1
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Calabro FJ, Montez DF, Larsen B, Laymon CM, Foran W, Hallquist MN, Price JC, Luna B. Striatal dopamine supports reward expectation and learning: A simultaneous PET/fMRI study. Neuroimage 2023; 267:119831. [PMID: 36586541 PMCID: PMC9983071 DOI: 10.1016/j.neuroimage.2022.119831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Converging evidence from both human neuroimaging and animal studies has supported a model of mesolimbic processing underlying reward learning behaviors, based on the computation of reward prediction errors. However, competing evidence supports human dopamine signaling in the basal ganglia as also contributing to the generation of higher order learning heuristics. Here, we present data from a large (N = 81, 18-30yo), multi-modal neuroimaging study using simultaneously acquired task fMRI, affording temporal resolution of reward system function, and PET imaging with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures showed ventral striatum involvement for signaling rewards. However, greater DA release was uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal within the best fitting reinforcement learning model. This DA response was associated with BOLD activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic signaling interacts with a network of cortical regions to generate task-optimal learning strategies, rather than representing reward outcomes in isolation.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David F Montez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N Hallquist
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Eleni P, Georgia P, Constantine P, Efstratios K, Georgios V, Nikolaos K, Christoph K, Nikolaos S. Functional brain imaging of speeded decision processing in Parkinson's disease and comparison with Schizophrenia. Psychiatry Res Neuroimaging 2021; 314:111312. [PMID: 34111721 DOI: 10.1016/j.pscychresns.2021.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
This study examined whether Parkinson's disease (PD1) and schizophrenia (SCZ2) share a hypo dopaminergic dysfunction of the prefrontal cortex leading to cognitive impairments in decision processing. 24 medicated PD patients and 28 matched controls performed the Eriksen flanker two-choice reaction time (RT3) task while brain activity was measured throughout, using functional Magnetic Resonance Imaging (fMRI4). Results were directly compared to those of 30 SCZ patients and 30 matched controls. Significant differences between SCZ and PD were found, through directly comparing the z-score deviations from healthy controls across all behavioral measures, where only SCZ patients showed deviances from controls. Similarly a direct comparison of z-score activation deviations from controls indicated significant differences in prefrontal and cingulate cortical activation between SCZ and PD, where only SCZ patients showed hypo-activation of these areas compared to controls. The hypo-activation of the dorsolateral prefrontal cortex was related to larger RT variability (ex-Gaussian tau) in SCZ but not PD patients. Overall, the concluding evidence does not support a shared neural substrate of cognitive dysfunction, since the deficit in speeded decision processing and the related cortical hypo-activation observed in SCZ were absent in PD.
Collapse
Affiliation(s)
- Pappa Eleni
- Laboratory of Cognitive Neuroscience, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Panagiotaropoulou Georgia
- Laboratory of Cognitive Neuroscience, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Potagas Constantine
- Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Karavasilis Efstratios
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital 'Attikon', Athens, Greece
| | - Velonakis Georgios
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital 'Attikon', Athens, Greece
| | - Kelekis Nikolaos
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital 'Attikon', Athens, Greece
| | - Klein Christoph
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece; Department of Child and Adolescent Psychiatry, University of Freiburg, Freiburg, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Smyrnis Nikolaos
- Laboratory of Cognitive Neuroscience, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; 2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "Attikon", Athens, Greece..
| |
Collapse
|
4
|
Calabro FJ, Murty VP, Jalbrzikowski M, Tervo-Clemmens B, Luna B. Development of Hippocampal-Prefrontal Cortex Interactions through Adolescence. Cereb Cortex 2020; 30:1548-1558. [PMID: 31670797 PMCID: PMC7132933 DOI: 10.1093/cercor/bhz186] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022] Open
Abstract
Significant improvements in cognitive control occur from childhood through adolescence, supported by the maturation of prefrontal systems. However, less is known about the neural basis of refinements in cognitive control proceeding from adolescence to adulthood. Accumulating evidence indicates that integration between hippocampus (HPC) and prefrontal cortex (PFC) supports flexible cognition and has a protracted neural maturation. Using a longitudinal design (487 scans), we characterized developmental changes from 8 to 32 years of age in HPC-PFC functional connectivity at rest and its associations with cognitive development. Results indicated significant increases in functional connectivity between HPC and ventromedial PFC (vmPFC), but not dorsolateral PFC. Importantly, HPC-vmPFC connectivity exclusively predicted performance on the Stockings of Cambridge task, which probes problem solving and future planning. These data provide evidence that maturation of high-level cognition into adulthood is supported by increased functional integration across the HPC and vmPFC through adolescence.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Longitudinal resting-state functional magnetic resonance imaging in a mouse model of metastatic bone cancer reveals distinct functional reorganizations along a developing chronic pain state. Pain 2019; 159:719-727. [PMID: 29319607 DOI: 10.1097/j.pain.0000000000001148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Functional neuroimaging has emerged as attractive option for characterizing pain states complementing behavioral readouts or clinical assessment. In particular, resting-state functional magnetic resonance imaging (rs-fMRI) enables monitoring of functional adaptations across the brain, for example, in response to chronic nociceptive input. We have used rs-fMRI in a mouse model of chronic pain from breast cancer-derived tibial bone metastases to identify pain-induced alterations in functional connectivity. Combined assessment of behavioral readouts allowed for defining a trajectory as model function for extracting pain-specific functional connectivity changes from the fMRI data reflective of a chronic pain state. Cingulate and prefrontal cortices as well as the ventral striatum were identified as predominantly affected regions, in line with findings from clinical and preclinical studies. Inhibition of the peripheral bone remodeling processes by antiosteolytic therapy led to a reduction of pain-induced network alterations, emphasizing the specificity of the functional readouts for a developing chronic pain state.
Collapse
|
6
|
Chen C, Xiu D, Chen C, Moyzis R, Xia M, He Y, Xue G, Li J, He Q, Lei X, Wang Y, Liu B, Chen W, Zhu B, Dong Q. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity. PLoS One 2015; 10:e0133143. [PMID: 26308205 PMCID: PMC4550269 DOI: 10.1371/journal.pone.0133143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 01/20/2023] Open
Abstract
Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Daiming Xiu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
- Institute of Psychology, Division of Psychopathology and Clinic Intervention, University of Zurich, Zurich, CH-8050, Switzerland
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California, 92697, United States of America
- * E-mail: (QD); (Chuansheng Chen)
| | - Robert Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, California, 92697, United States of America
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Beibei, Chongqing, 400715, China
| | - Xuemei Lei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Yunxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Bin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
- * E-mail: (QD); (Chuansheng Chen)
| |
Collapse
|
7
|
Mapping intrinsic functional brain changes and repetitive transcranial magnetic stimulation neuromodulation in idiopathic restless legs syndrome: a resting-state functional magnetic resonance imaging study. Sleep Med 2015; 16:785-91. [DOI: 10.1016/j.sleep.2014.12.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 11/17/2022]
|
8
|
Bhattacharyya S, Falkenberg I, Martin-Santos R, Atakan Z, Crippa JA, Giampietro V, Brammer M, McGuire P. Cannabinoid modulation of functional connectivity within regions processing attentional salience. Neuropsychopharmacology 2015; 40:1343-52. [PMID: 25249057 PMCID: PMC4397391 DOI: 10.1038/npp.2014.258] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/18/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK,Department of Psychosis Studies, Psychosis Clinical Academic Group, King's College London, Institute of Psychiatry, 6th Floor, Main Building, PO Box 067, De Crespigny Park, London SE5 8AF, UK, Tel: +44 (0)20 78480955, Fax: +44 (0)20 78480976, E-mail:
| | - Irina Falkenberg
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK,Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Rocio Martin-Santos
- Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), and Centro de Investigación Biomedica en Red en Salud Mental (CIBERSAM), Barcelona, Spain,Department of Psychiatry and Psychology, Hospital Clinic, University of Barcelona, Barcelona, Spain,INCT Translational Medicine (CNPq), Rio de Janeiro, Brazil
| | - Zerrin Atakan
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | - Jose A Crippa
- INCT Translational Medicine (CNPq), Rio de Janeiro, Brazil,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vincent Giampietro
- Department of Neuroimaging, King's College London, Institute of Psychiatry, London, UK
| | - Mick Brammer
- Department of Neuroimaging, King's College London, Institute of Psychiatry, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
9
|
Common polymorphisms in dopamine-related genes combine to produce a 'schizophrenia-like' prefrontal hypoactivity. Transl Psychiatry 2014; 4:e356. [PMID: 24495967 PMCID: PMC3944629 DOI: 10.1038/tp.2013.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/06/2013] [Accepted: 12/07/2013] [Indexed: 11/09/2022] Open
Abstract
Individual changes in dopamine-related genes influence prefrontal activity during cognitive-affective processes; however, the extent to which common genetic variations combine to influence prefrontal activity is unknown. We assessed catechol-O-methyltransferase (COMT) Val108/158Met (rs4680) and dopamine D2 receptor (DRD2) G-T (rs2283265) single nucleotide polymorphisms and functional magnetic resonance imaging during an emotional response inhibition test in 43 healthy adults and 27 people with schizophrenia to determine the extent to which COMT Val108/158Met and DRD2 G-T polymorphisms combine to influence prefrontal response to cognitive-affective challenges. We found an increased number of cognitive-deficit risk alleles in these two dopamine-regulating genes predict reduced prefrontal activation during response inhibition in healthy adults, mimicking schizophrenia-like prefrontal hypoactivity. Our study provides evidence that functionally related genes can combine to produce a disease-like endophenotype.
Collapse
|
10
|
Deserno L, Boehme R, Heinz A, Schlagenhauf F. Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry 2013; 4:172. [PMID: 24391603 PMCID: PMC3870301 DOI: 10.3389/fpsyt.2013.00172] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 01/26/2023] Open
Abstract
Abnormalities in reinforcement learning are a key finding in schizophrenia and have been proposed to be linked to elevated levels of dopamine neurotransmission. Behavioral deficits in reinforcement learning and their neural correlates may contribute to the formation of clinical characteristics of schizophrenia. The ability to form predictions about future outcomes is fundamental for environmental interactions and depends on neuronal teaching signals, like reward prediction errors. While aberrant prediction errors, that encode non-salient events as surprising, have been proposed to contribute to the formation of positive symptoms, a failure to build neural representations of decision values may result in negative symptoms. Here, we review behavioral and neuroimaging research in schizophrenia and focus on studies that implemented reinforcement learning models. In addition, we discuss studies that combined reinforcement learning with measures of dopamine. Thereby, we suggest how reinforcement learning abnormalities in schizophrenia may contribute to the formation of psychotic symptoms and may interact with cognitive deficits. These ideas point toward an interplay of more rigid versus flexible control over reinforcement learning. Pronounced deficits in the flexible or model-based domain may allow for a detailed characterization of well-established cognitive deficits in schizophrenia patients based on computational models of learning. Finally, we propose a framework based on the potentially crucial contribution of dopamine to dysfunctional reinforcement learning on the level of neural networks. Future research may strongly benefit from computational modeling but also requires further methodological improvement for clinical group studies. These research tools may help to improve our understanding of disease-specific mechanisms and may help to identify clinically relevant subgroups of the heterogeneous entity schizophrenia.
Collapse
Affiliation(s)
- Lorenz Deserno
- Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig , Germany ; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Rebecca Boehme
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Florian Schlagenhauf
- Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig , Germany ; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
11
|
Flodin P, Gospic K, Petrovic P, Fransson P. Effects of L-dopa and oxazepam on resting-state functional magnetic resonance imaging connectivity: a randomized, cross-sectional placebo study. Brain Connect 2013; 2:246-53. [PMID: 22957904 DOI: 10.1089/brain.2012.0081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pharmacological functional brain imaging has traditionally focused on neuropharmacological modulations of event-related responses. The current study is a randomized, cross-sectional resting-state functional magnetic resonance imaging study where a single dose of commonly prescribed amounts of either benzodiazepine (oxazepam), L-dopa, or placebo was given to 81 healthy subjects. It was hypothesized that the connectivity in resting-state networks would be altered, and that the strength of connectivity in areas rich in target receptors would be particularly affected. Additionally, based on known anxiolytic mechanisms of benzodiazepines, modulated amygdala (Am) connectivity was predicted. To test this, seed region-based correlational analysis was performed using seven seeds placed in well-characterized resting-state networks, in regions with above-average densities of GABA-A or dopamine receptors and in Am. To alleviate the anatomical bias introduced by the a priori selected seed regions, whole-brain exploratory analysis of regional homogeneity and fractional amplitude of low-frequency fluctuations (fALFF) was also carried out. Oxazepam increased functional connectivity between midline regions of the default-mode network (DMN) and the prefrontal, parietal, and cerebellar areas, but decreased connectivity between, for example, the Am and temporal cortex. L-dopa mainly decreased connectivity between the Am and bilateral inferior frontal gyri and between midline regions of the DMN. The fALFF analysis revealed that L-dopa decreased low-frequency fluctuations in the cerebellum. It was concluded that the overall effects of single administrations of oxazepam and L-dopa on resting-state connectivity were small both in strength and in spatial extent, and were on par with placebo effects as revealed by comparing the two placebo groups.
