1
|
Liu J, Hui A, Wang J, Hu Q, Li S, Chen Y, Wu Z, Zhang W. Discovery of acylated isoquercitrin derivatives as potent anti-neuroinflammatory agents in vitro and in vivo. Chem Biol Interact 2023; 383:110675. [PMID: 37579935 DOI: 10.1016/j.cbi.2023.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
Neuroinflammation is considered as an important pathological mechanism in neurodegenerative diseases. The natural isoquercitrin (IQ) was reported to have potential anti-neuroinflammatory activity. The acylation of glycoside in IQ enhanced its hydrophobicity, which was expected to enhance the protective effect against inflammation. In this study, three carboxylic acids with anti-neuroinflammatory effects including cinnamic acid, ibuprofen (IBU) and acetylsalicylic acid were introduced into the 6''-OH of IQ through the corresponding vinyl esters intermediates (8a-8c). Ultimately, the acylated IQ derivatives (Compound 9a-9c) were obtained with 35-42% yields using immobilized lipase Novozym 435 as catalyst. Subsequently, their anti-neuroinflammatory activities were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. Compound 9b improved cell viability in the range of ≤50 μM and significantly decreased NO, PGE2 production and TNF-α, IL-1β release and oxidative stress level with a concentration-dependent manner. Also, it could downregulate iNOS, COX-2, TNF-α and IL-1β expression levels, approximately 40% reduction were achieved when 15μM compound 9b was employed. In addition, compound 9b resisted phosphorylation and degradation of IkBαs, suppressing the activation of NF-κB signaling pathway, exhibiting excellent neuroinflammatory inhibition. Moreover, the administration of compound 9b (30, 60 mg/kg) alleviated behavioral disorders and neuronal damages in LPS-induced neuroinflammatory mice. Meanwhile, the decreased TNF-α, IL-1β release, expression and the inhibited glial cells activation were obtained in compound 9b-treated group, which was superior to that of IQ or IBU. Overall, these findings demonstrated that compound 9b, formed by the introduction of ibuprofen into IQ, can serve as a novel promising therapeutic agent for anti-neuroinflammation.
Collapse
Affiliation(s)
- Jie Liu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China.
| | - Jinghe Wang
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Qingfeng Hu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, Anhui, 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
2
|
INOUE M, TANIDA T, KONDO T, TAKENAKA S, NAKAJIMA T. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture. J Vet Med Sci 2023; 85:799-808. [PMID: 37407448 PMCID: PMC10466061 DOI: 10.1292/jvms.23-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
It has been demonstrated that in vivo brain ischemia induces activation and proliferation of astrocytes and microglia. However, the mechanism underlying the ischemia-induced activation and proliferation of these cells remains to be unclear. Oxygen-glucose deprivation (OGD), an in vitro ischemia mimic, has been extensively used to analyze the hypoxia response of various cell types. This study examined the OGD-induced changes in the expression level of astrocytes and microglia marker proteins and immunoreactivity for Ki-67, a marker protein for cell proliferation, using rat primary hippocampal neuron-glia co-culture (NGC) cells. Furthermore, OGD-induced changes in the expression of M1/M2 microglia phenotype-related genes were also examined. MTT assay indicated that 120 min of OGD decreased cell viability, and immunocytochemistry indicated that 120 min of OGD abolished most microtubule-associated protein 2 (MAP2)-immunopositive neurons. In contrast, glial fibrillary acidic protein (GFAP)-immunopositive astrocytes and ionized calcium-binding adapter protein-1 (Iba-1)-immunopositive microglia, and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase)-immunopositive oligodendrocytes survived OGD. Western blot assays and double-immunofluorescent staining indicated that OGD increased the GFAP expression level and the Ki-67-immunopositive/GFAP-immunopositive cells' ratio. Real-time PCR analysis showed that OGD altered M1 microglia phenotype-related genes. Specifically, OGD decreased the expression level of CD32 and interleukin-1β (IL-1β) genes and increased that of the inducible nitric oxide synthase (iNOS) gene. Therefore, applying OGD to NGC cells could serve as a useful in vitro tool to elucidate the molecular mechanisms underlying brain ischemia-induced changes in GFAP expression, astrocyte proliferation, and M1 microglia phenotype-related gene expression.
Collapse
Affiliation(s)
- Maiko INOUE
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Takashi TANIDA
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Tomohiro KONDO
- Laboratory of Animal Science, Graduate School of Veterinary
Science, Osaka Metropolitan University, Osaka, Japan
| | - Shigeo TAKENAKA
- Department of Nutrition, Graduate School of Human Life and
Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki NAKAJIMA
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
3
|
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. J Neuroinflammation 2023; 20:95. [PMID: 37072827 PMCID: PMC10111685 DOI: 10.1186/s12974-023-02776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
4
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
5
|
Sierra-Martín A, Navascués J, Neubrand VE, Sepúlveda MR, Martín-Oliva D, Cuadros MA, Marín-Teva JL. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front Cell Neurosci 2023; 17:1120400. [PMID: 37006469 PMCID: PMC10050569 DOI: 10.3389/fncel.2023.1120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.
Collapse
|
6
|
Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res 2023; 1807:148315. [PMID: 36878343 DOI: 10.1016/j.brainres.2023.148315] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-β, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-β induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.
Collapse
|
7
|
Yang TX, Zhu YF, Wang CC, Yang JY, Xue CH, Huang QR, Wang YM, Zhang TT. EPA-enriched plasmalogen attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Brain Res Bull 2022; 186:143-152. [PMID: 35728742 DOI: 10.1016/j.brainresbull.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Microglia plays an important role in the production of inflammation in the central nervous system. Excessive nerve inflammation can cause neuronal damage and neurodegenerative disease. It has been shown that EPA-enriched ethanolamine plasmalogen (EPA-PlsEtn) significantly inhibited the expressions of inflammatory factors and suppressed neuronal loss in a rat model of Alzheimer's disease. However, whether EPA-PlsEtn protects against neuronal loss by inhibiting the activation of microglia is still not clear. Therefore, we examined the effect of PlsEtn on SH-SY5Y cells incubated by conditioned medium from LPS-induced BV2 cells as a neuroinflammation model. Results showed that pre-incubation of LPS-induced BV2 cells with PlsEtn significantly improved the viability of SH-SY5Y cells by reducing the early apoptosis. The increasing production of NO and TNF-α in BV2 cells was reversed by PlsEtn treatment, while the decreasing level of IL-10 was raised. Polarization toward M1 phenotype and activation of NLRP3 inflammasome pathways are attenuated significantly by pre-treatment of PlsEtn in LPS-induced BV2 cells. The study provides evidence for a positive effect of PlsEtn on neuroprotection and the inhibition of neuroinflammation, and PlsEtn may be explored as a potential functional ingredient with neuroprotection effects.
Collapse
Affiliation(s)
- Tian-Xin Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Yun-Fang Zhu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qing-Rong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
8
|
Huang J, Yap N, Walter M, Green A, Smith C, Johnson J, Saigal R. 3D-Printed Polypyrrole Microneedle Arrays for Electronically Controlled Transdural Drug Release. ACS Biomater Sci Eng 2022; 8:1544-1553. [PMID: 35294162 DOI: 10.1021/acsbiomaterials.1c01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After the spinal cord injury, inflammation and cytotoxicity cause further damage to neural cells. The progression of this secondary injury might be reduced by the administration of anti-inflammatory drugs. To allow the local delivery of such drugs while minimizing dural opening, we have created a polypyrrole (PPy)-coated microneedle array using a microscale three-dimensional (3D) printing technology that facilitates electronically controlled encapsulation and the transdural release of drugs. PPy microneedles demonstrated an electronically controlled release of steroid dexamethasone (Dexa) in a novel in vitro transdural model and in vivo. The biological activity of the device was then tested by the electronic release of Dexa into an in vitro model of neuroinflammation, using activated microglia. Following electrically activated Dexa release, inflammation was reduced, as demonstrated by a decrease in nitric oxide and proinflammatory cytokines Il-6 and MCP-1. These results demonstrate the feasibility of PPy-coated microneedles for the transdural delivery of anti-inflammatory drugs to the central nervous system.
Collapse
Affiliation(s)
- Joyce Huang
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Natalie Yap
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Maximilian Walter
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Abbey Green
- Department of Neurological Surgery, University of Washington, Seattle 98104-2499, Washington, United States
| | - Charles Smith
- Center for Neurotechnology, University of Washington, Seattle 98195, Washington, United States
| | - Jessica Johnson
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, Washington, United States.,Department of Neurological Surgery, University of Washington, Seattle 98104-2499, Washington, United States
| |
Collapse
|
9
|
Possible involvement of female sex steroid hormones in intracellular signal transduction mediated by cytokines following traumatic brain injury. Brain Res Bull 2021; 178:108-119. [PMID: 34838851 DOI: 10.1016/j.brainresbull.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The aim of this study was to determine the anti-inflammatory effect of female sex hormones on the level of intracellular molecules of cytokine signaling pathway after diffuse traumatic brain injury (TBI) in ovariectomized rats. METHODS Female rats were divided into 10 groups: control, sham, TBI, Vehicle (oil), Vehicle E1 (33.3 µg/kg), E2 (1 mg / kg), P1 (1.7 mg/kg), P2 (8 mg / kg), E2 + P1. All drugs were injected 0.5 h after TBI. Brain edema and the brain levels of P-STAT-3, NFκB-P52, NFκB-P65, P-IκB, and SOCS-3 by immunohistochemistry measured at 24 h after TBI. RESULTS Increased brain edema after TBI was inhibited by different doses of estrogen, progesterone (P < 0.001), and E2 + P1 (P < 0.05). The brain levels of P-STAT-3, NFκB-P52, NFκB-P65, and p-IκBα that increased after TBI was decreased only by E2 (P < 0.05). E2 and E2 + P1 have increased the SOCS-3 level after TBI (P < 0.05). Also, there was a difference between the E2 with E1 and two progesterone doses (P < 0.05). So that in all cases, the effects of E2 were more significant than the other groups. The target cells for these effects of E2 were microglia and astrocytes. CONCLUSION The results indicate that one of the probable mechanism(s) of estrogen anti-inflammatory effect after TBI is either reduction of p-STAT-3, NFκB-P52, p-NFκB-P65, and p-IκBα or increase in SOCS-3 molecules involved in the signaling pathway of inflammatory cytokines.
Collapse
|
10
|
Becchi S, Buson A, Balleine BW. Inhibition of vascular adhesion protein 1 protects dopamine neurons from the effects of acute inflammation and restores habit learning in the striatum. J Neuroinflammation 2021; 18:233. [PMID: 34654450 PMCID: PMC8520223 DOI: 10.1186/s12974-021-02288-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Changes in dopaminergic neural function can be induced by an acute inflammatory state that, by altering the integrity of the neurovasculature, induces neuronal stress, cell death and causes functional deficits. Effectively blocking these effects of inflammation could, therefore, reduce both neuronal and functional decline. To test this hypothesis, we inhibited vascular adhesion protein 1 (VAP-1), a membrane-bound protein expressed on the endothelial cell surface, that mediates leukocyte extravasation and induces oxidative stress. Method We induced dopaminergic neuronal loss by infusing lipopolysaccharide (LPS) directly into the substantia nigra (SN) in rats and administered the VAP-1 inhibitor, PXS-4681A, daily. Results LPS produced: an acute inflammatory response, the loss of dopaminergic neurons in the SN, reduced the dopaminergic projection to SN target regions, particularly the dorsolateral striatum (DLS), and a deficit in habit learning, a key function of the DLS. In an attempt to protect SN neurons from this inflammatory response we found that VAP-1 inhibition not only reduced neutrophil infiltration in the SN and striatum, but also reduced the associated striatal microglia and astrocyte response. We found VAP-1 inhibition protected dopamine neurons in the SN, their projections to the striatum and promoted the functional recovery of habit learning. Thus, we reversed the loss of habitual actions, a function usually dependent on dopamine release in DLS and sensitive to striatal dysfunction. Conclusions We establish, therefore, that VAP-1 inhibition has an anti-inflammatory profile that may be beneficial in the treatment of dopamine neuron dysfunction caused by an acute inflammatory state in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02288-8.
Collapse
Affiliation(s)
- Serena Becchi
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Randwick, NSW, 2052, Australia
| | | | - Bernard W Balleine
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Randwick, NSW, 2052, Australia.
| |
Collapse
|
11
|
Dragunow M. Human Brain Neuropharmacology: A Platform for Translational Neuroscience. Trends Pharmacol Sci 2020; 41:777-792. [PMID: 32994050 DOI: 10.1016/j.tips.2020.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) drug development has been plagued by a failure to translate effective therapies from the lab to the clinic. There are many potential reasons for this, including poor understanding of brain pharmacokinetic (PK) and pharmacodynamic (PD) factors, preclinical study flaws, clinical trial design issues, the complexity and variability of human brain diseases, as well as species differences. To address some of these problems, we have developed a platform for CNS drug discovery comprising: drug screening of primary adult human brain cells; human brain tissue microarray analysis of drug targets; and high-content phenotypic screening methods. In this opinion, I summarise the theoretical basis and the practical development and use of this platform in CNS drug discovery.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Hugh Green Biobank, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Takalo M, Wittrahm R, Wefers B, Parhizkar S, Jokivarsi K, Kuulasmaa T, Mäkinen P, Martiskainen H, Wurst W, Xiang X, Marttinen M, Poutiainen P, Haapasalo A, Hiltunen M, Haass C. The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Mol Neurodegener 2020; 15:52. [PMID: 32917267 PMCID: PMC7488484 DOI: 10.1186/s13024-020-00402-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/06/2020] [Indexed: 01/19/2023] Open
Abstract
Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. Conclusion The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wefers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Samira Parhizkar
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Wurst
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Christian Haass
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany. .,Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons. Biomolecules 2020; 10:biom10040562. [PMID: 32272581 PMCID: PMC7225953 DOI: 10.3390/biom10040562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1β (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker β-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1β, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and β estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1β, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases.
Collapse
|
14
|
Do HTT, Bui BP, Sim S, Jung JK, Lee H, Cho J. Anti-Inflammatory and Anti-Migratory Activities of Isoquinoline-1-Carboxamide Derivatives in LPS-Treated BV2 Microglial Cells via Inhibition of MAPKs/NF-κB Pathway. Int J Mol Sci 2020; 21:ijms21072319. [PMID: 32230861 PMCID: PMC7177615 DOI: 10.3390/ijms21072319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eleven novel isoquinoline-1-carboxamides (HSR1101~1111) were synthesized and evaluated for their effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators and cell migration in BV2 microglial cells. Three compounds (HSR1101~1103) exhibited the most potent suppression of LPS-induced pro-inflammatory mediators, including interleukin (IL)-6, tumor necrosis factor-alpha, and nitric oxide (NO), without significant cytotoxicity. Among them, only N-(2-hydroxyphenyl) isoquinoline-1-carboxamide (HSR1101) was found to reverse LPS-suppressed anti-inflammatory cytokine IL-10, so it was selected for further characterization. HSR1101 attenuated LPS-induced expression of inducible NO synthase and cyclooxygenase-2. Particularly, HSR1101 abated LPS-induced nuclear translocation of NF-κB through inhibition of IκB phosphorylation. Furthermore, HSR1101 inhibited LPS-induced cell migration and phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 MAPK. The specific MAPK inhibitors, U0126, SP600125, and SB203580, suppressed LPS-stimulated pro-inflammatory mediators, cell migration, and NF-κB nuclear translocation, indicating that MAPKs may be the upstream kinase of NF-κB signaling. Collectively, these results demonstrate that HSR1101 is a potent and promising compound suppressing LPS-induced inflammation and cell migration in BV2 microglial cells, and that inhibition of the MAPKs/NF-κB pathway mediates its anti-inflammatory and anti-migratory effects. Based on our findings, HSR1101 may have beneficial impacts on various neurodegenerative disorders associated with neuroinflammation and microglial activation.
Collapse
Affiliation(s)
- Ha Thi Thu Do
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
| | - Bich Phuong Bui
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
| | - Seongrak Sim
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
- Correspondence: (H.L.); (J.C.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
- Correspondence: (H.L.); (J.C.)
| |
Collapse
|
15
|
Wang L, Gong X, Liu Y, Du T, Zhang Z, Zhang T, Wang X. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinson's disease. Glia 2020; 68:1874-1890. [PMID: 32112601 DOI: 10.1002/glia.23811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Microglia are a specialized population of tissue macrophages in the mammalian brain. Microglial phenotype is tightly regulated by local environmental factors, although little is known about these factors and their region-preferred roles in regulating local neuroinflammatory responses. We hypothesized that microglia in different brain regions respond differently to neuroinflammatory stimulation and that CD200, an anti-inflammatory protein mainly originated from neurons, acts as a local cue inhibiting microglia activation in the midbrain. We utilized a CD200-deficient mouse line to analyze the phenotypic role of CD200 in the regulation of normal neuron-microglia homeostasis in the midbrain and in the dopaminergic degeneration in an α-synuclein overexpression model of PD. We found that systemic administration of an endotoxin lipopolysaccharide induced a region-preferred change in CD200 expression in the midbrain. Similarly, CD200-/- mice showed a regional preference in an enhancement of microglia activation and baseline inflammatory levels in the midbrain and dopamine neuron loss in the substantia nigra (SN). In a mouse model of Parkinson's disease (PD) induced by rAAV-hSYN injection into the SN, CD200-/- mice showed more dopamine neuron loss in the SN than wild type mice. Activation of CD200 receptors with a CD200 fusion protein alleviated the neuroinflammation and neuronal death in the SN of PD mice. These findings demonstrate that CD200 is essential for the midbrain homeostasis and acts as a critical local regulator in controlling microglial properties related to the PD pathogenesis.
Collapse
Affiliation(s)
- Le Wang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tianshu Du
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zhen Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ting Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Yurinskaya MM, Garbuz DG, Evgen’ev MB, Vinokurov MG. Exogenous HSP70 and Signaling Pathways Involved in the Inhibition of LPS-Induced Neurotoxicity of Neuroblastoma Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Cyanidin-3-O-Glucoside Protects PC12 Cells Against Neuronal Apoptosis Mediated by LPS-Stimulated BV2 Microglial Activation. Neurotox Res 2019; 37:111-125. [DOI: 10.1007/s12640-019-00102-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022]
|
18
|
Dai D, Yuan J, Wang Y, Xu J, Mao C, Xiao Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci Rep 2019; 9:8034. [PMID: 31142803 PMCID: PMC6541652 DOI: 10.1038/s41598-019-44573-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic neuroinflammation is known to contributes to the toxicity of neurodegeneration of Parkinson’s disease (PD). However, the molecular and cellular mechanisms controlling inflammatory responses in the central nervous system remain poorly understood. Here we found that a E3 ubiquitin ligase Peli1 is dramatically induced only in the substantia nigra (SN) of the human and mouse PD brains. The ablation of Peli1 significantly suppressed LPS-induced production of neurotoxic mediators and proinflammatory cytokines in SN and in primary microglia, whereas Peli1 is dispensable for the inflammatory responses in astrocyte. Accordingly, Peli1 deficiency markedly inhibited neuron death induced by the conditioned medium from LPS-stimulated microglia. Mechanistical study suggested that Peli1 acts as a positive regulator of inflammatory response in microglia through activation of NF-κB and MAP kinase. Our results established Peli1 as a critical mediator in the regulation of microglial activation and neuroinflammation-induced death of dopaminergic neurons during PD pathogenesis, suggesting that targeting Peli1 may have therapeutic effect in neuroinflammation.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yichuan Xiao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Neuregulin-1 Fosters Supportive Interactions between Microglia and Neural Stem/Progenitor Cells. Stem Cells Int 2019; 2019:8397158. [PMID: 31089334 PMCID: PMC6476022 DOI: 10.1155/2019/8397158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Microglia play diverse roles in homeostasis and pathology of the central nervous system (CNS). Their response to injury or insult is critical for initiating neuroinflammation and tissue damage as well as resolution of inflammation and wound healing. Changes to the microenvironment of microglia appear to be a key determinant of their phenotype and their role in the endogenous repair process in the injured or diseased CNS. Our recent findings have identified a positive role for neuregulin-1 (Nrg-1) in regulating immune response in spinal cord injury and focal demyelinating lesions. We show that increasing the tissue availability of Nrg-1 after injury can promote endogenous repair by modulating neuroinflammation. In the present study, we sought to elucidate the specific role of Nrg-1 in regulating microglial activity and more importantly their influence on the behavior of neural stem/progenitor cells (NPCs). Using injury-relevant in vitro systems, we demonstrate that Nrg-1 attenuates the expression of proinflammatory mediators in activated microglia. Moreover, we provide novel evidence that availability of Nrg-1 can restore the otherwise suppressed phagocytic ability of proinflammatory microglia. Interestingly, the presence of Nrg-1 in the microenvironment of proinflammatory microglia mitigates their inhibitory effects on NPC proliferation. Nrg-1 treated proinflammatory microglia also augment mobilization of NPCs, while they had no influence on their suppressive effects on NPC differentiation. Mechanistically, we show that Nrg-1 enhances the interactions of proinflammatory microglia and NPCs, at least in part, through reduction of TNF-α expression in microglia. These findings provide new insights into the endogenous regulation of microglia-NPC interactions and identify new potential targets for optimizing this important crosstalk during the regenerative process after CNS injury and neuroinflammatory conditions.
Collapse
|
20
|
Shi H, Wang XL, Quan HF, Yan L, Pei XY, Wang R, Peng XD. Effects of Betaine on LPS-Stimulated Activation of Microglial M1/M2 Phenotypes by Suppressing TLR4/NF-κB Pathways in N9 Cells. Molecules 2019; 24:molecules24020367. [PMID: 30669620 PMCID: PMC6359206 DOI: 10.3390/molecules24020367] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Microglia mediate multiple facets of neuroinflammation. They can be phenotypically divided into a classical phenotype (pro-inflammatory, M1) or an alternative phenotype (anti-inflammatory, M2) with different physiological characteristics and biological functions in the inflammatory process. Betaine has been shown to exert anti-inflammatory effects. In this study, we aimed to verify the anti-inflammatory effects of betaine and elucidate its possible molecular mechanisms of action in vitro. Lipopolysaccharide (LPS)-activated microglial cells were used as an inflammatory model to study the anti-inflammatory efficacy of betaine and explore its mechanism of regulating microglial polarisation by investigating the morphological changes and associated inflammatory changes. Cytokine and inflammatory mediator expression was also measured by ELISA, flow cytometry, immunofluorescence, and western blot analysis. Toll-like receptor (TLR)-myeloid differentiation factor 88 (Myd88)-nuclear factor-kappa B (NF-κB) p65, p-NF-κB p65, IκB, p-IκB, IκB kinase (IKK), and p-IKK expression was determined by western blot analysis. Betaine significantly mitigated the production of pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It promoted the conversion of the microglia from M1 to M2 phenotype by decreasing the expression of inducible nitric oxide synthase and CD16/32 and by increasing that of CD206 and arginase-1. Betaine treatment inhibited the TLR4/NF-κB pathways by attenuating the expression of TLR4-Myd88 and blocking the phosphorylation of IκB and IKK. In conclusion, betaine could significantly alleviate LPS-induced inflammation by regulating the polarisation of microglial phenotype; thus, it might be an effective therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Hui Shi
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Long Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Hong-Feng Quan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Yan
- Functional Experiment Center, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiu-Ying Pei
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Rui Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Dong Peng
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Functional Experiment Center, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
21
|
Mohan S, Koller EJ, Fazal JA, De Oliveria G, Pawlowicz AI, Doré S. Genetic Deletion of PGF 2α-FP Receptor Exacerbates Brain Injury Following Experimental Intracerebral Hemorrhage. Front Neurosci 2018; 12:556. [PMID: 30233287 PMCID: PMC6134069 DOI: 10.3389/fnins.2018.00556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/23/2018] [Indexed: 01/17/2023] Open
Abstract
Background: The release of inflammatory molecules such as prostaglandins (e.g., PGF2α) is associated with brain damage following an intracerebral hemorrhagic (ICH) stroke; however, the role of PGF2α and its cognate FP receptor in ICH remains unclear. This study focused on investigating the role of the FP receptor as a target for novel neuroprotective drugs in a preclinical model of ICH, aiming to investigate the contribution of the PGF2α-FP axis in modulating functional recovery and anatomical outcomes following ICH. Results: Neurological deficit scores in FP−/− mice were significantly higher compared to WT mice 72 h after ICH (6.1 ± 0.7 vs. 3.1 ± 0.8; P < 0.05). Assessing motor skills, the total time mice stayed on the rotating rod was significantly less in FP−/−mice compared to WT mice 24 h after ICH (27.0 ± 7.5 vs. 52.4 ± 11.2 s; P < 0.05). Using grip strength to quantify forepaw strength, results showed that the FP−/− mice had significantly less strength compared to WT mice 72 h after ICH (96.4 ± 17.0 vs. 129.6 ± 5.9 g; P < 0.01). In addition to the behavioral outcomes, histopathological measurements were made. In Cresyl violet stained brain sections, the FP−/− mice showed a significantly larger lesion volume compared to the WT (15.0 ± 2.2 vs. 3.2 ± 1.7 mm3; P < 0.05 mice.) To estimate the presence of ferric iron in the peri-hematoma area, Perls' staining was performed, which revealed that FP−/− mice had significantly greater staining than the WT mice (186.3 ± 34.4% vs. 86.9 ± 13.0% total positive pixel counts, P < 0.05). Immunoreactivity experiments on brain sections from FP−/− and WT mice post-ICH were performed to monitor changes in microgliosis and astrogliosis using antibodies against Iba1 and GFAP respectively. These experiments showed that FP−/− mice had a trend toward greater astrogliosis than WT mice post-ICH. Conclusion: We showed that deletion of the PGF2α FP receptor exacerbates behavioral impairments and increases lesion volumes following ICH compared to WT-matched controls.Detailed mechanisms responsible for these novel results are actively being pursued.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Pharmaceutical Sciences, Manchester University, College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, United States
| | - Emily J Koller
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Jawad A Fazal
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Gabriela De Oliveria
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Anna I Pawlowicz
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics and Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, United States
| |
Collapse
|
22
|
Nishimura Y, Moriyama M, Kawabe K, Satoh H, Takano K, Azuma YT, Nakamura Y. Lauric Acid Alleviates Neuroinflammatory Responses by Activated Microglia: Involvement of the GPR40-Dependent Pathway. Neurochem Res 2018; 43:1723-1735. [PMID: 29947014 DOI: 10.1007/s11064-018-2587-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
In several neurodegenerative diseases such as Alzheimer's disease (AD), microglia are hyperactivated and release nitric oxide (NO) and proinflammatory cytokines, resulting its neuropathology. Mounting evidence indicates that dietary supplementation with coconut oil (CNO) reduces the cognitive deficits associated with AD; however, the precise mechanism(s) underlying the beneficial effect of CNO are unknown. In the present study, we examined the effects of lauric acid (LA), a major constituent of CNO, on microglia activated experimentally by lipopolysaccharide (LPS), using primary cultured rat microglia and the mouse microglial cell line, BV-2. LA attenuated LPS-stimulated NO production and the expression of inducible NO synthase protein without affecting cell viability. In addition, LA suppressed LPS-induced reactive oxygen species and proinflammatory cytokine production, as well as phosphorylation of p38-mitogen activated protein kinase and c-Jun N-terminal kinase. LA-induced suppression of NO production was partially but significantly reversed in the presence of GW1100, an antagonist of G protein-coupled receptor (GPR) 40, which is an LA receptor on the plasma membrane. LA also decreased LPS-induced phagocytosis, which was completely reversed by co-treatment with GW1100. Moreover, LA alleviated amyloid-β-induced enhancement of phagocytosis. These results suggest that attenuation of microglial activation by LA may occur via the GPR40-dependent pathway. Such effects of LA may reduce glial activation and the subsequent neuronal damage in AD patients who consume CNO.
Collapse
Affiliation(s)
- Yasunori Nishimura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Kenji Kawabe
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.,Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideyo Satoh
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
23
|
Ren Q, Wang ZZ, Chu SF, Xia CY, Chen NH. Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl) 2018; 235:1-12. [PMID: 29178009 DOI: 10.1007/s00213-017-4782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) remains a major public health problem worldwide. The association between MDD and the dysfunction of gap junction channels (GJCs) in glial cells, especially astrocytes, is still controversial. OBJECTIVE This review provides an overview of the role of astrocyte GJCs in LMDD. RESULTS Exposure to chronic unpredictable stress caused a reduction in connexin expression in the rat prefrontal cortex, a result that is consistent with clinical findings reported in postmortem studies of brains from MDD patients. Chronic antidepressant treatment in these rats increased the expression of connexins. However, pharmacological GJC blockade in normal rodents decreased connexin expression and caused depressive-like behaviors. Furthermore, GJC dysfunction affects electrical conductance, metabolic coupling and secondary messengers, and inflammatory responses, which are consistent with current hypotheses on MDD. All these results provide a comprehensive overview of the neurobiology of MDD. CONCLUSION This review supports the hypothesis that the regulation of GJCs between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
24
|
Zhou X, Spittau B. Lipopolysaccharide-Induced Microglia Activation Promotes the Survival of Midbrain Dopaminergic Neurons In Vitro. Neurotox Res 2017; 33:856-867. [DOI: 10.1007/s12640-017-9842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
|
25
|
Shen Y, Guo X, Han C, Wan F, Ma K, Guo S, Wang L, Xia Y, Liu L, Lin Z, Huang J, Xiong N, Wang T. The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson's disease. Cell Mol Life Sci 2017; 74:3741-3768. [PMID: 28623510 PMCID: PMC11107509 DOI: 10.1007/s00018-017-2549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)-melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhicheng Lin
- Division of Alcohol and Drug Abuse, Department of Psychiatry, and Mailman Neuroscience Research Center, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
26
|
Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun 2017; 64:296-307. [PMID: 28450223 DOI: 10.1016/j.bbi.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Julieta Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Filipa Lopes Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Rita Alexandra Videira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
27
|
The flavonoid rutin modulates microglial/macrophage activation to a CD150/CD206 M2 phenotype. Chem Biol Interact 2017; 274:89-99. [PMID: 28693884 DOI: 10.1016/j.cbi.2017.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
Rutin is a glycosylated flavonoid present in many fruits and plants that has been demonstrated to have anti-inflammatory and antioxidant properties. However, little is known about the mechanisms underlying microglial activation and its effects on the regulation of cytokines and chemokines associated with inflammatory responses in the central nervous system. In this study we examined the effect of rutin on resting or lipopolysaccharide (LPS)-stimulated microglia and characterized their modulation to an activated M1 phenotype or an alternatively activated M2 phenotype. Microglial cells were treated with rutin (1-100 μM); alternatively, microglial cells were stimulated with LPS and the cells were then treated with rutin (50 μM). The results revealed that rutin treatment was not toxic to microglial cells and induced a dose-dependent increase in microglial proliferation associated with changes in morphology after 24 h of treatment. Rutin also induced microglial activation characterized by an increase in OX-42 positive cells and a large proportion of cells with a CD150/CD206-positive M2 phenotype. Rutin also induced a decrease in the mRNA levels of TNF, IL1β, IL6 and iNOS, reduced the production of IL6, TNF, and nitric oxide, and increased production of the M2 regulatory cytokine IL10 and arginase. Rutin also significantly inhibited the LPS-induced expression of PTGS2, IL18 and TGFβ mRNA. These findings show that rutin has the ability to promote microglial proliferation and induces microglial polarization to the M2 profile when cells are stimulated with LPS. These results point this flavonoid as a possible alternative in the treatment or prevention of neurodegenerative disorders.
Collapse
|
28
|
Chen C, Guo D, Lu G. Wogonin protects human retinal pigment epithelium cells from LPS-induced barrier dysfunction and inflammatory responses by regulating the TLR4/NF-κB signaling pathway. Mol Med Rep 2017; 15:2289-2295. [PMID: 28260013 DOI: 10.3892/mmr.2017.6252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Inflammation in the retinal pigment epithelium is an important contributor to the pathogenesis of age-related macular degeneration. Wogonin is a flavonoid isolated from the root of Scutellaria baicalensis and has multiple pharmacological effects, including anti‑inflammatory effects. The present study sought to determine if the pharmacological effects of wogonin were relevant to the treatment of AMD. ARPE‑19 cells were pre‑conditioned with different concentrations of wogonin (0‑50 µM) prior to induction of inflammation with LPS (2 µg/ml). Transepithelial electrical resistance analysis demonstrated that 24 h treatment with 10 and 50 µM wogonin ameliorated LPS‑induced changes. Reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) and immunofluorescence analyses revealed that wogonin restrained LPS-induced tight junction proteins, claudin‑1 and ZO‑1. LPS‑induced upregulation of inflammatory mediators in ARPE‑19 cells, including IL‑1β, IL‑6, IL‑8, cyclooxygenase‑2 (COX‑2), inducible nitric oxide synthase (iNOS) and TNF‑α was reduced after pre-treatment with wogonin. In addition, RT‑qPCR and western blotting demonstrated that wogonin inhibited the expression of TLR4 in LPS‑stimulated ARPE‑19 cells. This is a novel mechanism indicating that pre‑treatment with wogonin could attenuate the TLR4/NF‑κB‑mediated inflammatory response in LPS‑stimulated ARPE‑19 cells, and thus could be a potential therapy for the treatment of AMD.
Collapse
Affiliation(s)
- Chen Chen
- Eye Institute, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Danni Guo
- Department of Otorhinolaryngology Head & Neck Surgery, Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Guohua Lu
- Eye Institute, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
29
|
Asraf K, Torika N, Danon A, Fleisher-Berkovich S. Involvement of the Bradykinin B 1 Receptor in Microglial Activation: In Vitro and In Vivo Studies. Front Endocrinol (Lausanne) 2017; 8:82. [PMID: 28469598 PMCID: PMC5396024 DOI: 10.3389/fendo.2017.00082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/30/2017] [Indexed: 11/13/2022] Open
Abstract
The importance of brain inflammation to Alzheimer's disease (AD) pathogenesis has been accepted of late, with it currently being held that brain inflammation aggravates AD pathology. One important aspect of brain inflammation is the recruitment and activation of microglia, a process termed microgliosis. Kinins and bradykinin (BK), in particular, are major pro-inflammatory mediators in the periphery, although all of the factors comprising the kinin system have also been described in the brain. Moreover, it was shown that the amyloid β (Aβ) peptide (a component of AD plaques) enhances kinin secretion and activates BK receptors that can, in turn, stimulate Aβ production. Still, the role of bradykinin in modulating brain inflammation and AD is not completely understood. In this study, we aimed to investigate the roles of the bradykinin B1 receptor (B1R) and bradykinin B2 receptor (B2R) in regulating microglial secretion of pro-inflammatory factors in vitro. Furthermore, the effects of intranasal administration of specific B1R and B2R antagonists on Aβ burden and microglial accumulation in the brains of transgenic AD mice were studied. The data obtained show that neither R-715 (a B1R antagonist) nor HOE 140 (a B2R antagonist) altered microglial cell viability. However, R-715, but not HOE 140, markedly increased lipopolysaccharide-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) release, as well as inducible nitric oxide synthase expression in BV2 microglial cells. Neither antagonist altered NO nor TNF-α production in non-stimulated cells. We also showed that intranasal administration of R-715 but not HOE 140 to 8-week-old 5X familial AD mice enhanced amyloid burden and microglia/macrophage accumulation in the cortex. To conclude, we provide evidence supporting a role of B1R in brain inflammation and in the regulation of amyloid deposition in AD mice, possibly with microglial/macrophage involvement. Further studies are required to test whether modulation of this receptor can serve as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Sigal Fleisher-Berkovich,
| |
Collapse
|
30
|
Song H, Lu Y, Qu Z, Mossine VV, Martin MB, Hou J, Cui J, Peculis BA, Mawhinney TP, Cheng J, Greenlief CM, Fritsche K, Schmidt FJ, Walter RB, Lubahn DB, Sun GY, Gu Z. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. Sci Rep 2016; 6:35323. [PMID: 27734935 PMCID: PMC5062119 DOI: 10.1038/srep35323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Zhe Qu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Matthew B. Martin
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jie Hou
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Brenda A. Peculis
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Jianlin Cheng
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - C. Michael Greenlief
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kevin Fritsche
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Divison of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Francis J. Schmidt
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Ronald B. Walter
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Dennis B. Lubahn
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y. Sun
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
31
|
Chen CH, Chen NF, Feng CW, Cheng SY, Hung HC, Tsui KH, Hsu CH, Sung PJ, Chen WF, Wen ZH. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects. Mar Drugs 2016; 14:md14090160. [PMID: 27598175 PMCID: PMC5039531 DOI: 10.3390/md14090160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Shu-Yu Cheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan.
| | - Chi-Hsin Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
32
|
Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer’s Disease. J Neuroimmune Pharmacol 2016; 11:774-785. [DOI: 10.1007/s11481-016-9703-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
33
|
Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0155823. [PMID: 27187688 PMCID: PMC4871324 DOI: 10.1371/journal.pone.0155823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
- * E-mail:
| |
Collapse
|
34
|
Abstract
Many patients with lung cancer, breast cancer, and melanoma develop brain metastases that are resistant to conventional therapy. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with surgery, radiotherapy, and chemotherapy. The outcome of metastasis depends on multiple interactions of unique metastatic cells with host homeostatic mechanisms which the tumor cells exploit for their survival and proliferation. The blood-brain barrier is leaky in metastases that are larger than 0.5-mm diameter because of production of vascular endothelial growth factor by metastatic cells. Brain metastases are surrounded and infiltrated by microglia and activated astrocytes. The interaction with astrocytes leads to up-regulation of multiple genes in the metastatic cells, including several survival genes that are responsible for the increased resistance of tumor cells to cytotoxic drugs. These findings substantiate the importance of the "seed and soil" hypothesis and that successful treatment of brain metastases must include targeting of the organ microenvironment.
Collapse
|
35
|
Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NFκ-B Signaling Pathway. Neuromolecular Med 2016; 18:322-33. [DOI: 10.1007/s12017-016-8395-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/09/2016] [Indexed: 01/10/2023]
|
36
|
Cui Y, Park JY, Wu J, Lee JH, Yang YS, Kang MS, Jung SC, Park JM, Yoo ES, Kim SH, Ahn Jo S, Suk K, Eun SY. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:219-28. [PMID: 25954126 PMCID: PMC4422961 DOI: 10.4196/kjpp.2015.19.3.219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 01/01/2023]
Abstract
Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 µg/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91phox, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.
Collapse
Affiliation(s)
- Yanji Cui
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Jee-Yun Park
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Jinji Wu
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Ji Hyung Lee
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Yoon-Sil Yang
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Moon-Seok Kang
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Sung-Cherl Jung
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Joo Min Park
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Eun-Sook Yoo
- Department of Pharmacology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Seong-Ho Kim
- BotaMedi Inc. 307 Jeju Bio-industry Center, Jeju 690-121, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine and Department of Pharmacology, Dankook University, Cheonan 330-951, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-842, Korea
| | - Su-Yong Eun
- Department of Physiology, Jeju National University School of Medicine, Jeju 690-756, Korea
| |
Collapse
|
37
|
Venkataramana S, Lourenssen S, Miller K, Blennerhassett M. Early inflammatory damage to intestinal neurons occurs via inducible nitric oxide synthase. Neurobiol Dis 2015; 75:40-52. [DOI: 10.1016/j.nbd.2014.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023] Open
|
38
|
Klimaszewska-Łata J, Gul-Hinc S, Bielarczyk H, Ronowska A, Zyśk M, Grużewska K, Pawełczyk T, Szutowicz A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J Neurochem 2015; 133:284-97. [PMID: 25345568 DOI: 10.1111/jnc.12979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that endogenously inhibited pyruvate dehydrogenase complex (PDHC), aconitase, and α-ketoglutarate dehydrogenase complex. However, it caused none or small suppressions of acetyl-CoA and microglial viability, respectively. Microglia-derived NO inhibited same enzymes in cholinergic neuronal cells causing marked viability loss because of acetyl-CoA deficits evoked by its competitive consumption by energy producing and acetylcholine/N-acetyl-l-aspartate (NAA) synthesizing pathways.
Collapse
|
39
|
Ooi YY, Dheen ST, Tay SSW. Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodulation 2015; 22:233-42. [PMID: 25341618 DOI: 10.1159/000365483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Microglia, the resident macrophages in the central nervous system, secrete various proinflammatory cytokines and undergo proliferation upon activation in various neurodegenerative diseases. Activation of microglia has been implicated in exacerbation of various neurodegenerative diseases. Recently, it has been proposed that mesenchymal stem cells (MSC) have immunosuppressive properties and the potential to moderate inflammation. This study aimed to elucidate the effects of MSC-conditioned medium (MSC-CM) in modulating microglial activation by analyzing microglial proinflammatory and anti-inflammatory factors [interleukin (IL)-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and IL-10], signaling pathway molecules [NFκB, c-Jun N-terminal kinase (JNK) and MKP-1) and NO production. METHODS Immortalized murine microglia cell line, BV2 microglia and primary microglia isolated from C57BL/6 mouse pup brains were used in this study. Mouse MSC were isolated from the male C57BL/6 mouse tibia and fibula. The effects of MSC-CM on the expression of inflammatory cytokines and signaling molecules in microglia were elucidated using RT-PCR, immunofluorescence analysis and Western blot analysis. NO production in microglia was assessed using a Griess kit. RESULTS MSC-CM significantly reduced the mRNA and protein expression levels of proinflammatory cytokines (IL-6 and TNF-α) in microglia activated by lipopolysaccharide (LPS). In addition, MSC-CM significantly reduced the protein expression of NFκB, JNK and c-Jun, but increased the expression levels of IL-10 and MKP-1 in activated BV2 microglia. NO production and iNOS expression by BV2 microglia in MSC-CM were increased. CONCLUSIONS Overall, our findings suggest that MSC immunomodulate microglial activities through paracrine effects.
Collapse
Affiliation(s)
- Yin Yin Ooi
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
40
|
Schmitt KRL, Tong G, Berger F. Mechanisms of hypothermia-induced cell protection in the brain. Mol Cell Pediatr 2014; 1:7. [PMID: 26567101 PMCID: PMC4530563 DOI: 10.1186/s40348-014-0007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Therapeutic hypothermia is an effective cytoprotectant and promising intervention shown to improve outcome in patients following cardiac arrest and neonatal hypoxia-ischemia. However, despite our clinical and experimental experiences, the protective molecular mechanisms of therapeutic hypothermia remain to be elucidated. Therefore, in this brief overview we discuss both the clinical evidence and molecular mechanisms of therapeutic hypothermia in order to provide further insights into this promising intervention.
Collapse
Affiliation(s)
- Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Pediatric Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
41
|
Selimovic A, Erkal JL, Spence DM, Martin RS. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst 2014; 139:5686-94. [PMID: 25105251 PMCID: PMC4313528 DOI: 10.1039/c4an01062k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 μm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of analyte cross-over and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 μm and 5 μm pillar array heights were shown to be 50 nM and 105 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r(2) = 0.995, 7.6-190 μM), with an LOD for NO of 230 nM on the glassy carbon/Pt-black/0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible.
Collapse
Affiliation(s)
- Asmira Selimovic
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA.
| | | | | | | |
Collapse
|
42
|
Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells. Mol Neurobiol 2014; 53:57-72. [PMID: 25404089 DOI: 10.1007/s12035-014-8982-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Abstract
Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.
Collapse
|
43
|
Yeh CH, Yang ML, Lee CY, Yang CP, Li YC, Chen CJ, Kuan YH. Wogonin attenuates endotoxin-induced prostaglandin E2 and nitric oxide production via Src-ERK1/2-NFκB pathway in BV-2 microglial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1162-1170. [PMID: 23362215 DOI: 10.1002/tox.21847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Microglia are the major component of intrinsic brain immune system in neuroinflammation. Although wogonin expresses anti-inflammatory function in microglia, little is known about the molecular mechanisms of the protective effect of wogonin against microglia activation. The aim of this study was to evaluate how wogonin exerts its anti-inflammatory function in BV2 microglial cells after LPS/INFγ administration. Wogonin not only inhibited LPS/ INFγ-induced PGE2 and NO production without affecting cell viability but also exhibited parallel inhibition on LPS/INFγ-induced expression of iNOS and COX-2 in the same concentration range. While LPS/INFγ-induced expression of P-p65 and P-IκB was inhibited by wogonin-only weak inhibition on P-p38 and P-JNK were observed, whereas it significantly attenuated the P-ERK1/2 and its upstream activators P-MEK1/2 and P-Src in a parallel concentration-dependent manner. These results indicated that the blockade of PGE2 and NO production by wogonin in LPS/INFγ-stimulated BV2 cells is attributed mainly to interference in the Src-MEK1/2-ERK1/2-NFκB-signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Sierra A, Navascués J, Cuadros MA, Calvente R, Martín-Oliva D, Ferrer-Martín RM, Martín-Estebané M, Carrasco MC, Marín-Teva JL. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One 2014; 9:e106048. [PMID: 25170849 PMCID: PMC4149512 DOI: 10.1371/journal.pone.0106048] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.
Collapse
Affiliation(s)
- Ana Sierra
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ruth Calvente
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - David Martín-Oliva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa M. Ferrer-Martín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
45
|
Madeira JM, Bajwa E, Stuart MJ, Hashioka S, Klegeris A. Gold drug auranofin could reduce neuroinflammation by inhibiting microglia cytotoxic secretions and primed respiratory burst. J Neuroimmunol 2014; 276:71-9. [PMID: 25175064 DOI: 10.1016/j.jneuroim.2014.08.615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/26/2023]
Abstract
Neuroinflammation contributes to the pathogenesis of neurological disorders. Anti-inflammatory treatments could potentially be used to slow down the progression of these diseases. We studied the anti-neuroinflammatory activity of gold compounds which have been used to treat rheumatoid arthritis. Non-toxic concentrations of auranofin (0.1-1 μM) significantly reduced the cytotoxic secretions by primary human microglia and microglia-like THP-1 promonocytic cells. Auranofin inhibited primed NADPH-oxidase dependent respiratory burst and secretion of tumor necrosis factor (TNF)-α and nitric oxide by monocytic cells. It had a direct neuroprotective effect on SH-SY5Y neuronal cells. Auranofin could have a novel application in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jocelyn M Madeira
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Maegan J Stuart
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Sadayuki Hashioka
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
46
|
Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 2014; 11:135. [PMID: 25088370 PMCID: PMC4128538 DOI: 10.1186/1742-2094-11-135] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
Microglia are the primary immunocompetent cells in brain tissue and microglia-mediated inflammation is associated with the pathogenesis of various neuronal disorders. Recently, many studies have shown that mesenchymal stem cells (MSCs) display a remarkable ability to modulate inflammatory and immune responses through the release of a variety of bioactive molecules, thereby protecting the central nervous system. Previously, we reported that MSCs have the ability to modulate inflammatory responses in a traumatic brain injury model and that the potential mechanisms may be partially attributed to upregulated TNF-α stimulated gene/protein 6 (TSG-6) expression. However, whether TSG-6 exerts an anti-inflammatory effect by affecting microglia is not fully understood. In this study, we investigated the anti-inflammatory effects of MSCs and TSG-6 in an in vitro lipopolysaccharide (LPS)-induced BV2 microglial activation model. We found that MSCs and TSG-6 significantly inhibited the expression of pro-inflammatory mediators in activated microglia. However, MSC effects on microglia were attenuated when TSG-6 expression was silenced. In addition, we found that the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways in LPS-stimulated BV2 microglial cells was significantly inhibited by TSG-6. Furthermore, we found that the presence of CD44 in BV2 microglial cells was essential for MSC- and TSG-6-mediated inhibition of pro-inflammatory gene expression and of NF-κB and MAPK activation in BV2 microglial cells. The results of this study suggest that MSCs can modulate microglia activation through TSG-6 and that TSG-6 attenuates the inflammatory cascade in activated microglia. Our study indicates that novel mechanisms are responsible for the immunomodulatory effect of MSCs on microglia and that MSCs, as well as TSG-6, might be promising therapeutic agents for the treatment of neurotraumatic injuries or neuroinflammatory diseases associated with microglial activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaodan Jiang
- The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou 510282, China.
| |
Collapse
|
47
|
Penehyclidine hydrochloride inhibits the LPS-induced inflammatory response in microglia. J Surg Res 2014; 188:260-7. [DOI: 10.1016/j.jss.2013.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023]
|
48
|
Neuroinflammation and endoplasmic reticulum stress are coregulated by cyclo(His-Pro) to prevent LPS neurotoxicity. Int J Biochem Cell Biol 2014; 51:159-69. [PMID: 24699213 DOI: 10.1016/j.biocel.2014.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/06/2023]
Abstract
Many neurological and neurodegenerative diseases are associated with oxidative stress and glial inflammation, all related to endoplasmic reticulum stress. Cyclo(His-Pro) is an endogenous cyclic dipeptide that exerts cytoprotection by interfering with the Nrf2-NF-κB systems, the former presiding the antioxidant and the latter the pro-inflammatory cellular response. Here we investigated whether the cyclic dipeptide inhibits glial inflammation thus reducing the detrimental effect of inflammatory neurotoxins on neurons. We found that systemic administration of cyclo(His-Pro) exerts in vivo anti-inflammatory effects in the central nervous system by down-regulating hepatic and cerebral TNFα expression thereby counteracting LPS-induced gliosis. Mechanistic studies indicated that the cyclic dipeptide-mediated effects are achieved through the activation of Nrf2-driven antioxidant response and the inhibition of the pro-inflammatory NF-κB pathway. Moreover, by up-regulating Bip, cyclo(His-Pro) increases the ER stress sensitivity and triggers the unfolded protein response to alleviate the ER stress. These results unveil a novel potential therapeutic use of cyclo(His-Pro) against neuroinflammatory-related diseases and we might now consider its potential anti-inflammatory role in other neuropathological conditions.
Collapse
|
49
|
Propofol Limits Microglial Activation after Experimental Brain Trauma through Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Anesthesiology 2013; 119:1370-88. [DOI: 10.1097/aln.0000000000000020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Background:
Microglial activation is implicated in delayed tissue damage after traumatic brain injury (TBI). Activation of microglia causes up-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, with the release of reactive oxygen species and cytotoxicity. Propofol appears to have antiinflammatory actions. The authors evaluated the neuroprotective effects of propofol after TBI and examined in vivo and in vitro whether such actions reflected modulation of NADPH oxidase.
Methods:
Adult male rats were subjected to moderate lateral fluid percussion TBI. Effect of propofol on brain microglial activation and functional recovery was assessed up to 28 days postinjury. By using primary microglial and BV2 cell cultures, the authors examined propofol modulation of lipopolysaccharide and interferon-γ–induced microglial reactivity and neurotoxicity.
Results:
Propofol improved cognitive recovery after TBI in novel object recognition test (48 ± 6% for propofol [n = 15] vs. 30 ± 4% for isoflurane [n = 14]; P = 0.005). The functional improvement with propofol was associated with limited microglial activation and decreased cortical lesion volume and neuronal loss. Propofol also attenuated lipopolysaccharide- and interferon-γ–induced microglial activation in vitro, with reduced expression of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β, reactive oxygen species, and NADPH oxidase. Microglial-induced neurotoxicity in vitro was also markedly reduced by propofol. The protective effect of propofol was attenuated when the NADPH oxidase subunit p22phox was knocked down by small interfering RNA. Moreover, propofol reduced the expression of p22phox and gp91phox, two key components of NADPH oxidase, after TBI.
Conclusion:
The neuroprotective effects of propofol after TBI appear to be mediated, in part, through the inhibition of NADPH oxidase.
Collapse
|
50
|
Kim WI, Ryu HJ, Kim JE, Seo CH, Lee BC, Choi IG, Kang TC. Differential nuclear factor-kappa B phosphorylation induced by lipopolysaccharide in the hippocampus of P2X7 receptor knockout mouse. Neurol Res 2013; 35:369-81. [DOI: 10.1179/1743132812y.0000000137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Won Il Kim
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | - Hea Jin Ryu
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| | | | - Boung Chul Lee
- Department of PsychiatryHangang Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Ihn-Geun Choi
- Department of PsychiatryHangang Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology
- Institute of Epilepsy ResearchCollege of Medicine, Hallym University, Kangwon-Do, Korea,
| |
Collapse
|