1
|
Karimi H, Mohamadian M, Azizi P, Ghasemi P, Karimi M, Layegh T, Rahmatkhah-Yazdi M, Vaseghi S. Crocin has a greater therapeutic role in the restoration of behavioral impairments caused by maternal social isolation in adolescent than in adult offspring probably through GSK-3beta downregulation. LEARNING AND MOTIVATION 2024; 88:102060. [DOI: 10.1016/j.lmot.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
3
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
4
|
Abdelhamid M, Jung CG, Zhou C, Inoue R, Chen Y, Sento Y, Hida H, Michikawa M. Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer's Disease Pathologies in AppNL-G-F Mice. Nutrients 2024; 16:538. [PMID: 38398861 PMCID: PMC10893354 DOI: 10.3390/nu16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Rieko Inoue
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yuxin Chen
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yoshiki Sento
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Geriatric Medicine School of Life, Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
5
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
6
|
Kahnau P, Mieske P, Wilzopolski J, Kalliokoski O, Mandillo S, Hölter SM, Voikar V, Amfim A, Badurek S, Bartelik A, Caruso A, Čater M, Ey E, Golini E, Jaap A, Hrncic D, Kiryk A, Lang B, Loncarevic-Vasiljkovic N, Meziane H, Radzevičienė A, Rivalan M, Scattoni ML, Torquet N, Trifkovic J, Ulfhake B, Thöne-Reineke C, Diederich K, Lewejohann L, Hohlbaum K. A systematic review of the development and application of home cage monitoring in laboratory mice and rats. BMC Biol 2023; 21:256. [PMID: 37953247 PMCID: PMC10642068 DOI: 10.1186/s12915-023-01751-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Paul Mieske
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Jenny Wilzopolski
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Otto Kalliokoski
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council CNR, Rome, Italy
| | - Sabine M Hölter
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Vootele Voikar
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Adriana Amfim
- Faculty of Veterinary Medicine, Spiru Haret University, Bucharest, Romania
| | - Sylvia Badurek
- Preclinical Phenotyping Facility, Vienna Biocenter Core Facilities (VBCF), member of the Vienna Biocenter (VBC), Vienna, Austria
| | - Aleksandra Bartelik
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Angela Caruso
- Istituto Superiore Di Sanità, Research Coordination and Support Service, Rome, Italy
| | - Maša Čater
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Elodie Ey
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104- UMR-S 1258, Illkirch, 67400, France
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council CNR, Rome, Italy
| | - Anne Jaap
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Dragan Hrncic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Anna Kiryk
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Benjamin Lang
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de La Souris (ICS), CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Aurelija Radzevičienė
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Marion Rivalan
- Research Institute for Experimental Medicine (FEM) and NeuroCure Cluster of Excellence, Animal Behaviour Phenotyping Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Luisa Scattoni
- Istituto Superiore Di Sanità, Research Coordination and Support Service, Rome, Italy
| | - Nicolas Torquet
- Université de Strasbourg, CNRS, Inserm, IGBMC, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, UMR 7104- UMR-S 1258, Illkirch, 67400, France
| | - Julijana Trifkovic
- Department of Veterinary Medicine, Faculty of Agriculture, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Brun Ulfhake
- Div. Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Katharina Hohlbaum
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany.
| |
Collapse
|
7
|
Guarnera J, Yuen E, Macpherson H. The Impact of Loneliness and Social Isolation on Cognitive Aging: A Narrative Review. J Alzheimers Dis Rep 2023; 7:699-714. [PMID: 37483321 PMCID: PMC10357115 DOI: 10.3233/adr-230011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/28/2023] [Indexed: 07/25/2023] Open
Abstract
Social concepts such as loneliness and social isolation are fairly new factors that have been recently gaining attention as to their involvement in changes in cognitive function and association with dementia. The primary aim of this narrative review was to describe the current understanding of how loneliness and social isolation influence cognitive aging and how they are linked to dementia. Studies have shown that there is an association between loneliness, social isolation, and reduced cognitive function, in older adults, across multiple cognitive domains, as well as a heightened risk of dementia. Numerous changes to underlying neural biomechanisms including cortisol secretion and brain volume alterations (e.g., white/grey matter, hippocampus) may contribute to these relationships. However, due to poor quality research, mixed and inconclusive findings, and issues accurately defining and measuring loneliness and social isolation, more consistent high-quality interventions are needed to determine whether studies addressing loneliness and social isolation can impact longer term risk of dementia. This is especially important given the long-term impact of the COVID-19 pandemic on social isolation in older people is yet to be fully understood.
Collapse
Affiliation(s)
- Jade Guarnera
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Eva Yuen
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Melbourne, VIC, Australia
- Centre for Quality and Patient Safety-Monash Health Partnership, Institute for Health Transformation, Deakin University, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
8
|
Balietti M, Casoli T, Giorgetti B, Colangeli R, Nicoletti C, Solazzi M, Pugliese A, Conti F. Generation and Characterization of the First Murine Model of Alzheimer's Disease with Mutated AβPP Inserted in a BALB/c Background (C.B6/J-APPswe). J Alzheimers Dis 2023:JAD230195. [PMID: 37182890 DOI: 10.3233/jad-230195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Numerous mouse models of Alzheimer's disease (AD) are available, but all suffer from certain limitations, thus prompting further attempts. To date, no one model exists with amyloidopathy in a BALB/c strain. OBJECTIVE To generate and characterize the C.B6/J-APPswe mouse, a model of AD with a mutated human gene for the amyloid-β protein precursor (AβPP) inserted in a BALB/c background. METHODS We analyzed five groups at different ages (3, 6, 9, 12, and 16-18 months) of C.B6/J-APPswe and wild-type mice (50% males and 50% females) for the main hallmarks of AD by western blotting, amyloid-β (Aβ) ELISA, immunocytochemistry, electrophysiology, and behavioral tests. RESULTS The C.B6/J-APPswe mouse displays early AβPP and Aβ production, late amyloid plaques formation, high level of tau phosphorylation, synaptic deficits (reduced density and functional impairment due to a reduced post-synaptic responsiveness), neurodegeneration caused by apoptosis and necroptosis/necrosis, microgliosis, astrocytic abnormalities, and sex-related differences in explorative behavior, anxiety-like behavior, and spatial long-term and working memories. Social housing is feasible despite the intra-cage aggressiveness of male animals. CONCLUSION C.B6/J-APPswe mice develop most of the distinctive features of AD and is a suitable model for the study of brain atrophy mechanisms and of the differences between males and females in the onset of cognitive/non-cognitive deficits.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | | | - Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Nicoletti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Moreno Solazzi
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
10
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Drinkwater E, Davies C, Spires-Jones TL. Potential neurobiological links between social isolation and Alzheimer's disease risk. Eur J Neurosci 2022; 56:5397-5412. [PMID: 34184343 DOI: 10.1111/ejn.15373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
It is estimated that 40% of dementia cases could be prevented by modification of lifestyle factors that associate with disease risk. One of these potentially modifiable lifestyle factors is social isolation. In this review, we discuss what is known about associations between social isolation and Alzheimer's disease, the most common cause of dementia. This is particularly relevant in the time of the COVID-19 pandemic when social isolation has been enforced with potential emerging negative impacts on cognition. While there are neurobiological mechanisms emerging that may account for the observed epidemiological associations between social isolation and Alzheimer's disease, more fundamental research is needed to fully understand the brain changes induced by isolation that may make people vulnerable to disease.
Collapse
Affiliation(s)
| | - Caitlin Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Translational Neuroscience PhD Programme, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Liu W, Li J, Yang M, Ke X, Dai Y, Lin H, Wang S, Chen L, Tao J. Chemical genetic activation of the cholinergic basal forebrain hippocampal circuit rescues memory loss in Alzheimer's disease. Alzheimers Res Ther 2022; 14:53. [PMID: 35418161 PMCID: PMC9006585 DOI: 10.1186/s13195-022-00994-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
Abstract
Background The degeneration of the cholinergic circuit from the basal forebrain to the hippocampus contributes to memory loss in patients suffering from Alzheimer’s disease (AD). However, the internal relationships between the acetylcholine (Ach) cycle and memory decline during the early stages of AD currently remain unknown. Here, we investigate the mechanisms underlying the activation of the cholinergic circuit and its impact on learning and memory using APP/PS1 mice models. Methods Novel object recognition and Morris water maze tests were used to measure learning and memory function. Magnetic resonance spectrum (MRS) imaging was applied to longitudinally track changes in neurochemical metabolism in APP/PS1 mice aged 2, 4, 6, and 8 months. The number of neurons and the deposition of Aβ plaques were measured using Nissl, immunohistochemistry, and Thioflavin S staining. We then employed a chemogenetic strategy to selectively activate the cholinergic circuit from the medial septal nucleus (MS) and the vertical limb of the diagonal band nucleus (VDB) on the basal forebrain to the hippocampus. MRS and immunoblotting techniques were used to measure the neurochemical metabolism levels and cholinergic-related proteins, respectively. Results We found that the levels of choline (Cho) in the basal forebrain were markedly higher compared to other brain regions and that its decrease along with N-acetyl aspartate (NAA) levels in the hippocampus was accompanied by memory deficits in APP/PS1 mice aged 4, 6, and 8 months. In terms of pathology, we observed that the deposition of Aβ plaques gradually aggravated throughout the cerebral cortex and hippocampus in APP/PS1 mice aged 6 and 8 months, while no Aβ deposition was detected in the basal forebrain. In contrast, the activity of choline acetyltransferase (ChAT) enzyme in the basal forebrain was decreased at 6 months of age and the cholinergic neurons were lost in the basal forebrain at 8 months of age. In addition, the activation of the cholinergic circuit from the MS and VDB to the hippocampus using chemical genetics is able to improve learning and reduce memory impairment in APP/PS1 mice. Similarly, the levels of Cho in the basal forebrain; NAA in the hippocampus, as well as the expression of ChAT and vesicular acetylcholine transporter (vAchT) in the basal forebrain; and muscarinic acetylcholine receptor 2 (CHRM2) in the hippocampus all increased. Conclusions These findings demonstrate that the neurochemical Cho and NAA of the cholinergic circuit can be used as biomarkers to enable the early diagnosis of AD. In addition, memory impairment in APP/PS1 mice can be attenuated using chemical genetics-driven Ach cycle activity of the cholinergic circuit. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00994-w.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.,The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jianhong Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Minguang Yang
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaohua Ke
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Huawei Lin
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, 350122, Fujian, China
| | - Sinuo Wang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, 350122, Fujian, China
| | - Lidian Chen
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
14
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Rosário BDA, Beserra Filho JIA, Santos RLO, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice. Behav Brain Res 2022; 417:113630. [PMID: 34656691 PMCID: PMC8516156 DOI: 10.1016/j.bbr.2021.113630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | - Jessica Salles Henrique
- Neurology / Neuroscience Graduate Program, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Melyssa Alves Souza
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Barbara Dos Anjos Rosário
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | | | - Alessandra Mussi Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luciana Le Sueur Maluf
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | | |
Collapse
|
15
|
Myslivecek J. Social Isolation: How Can the Effects on the Cholinergic System Be Isolated? Front Pharmacol 2021; 12:716460. [PMID: 34916930 PMCID: PMC8670609 DOI: 10.3389/fphar.2021.716460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 01/31/2023] Open
Abstract
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1–165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Kim S, Nam Y, Ham MJ, Park C, Moon M, Yoo DH. Neurological Mechanisms of Animal-Assisted Intervention in Alzheimer's Disease: A Hypothetical Review. Front Aging Neurosci 2021; 13:682308. [PMID: 34335229 PMCID: PMC8317687 DOI: 10.3389/fnagi.2021.682308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder with aggregation of amyloid-beta (Aβ) and tau as the pathological hallmarks. AD is the most common form of dementia and is characterized by a progressive decline of cognition. The failure of pharmacological approaches to treat AD has resulted in an increased focus on non-pharmacological interventions that can mitigate cognitive decline and delay disease progression in patients with AD. Animal-assisted intervention (AAI), a non-pharmacological intervention, improves emotional, social, and cognitive dysfunction in patients with neurodegenerative diseases. In particular, AAI is reported to mitigate the effects of cognitive impairment in patients with AD. Despite the positive effects of AAI on cognitive dysfunction in patients with AD, there have been no studies on how AAI affects AD-related pathologies. This review postulates potential neurological mechanisms of emotional or social interaction through AAI in countering AD-related pathologies, such as Aβ deposition, tau hyperphosphorylation, neuroinflammation, and impaired adult hippocampal neurogenesis (AHN), and proposes insights for future research by organizing accumulated previous evidence.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Min-Joo Ham
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| | - Chisoo Park
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| |
Collapse
|
17
|
Gimenez-Llort L, Alveal-Mellado D. Digging Signatures in 13-Month-Old 3xTg-AD Mice for Alzheimer's Disease and Its Disruption by Isolation Despite Social Life Since They Were Born. Front Behav Neurosci 2021; 14:611384. [PMID: 33536883 PMCID: PMC7847935 DOI: 10.3389/fnbeh.2020.611384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
The severity of this pandemic's scenarios will leave significant psychological traces in low resistant and resilient individuals. Increased incidence of depression, anxiety, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder has already been reported. The loss of human lives and the implementation of physical distance measures in the pandemic and post-COVID scenarios may have a greater impact on the elderly, mostly in those with dementia, as OCD and other neuropsychiatric symptoms (NPS) are quite prevalent in this population. Modeling NPS in animals relies in neuroethological perspectives since the response to new situations and traumatic events, critical for survival and adaptation to the environment, is strongly preserved in the phylogeny. In the laboratory, mice dig vigorously in deep bedding to bury food pellets or small objects they may find. This behavior, initially used to screen anxiolytic activity, was later proposed to model better meaningless repetitive and perseverative behaviors characteristic of OCD or autism spectrum disorders. Other authors found that digging can also be understood as part of the expression of the animals' general activity. In the present brief report, we studied the digging ethograms in 13-month-old non-transgenic and 3xTg-AD mice modeling normal aging and advanced Alzheimer's disease (AD), respectively. This genetic model presents AD-like cognitive dysfunction and NPS-like phenotype, with high mortality rates at this age, mostly in males. This allowed us to observe the digging pattern's disruption in a subgroup of 3xTg-AD mice that survived to their cage mates. Two digging paradigms involving different anxiogenic and contextual situations were used to investigate their behavior. The temporal course and intensity of digging were found to increase in those 3xTg-AD mice that had lost their "room partners" despite having lived in social structures since they were born. However, when tested under neophobia conditions, this behavior's incidence was low (delayed), and the temporal pattern was disrupted, suggesting worsening of this NPS-like profile. The outcomes showed that this combined behavioral paradigm unveiled distinct features of digging signatures that can be useful to study these perseverative behaviors and their interplay with anxiety states already present in the AD scenario and their worsening by naturalistic/forced isolation.
Collapse
Affiliation(s)
- Lydia Gimenez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Karunakaran S. Unraveling Early Signs of Navigational Impairment in APPswe/PS1dE9 Mice Using Morris Water Maze. Front Neurosci 2021; 14:568200. [PMID: 33384577 PMCID: PMC7770143 DOI: 10.3389/fnins.2020.568200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mild behavioral deficits, which are part of normal aging, can be early indicators of an impending Alzheimer's disease. Using the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, we utilized the Morris water maze spatial learning paradigm to systematically evaluate mild behavioral deficits that occur during the early stages of disease pathogenesis. Conventional behavioral analysis using this model indicates that spatial memory is intact at 2 months of age. In this study, we used an alternative method to analyze the behavior of mice, aiming to gain a better understanding of the nature of cognitive deficits by focusing on the unsuccessful trials during water maze learning rather than on the successful ones. APP/PS1 mice displayed a higher number of unsuccessful trials during the initial days of training, unlike their wild-type counterparts. However, with repeated trial and error, learning in APP/PS1 reached levels comparable to that of the wild-type mice during the later days of training. Individual APP/PS1 mice preferred a non-cognitive search strategy called circling, which led to abrupt learning transitions and an increased number of unsuccessful trials. These findings indicate the significance of subtle intermediate readouts as early indicators of conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Smitha Karunakaran
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Park SS, Park HS, Kim TW, Lee SJ. Effects of swimming exercise on social isolation-induced memory impairment and apoptosis in old rats. J Exerc Rehabil 2020; 16:234-241. [PMID: 32724780 PMCID: PMC7365722 DOI: 10.12965/jer.2040366.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023] Open
Abstract
Effect of swimming exercise on serotonin (5-hydroxytryptamine, 5-HT) expression and apoptosis in social isolation rats during old age was investigated. Rats in the old social isolation groups were housed alone per cage for 4 weeks. Rats in the swimming exercise groups were allowed to swim for 30 min once daily for 4 weeks. Morris water maze task determined spatial working memory and elevated plus maze test determined anxiety. Immunohistochemistry for tryptophan hydroxylase (TPH) and 5-HT in the dorsal raphe and for doublecortin (DCX) in the hippocampal dentate gyrus was conducted. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in the hippocampal dentate gyrus was performed. Western blot analysis for Bax, Bcl-2, and cytochrome c in the hippocampus was conducted. Social isolation in rats of old age reduced spatial working memory and increased anxiety level. Swimming exercise enhanced spatial working memory and suppressed anxiety level. Social isolation in rats of old age inhibited TPH and 5-HT expression in dorsal rape. Swimming exercise increased TPH and 5-HT expression. Social isolation in rats of old age inhibited DCX-positive cells in the hippocampal dente gyrus. Swimming exercise increased DCX-positive cells. Social isolation in rats of old age increased TUNEL-positive cells, Bax and cytochrome c expression, and decreased Bcl-2 expression, which promoted apoptosis. Swimming exercise suppressed TUNEL-positive cells, Bax and cytochrome c expression, and increased Bcl-2 expression, which inhibited apoptosis. Swimming exercise improved 5-HT expression and suppressed apoptosis to alleviate anxiety and memory impairment during old age.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, Tongmyong University, Busan, Korea
| |
Collapse
|
20
|
Herbert E, Stewart M, Hutchison M, Flenniken AM, Qu D, Nutter LMJ, McKerlie C, Hobson L, Kick B, Lyons B, Wiegand JP, Doty R, Aguilar-Pimentel JA, Hrabe de Angelis M, Dickinson M, Seavitt J, White JK, Scudamore CL, Wells S. The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities. PLoS One 2020; 15:e0230162. [PMID: 32542000 PMCID: PMC7295225 DOI: 10.1371/journal.pone.0230162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases. Radiographical and histological examination revealed caudal dislocation of the calcaneus and partial dislocation of the calcaneoquartal (calcaneus-tarsal bone IV) joint. The detection, frequency, and cause of this pathology in five large mouse production and phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine, USA) are discussed.
Collapse
Affiliation(s)
- Eleanor Herbert
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Michelle Stewart
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Marie Hutchison
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Dawei Qu
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liane Hobson
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Brenda Kick
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Bonnie Lyons
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Rosalinda Doty
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mary Dickinson
- Baylor College of Medicine, Houston, Texas, United States of America
| | - John Seavitt
- Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, United Kingdom
| |
Collapse
|
21
|
Park HS, Kim TW, Park SS, Lee SJ. Swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis, serotonin expression, and inhibiting apoptosis in social isolation rats during adolescence. J Exerc Rehabil 2020; 16:132-140. [PMID: 32509697 PMCID: PMC7248435 DOI: 10.12965/jer.2040216.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Social isolation during adolescence is associated with anxiety, depres-sion, and memory impairment. Exercise has been reported as a positive effect on brain function, especially hippocampus. The present study ex-amined the effect of swimming exercise on apoptosis, cell proliferation, and serotonin expression in social isolation rats during adolescence stage. Social isolation started at postnatal day 21 and continued for 6 weeks. The rats in the swimming group were forced to swim for 60 min once daily during 6 days per week for 6 consecutive weeks. The rats in the social isolation during adolescence showed anxiety, depression, short-term memory impairment. Social isolation facilitated apoptosis and inhibited cell proliferation and differentiation. Social isolation sup-pressed expression of serotonin, brain-derived neurotrophic factor, and tyrosine kinase B. Swimming exercise alleviated anxiety, depression, short-term impairment. Swimming exercise suppressed apoptosis, en-hanced neurogenesis, and increased serotonin expression. In our study, swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis and serotonin expression and inhibiting apoptosis in social isolation.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabiliation, Tongmyong University, Busan, Korea
| |
Collapse
|
22
|
Muntsant A, Giménez-Llort L. Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Front Psychiatry 2020; 11:572583. [PMID: 33329110 PMCID: PMC7732415 DOI: 10.3389/fpsyt.2020.572583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of COVID-19 on the elderly is devastating, and nursing homes are struggling to provide the best care to the most fragile. The urgency and severity of the pandemic forces the use of segregation in restricted areas and confinement in individual rooms as desperate strategies to avoid the spread of disease and the worst-case scenario of becoming a deadly trap. The conceptualization of the post-COVID-19 era implies strong efforts to redesign all living conditions, care/rehabilitation interventions, and management of loneliness forced by social distance measures. Recently, a study of gender differences in COVID-19 found that men are more likely to suffer more severe effects of the disease and are over twice as likely to die. It is well-known that dementia is associated with increased mortality, and males have worse survival and deranged neuro-immuno-endocrine systems than females. The present study examines the impact of long-term isolation in male 3xTg-AD mice modeling advanced stages of Alzheimer's disease (AD) and as compared to age-matched counterparts with normal aging. We used a battery of ethological and unconditioned tests resembling several areas in nursing homes. The main findings refer to an exacerbated (two-fold increase) hyperactivity and emergence of bizarre behaviors in isolated 3xTg-AD mice, worrisome results since agitation is a challenge in the clinical management of dementia and an important cause of caregiver burden. This increase was consistently shown in gross (activity in most of the tests) and fine (thermoregulatory nesting) motor functions. Isolated animals also exhibited re-structured anxiety-like patterns and coping-with-stress strategies. Bodyweight and kidney weight loss were found in AD-phenotypes and increased by isolation. Spleen weight loss was isolation dependent. Hippocampal tau pathology was not modified, but asymmetric atrophy of the hippocampus, recently described in human patients with dementia and modeled here for the first time in an animal model of AD, was found to increase with isolation. Overall, the results show awareness of the impact of isolation in elderly patients with dementia, offering some guidance from translational neuroscience in these times of coronavirus and post-COVID-19 pandemic. They also highlight the relevance of personalized-based interventions tailored to the heterogeneous and complex clinical profile of the individuals with dementia and to consider the implications on caregiver burden.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
24
|
Neurophysiological, neuropsychological, and cognitive effects of 30 days of isolation. Exp Brain Res 2019; 237:1563-1573. [DOI: 10.1007/s00221-019-05531-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
|
25
|
Zorzo C, Méndez-López M, Méndez M, Arias JL. Adult social isolation leads to anxiety and spatial memory impairment: Brain activity pattern of COx and c-Fos. Behav Brain Res 2019; 365:170-177. [PMID: 30851318 DOI: 10.1016/j.bbr.2019.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Social isolation during adulthood is a frequent problem that leads to a large variety of adverse emotional and cognitive effects. However, most of the social isolation rodent procedures begin the separation early post-weaning. This work explores locomotor activity, anxiety-like behaviour, and spatial working memory after twelve weeks of adult social isolation. In order to study the functional contribution of selected brain areas following a working memory task, we assessed neuronal metabolic activity through quantitative cytochrome oxidase histochemistry and c-Fos immunohistochemistry. Behaviourally, we found that isolated animals (IS) showed anxiety-like behaviour and worse working memory than controls, whereas motor functions were preserved. Moreover, IS rats showed lower levels of learning-related c-Fos immunoreactivity, compared to controls, in the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens shell. In addition, the IS group showed lower neuronal metabolic activity in the mPFC, VTA, and CA1 subfield of the hippocampus. These results indicate that twelve weeks of social isolation in adult rats leads to different behavioural and brain alterations, and they highlight the importance of social support, not only in development, but also in adulthood.
Collapse
Affiliation(s)
- Candela Zorzo
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain.
| | - Magdalena Méndez-López
- IIS Aragón, Departamento de Psicología y Sociología, Universidad de Zaragoza, Zaragoza, Spain.
| | - Marta Méndez
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain.
| | - Jorge L Arias
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain.
| |
Collapse
|
26
|
Torres-Lista V, Giménez-Llort L. Vibrating Tail, Digging, Body/Face Interaction, and Lack of Barbering: Sex-Dependent Behavioral Signatures of Social Dysfunction in 3xTg-AD Mice as Compared to Mice with Normal Aging. J Alzheimers Dis 2019; 69:969-977. [PMID: 31156176 PMCID: PMC6598105 DOI: 10.3233/jad-190253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
Modeling of Alzheimer's disease (AD), classically focused on the subject-environment interaction, foresees current social neuroscience efforts as improving the predictive validity of new strategies. Here we studied social functioning among congeners in 13-14-month-old mice with normal aging in naturalistic and experimental conditions and depicted behavioral signatures of dysfunction in age-matched 3xTg-AD mice. The most sensitive variables were vibrating tail, digging, body/face and self-grooming, that can be easily used in housing routines and the assessment of strategies. Sex-specific signatures (vibrating tail, digging, and grooming) defined female 3xTg-AD mice ethogram. All animals sleep huddled while barbering was only found in females with normal aging.
Collapse
Affiliation(s)
- Virginia Torres-Lista
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
27
|
Abstract
Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Templer VL, Wise TB, Heimer-McGinn VR. Social housing protects against age-related working memory decline independently of physical enrichment in rats. Neurobiol Aging 2018; 75:117-125. [PMID: 30557770 DOI: 10.1016/j.neurobiolaging.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
Longitudinal human studies suggest that as we age, sociality provides protective benefits against cognitive decline. However, little is known about the underlying neural mechanisms. Rodent studies, which are ideal for studying cognition, fail to examine the independent effects of social housing while controlling for physical enrichment in all groups. In this study, rats were socially housed or nonsocially housed throughout their lifespan and tested in the radial arm maze to measure working memory (WM) and reference memory longitudinally at 3 ages. In old age, exclusively, socially housed rats made significantly less WM errors than nonsocially housed rats, while reference memory errors did not differ between groups at any age. Anxiety, as assessed behaviorally and physiologically, could not account for the observed differences in WM. These data provide the first evidence that social enrichment alone can prevent age-related WM deficits in spite of the effects of practice seen in longitudinal designs. Importantly, our model will facilitate future investigations into the mechanisms underlying the neuroprotective benefits of sociability in old age.
Collapse
Affiliation(s)
| | - Taylor B Wise
- Psychology Department, Providence College, Providence, RI, USA
| | | |
Collapse
|
29
|
Bisht K, Sharma K, Tremblay MÈ. Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 2018; 9:9-21. [PMID: 29992181 PMCID: PMC6035903 DOI: 10.1016/j.ynstr.2018.05.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Microglia are the predominant immune cells of the central nervous system (CNS) that exert key physiological roles required for maintaining CNS homeostasis, notably in response to chronic stress, as well as mediating synaptic plasticity, learning and memory. The repeated exposure to stress confers a higher risk of developing neurodegenerative diseases including sporadic Alzheimer's disease (AD). While microglia have been causally linked to amyloid beta (Aβ) accumulation, tau pathology, neurodegeneration, and synaptic loss in AD, they were also attributed beneficial roles, notably in the phagocytic elimination of Aβ. In this review, we discuss the interactions between chronic stress and AD pathology, overview the roles played by microglia in AD, especially focusing on chronic stress as an environmental risk factor modulating their function, and present recently-described microglial phenotypes associated with neuroprotection in AD. These microglial phenotypes observed under both chronic stress and AD pathology may provide novel opportunities for the development of better-targeted therapeutic interventions.
Collapse
Key Words
- ABCA7, ATP-binding cassette transporter A7
- AD, Alzheimer's disease
- APOE, Apolipoprotein E
- APP, amyloid precursor protein
- Alzheimer's disease
- Aβ, Amyloid beta
- BDNF, brain derived neurotrophic factor
- CD11b, cluster of differentiation molecule 11B
- CD33, cluster of differentiation 33
- CNS, central nervous system
- CR, complement receptor
- CRF, corticotropin releasing factor
- DAM, disease associated microglia
- DAP12, DNAX-activation protein 12
- Dark microglia
- FAD, Familial Alzheimer's disease
- FCRLS, Fc receptor-like S scavenger receptor
- GR, glucocorticoid receptor
- HPA axis, hypothalamic pituitary adrenocortical axis
- IBA1, ionized calcium-binding adapter molecule 1
- IL, interleukin
- LTP, long-term potentiation
- MGnD, microglia with a neurodegenerative phenotype
- MR, mineralocorticoid receptor
- Microglia
- Microglial phenotypes
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFT, neurofibrillary tangles
- Neurodegeneration
- Neuroinflammation
- PS, presenilin
- ROS, reactive oxygen species
- Stress
- Synaptic remodeling
- TGFβ, transforming growth factor β
- TLR, Toll-like receptors
- TMEM119, transmembrane protein 119
- TNFα, tumor necrosis factor-α
- TREM2, triggering receptor expressed in myeloid cells 2
- TYROBP, TYRO protein tyrosine kinase binding protein
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Kanchan Bisht
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
30
|
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer's Disease and Depression. Front Neurosci 2018; 12:739. [PMID: 30459541 PMCID: PMC6232776 DOI: 10.3389/fnins.2018.00739] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the principal neurodegenerative pathology in the world displaying negative impacts on both the health and social ability of patients and inducing considerable economic costs. In the case of sporadic forms of AD (more than 95% of patients), even if mechanisms are unknown, some risk factors were identified. The principal risk is aging, but there is growing evidence that lifetime events like chronic stress or stress-related disorders may increase the probability to develop AD. This mini-review reinforces the rationale to consider major depressive disorder (MDD) as an important risk factor to develop AD and points the central role played by the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids (GC) and their receptors (GR) in the etiology of MDD and AD. Several strategies directly targeting GR were tested to neutralize the HPA axis dysregulation and GC overproduction. Given the ubiquitous expression of GR, antagonists have many undesired side effects, limiting their therapeutic potential. However, a new class of molecules was developed, highly selective and acting as modulators. They present the advantage to selectively abrogate pathogenic GR-dependent processes, while retaining beneficial aspects of GR signaling. In fact, these “selective GR modulators” induce a receptor conformation that allows activation of only a subset of downstream signaling pathways, explaining their capacity to combine agonistic and antagonistic properties. Thus, targeting GR with selective modulators, alone or in association with current strategies, becomes particularly attractive and relevant to develop novel preventive and/or therapeutic strategies to tackle disorders associated with a dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
31
|
Futch HS, Croft CL, Truong VQ, Krause EG, Golde TE. Targeting psychologic stress signaling pathways in Alzheimer's disease. Mol Neurodegener 2017; 12:49. [PMID: 28633663 PMCID: PMC5479037 DOI: 10.1186/s13024-017-0190-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent progressive neurodegenerative disease; to date, no AD therapy has proven effective in delaying or preventing the disease course. In the search for novel therapeutic targets in AD, it has been shown that increased chronic psychologic stress is associated with AD risk. Subsequently, biologic pathways underlying psychologic stress have been identified and shown to be able to exacerbate AD relevant pathologies. In this review, we summarize the literature relevant to the association between psychologic stress and AD, focusing on studies investigating the effects of stress paradigms on transgenic mouse models of Amyloid-β (Aβ) and tau pathologies. In recent years, a substantial amount of research has been done investigating a key stress-response mediator, corticotropin-releasing hormone (CRH), and its interactions with AD relevant processes. We highlight attempts to target the CRH signaling pathway as a therapeutic intervention in these transgenic mouse models and discuss how targeting this pathway is a promising avenue for further investigation.
Collapse
Affiliation(s)
- Hunter S. Futch
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Cara L. Croft
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Van Q. Truong
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Todd E. Golde
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| |
Collapse
|
32
|
McArthur RA. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery. Neurosci Biobehav Rev 2017; 76:4-21. [DOI: 10.1016/j.neubiorev.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
33
|
Ye Q, Bai F, Zhang Z. Shared Genetic Risk Factors for Late-Life Depression and Alzheimer's Disease. J Alzheimers Dis 2017; 52:1-15. [PMID: 27060956 DOI: 10.3233/jad-151129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Considerable evidence has been reported for the comorbidity between late-life depression (LLD) and Alzheimer's disease (AD), both of which are very common in the general elderly population and represent a large burden on the health of the elderly. The pathophysiological mechanisms underlying the link between LLD and AD are poorly understood. Because both LLD and AD can be heritable and are influenced by multiple risk genes, shared genetic risk factors between LLD and AD may exist. OBJECTIVE The objective is to review the existing evidence for genetic risk factors that are common to LLD and AD and to outline the biological substrates proposed to mediate this association. METHODS A literature review was performed. RESULTS Genetic polymorphisms of brain-derived neurotrophic factor, apolipoprotein E, interleukin 1-beta, and methylenetetrahydrofolate reductase have been demonstrated to confer increased risk to both LLD and AD by studies examining either LLD or AD patients. These results contribute to the understanding of pathophysiological mechanisms that are common to both of these disorders, including deficits in nerve growth factors, inflammatory changes, and dysregulation mechanisms involving lipoprotein and folate. Other conflicting results have also been reviewed, and few studies have investigated the effects of the described polymorphisms on both LLD and AD. CONCLUSION The findings suggest that common genetic pathways may underlie LLD and AD comorbidity. Studies to evaluate the genetic relationship between LLD and AD may provide insights into the molecular mechanisms that trigger disease progression as the population ages.
Collapse
|
34
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
35
|
Maternal separation exacerbates Alzheimer's disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behav Brain Res 2016; 318:18-23. [PMID: 27771383 DOI: 10.1016/j.bbr.2016.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder that gradually destroys memory and cognitive abilities in the elderly, makes a huge emotional and economic burden on the patients and their families. The presence of senile plaques and the loss of cholinergic neurons in the brain are two neuropathological hallmarks of AD. Maternal separation (MS) is an animal paradigm designed to make early life stress. Studies on wild type rodents showed that MS could induce AD-like cognitive deficit and pathological changes. However, the effects of MS on AD susceptible population or AD animal models are still unclear. In the present study, male APPswe/PS1dE9 transgenic mice were separated from dam and pups 3h per day from postnatal day 2 to day 21. After weaning, all animals were housed under normal conditions (4 mice per cage). At 9-month age, MWM tests were performed to evaluate the learning and memory abilities. Then the pathological changes in the brain were measured by histology staining. The results showed MS mice had more severe deficit of learning and memory. Compared to the control, there were more senile plaques in cortex and hippocampus, fewer cholinergic neurons in nucleus basalis of Meynert in MS mice. These results indicate that MS exacerbates Alzheimer's disease-like behavioral and pathological changes in APPswe/PS1dE9 mice.
Collapse
|
36
|
New selective glucocorticoid receptor modulators reverse amyloid-β peptide–induced hippocampus toxicity. Neurobiol Aging 2016; 45:109-122. [DOI: 10.1016/j.neurobiolaging.2016.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
37
|
Bains RS, Cater HL, Sillito RR, Chartsias A, Sneddon D, Concas D, Keskivali-Bond P, Lukins TC, Wells S, Acevedo Arozena A, Nolan PM, Armstrong JD. Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Front Behav Neurosci 2016; 10:106. [PMID: 27375446 PMCID: PMC4901040 DOI: 10.3389/fnbeh.2016.00106] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Central nervous system disorders such as autism as well as the range of neurodegenerative diseases such as Huntington's disease are commonly investigated using genetically altered mouse models. The current system for characterizing these mice usually involves removing the animals from their home-cage environment and placing them into novel environments where they undergo a battery of tests measuring a range of behavioral and physical phenotypes. These tests are often only conducted for short periods of times in social isolation. However, human manifestations of such disorders are often characterized by multiple phenotypes, presented over long periods of time and leading to significant social impacts. Here, we have developed a system which will allow the automated monitoring of individual mice housed socially in the cage they are reared and housed in, within established social groups and over long periods of time. We demonstrate that the system accurately reports individual locomotor behavior within the group and that the measurements taken can provide unique insights into the effects of genetic background on individual and group behavior not previously recognized.
Collapse
Affiliation(s)
- Rasneer S Bains
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | - Heather L Cater
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | | | - Duncan Sneddon
- Mammalian Genetics Unit, Medical Research Council Harwell Oxfordshire, UK
| | - Danilo Concas
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | | | - Sara Wells
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | - Patrick M Nolan
- Mammalian Genetics Unit, Medical Research Council Harwell Oxfordshire, UK
| | - J Douglas Armstrong
- Actual Analytics LtdEdinburgh, UK; School of Informatics, University of EdinburghEdinburgh, UK
| |
Collapse
|
38
|
Shan Y, Wang DD, Xu YX, Wang C, Cao L, Liu YS, Zhu CQ. Aging as a Precipitating Factor in Chronic Restraint Stress-Induced Tau Aggregation Pathology, and the Protective Effects of Rosmarinic Acid. J Alzheimers Dis 2016; 49:829-44. [PMID: 26577520 DOI: 10.3233/jad-150486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress is an important risk factor of Alzheimer's disease (AD). It has been evidenced that stress could induce tau phosphorylation and increase tau insolubility in brain; however, little is known about the interactional effect of stress with aging on tauopathy. Therefore, we explored the effects of aging on stress-induced tauopathy and the potential mechanism in mouse model of chronic restraint stress (CRS). Here we found that in general, the level of phosphorylated tau (P-tau) was higher in brain of middle-aged mice than that in adult mice under physiological conditions. CRS-induced tau phosphorylation and its insolubility were more prominent in middle-aged mice. The increase of AT8-labeled insoluble P-tau was dramatic in middle-aged mice, which was highly ubiquitinated but did not form PHF structures. The levels of chaperones were relatively lower in middle-aged mice brain; CRS further reduced the expression, especially for HDJ2/HSP40. CRS also suppressed the expression of Pin1, the peptidylprolyl cis/trans isomerase, in middle-aged mice but not in adult mice. Downregulation of HSP40 or Pin1 caused an increase of transfected extraneous tau in 293 cells. Rosmarinic acid (RA) could effectively suppress the elevation of P-tau and insoluble P-tau formation induced by CRS, and reversed the abnormal changes of chaperones and Pin1 particularly in middle-aged mice. Taken together, our findings provided evidence that aging could be a promoting factor in stress-induced tauopathy, which was relevant with malregulation of chaperones and Pin1, and RA might be a promising beneficial agent for stress-induced tauopathy.
Collapse
|
39
|
Huang HJ, Chen SL, Hsieh-Li HM. Administration of NaHS Attenuates Footshock-Induced Pathologies and Emotional and Cognitive Dysfunction in Triple Transgenic Alzheimer's Mice. Front Behav Neurosci 2015; 9:312. [PMID: 26635562 PMCID: PMC4658416 DOI: 10.3389/fnbeh.2015.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that Hydrogen Sulfide (H2S) may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD) under footshock with situational reminders (SRs). Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1) levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β) (pSer9) was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB) and noradrenergic neurons in the locus coeruleus (LC) were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
40
|
Doulames VM, Vilcans M, Lee S, Shea TB. Social interaction attenuates the extent of secondary neuronal damage following closed head injury in mice. Front Behav Neurosci 2015; 9:275. [PMID: 26528156 PMCID: PMC4606018 DOI: 10.3389/fnbeh.2015.00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Recovery following Traumatic Brain Injury (TBI) can vary tremendously among individuals. Lifestyle following injury, including differential social interactions, may modulate the extent of secondary injury following TBI. To examine this possibility under controlled conditions, closed head injury (CHI) was induced in C57Bl6 mice using a standardized weight drop device after which mice were either housed in isolation or with their original cagemates (“socially-housed”) for 4 weeks. CHI transiently impaired novel object recognition (NOR) in both isolated and social mice, confirming physical and functional injury. By contrast, Y maze navigation was impaired in isolated but not social mice at 1–4 weeks post CHI. CHI increased excitotoxic signaling in hippocampal slices from all mice, which was transiently exacerbated by isolation at 2 weeks post CHI. CHI slightly increased reactive oxygen species and did not alter levels of amyloid beta (Abeta), total or phospho-tau, total or phosphorylated neurofilaments. CHI increased serum corticosterone in both groups, which was exacerbated by isolation. These findings support the hypothesis that socialization may attenuate secondary damage following TBI. In addition, a dominance hierarchy was noted among socially-housed mice, in which the most submissive mouse displayed indices of stress in the above analyses that were statistically identical to those observed for isolated mice. This latter finding underscores that the nature and extent of social interaction may need to vary among individuals to provide therapeutic benefit.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Center for Neurobiology and Neurodegeneration Research, UMass Lowell Lowell, MA, USA ; Biomedical and Biotechnology Program, University of Massachusetts Lowell Lowell, MA, USA
| | - Meghan Vilcans
- Center for Neurobiology and Neurodegeneration Research, UMass Lowell Lowell, MA, USA ; Department of Biological Sciences, University of Massachusetts Lowell Lowell, MA, USA
| | - Sangmook Lee
- Center for Neurobiology and Neurodegeneration Research, UMass Lowell Lowell, MA, USA ; Department of Biological Sciences, University of Massachusetts Lowell Lowell, MA, USA
| | - Thomas B Shea
- Center for Neurobiology and Neurodegeneration Research, UMass Lowell Lowell, MA, USA ; Biomedical and Biotechnology Program, University of Massachusetts Lowell Lowell, MA, USA ; Department of Biological Sciences, University of Massachusetts Lowell Lowell, MA, USA
| |
Collapse
|
41
|
Cui B, Li K, Gai Z, She X, Zhang N, Xu C, Chen X, An G, Ma Q, Wang R. Chronic Noise Exposure Acts Cumulatively to Exacerbate Alzheimer's Disease-Like Amyloid-β Pathology and Neuroinflammation in the Rat Hippocampus. Sci Rep 2015; 5:12943. [PMID: 26251361 PMCID: PMC4528219 DOI: 10.1038/srep12943] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/10/2015] [Indexed: 11/27/2022] Open
Abstract
A putative etiological association exists between noise exposure and Alzheimer’s disease (AD). Amyloid-β (Aβ) pathology is thought to be one of the primary initiating factors in AD. It has been further suggested that subsequent dysregulation of Aβ may play a mechanistic role in the AD-like pathophysiology associated with noise exposure. Here, we used ELISA, immunoblotting, cytokine arrays, and RT-PCR, to examine both hippocampal Aβ pathology and neuroinflammation in rats at different time points after noise exposure. We found that chronic noise exposure significantly accelerated the progressive overproduction of Aβ, which persisted for 7 to 14 days after the cessation of exposure. This effect was accompanied by up-regulated expression of amyloid precursor protein (APP) and its cleavage enzymes, β- and γ-secretases. Cytokine analysis revealed that chronic noise exposure increased levels of tumor necrosis factor-α and the receptor for advanced glycation end products, while decreasing the expression of activin A and platelet-derived growth factor- AA. Furthermore, we found persistent elevations of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 expression that closely corresponded to the noise-induced increases in Aβ and neuroinflammation. These studies suggest that lifelong environmental noise exposure may have cumulative effects on the onset and development of AD.
Collapse
Affiliation(s)
- Bo Cui
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Kang Li
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhihui Gai
- 1] Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China [2] Shandong academy of occupational health and occupational medicine, Shandong academy of medical sciences, Jinan, China
| | - Xiaojun She
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Na Zhang
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Chuanxiang Xu
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Gaihong An
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Qiang Ma
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Rui Wang
- Shandong academy of occupational health and occupational medicine, Shandong academy of medical sciences, Jinan, China
| |
Collapse
|
42
|
Validation and scopolamine-reversal of latent learning in the water maze utilizing a revised direct platform placement procedure. Pharmacol Biochem Behav 2015; 135:90-6. [DOI: 10.1016/j.pbb.2015.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
|
43
|
Marcello E, Gardoni F, Di Luca M. Alzheimer's disease and modern lifestyle: what is the role of stress? J Neurochem 2015. [DOI: 10.1111/jnc.13210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elena Marcello
- Department of Pharmacological and Biomolecular Sciences; Università degli Studi di Milano; Milan Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences; Università degli Studi di Milano; Milan Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
44
|
Park HJ, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, Ceballos-Diaz C, Han C, Wolfe MS, Daaka Y, Ryabinin AE, Kim SH, Hauger RL, Golde TE, Felsenstein KM. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. EMBO J 2015; 34:1674-86. [PMID: 25964433 DOI: 10.15252/embj.201488795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oliver Holmes
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashleigh R Price
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa Smithson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Seong-Hun Kim
- Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, Department of Psychiatry, VA Healthcare System, University of California, San Diego, CA, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin M Felsenstein
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Friedler B, Crapser J, McCullough L. One is the deadliest number: the detrimental effects of social isolation on cerebrovascular diseases and cognition. Acta Neuropathol 2015; 129:493-509. [PMID: 25537401 DOI: 10.1007/s00401-014-1377-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022]
Abstract
The deleterious effects of chronic social isolation (SI) have been recognized for several decades. Isolation is a major source of psychosocial stress and is associated with an increased prevalence of vascular and neurological diseases. In addition, isolation exacerbates morbidity and mortality following acute injuries such as stroke or myocardial infarction. In contrast, affiliative social interactions can improve organismal function and health. The molecular mechanisms underlying these effects are unknown. Recently, results from large epidemiological trials and pre-clinical studies have revealed several potential mediators of the detrimental effects of isolation. At least three major biological systems have been implicated: the neuroendocrine (HPA) axis, the immune system, and the autonomic nervous system. This review summarizes studies examining the relationship between isolation and mortality and the pathophysiological mechanisms underlying SI. Cardiovascular, cerebrovascular, and neurological diseases including atherosclerosis, myocardial infarction, ischemic stroke and Alzheimer's disease are given special emphasis in the context of SI. Sex differences are highlighted and studies are separated into clinical and basic science for clarity.
Collapse
Affiliation(s)
- Brett Friedler
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA,
| | | | | |
Collapse
|
46
|
Shao Y, Yan G, Xuan Y, Peng H, Huang QJ, Wu R, Xu H. Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus. Behav Brain Res 2015; 282:201-8. [PMID: 25591473 DOI: 10.1016/j.bbr.2015.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/05/2023]
Abstract
Social isolation (SI) rearing of rodents is a developmental manipulation, which is commonly compared with the psychological stressors in humans as it produces several behavioral outcomes similar to those observed in humans with early life stress. To explain the SI-induced behavioral outcomes, animal studies have been performed to examine the dopaminergic and glutamatergic systems in the brain. In this study, we measured possible changes in levels of glutamate and glutamine of SI-rats using proton magnetic resonance spectroscopy. We also assessed the oxidative stress parameters in certain brain regions to see if glutamate and/or glutamine changes, if any, are associated with oxidative stress. SI rearing for 8 weeks decreased the activities of antioxidant enzymes catalase, glutathione peroxidase, superoxide dismutase, and the total antioxidant capacity, but increased levels of hydrogen peroxide, in certain brain regions, of which prefrontal cortex and hippocampus were most vulnerable. It also decreased levels of glutamate, glutamine, N-acetyl-l-aspartate (NAA), and phosphocreatine in the dorsal hippocampus, but not in the cerebral cortex. Decreased phosphocreatine and NAA indicate energy metabolism deficit in brain cells; the latter also suggests the neuronal viability was inhibited. Decreased glutamate and glutamine may suggest the neuron-glial integrity was implicated by chronic SI. These neurochemical and biochemical changes may contribute to the SI-induced behavioral abnormalities including a high level of anxiety, social interaction deficit, and impaired spatial working memory shown in this study.
Collapse
Affiliation(s)
- Yuan Shao
- The Mental Health Center, Shantou University Medical College, China
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, China
| | - Yinghua Xuan
- The Mental Health Center, Shantou University Medical College, China; Department of Anatomy, Shantou University Medical College, China
| | - Hui Peng
- Department of Anatomy, Shantou University Medical College, China
| | - Qing-Jun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China; Department of Anatomy, Shantou University Medical College, China.
| |
Collapse
|
47
|
Khodaie B, Lotfinia AA, Ahmadi M, Lotfinia M, Jafarian M, Karimzadeh F, Coulon P, Gorji A. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury. Behav Brain Res 2015; 278:55-65. [DOI: 10.1016/j.bbr.2014.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/04/2014] [Accepted: 09/21/2014] [Indexed: 01/08/2023]
|
48
|
Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer's Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:813672. [PMID: 25525451 PMCID: PMC4267462 DOI: 10.1155/2014/813672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/14/2022]
Abstract
Mangosteen- (Garcinia mangostana-) based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP) could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF) level in an organotypic hippocampal slice culture (OHSC). We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6) mice. After 8-month dietary supplementation, the MP diet (5000 ppm) significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202) in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimer's disease (3×Tg-AD) mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262) levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.
Collapse
|
49
|
Edwards SR, Hamlin AS, Marks N, Coulson EJ, Smith MT. Comparative studies using the Morris water maze to assess spatial memory deficits in two transgenic mouse models of Alzheimer's disease. Clin Exp Pharmacol Physiol 2014; 41:798-806. [DOI: 10.1111/1440-1681.12277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Stephen R Edwards
- Centre for Integrated Preclinical Drug Development; The University of Queensland; Brisbane Qld Australia
| | - Adam S Hamlin
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Nicola Marks
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development; The University of Queensland; Brisbane Qld Australia
| |
Collapse
|
50
|
Alò R, Mele M, Avolio E, Fazzari G, Canonaco M. Distinct Amygdalar AMPAergic/GABAergic Mechanisms Promote Anxiolitic-Like Effects in an Unpredictable Stress Model of the Hamster. J Mol Neurosci 2014; 55:541-51. [DOI: 10.1007/s12031-014-0386-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/16/2023]
|