1
|
McKinney WS, Schmitt LM, De Stefano LA, Ethridge L, Norris JE, Horn PS, Dauterman S, Rosselot H, Pedapati EV, Reisinger DL, Dominick KC, Shaffer RC, Chin D, Friedman NR, Hong M, Sweeney JA, Erickson C. Results from a Double-Blind, Randomized, Placebo-Controlled, Single-Dose, Crossover Trial of Lovastatin or Minocycline in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2024. [PMID: 39651602 DOI: 10.1089/cap.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction: Treatment studies in FMR1 knockout rodent models have found that minocycline and lovastatin each improve synaptic, neurological, and behavioral functioning, and open-label chronic dosing studies in human patients with fragile X syndrome (FXS) have demonstrated modest clinical improvements. Findings from blinded studies are mixed, and there is a limited understanding of electrophysiological target engagement that would facilitate cross-species translational studies. Smaller-scale, acute (e.g., single-dose) drug studies may speed treatment identification by detecting subtle electrophysiological and behavioral changes. Materials and Methods: Twenty-nine participants with FXS (31% female) ages 15-45 years completed a randomized, double-blind, crossover study in which they received a single oral dose of 40 mg of lovastatin, 270 mg of minocycline, or placebo, with a 2-week washout period between dosing visits. Participants completed a comprehensive neuropsychological battery and three EEG paradigms (resting state; auditory chirp; auditory habituation) before and 4 hours after dosing. Results: No serious adverse events were reported, and both drugs were well-tolerated. Compared with placebo, there were no overall treatment effects for any outcomes, including EEG, but several modest drug responses varied as a function of sex and age. Lovastatin treatment was associated with improved spatial awareness in older participants and females compared with minocycline and placebo. Discussion: We show that single-dose drug studies are highly feasible in FXS and that patients with FXS can complete a range of EEG and behavioral tasks, many of which have been shown to be reliable and may therefore be sensitive to subtle drug target engagement. Conclusions: Acute single doses of lovastatin or minocycline did not lead to changes in electrophysiological or performance-based measures. This may be due to the limited effects of these drugs in human patients or limited acute effects relative to chronic dosing. However, the study design was further validated for use in neurodevelopmental populations.
Collapse
Affiliation(s)
- Walker S McKinney
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren M Schmitt
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shelby Dauterman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Debra L Reisinger
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebecca C Shaffer
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Chin
- The Heidt Center of Excellence, Cincinnati, