreactivity in the medial-prefrontal cortex of both strains of mice and in the caudate of mice of the C57 strain, as reported for repeated stress in the rat. Moreover, previous habituation to the test cage reduced the locomotor response to a low dose of amphetamine only in DBA mice while it reduced amphetamine-induced Fos expression in medial-prefrontal cortex, dorsal caudate and the accumbens shell of mice of the C57 strain. These results demonstrate indexes of stress-like plasticity in the brains of mice exposed to a procedure of familiarization to the testing environment. Moreover, they suggest that the procedure of daily familiarization influences the pattern of brain Fos expression induced by amphetamine. Finally, they indicate complex interactions between experience with the testing environment, genotype and drug.
Collapse
Affiliation(s)
- D Conversi
- Department of Psychology, University "La Sapienza," via dei Marsi 78, Rome I-00185, Italy; Fondazione Santa Lucia, Istituto di Recovero e Cura a Carattere Scientifico, Centro Europeo per la Ricerca sul Cervello, via del Fosso di Fiorano, Rome 01443, Italy
| | - A Bonito-Oliva
- Department of Psychology, University "La Sapienza," via dei Marsi 78, Rome I-00185, Italy
| | - C Orsini
- Department of Psychology, University "La Sapienza," via dei Marsi 78, Rome I-00185, Italy; Fondazione Santa Lucia, Istituto di Recovero e Cura a Carattere Scientifico, Centro Europeo per la Ricerca sul Cervello, via del Fosso di Fiorano, Rome 01443, Italy
| | - S Cabib
- Department of Psychology, University "La Sapienza," via dei Marsi 78, Rome I-00185, Italy; Fondazione Santa Lucia, Istituto di Recovero e Cura a Carattere Scientifico, Centro Europeo per la Ricerca sul Cervello, via del Fosso di Fiorano, Rome 01443, Italy.
| |
Collapse
|
29
|
Perez-Villalba A, Teruel-Martí V, Ruiz-Torner A, Olucha-Bordonau F. The effect of long context exposure on cued conditioning and c-fos expression in the rat forebrain. Behav Brain Res 2005; 161:263-75. [PMID: 15922053 DOI: 10.1016/j.bbr.2005.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/10/2005] [Accepted: 02/17/2005] [Indexed: 02/05/2023]
Abstract
The c-fos expression was used to study the neural substrates of the cued fear conditioning acquisition, preceded by a short exposure versus a long exposure to the conditioning context. A long-context exposure (either during the night or during the day) prior to conditioning, was associated with low freezing in the learning test. Differences in the c-fos expression of CA1, CA3, BL Amygdala, LS and BNST were found between the short- or long-context groups with a pre-exposure before cued conditioning. Ce Amygdala showed no differences in the c-fos expression labeling. We reported the hippocampal c-fos activation during the cued fear conditioning acquisition. Specifically, the CA1 activation could be related with the context-US processing during the CS-US association acquisition, which might prove that the CS-US associations cannot be made without an integrated context participating. The results showed that a long-context exposure prior to cued conditioning produces an inhibition of the CR (freezing), and this phenomenon is related with a specific c-fos expression in CA1, CA3, BL Amygdala, LS and BNST during the fear acquisition.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Department of Embryology and Human Anatomy, School of Medicine, Av Blasco Ibanez, 15, University of Valencia, 46010 Valencia, Spain.
| | | | | | | |
Collapse
|
30
|
Wiltgen BJ, Sanders MJ, Ferguson C, Homanics GE, Fanselow MS. Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn Mem 2005; 12:327-33. [PMID: 15897254 PMCID: PMC1142462 DOI: 10.1101/lm.89705] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The delta subunit of the GABA(A) receptor (GABA(A)R) is highly expressed in the dentate gyrus of the hippocampus. Genetic deletion of this subunit reduces synaptic and extrasynaptic inhibition and decreases sensitivity to neurosteroids. This paper examines the effect of these changes on hippocampus-dependent trace fear conditioning. Compared to controls, delta knockout mice exhibited enhanced acquisition of tone and context fear. Hippocampus-independent delay conditioning was normal in these animals. These results suggest that reduced inhibition in the dentate gyrus facilitates the acquisition of trace fear conditioning. However, the enhancement in trace conditioning was only observed in female knockout mice. The sex-specificity of this effect may be a result of neuroactive steroids. These compounds vary during the estrus cycle, can increase GABAergic inhibition, and have been shown to impair hippocampus-dependent learning. We propose that activation of GABA(A)Rs by neuroactive steroids inhibits learning processes in the hippocampus. Knockouts are immune to this effect because of the reduced neurosteroid sensitivity that accompanies deletion of the delta subunit. Relationships between neurosteroids, hippocampal excitability, and memory are discussed.
Collapse
Affiliation(s)
- Brian J Wiltgen
- Psychology Department, and The Brain Research Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
31
|
Gilmartin MR, McEchron MD. Single neurons in the dentate gyrus and CA1 of the hippocampus exhibit inverse patterns of encoding during trace fear conditioning. Behav Neurosci 2005; 119:164-79. [PMID: 15727522 DOI: 10.1037/0735-7044.119.1.164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trace fear conditioning is a hippocampus-dependent learning task that requires the association of an auditory conditioned stimulus (CS) and a shock unconditioned stimulus (US) that are separated by a 20-s trace interval. Single-neuron activity was recorded simultaneously from the dentate gyrus (DG) and CA1 of rats during unpaired pseudoconditioning and subsequent trace fear conditioning. Single neurons in DG showed a progressive increase in learning-related activity to the CS and US across trace fear conditioning. Single neurons in CA1 showed an early increase in responding to the CS, which developed into a decrease in firing later in trace conditioning. Correlation analyses showed that DG and CA1 units exhibit inverse patterns of responding to the CS during trace fear conditioning.
Collapse
Affiliation(s)
- Marieke R Gilmartin
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
32
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
33
|
Matthews DB, Silvers JR. The use of acute ethanol administration as a tool to investigate multiple memory systems. Neurobiol Learn Mem 2005; 82:299-308. [PMID: 15464411 DOI: 10.1016/j.nlm.2004.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 11/24/2022]
Abstract
The discovery of multiple memory systems supported by discrete brain regions has been one of the most important advances in behavioral neuroscience. A wealth of studies have investigated the role of the hippocampus and related structures in supporting various types of memory classifications. While the exact classification that best describes hippocampal function is often debated, a specific subset of cognitive function that is focused on the use of spatial information to form hippocampal cognitive maps has received extensive investigation. These studies frequently employ a variety of experimental manipulations including brain lesions, temporary neural blockade due to cooling or discrete injections of specific drugs. While these studies have provided important insights into the function of the hippocampus, they are limited due to the invasive nature of the manipulation. Ethanol is a drug that is easily administered in a non-invasive fashion, is rapidly absorbed and produces effects only in specific brain regions. The hippocampus is one brain region affected by acute ethanol administration. The following review summarizes research from the last 20 years investigating the effects of acute ethanol administration on one specific type of hippocampal cognitive function, namely spatial memory. It is proposed that among its many effects, one specific action of acute ethanol administration is to produce similar cognitive and neurophysiological effects as lesions of the hippocampus. Based on these similarities and the ease of its use, it is concluded that acute ethanol administration is a valuable tool in studying hippocampal function and multiple memory systems.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology and Tennessee Center for Addiction Research, The University of Memphis, Memphis, TN 38152, USA.
| | | |
Collapse
|
34
|
Conejo NM, López M, Cantora R, González-Pardo H, López L, Begega A, Vallejo G, Arias JL. Effects of Pavlovian fear conditioning on septohippocampal metabolism in rats. Neurosci Lett 2005; 373:94-8. [PMID: 15567560 DOI: 10.1016/j.neulet.2004.09.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/17/2004] [Accepted: 09/28/2004] [Indexed: 11/17/2022]
Abstract
The effects of classical fear conditioning in different regions of the limbic system were analysed using cytochrome oxidase (CO) histochemistry. Wistar rats were submitted to different conditions. Rats in the group Paired received tone-shock pairing, to elicit conditioned suppression of lever pressing (i.e., tone will evoke conditioned fear responses). The group Unpaired underwent random presentations of these stimuli and developed no conditioned fear. Untrained animals were also included as a control group. A significant decrease in CO activity was found in the medial septal area and the dorsal hippocampus (CA3 subfield and dentate gyrus) in the group Paired as compared with the group Unpaired. Furthermore there was greater metabolic activity in the control group as compared with the other two groups. No differences in CO labelling of the basolateral amygdala were detected among all groups. These findings suggest that the septohippocampal system plays an important role in controlling conditioned fear behaviour.
Collapse
Affiliation(s)
- Nélida M Conejo
- Psychobiology Laboratory, Department of Psychobiology, Facultad de Psicología, Plaza Feijoo, s/n E-33003 Oviedo, Spain.
| | | | | | | | | | | | | | | |
Collapse
|