Collapse
Affiliation(s)
- Pär Flodin
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
12
|
Kaufman MJ, Janes AC, Frederick BD, Brimson-Théberge M, Tong Y, McWilliams SB, Bear A, Gillis TE, Schrode KM, Renshaw PF, Negus SS. A method for conducting functional MRI studies in alert nonhuman primates: initial results with opioid agonists in male cynomolgus monkeys. Exp Clin Psychopharmacol 2013; 21:323-31. [PMID: 23773004 PMCID: PMC3916219 DOI: 10.1037/a0033062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional MRI (fMRI) has emerged as a powerful technique for assessing neural effects of psychoactive drugs and other stimuli. Several experimental approaches have been developed to use fMRI in anesthetized and awake animal subjects, each of which has its advantages and complexities. We sought to assess whether one particular method to scan alert postanesthetized animals can be used to assess fMRI effects of opioid agonists. To date, the use of fMRI as a method to compare pharmacological effects of opioid drugs has been limited. Such studies are important because mu and kappa opioid receptor agonists produce distinct profiles of behavioral effects related both to clinically desirable endpoints (e.g., analgesia) and to undesirable effects (e.g., abuse potential). This study sought to determine whether we could use our fMRI approach to compare acute effects of behaviorally equipotent (3.2 μg/kg) intravenous doses of fentanyl and U69,593 (doses that do not affect cardiorespiratory parameters). Scans were acquired in alert male cynomolgus macaques acclimated to undergo fMRI scans under restraint, absent excessive stress hormone increases. These opioid agonists activated bilateral striatal and nucleus accumbens regions of interest. At the dose tested, U69,593 induced greater left nucleus accumbens BOLD activation than fentanyl, while fentanyl activated left dorsal caudate nucleus more than U69,593. Our results suggest that our fMRI approach could be informative for comparing effects of opioid agonists.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Benzeneacetamides/administration & dosage
- Benzeneacetamides/pharmacology
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Conditioning, Psychological
- Fentanyl/administration & dosage
- Fentanyl/pharmacology
- Hydrocortisone/blood
- Injections, Intravenous
- Macaca fascicularis/physiology
- Magnetic Resonance Imaging/adverse effects
- Magnetic Resonance Imaging/veterinary
- Male
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Pyrrolidines/administration & dosage
- Pyrrolidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Restraint, Physical/adverse effects
- Restraint, Physical/veterinary
- Stress, Physiological
- Stress, Psychological/blood
- Stress, Psychological/etiology
- Wakefulness
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alper K, Shah J, Howard B, Roy John E, Prichep LS. Childhood abuse and EEG source localization in crack cocaine dependence. Psychiatry Res 2013; 213:63-70. [PMID: 23693089 DOI: 10.1016/j.pscychresns.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 11/29/2012] [Accepted: 01/23/2013] [Indexed: 10/26/2022]
Abstract
Fourteen subjects with histories of sexual and/or physical abuse in childhood and 13 matched control subjects were selected from a consecutive series of clients in residential treatment for crack cocaine dependence. Standardized low-resolution electromagnetic brain tomography (sLORETA) was used to estimate the source generators of the EEG in a cortical mask with voxel z-scores referenced to normative data at frequency intervals of 039 Hz, with nonparametric permutation to correct by randomization for the number of comparisons and the intercorrelations and variance of distribution of voxel values. Subjects with histories of abuse in childhood had significantly greater EEG power than controls in the theta frequency range (3.51-7.41 Hz), with greatest differences in the 3.90-Hz band distributed mainly in the parahippocampal, fusiform, lingual, posterior cingulate, and insular gyri. The groups did not differ significantly with regard to delta (1.56-3.12 Hz), alpha (7.81-12.48 Hz), beta (12.87-19.89 Hz), and gamma (20.28-35.10 Hz) frequency power. In excess, theta EEG power, a bandwidth of transactions among hippocampus and amygdala and paralimbic and visual association cortex, may be a correlate of childhood exposure to abuse.
Collapse
Affiliation(s)
- Kenneth Alper
- Brain Research Laboratories, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
14
|
Cole DM, Beckmann CF, Oei NYL, Both S, van Gerven JMA, Rombouts SARB. Differential and distributed effects of dopamine neuromodulations on resting-state network connectivity. Neuroimage 2013; 78:59-67. [PMID: 23603346 DOI: 10.1016/j.neuroimage.2013.04.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/15/2022] Open
Abstract
Dopaminergic medications, used to treat neurochemical pathology and resultant symptoms in neuropsychiatric disorders, are of mixed efficacy and regularly associated with behavioural side effects. The possibility that dopamine exerts both linear and nonlinear ('inverted U-shaped') effects on cognitive neurocircuitry may explain this outcome variability. However, it has proven to be difficult to characterise neural manifestations of psychopharmacological effects in humans. We hypothesised that diverse effects of dopamine neuromodulation could be characterised using systems-level neuroimaging approaches. Using 'resting-state' functional magnetic resonance imaging (FMRI), combined with dopaminergic challenges, we examined the dopamine-dependent functional connectivity of brain 'resting-state networks' (RSNs). We compared RSN connectivity in 3 groups of healthy volunteers given dopamine antagonist (haloperidol; N=18) or agonistic (levodopa; N=16) drugs, or a placebo (N=15). As RSNs have been shown to be relevant for numerous psychological functions and dysfunctions, we investigated both linear and nonlinear effects on RSN connectivity of manipulating dopamine neurotransmission pharmacologically. A basal ganglia RSN displayed both linear and nonlinear effects of dopamine manipulation on functional connectivity, respectively, with lateral frontoparietal and medial frontal neocortical areas. Conversely, a cognitive 'default mode' network showed only linear dopaminergic effects on connectivity with lateral frontal and parietal cortices. Our findings highlight diverse functional effects of dopamine neuromodulations on systems-level neural interactions. The observation that dopamine modulates distinct large-scale network connectivity patterns differentially, in both linear and nonlinear fashions, provides support for the objective utility of RSN metrics in classifying the effects and efficacy of psychopharmacological medications.
Collapse
Affiliation(s)
- David M Cole
- Centre for Neuroscience, Division of Experimental Medicine, Imperial College London, London, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 2013; 37:384-400. [PMID: 23333262 DOI: 10.1016/j.neubiorev.2013.01.017] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 11/24/2022]
Abstract
The world is aging and, as the elderly population increases, age-related cognitive decline emerges as a major concern. Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), allow the investigation of the neural bases of age-related cognitive changes in vivo. Typically, fMRI studies map brain activity while subjects perform cognitive tasks, but such paradigms are often difficult to implement on a wider basis. Resting-state fMRI (rs-fMRI) has emerged as an important alternative modality of fMRI data acquisition, during which no specific task is required. Due to such simplicity and the reliability of rs-fMRI data, this modality presents increased feasibility and potential for clinical application in the future. With rs-fMRI, fluctuations in regional brain activity can be detected across separate brain regions and the patterns of intercorrelation between the functioning of these regions are measured, affording quantitative indices of resting-state functional connectivity (RSFC). This review article summarizes the results of recent rs-fMRI studies that have documented a variety of aging-related RSFC changes in the human brain, discusses the neurophysiological hypotheses proposed to interpret such findings, and provides an overview of the future, highly promising perspectives in this field.
Collapse
Affiliation(s)
- Luiz Kobuti Ferreira
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | |
Collapse
|
16
|
Balog Z, Somlai Z, Kéri S. Aversive conditioning, schizotypy, and affective temperament in the framework of the salience hypothesis. PERSONALITY AND INDIVIDUAL DIFFERENCES 2013. [DOI: 10.1016/j.paid.2012.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Dawson N, Thompson RJ, McVie A, Thomson DM, Morris BJ, Pratt JA. Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr Bull 2012; 38:457-74. [PMID: 20810469 PMCID: PMC3329989 DOI: 10.1093/schbul/sbq090] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In the present study, we employ mathematical modeling (partial least squares regression, PLSR) to elucidate the functional connectivity signatures of discrete brain regions in order to identify the functional networks subserving PCP-induced disruption of distinct cognitive functions and their restoration by the procognitive drug modafinil. METHODS We examine the functional connectivity signatures of discrete brain regions that show overt alterations in metabolism, as measured by semiquantitative 2-deoxyglucose autoradiography, in an animal model (subchronic phencyclidine [PCP] treatment), which shows cognitive inflexibility with relevance to the cognitive deficits seen in schizophrenia. RESULTS We identify the specific components of functional connectivity that contribute to the rescue of this cognitive inflexibility and to the restoration of overt cerebral metabolism by modafinil. We demonstrate that modafinil reversed both the PCP-induced deficit in the ability to switch attentional set and the PCP-induced hypometabolism in the prefrontal (anterior prelimbic) and retrosplenial cortices. Furthermore, modafinil selectively enhanced metabolism in the medial prelimbic cortex. The functional connectivity signatures of these regions identified a unifying functional subsystem underlying the influence of modafinil on cerebral metabolism and cognitive flexibility that included the nucleus accumbens core and locus coeruleus. In addition, these functional connectivity signatures identified coupling events specific to each brain region, which relate to known anatomical connectivity. CONCLUSIONS These data support clinical evidence that modafinil may alleviate cognitive deficits in schizophrenia and also demonstrate the benefit of applying PLSR modeling to characterize functional brain networks in translational models relevant to central nervous system dysfunction.
Collapse
Affiliation(s)
- Neil Dawson
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Sánchez-Nàcher N, Campos-Bueno JJ, Sitges C, Montoya P. Event-related brain responses as correlates of changes in predictive and affective values of conditioned stimuli. Brain Res 2011; 1414:77-84. [PMID: 21871611 DOI: 10.1016/j.brainres.2011.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 07/20/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Previous evidence suggests that the judged predictive strength of one cue may be influenced by the predictive strengths of other pretrained cues (prediction errors). In the present study, we examined affective ratings and event-related brain responses from 18 healthy participants during an aversive conditioning task in which affective values of previously trained conditioned stimuli were modified through a blocking procedure. The task was divided into two phases. During the training phase, single stimulus A (e.g., red square) was always followed by aversive picture stimuli, while single stimulus B (e.g., yellow square) was signaling the absence of aversive stimulation. During the blocking phase, compound stimuli consisted of the combination of one single trained stimulus (A or B) and one new somatosensory stimulus were also followed by the presence of aversive stimulation. Results indicated that single stimulus A elicited greater ERP amplitudes and theta power, and was rated as more unpleasant than single stimulus B during the training phase. Moreover, single stimulus B elicited greater ERP amplitudes than stimulus A, as well as greater theta power and more unpleasant ratings during the blocking as compared with the training phase. By contrast, no changes in ERP amplitudes and theta power were observed for stimulus A. Our findings provide neurophysiological and behavioral evidence for an increased affective processing of conditioned stimuli when compound stimuli were introduced, but only if the target CS was previously trained to signal the absence of aversive stimulation.
Collapse
Affiliation(s)
- Noemí Sánchez-Nàcher
- Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Spain
| | | | | | | |
Collapse
|
19
|
Abstract
Investigating pharmacological modulation of brain activity using magnetic resonance imaging (MRI) presents an exciting opportunity to bridge the gap between preclinical and clinical studies, and holds the potential to be a useful tool in the discovery and development of novel therapeutic agents. Most functional MRI studies to date have utilized the blood oxygen level dependent (BOLD) contrast mechanism. Although this has some advantages over other techniques and is widely available, BOLD has two significant limitations for the study of drug effects; it is an indirect measurement of neuronal function, and produces only a relative (non-quantitative) measure of blood dynamics. Here we describe the various experimental manipulations that have been used to reduce the impact of these limitations, and discuss new ways of collecting and analysing imaging data that allow us to assess functional connectivity of the brain. We recommend some complementary techniques (such as arterial spin labelling and magnetoencephalography) that, if used in conjunction with BOLD functional MRI, will increase the interpretability and thus the utility of MRI for pharmacology research.
Collapse
Affiliation(s)
- Susannah E Murphy
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX.
| | | |
Collapse
|
20
|
Moustafa AA, Gluck MA. Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia. Neural Netw 2011; 24:575-91. [PMID: 21411277 DOI: 10.1016/j.neunet.2011.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/22/2011] [Accepted: 02/17/2011] [Indexed: 11/29/2022]
Abstract
Disruption to different components of the prefrontal cortex, basal ganglia, and hippocampal circuits leads to various psychiatric and neurological disorders including Parkinson's disease (PD) and schizophrenia. Medications used to treat these disorders (such as levodopa, dopamine agonists, antipsychotics, among others) affect the prefrontal-striatal-hippocampal circuits in a complex fashion. We have built models of prefrontal-striatal and striatal-hippocampal interactions which simulate cognitive dysfunction in PD and schizophrenia. In these models, we argue that the basal ganglia is key for stimulus-response learning, the hippocampus for stimulus-stimulus representational learning, and the prefrontal cortex for stimulus selection during learning about multidimensional stimuli. In our models, PD is associated with reduced dopamine levels in the basal ganglia and prefrontal cortex. In contrast, the cognitive deficits in schizophrenia are associated primarily with hippocampal dysfunction, while the occurrence of negative symptoms is associated with frontostriatal deficits in a subset of patients. In this paper, we review our past models and provide new simulation results for both PD and schizophrenia. We also describe an extended model that includes simulation of the different functional role of D1 and D2 dopamine receptors in the basal ganglia and prefrontal cortex, a dissociation we argue is essential for understanding the non-uniform effects of levodopa, dopamine agonists, and antipsychotics on cognition. Motivated by clinical and physiological data, we discuss model limitations and challenges to be addressed in future models of these brain disorders.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102, USA.
| | | |
Collapse
|
21
|
Diaconescu AO, Jensen J, Wang H, Willeit M, Menon M, Kapur S, McIntosh AR. Aberrant Effective Connectivity in Schizophrenia Patients during Appetitive Conditioning. Front Hum Neurosci 2011; 4:239. [PMID: 21267430 PMCID: PMC3024844 DOI: 10.3389/fnhum.2010.00239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/25/2010] [Indexed: 11/24/2022] Open
Abstract
It has recently been suggested that schizophrenia involves dysfunction in brain connectivity at a neural level, and a dysfunction in reward processing at a behavioral level. The purpose of the present study was to link these two levels of analyses by examining effective connectivity patterns between brain regions mediating reward learning in patients with schizophrenia and healthy, age-matched controls. To this aim, we used functional magnetic resonance imaging and galvanic skin recordings (GSR) while patients and controls performed an appetitive conditioning experiment with visual cues as the conditioned (CS) stimuli, and monetary reward as the appetitive unconditioned stimulus (US). Based on explicit stimulus contingency ratings, conditioning occurred in both groups; however, based on implicit, physiological GSR measures, patients failed to show differences between CS+ and CS− conditions. Healthy controls exhibited increased blood-oxygen-level dependent (BOLD) activity across striatal, hippocampal, and prefrontal regions and increased effective connectivity from the ventral striatum to the orbitofrontal cortex (OFC BA 11) in the CS+ compared to the CS− condition. Compared to controls, patients showed increased BOLD activity across a similar network of brain regions, and increased effective connectivity from the striatum to hippocampus and prefrontal regions in the CS− compared to the CS+ condition. The findings of increased BOLD activity and effective connectivity in response to the CS− in patients with schizophrenia offer insight into the aberrant assignment of motivational salience to non-reinforced stimuli during conditioning that is thought to accompany schizophrenia.
Collapse
|
22
|
Blood AJ, Iosifescu DV, Makris N, Perlis RH, Kennedy DN, Dougherty DD, Kim BW, Lee MJ, Wu S, Lee S, Calhoun J, Hodge SM, Fava M, Rosen BR, Smoller JW, Gasic GP, Breiter HC. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder. PLoS One 2010; 5:e13945. [PMID: 21124764 PMCID: PMC2993928 DOI: 10.1371/journal.pone.0013945] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB). METHODOLOGY/PRINCIPAL FINDINGS We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity. CONCLUSIONS/SIGNIFICANCE These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.
Collapse
Affiliation(s)
- Anne J. Blood
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dan V. Iosifescu
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Mount Sinai School of Medicine, New York, New York, United States of America
| | - Nikos Makris
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Morphometric Analysis and Center for Integrative Informatics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roy H. Perlis
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Psychiatric and Neurodevelopmental Genetics Unit and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - David N. Kennedy
- Center for Morphometric Analysis and Center for Integrative Informatics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Darin D. Dougherty
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Byoung Woo Kim
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Myung Joo Lee
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shirley Wu
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sang Lee
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jesse Calhoun
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steven M. Hodge
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Morphometric Analysis and Center for Integrative Informatics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maurizio Fava
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Psychiatric and Neurodevelopmental Genetics Unit and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruce R. Rosen
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jordan W. Smoller
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Psychiatric and Neurodevelopmental Genetics Unit and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory P. Gasic
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hans C. Breiter
- Depression Clinic and Research Program, Mood and Motor Control Laboratory, Addiction Research Program, Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Motivation and Emotion Neuroscience Collaboration (MENC) and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
23
|
Abstract
We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.
Collapse
|
24
|
Barron AB, Søvik E, Cornish JL. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 2010; 4:163. [PMID: 21048897 PMCID: PMC2967375 DOI: 10.3389/fnbeh.2010.00163] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/26/2010] [Indexed: 11/30/2022] Open
Abstract
Motile animals actively seek out and gather resources they find rewarding, and this is an extremely powerful organizer and motivator of animal behavior. Mammalian studies have revealed interconnected neurobiological systems for reward learning, reward assessment, reinforcement and reward-seeking; all involving the biogenic amine dopamine. The neurobiology of reward-seeking behavioral systems is less well understood in invertebrates, but in many diverse invertebrate groups, reward learning and responses to food rewards also involve dopamine. The obvious exceptions are the arthropods in which the chemically related biogenic amine octopamine has a greater effect on reward learning and reinforcement than dopamine. Here we review the functions of these biogenic amines in behavioral responses to rewards in different animal groups, and discuss these findings in an evolutionary context.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biology, Macquarie University Sydney, NSW, Australia
| | | | | |
Collapse
|
25
|
Diaconescu AO, Kramer E, Hermann C, Ma Y, Dhawan V, Chaly T, Eidelberg D, McIntosh AR, Smith GS. Distinct functional networks associated with improvement of affective symptoms and cognitive function during citalopram treatment in geriatric depression. Hum Brain Mapp 2010; 32:1677-91. [PMID: 20886575 DOI: 10.1002/hbm.21135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/09/2010] [Accepted: 07/06/2010] [Indexed: 01/12/2023] Open
Abstract
Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. This study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting positron emission tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after 8 weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex, and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer's dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression.
Collapse
|
26
|
Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotox Res 2010; 18:287-305. [PMID: 20237881 DOI: 10.1007/s12640-010-9162-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental risk factors have assumed a critical role in prevailing notions concerning the etiopathogenesis of neuropsychiatric disorders. Staging, diagnostic elements at which phase of disease is determined, provides a means of conceptualizing the degree and extent of factors affecting brain development trajectories, but is concurrently specified through the particular interactions of genes and environment unique to each individual case. For present purposes, staging perspectives in neurodevelopmental aspects of the disease processes are considered from conditions giving rise to neurodevelopmental staging in affective states, adolescence, dopamine disease states, and autism spectrum disorders. Three major aspects influencing the eventual course of individual developmental trajectories appear to possess an essential determinant influence upon outcome: (i) the type of agent that interferes with brain development, whether chemical, immune system activating or absent (anoxia/hypoxia), (ii) the phase of brain development at which the agent exerts disruption, whether prenatal, postnatal, or adolescent, and (iii) the age of expression of structural and functional abnormalities. Clinical staging may be assumed at any or each developmental phase. The present perspective offers both a challenge to bring further order to diagnosis, intervention, and prognosis and a statement regarding the extreme complexities and interwoven intricacies of epigenetic factors, biomarkers, and neurobehavioral entities that aggravate currents notions of the neuropsychiatric disorders.
Collapse
|