1
|
Lyte JM, Eckenberger J, Keane J, Robinson K, Bacon T, Assumpcao ALFV, Donoghue AM, Liyanage R, Daniels KM, Caputi V, Lyte M. Cold stress initiates catecholaminergic and serotonergic responses in the chicken gut that are associated with functional shifts in the microbiome. Poult Sci 2024; 103:103393. [PMID: 38320392 PMCID: PMC10851224 DOI: 10.1016/j.psj.2023.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
Climate change is one of the most significant challenges facing the sustainability of global poultry production. Stress resulting from extreme temperature swings, including cold snaps, is a major concern for food production birds. Despite being well-documented in mammals, the effect of environmental stress on enteric neurophysiology and concomitant impact on host-microbiome interactions remains poorly understood in birds. As early life stressors may imprint long-term adaptive changes in the host, the present study sought to determine whether cold temperature stress, a prominent form of early life stress in chickens, elicits changes in enteric stress-related neurochemical concentrations that coincide with compositional and functional changes in the microbiome that persist into the later life of the bird. Chicks were, or were not, subjected to cold ambient temperature stress during the first week post-hatch and then remained at normal temperature for the remainder of the study. 16S rRNA gene and shallow shotgun metagenomic analyses demonstrated taxonomic and functional divergence between the cecal microbiomes of control and cold stressed chickens that persisted for weeks following cessation of the stressor. Enteric concentrations of serotonin, norepinephrine, and other monoamine neurochemicals were elevated (P < 0.05) in both cecal tissue and luminal content of cold stressed chickens. Significant (P < 0.05) associations were identified between cecal neurochemical concentrations and microbial taxa, suggesting host enteric neurochemical responses to environmental stress may shape the cecal microbiome. These findings demonstrate for the first time that early life exposure to environmental temperature stress can change the developmental trajectory of both the chicken cecal microbiome and host neuroendocrine enteric physiology. As many neurochemicals serve as interkingdom signaling molecules, the relationships identified here could be exploited to control the impact of climate change-driven stress on avian enteric host-microbe interactions.
Collapse
Affiliation(s)
- Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA.
| | - Julia Eckenberger
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Kelsy Robinson
- Poultry Research Unit, Agricultural Research Service, United States Department of Agriculture Mississippi State, MS 39762, USA
| | - Tyler Bacon
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | | | - Annie M Donoghue
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Rohana Liyanage
- Statewide Mass Spectrometry Lab, University of Arkansas, Fayetteville, AR 72701, USA
| | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Meckel KR, Simpson SS, Godino A, Peck EG, Sens JP, Leonard MZ, George O, Calipari ES, Hofford RS, Kiraly DD. Microbial short-chain fatty acids regulate drug seeking and transcriptional control in a model of cocaine seeking. Neuropsychopharmacology 2024; 49:386-395. [PMID: 37528220 PMCID: PMC10724273 DOI: 10.1038/s41386-023-01661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Cocaine use disorder represents a public health crisis with no FDA-approved medications for its treatment. A growing body of research has detailed the important connections between the brain and the resident population of bacteria in the gut, the gut microbiome, in psychiatric disease models. Acute depletion of gut bacteria results in enhanced reward in a mouse cocaine place preference model, and repletion of bacterially-derived short-chain fatty acid (SCFA) metabolites reverses this effect. However, the role of the gut microbiome and its metabolites in modulating cocaine-seeking behavior after prolonged abstinence is unknown. Given that relapse prevention is the most clinically challenging issue in treating substance use disorders, studies examining the effects of microbiome manipulations in relapse-relevant models are critical. Here, male Sprague-Dawley rats received either untreated water or antibiotics to deplete the gut microbiome and its metabolites. Rats were trained to self-administer cocaine and subjected to either within-session threshold testing to evaluate motivation for cocaine or 21 days of abstinence followed by a cue-induced cocaine-seeking task to model relapse behavior. Microbiome depletion did not affect cocaine acquisition on an fixed-ratio 1 schedule. However, microbiome-depleted rats exhibited significantly enhanced motivation for low dose cocaine on a within-session threshold task. Similarly, microbiome depletion increased cue-induced cocaine-seeking following prolonged abstinence and altered transcriptional regulation in the nucleus accumbens. In the absence of a normal microbiome, repletion of bacterially-derived SCFA metabolites reversed the behavioral and transcriptional changes associated with microbiome depletion. These findings suggest that gut bacteria, via their metabolites, are key regulators of drug-seeking behaviors, positioning the microbiome as a potential translational research target.
Collapse
Affiliation(s)
- Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Sierra S Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Arthur Godino
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily G Peck
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC, 27101, USA
| | - Jonathon P Sens
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC, 27101, USA
| | - Michael Z Leonard
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, 865F Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rebecca S Hofford
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC, 27101, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC, 27101, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
3
|
Hofford RS, Mervosh NL, Euston TJ, Meckel KR, Orr AT, Kiraly DD. Alterations in microbiome composition and metabolic byproducts drive behavioral and transcriptional responses to morphine. Neuropsychopharmacology 2021; 46:2062-2072. [PMID: 34127799 PMCID: PMC8505488 DOI: 10.1038/s41386-021-01043-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence has demonstrated that the gut microbiome has marked effects on neuronal function and behavior. Disturbances to microbial populations within the gut have been linked to myriad models of neuropsychiatric disorders. However, the role of the microbiome in substance use disorders remains understudied. Here we show that male mice with their gut microbiome depleted by nonabsorbable antibiotics (Abx) exhibit decreased formation of morphine conditioned place preference across a range of doses (2.5-15 mg/kg), have decreased locomotor sensitization to morphine, and demonstrate marked changes in gene expression within the nucleus accumbens (NAc) in response to high-dose morphine (20 mg/kg × 7 days). Replacement of short-chain fatty acid (SCFA) metabolites, which are reduced by microbiome knockdown, reversed the behavioral and transcriptional effects of microbiome depletion. This identifies SCFA as the crucial mediators of microbiome-brain communication responsible for the effects on morphine reward caused by microbiome knockdown. These studies add important new behavioral, molecular, and mechanistic insight to the role of gut-brain signaling in substance use disorders.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas L Mervosh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanner J Euston
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amon T Orr
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Ben Bacha A, Al‐Orf N, Alonazi M, Bhat RS, El‐Ansary A. The anti-inflammatory and antiapoptotic effects of probiotic on induced neurotoxicity in juvenile hamsters. Food Sci Nutr 2021; 9:4874-4882. [PMID: 34531999 PMCID: PMC8441441 DOI: 10.1002/fsn3.2435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Brain inflammation and apoptosis play crucial roles in the pathogenesis of various neurodevelopmental disorders. Probiotics have been shown to confer protection against many stresses, including apoptosis and inflammation, by modulating the gut function. The short-chain fatty acid, propionic acid (PPA), plays an important intermediate of cellular metabolism. Although PPA exhibits numerous beneficial biological effects, its accumulation is neurotoxic. This study focused on the therapeutic potency of probiotics against PPA-induced apoptosis and neuroinflammation in hamsters. Five groups of male golden Syrian hamsters were treated as follows: Group I as control; Group II as PPA-treated with three doses of 250 mg PPA/kg/day; Group III as clindamycin-treated with a single dose of 30 mg clindamycin/kg; Group IV as PPA-probiotic; and Group V as clindamycin-probiotic were two therapeutic groups which were treated with the same doses of PPA and clindamycin, respectively, followed by treatment with 0.2 g kg-1 d-1 of probiotic (ProtexinR, Probiotics International Limited) for three weeks. Proapoptotic markers, such as caspases 3 and 7; neuroinflammation markers, such as interleukins 1β and 8; and heat shock protein 70 were measured in the brain. Significant increase of all measured markers (p ˂ .001) was observed in PPA and clindamycin-treated hamsters compared with controls. Probiotics significantly reduced the damages and ameliorated all the test markers in both therapeutic groups compared with the control. Our results confirmed that probiotics can be utilized as a feasible strategy for managing apoptotic and inflammation-related stresses in brain disorders by retaining the gut function.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop ImprovementFaculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Norah Al‐Orf
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Mona Alonazi
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry DepartmentScience CollegeKing Saud UniversityRiyadhSaudi Arabia
| | - Afaf El‐Ansary
- Central LaboratoryKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
5
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
6
|
Propionic acid induced behavioural effects of relevance to autism spectrum disorder evaluated in the hole board test with rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109794. [PMID: 31639413 DOI: 10.1016/j.pnpbp.2019.109794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorders (ASD) are a set of neurodevelopmental disorders characterized by abnormal social interactions, impaired language, and stereotypic and repetitive behaviours. Among genetically susceptible subpopulations, gut and dietary influences may play a role in etiology. Propionic acid (PPA), produced by enteric gut bacteria, crosses both the gut-blood and the blood-brain barrier. Previous research has demonstrated that repeated intracerebroventricular (ICV) infusions of PPA in adult rats produce behavioural and neuropathological changes similar to those seen in ASD patients, including hyperactivity, stereotypy, and repetitive movements. The current study examined dose and time related changes of exploratory and repetitive behaviours with the use of the hole-board task. Adult male Long-Evans rats received ICV infusions twice a day, 4 h apart, of either buffered PPA (low dose 0.052 M or high dose 0.26 M, pH 7.5, 4 μL/infusion) or phosphate buffered saline (PBS, 0.1 M) for 7 consecutive days. Locomotor activity and hole-poke behaviour were recorded daily in an automated open field apparatus (Versamax), equipped with 16 open wells, for 30 min immediately after the second infusion. In a dose dependent manner PPA infused rats displayed significantly more locomotor activity, stereotypic behaviour and nose-pokes than PBS infused rats. Low-dose PPA animals showed locomotor activity levels similar to those of PBS animals at the start of the infusion schedule, but gradually increased to levels comparable to those of high-dose PPA animals by the end of the infusion schedule, demonstrating a dose and time dependent effect of the PPA treatments.
Collapse
|
7
|
Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejía JL, Hansen LH, Leigh Gibson E, Nielsen DS, Costabile A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). MICROBIOME 2018; 6:133. [PMID: 30071894 PMCID: PMC6091020 DOI: 10.1186/s40168-018-0523-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 06/02/2023]
Abstract
BACKGROUND Different dietary approaches, such as gluten and casein free diets, or the use of probiotics and prebiotics have been suggested in autistic spectrum disorders in order to reduce gastrointestinal (GI) disturbances. GI symptoms are of particular interest in this population due to prevalence and correlation with the severity of behavioural traits. Nowadays, there is lack of strong evidence about the effect of dietary interventions on these problems, particularly prebiotics. Therefore, we assessed the impact of exclusion diets and a 6-week Bimuno® galactooligosaccharide (B-GOS®) prebiotic intervention in 30 autistic children. RESULTS The results showed that children on exclusion diets reported significantly lower scores of abdominal pain and bowel movement, as well as lower abundance of Bifidobacterium spp. and Veillonellaceae family, but higher presence of Faecalibacterium prausnitzii and Bacteroides spp. In addition, significant correlations were found between bacterial populations and faecal amino acids in this group, compared to children following an unrestricted diet. Following B-GOS® intervention, we observed improvements in anti-social behaviour, significant increase of Lachnospiraceae family, and significant changes in faecal and urine metabolites. CONCLUSIONS To our knowledge, this is the first study where the effect of exclusion diets and prebiotics has been evaluated in autism, showing potential beneficial effects. A combined dietary approach resulted in significant changes in gut microbiota composition and metabolism suggesting that multiple interventions might be more relevant for the improvement of these aspects as well as psychological traits. TRIAL REGISTRATION NCT02720900 ; registered in November 2015.
Collapse
Affiliation(s)
- Roberta Grimaldi
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG66AP UK
- Clasado Research Services Ltd., Thames Valley Science Park, Reading, RG29LH UK
| | - Glenn R. Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG66AP UK
| | - Jelena Vulevic
- Clasado Research Services Ltd., Thames Valley Science Park, Reading, RG29LH UK
| | - Natasa Giallourou
- Division of Computational and Systems Medicine, Imperial College London, London, SW7 2AZ UK
| | - Josué L. Castro-Mejía
- Department of Food Science, Faculty of Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars H. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - E. Leigh Gibson
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, SW15 4JD UK
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Adele Costabile
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, SW15 4JD UK
| |
Collapse
|
8
|
Kim JL, La Gamma EF, Estabrook T, Kudrick N, Nankova BB. Whole genome expression profiling associates activation of unfolded protein response with impaired production and release of epinephrine after recurrent hypoglycemia. PLoS One 2017; 12:e0172789. [PMID: 28234964 PMCID: PMC5325535 DOI: 10.1371/journal.pone.0172789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivation, a phenomenon known as hypoglycemia associated autonomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation are not completely understood. We hypothesized that both neuronal (excessive cholinergic signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors contribute to the impaired epinephrine production and release in HAAF. To gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia, we utilized a global gene expression profiling approach. We characterized the transcriptomes during recurrent (defective counter-regulation model) and acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a set of unique genes that are activated only at specific time points after recurrent hypoglycemia were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network indicated activation of the unfolded protein response. Furthermore, at least three additional pathways/interaction networks altered in the adrenal medulla following recurrent hypoglycemia were identified, which may contribute to the impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proenkephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregulation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the pleiotropic effects of the unfolded protein response in different organs, involved in maintaining glucose homeostasis, these findings uncover broader general mechanisms that arise following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the magnitude of HAAF syndrome.
Collapse
Affiliation(s)
- Juhye Lena Kim
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
| | - Edmund F. La Gamma
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Todd Estabrook
- New York Medical College School of Medicine, Valhalla, New York, United States of America
| | - Necla Kudrick
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
| | - Bistra B. Nankova
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chang GQ, Karatayev O, Lukatskaya O, Leibowitz SF. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons. Peptides 2016; 79:16-26. [PMID: 27002387 PMCID: PMC4872302 DOI: 10.1016/j.peptides.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring.
Collapse
Affiliation(s)
- G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Lukatskaya
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Li CJ, Li RW, Baldwin RL, Blomberg LA, Wu S, Li W. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:1-8. [PMID: 26819550 PMCID: PMC4723047 DOI: 10.4137/grsb.s35607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/19/2023]
Abstract
Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation.
Collapse
Affiliation(s)
- Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Robert W Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Ransom L Baldwin
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Le Ann Blomberg
- United States Department of Agriculture, Agriculture Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | - Sitao Wu
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| | - Weizhong Li
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| |
Collapse
|
11
|
Poon K, Alam M, Karatayev O, Barson JR, Leibowitz SF. Regulation of the orexigenic neuropeptide, enkephalin, by PPARδ and fatty acids in neurons of the hypothalamus and forebrain. J Neurochem 2015; 135:918-31. [PMID: 26332891 DOI: 10.1111/jnc.13298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/28/2015] [Accepted: 08/23/2015] [Indexed: 11/28/2022]
Abstract
Ingestion of a high-fat diet composed mainly of the saturated fatty acid, palmitic (PA), and the unsaturated fatty acid, oleic (OA), stimulates transcription in the brain of the opioid neuropeptide, enkephalin (ENK), which promotes intake of substances of abuse. To understand possible underlying mechanisms, this study examined the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), and tested in hypothalamic and forebrain neurons from rat embryos whether PPARs regulate endogenous ENK and the fatty acids themselves affect these PPARs and ENK. The first set of experiments demonstrated that knocking down PPARδ, but not PPARα or PPARγ, increased ENK transcription, activation of PPARδ by an agonist decreased ENK levels, and PPARδ neurons coexpressed ENK, suggesting that PPARδ negatively regulates ENK. In the second set of experiments, PA treatment of hypothalamic and forebrain neurons had no effect on PPARδ protein while stimulating ENK mRNA and protein, whereas OA increased both mRNA and protein levels of PPARδ in forebrain neurons while having no effect on ENK mRNA and increasing ENK levels. These findings show that PA has a strong, stimulatory effect on ENK and weak effect on PPARδ protein, whereas OA has a strong stimulatory effect on PPARδ and weak effect on ENK, consistent with the inhibitory effect of PPARδ on ENK. They suggest a function for PPARδ, perhaps protective in nature, in embryonic neurons exposed to fatty acids from a fat-rich diet and provide evidence for a mechanism contributing to differential effects of saturated and monounsaturated fatty acids on neurochemical systems involved in consummatory behavior. Our findings show that PPARδ in forebrain and hypothalamic neurons negatively regulates enkephalin (ENK), a peptide known to promote ingestive behavior. This inverse relationship is consistent with our additional findings, that a saturated (palmitic; PA) compared to a monounsaturated fatty acid (oleic; OA) has a strong stimulatory effect on ENK and weak effect on PPARδ. These results suggest that PPARδ protects against the neuronal effects of fatty acids, which differentially affect neurochemical systems involved in ingestive behavior.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York City, New York, USA
| | - Mohammad Alam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York City, New York, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York City, New York, USA
| | - Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York City, New York, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York City, New York, USA
| |
Collapse
|
12
|
Kudrick N, Chan O, La Gamma EF, Kim JL, Tank AW, Sterling C, Nankova BB. Posttranscriptional regulation of adrenal TH gene expression contributes to the maladaptive responses triggered by insulin-induced recurrent hypoglycemia. Physiol Rep 2015; 3:3/2/e12307. [PMID: 25713330 PMCID: PMC4393213 DOI: 10.14814/phy2.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute metabolic stress such as insulin-induced hypoglycemia triggers a counterregulatory response during which the release of catecholamines (epinephrine), the activation of tyrosine hydroxylase (TH) enzyme and subsequent compensatory catecholamine biosynthesis occur in the adrenal medulla. However, recurrent exposure to hypoglycemia (RH), a consequence of tight glycemic control in individuals with type 1 and type 2 diabetes compromises this physiological response. The molecular mechanisms underlying the maladaptive response to repeated glucose deprivation are incompletely understood. We hypothesize that impaired epinephrine release following RH reflects altered regulation of adrenal catecholamine biosynthesis. To test this hypothesis, we compared the effect of single daily (RH) and twice-daily episodes of insulin-induced hypoglycemia (2RH) on adrenal epinephrine release and production in normal rats. Control animals received saline injections under similar conditions (RS and 2RS, respectively). Following 3 days of treatment, we assessed the counterregulatory hormonal responses during a hypoglycemic clamp. Changes in adrenal TH gene expression were also analyzed. The counterregulatory responses, relative TH transcription and TH mRNA levels and Ser40-TH phosphorylation (marker for enzyme activation) were induced to a similar extent in RS, 2RS, and RH groups. In contrast, epinephrine and glucagon responses were attenuated in the 2RH group and this was associated with a limited elevation of adrenal TH mRNA, rapid inactivation of TH enzyme and no significant changes in TH protein. Our results suggest that novel posttranscriptional mechanisms controlling TH mRNA and activated TH enzyme turnover contribute to the impaired epinephrine responses and may provide new therapeutic targets to prevent HAAF.
Collapse
Affiliation(s)
- Necla Kudrick
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, Connecticut
| | - Edmund F La Gamma
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Juhye Lena Kim
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Arnold William Tank
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Carol Sterling
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Bistra B Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
LaGamma EF, Kirtok N, Chan O, Nankova BB. Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats. Am J Physiol Endocrinol Metab 2014; 307:E580-8. [PMID: 25117409 PMCID: PMC4250232 DOI: 10.1152/ajpendo.00237.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recurrent exposure to hypoglycemia can impair the normal counterregulatory hormonal responses that guard against hypoglycemia, leading to hypoglycemia unawareness. This pathological condition known as hypoglycemia-associated autonomic failure (HAAF) is the main adverse consequence that prevents individuals with type 1 diabetes mellitus from attaining the long-term health benefits of tight glycemic control. The underlying molecular mechanisms responsible for the progressive loss of the epinephrine response to subsequent bouts of hypoglycemia, a hallmark sign of HAAF, are largely unknown. Normally, hypoglycemia triggers both the release and biosynthesis of epinephrine through activation of nicotinic acetylcholine receptors (nAChR) on the adrenal glands. We hypothesize that excessive cholinergic stimulation may contribute to impaired counterregulation. Here, we tested whether administration of the nAChR partial agonist cytisine to reduce postganglionic synaptic activity can preserve the counterregulatory hormone responses in an animal model of HAAF. Compared with nicotine, cytisine has limited efficacy to activate nAChRs and stimulate epinephrine release and synthesis. We evaluated adrenal catecholamine production and secretion in nondiabetic rats subjected to two daily episodes of hypoglycemia for 3 days, followed by a hyperinsulinemic hypoglycemic clamp on day 4. Recurrent hypoglycemia decreased epinephrine responses, and this was associated with suppressed TH mRNA induction (a measure of adrenal catecholamine synthetic capacity). Treatment with cytisine improved glucagon responses as well as epinephrine release and production in recurrently hypoglycemic animals. These data suggest that pharmacological manipulation of ganglionic nAChRs may be promising as a translational adjunctive therapy to avoid HAAF in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Edmund F LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry, and Molecular Biology, New York Medical College, Valhalla, New York; Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York; and
| | - Necla Kirtok
- Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York; and
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut
| | - Bistra B Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry, and Molecular Biology, New York Medical College, Valhalla, New York;
| |
Collapse
|
14
|
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 9:e103740. [PMID: 25170769 PMCID: PMC4149359 DOI: 10.1371/journal.pone.0103740] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as increased levels of SCFA's can epigenetically modulate cell function further supporting their role as environmental contributors to ASD.
Collapse
Affiliation(s)
- Bistra B. Nankova
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
- * E-mail:
| | - Raj Agarwal
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, The University of Western Ontario, London, Ontario, Canada
| | - Edmund F. La Gamma
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| |
Collapse
|
15
|
Abstract
New approaches are needed to examine the diverse symptoms and comorbidities of the growing family of neurodevelopmental disorders known as autism spectrum disorder (ASD). ASD originally was thought to be a static, inheritable neurodevelopmental disorder, and our understanding of it is undergoing a major shift. It is emerging as a dynamic system of metabolic and immune anomalies involving many organ systems, including the brain, and environmental exposure. The initial detailed observation and inquiry of patients with ASD and related conditions and the histories of their caregivers and families have been invaluable. How gastrointestinal (GI) factors are related to ASD is not yet clear. Nevertheless, many patients with ASD have a history of previous antibiotic exposure or hospitalization, GI symptoms, abnormal food cravings, and unique intestinal bacterial populations, which have been proposed to relate to variable symptom severity. In addition to traditional scientific inquiry, detailed clinical observation and recording of exacerbations, remissions, and comorbidities are needed. This article reviews the role that enteric short-chain fatty acids, particularly propionic (also called propanoic) acid, produced from ASD-associated GI bacteria, may play in the etiology of some forms of ASD. Human populations that are partial metabolizers of propionic acid are more common than previously thought. The results from pre-clinical laboratory studies show that propionic acid-treated rats display ASD-like repetitive, perseverative, and antisocial behaviors and seizure. Neurochemical changes, consistent and predictive with findings in ASD patients, including neuroinflammation, increased oxidative stress, mitochondrial dysfunction, glutathione depletion, and altered phospholipid/acylcarnitine profiles, have been observed. Propionic acid has bioactive effects on (1) neurotransmitter systems, (2) intracellular acidification and calcium release, (3) fatty acid metabolism, (4) gap junction gating, (5) immune function, and (6) alteration of gene expression that warrant further exploration. Traditional scientific experimentation is needed to verify the hypothesis that enteric short-chain fatty acids may be a potential environmental trigger in some forms of ASD. Novel collaborative developments in systems biology, particularly examining the role of the microbiome and its effects on host metabolism, immune and mitochondrial function, and gene expression, hold great promise in ASD.
Collapse
Affiliation(s)
- Derrick Macfabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J Neurosci 2013; 33:13600-11. [PMID: 23966683 DOI: 10.1523/jneurosci.5835-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animal and clinical studies show that gestational exposure to nicotine increases the propensity of offspring to consume nicotine, but the precise mechanism mediating this behavioral phenomenon is unclear. The present study in Sprague Dawley rats examined the possibility that the orexigenic peptide systems, enkephalin (ENK) and orexin (OX), which are stimulated by nicotine in adult animals and promote consummatory behavior, may be similarly responsive to nicotine's stimulatory effect in utero while having long-term behavioral consequences. The results demonstrated that nicotine exposure during gestation at low doses (0.75 or 1.5 mg/kg/d) significantly increased mRNA levels and density of neurons that express ENK in the hypothalamic paraventricular nucleus and central nucleus of the amygdala, OX, and another orexigenic peptide, melanin-concentrating hormone, in the perifornical lateral hypothalamus in preweanling offspring. These effects persisted in the absence of nicotine, at least until puberty. Colabeling of the cell proliferation marker BrdU with the neuronal marker NeuN and peptides revealed a marked stimulatory effect of prenatal nicotine on neurogenesis, but not gliogenesis, and also on the number of newly generated neurons expressing ENK, OX, or melanin-concentrating hormone. During adolescence, offspring also exhibited significant behavioral changes, increased consumption of nicotine and other substances of abuse, ethanol and a fat-rich diet, with no changes in chow and water intake or body weight. These findings reveal a marked sensitivity during gestation of the orexigenic peptide neurons to low nicotine doses that may increase the offspring's propensity to overconsume substances of abuse during adolescence.
Collapse
|
17
|
Meyer B, Zentek J, Harlander-Matauschek A. Differences in intestinal microbial metabolites in laying hens with high and low levels of repetitive feather-pecking behavior. Physiol Behav 2013; 110-111:96-101. [DOI: 10.1016/j.physbeh.2012.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022]
|
18
|
CHANG GQ, KARATAYEV O, LIANG SC, BARSON JR, LEIBOWITZ SF. Prenatal ethanol exposure stimulates neurogenesis in hypothalamic and limbic peptide systems: possible mechanism for offspring ethanol overconsumption. Neuroscience 2012; 222:417-28. [PMID: 22742906 PMCID: PMC3605889 DOI: 10.1016/j.neuroscience.2012.05.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/15/2012] [Accepted: 05/30/2012] [Indexed: 01/19/2023]
Abstract
Exposure to ethanol during the prenatal period contributes to increased alcohol consumption and preference in rodents and increased risk for alcoholism in humans. With studies in adult animals showing the orexigenic peptides, enkephalin (ENK), galanin (GAL) and orexin (OX), to stimulate ethanol consumption, the question addressed here is whether prenatal ethanol alters the development in utero of specific neurons that express these peptides. With reports describing suppressive effects of high doses of ethanol, we examined the offspring of dams gavaged from embryonic day 9 to parturition with a control solution or lower ethanol doses, 1 and 3g/kg/day, known to promote ethanol consumption in the offspring. To understand underlying mechanisms, measurements were taken in postnatal offspring of the expression of ENK in the hypothalamic paraventricular nucleus (PVN) and nucleus accumbens (NAc), GAL in the PVN, and OX in the perifornical lateral hypothalamus (PFLH) using real-time qPCR and in situ hybridization, and also of the cell proliferation marker, 5-bromo-2-deoxyuridine (BrdU), and its double-labeling with either neuronal nuclei (NeuN), a marker of mature neurons, or the peptides. On postnatal day 15 (P15), after two weeks without ethanol, the offspring showed increased expression of ENK in the PVN and NAc core but not shell, GAL in the PVN, and OX in the PFLH. In these same areas, prenatal ethanol compared to control increased the density at birth (P0) of neurons expressing these peptides and at P0 and P15 of neurons double-labeling BrdU and NeuN, indicating increased neurogenesis. These BrdU-positive neurons were found to express ENK, GAL and OX, indicating that prenatal ethanol promotes neurogenesis in these specific peptide systems. There were no changes in gliogenesis or apoptosis. This increase in neurogenesis and density of peptide-expressing neurons suggests the involvement of these hypothalamic and accumbal peptide systems in mediating the increased alcohol consumption observed in prenatal ethanol-exposed offspring.
Collapse
Affiliation(s)
- G.-Q. CHANG
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O. KARATAYEV
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - S. C. LIANG
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - J. R. BARSON
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - S. F. LEIBOWITZ
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
19
|
MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:19260. [PMID: 23990817 PMCID: PMC3747729 DOI: 10.3402/mehd.v23i0.19260] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental agents that can trigger ASDs or ASD-related behaviors and deserve further exploration in basic science, agriculture, and clinical medicine.
Collapse
Affiliation(s)
- Derrick F. MacFabe
- Director: The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, Lawson Research Institute, University of Western Ontario, London, ON, Canada, N6A 5C2
| |
Collapse
|
20
|
Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, MacFabe DF. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation 2012; 9:153. [PMID: 22747852 PMCID: PMC3472254 DOI: 10.1186/1742-2094-9-153] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/29/2012] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.
Collapse
Affiliation(s)
- Raymond H Thomas
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 2011; 217:47-54. [DOI: 10.1016/j.bbr.2010.10.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 12/15/2022]
|
22
|
Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138:1772-82. [PMID: 20152836 DOI: 10.1053/j.gastro.2010.01.053] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/21/2009] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Little is known about the environmental and nutritional regulation of the enteric nervous system (ENS), which controls gastrointestinal motility. Short-chain fatty acids (SCFAs) such as butyrate regulate colonic mucosa homeostasis and can modulate neuronal excitability. We investigated their effects on the ENS and colonic motility. METHODS Effects of butyrate on the ENS were studied in colons of rats given a resistant starch diet (RSD) or intracecal perfusion of SCFAs. Effects of butyrate were also studied in primary cultures of ENS. The neurochemical phenotype of the ENS was analyzed with antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) and by quantitative polymerase chain reaction. Signaling pathways involved were analyzed by pharmacologic and molecular biology methods. Colonic motility was assessed in vivo and ex vivo. RESULTS In vivo and in vitro, RSD and butyrate significantly increased the proportion of ChAT- but not nNOS-immunoreactive myenteric neurons. Acetate and propionate did not reproduce the effects of butyrate. Enteric neurons expressed monocarboxylate transporter 2 (MCT2). Small interfering RNAs silenced MCT2 and prevented the increase in the proportion of ChAT- immunoreactive neurons induced by butyrate. Butyrate and trichostatin A increased histone H3 acetylation in enteric neurons. Effects of butyrate were prevented by inhibitors of the Src signaling pathway. RSD increased colonic transit, and butyrate increased the cholinergic-mediated colonic circular muscle contractile response ex vivo. CONCLUSION Butyrate or histone deacetylase inhibitors might be used, along with nutritional approaches, to treat various gastrointestinal motility disorders associated with inhibition of colonic transit.
Collapse
Affiliation(s)
- Rodolphe Soret
- Institut National de Sante et de Recherche Medicale (INSERM), U913, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem 2010; 113:515-29. [PMID: 20405543 DOI: 10.1111/j.1471-4159.2010.06614.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have demonstrated intraventricular infusions of propionic acid (PPA) a dietary and enteric short-chain fatty acid can produce brain and behavioral changes similar to those observed in autism spectrum disorder (ASD). The effects of PPA were further evaluated to determine if there are any alterations in brain lipids associated with the ASD-like behavioral changes observed following intermittent intraventricular infusions of PPA, the related enteric metabolite butyric acid (BUT) or phosphate-buffered saline vehicle. Both PPA and BUT produced significant increases (p < 0.001) in locomotor activity (total distance travelled and stereotypy). PPA and to a lesser extent BUT infusions decreased the levels of total monounsaturates, total omega6 fatty acids, total phosphatidylethanolamine plasmalogens, the ratio of omega6 : omega3 and elevated the levels of total saturates in separated phospholipid species. In addition, total acylcarnitines, total longchain (C12-C24) acylcarnitines, total short-chain (C2 to C9) acylcarnitines, and the ratio of bound to free carnitine were increased following infusions with PPA and BUT. These results provide evidence of a relationship between changes in brain lipid profiles and the occurrence of ASD-like behaviors using the autism rodent model. We propose that altered brain fatty acid metabolism may contribute to ASD.
Collapse
Affiliation(s)
- Raymond H Thomas
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology and Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Chen J, Sai SYT, Vazin T, Coggiano M, Freed WJ. Human embryonic stem cells which express hrGFP in the undifferentiated state and during dopaminergic differentiation. Restor Neurol Neurosci 2009; 27:359-70. [PMID: 19738328 DOI: 10.3233/rnn-2009-0521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Human embryonic stem cells (hESCs) which express a reporter gene consistently during all phases of differentiation would be valuable for basic research on cell transplantation. In this study, we describe karyotypically-abnormal variant hESCs, BGO1V2-EFG, which express hrGFP driven by the EF1 promoter. METHODS BGO1V2-EFG cells were analyzed by using immunocytochemistry, single cell-based confocal image, and in vitro differentiation, including dopaminergic differentiation. RESULTS Undifferentiated BGO1V2-EFG cells expressed pluripotent ESC markers and retained the ability to differentiate into cell types of all three germ layers. BGO1V2-EFG cells maintained stable and robust hrGFP expression in vitro in the undifferentiated state and during differentiation. The EF1 promoter retained activity during dopaminergic differentiation, as 76% of tyrosine hydroxlase (TH)-positive cells co-expressed hrGFP by confocal analysis. Treated with sodium butyrate (0.02 mM to 2.0 mM), an inhibitor of histone deacetylase (HDAC), during differentiation did not affect hrGFP expression, although TH expression was reduced by higher concentrations of sodium butyrate. CONCLUSION BGO1V2-EFG cells maintain stable and robust hrGFP expression in the undifferentiated state and during neural differentiation. Especially, the EF1 promoter was effective in driving hrGFP expression during dopaminergic differentiation. BGO1V2-EFG cells may be useful for transplantation studies in Parkinson disease animal models.
Collapse
Affiliation(s)
- Jia Chen
- Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
26
|
D'Souza A, Onem E, Patel P, La Gamma EF, Nankova BB. Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res 2008; 1247:1-10. [PMID: 18976638 DOI: 10.1016/j.brainres.2008.09.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 12/23/2022]
Abstract
The spectrum of neurological conditions and psychiatric disorders affected by valproic acid (VPA) ranges from control of seizure and mood disorders to migraine, neuropathic pain, and even congenital malformations and autism. While widely used clinically, the mechanism(s) of action of VPA is not completely understood. Emerging evidence indicates that brain noradrenergic systems contribute to the symptoms of mood disorders and may involve regulation of tyrosine hydroxylase (TH) expression, the rate-limiting enzyme in the biosynthesis of dopamine, norepinephrine and epinephrine. We previously showed that the structurally related short chain fatty acid sodium butyrate (SB) induces TH transcription and alters TH mRNA stability in PC12 cells. The present study was undertaken to determine whether the branched short chain fatty acid VPA could also regulate TH gene expression in vitro. Similar to SB, VPA induced TH transcription at all concentrations tested. VPA-stimulated transcription was significantly attenuated by introducing point mutations in either the canonical cAMP- or in the butyrate-response elements of the TH promoter; or by co-expression of dominant-negative forms of CREB. As with SB, increasing concentrations of VPA demonstrated opposing effects on TH mRNA and protein abundance: elevation of both at low (0.1 mM) but attenuation at concentrations higher than 0.5 mM. This concentration-dependence is consistent with a novel and previously unrecognized cellular/molecular drug regulatory step at the level of TH mRNA stability. Thus, the therapeutic efficacy of VPA might be related to its ability to regulate TH mRNA and protein levels, and thereby central catecholaminergic-dependent behavioral pathways.
Collapse
Affiliation(s)
- Antoni D'Souza
- Division of Newborn Medicine, Department of Pediatrics, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
27
|
Han L, Suda M, Tsuzuki K, Wang R, Ohe Y, Hirai H, Watanabe T, Takeuchi T, Hosaka M. A large form of secretogranin III functions as a sorting receptor for chromogranin A aggregates in PC12 cells. Mol Endocrinol 2008; 22:1935-49. [PMID: 18483175 DOI: 10.1210/me.2008-0006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.
Collapse
Affiliation(s)
- Lu Han
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li CJ, Li RW. Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:113-23. [PMID: 19787080 PMCID: PMC2733093 DOI: 10.4137/grsb.s465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the effects of butyrate on patterns of gene expression relevant to DNA replication apparatus. The real-time PCR and Western blot data generally confirmed previously reported microarray data. Of the five genes tested by quantitative RT-PCR, CDKN1A (p21waf1) was up regulated, CDC2/cdk1, MCM6, ORC1L were down regulated, while ORC3L expression remained unchanged following butyrate treatment. Also consistent with RT-PCR results, Western blot analysis confirmed that butyrate up-regulated cyclin-kinase inhibitor p21waf1 in a does-dependent manner. In contrast, butyrate treatment had no effect on the expression of ERK 1/2 proteins. Also consistent with mRNA results, ORC1 and MCM3 proteins were down-regulated by butyrate treatment, while ORC2 protein remained unchanged. The present results suggest that ORC1, not ORC2 or ORC3, along with MCM proteins play a critical role in regulating the initiation of DNA replication and cell cycle progression in MDBK cells and are targets of butyrate regulation.
Collapse
Affiliation(s)
- Cong-jun Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, ARS, USDA, USA.
| | | |
Collapse
|
29
|
Bruns S, Stark Y, Röker S, Wieland M, Dräger G, Kirschning A, Stahl F, Kasper C, Scheper T. Collagen biomaterial doped with colominic acid for cell culture applications with regard to peripheral nerve repair. J Biotechnol 2007; 131:335-45. [PMID: 17714819 DOI: 10.1016/j.jbiotec.2007.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/15/2007] [Accepted: 06/22/2007] [Indexed: 02/01/2023]
Abstract
Colominic acid (CA) is a homopolymer of sialic acid residues and is solely composed of polymerised units of alpha-2,8-linked N-acetylneuraminic acid. CA is a specific derivative of polysialic acid (PSA), produced as the capsular polysaccharide of Escherichia coli K1 derived molecule of PSA. PSA in vivo plays a significant role in synaptic plasticity and neural development. The use of collagen materials doped with defined CA is presented for the cultivation of various cell lines relevant for possible applications in Tissue Engineering. First, the release behaviour under culture conditions of the collagen-based (C-CA) materials was investigated by thiobarbituric acid assay. Additionally, the established cell lines, PC-12 and immortalised Schwann cells (ISC), used for neurobiological and neurochemical studies and the model liver cell line Hep-G2 as indicator for biocompatibility testing, were cultured on the C-CA matrix. Cell proliferation (MTT-test) and cell adhesion (DAPI-staining) of the cell lines on the matrices were observed. Likewise, gene expression of the marker genes thyrosine hydroxylase for the PC-12 cells, and albumin, transferrin and CYP3A4 for the Hep-G2 cells was evaluated via RT-PCR. The results indicate that CA integration in established biomaterial constructs enhances cell proliferation and offers promising features as conduits additive in regarding peripheral nerve regeneration.
Collapse
Affiliation(s)
- Stephanie Bruns
- Universität Hannover, Institut für Technische Chemie, Callinstr. 3, D-30167 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arányi T, Sarkis C, Berrard S, Sardin K, Siron V, Khalfallah O, Mallet J. Sodium butyrate modifies the stabilizing complexes of tyrosine hydroxylase mRNA. Biochem Biophys Res Commun 2007; 359:15-9. [PMID: 17524356 DOI: 10.1016/j.bbrc.2007.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 05/06/2007] [Indexed: 12/27/2022]
Abstract
Multiple mechanisms regulate the expression of the tyrosine hydroxylase (Th) gene, which encodes the rate-limiting enzyme in the biosynthesis of catecholamines. Sodium butyrate (SOB), a physiological histone deacetylase (HDAC) inhibitor, was reported to stimulate the Th gene promoter activity in reporter gene assays. However, the expression of the endogenous Th gene in PC12 cells was reported to be either stimulated or inhibited by SOB. Here, we report that SOB and other HDAC inhibitors drastically (up to 90%) and reversibly decrease the level of TH mRNA in PC12 cells. We also show that SOB does not influence the transcription initiation rate of the Th gene but perturbs the formation of protein-RNA complexes at the 3'UTR of the gene. Our results suggest that SOB inhibits the expression of the Th gene by destabilizing TH mRNAs.
Collapse
Affiliation(s)
- T Arányi
- CNRS UMR 7091 - Université Pierre et Marie Curie (Paris 6), Hôpital de la Pitié Salpêtrière (Bâtiment CERVI), 83 Bd de l'hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|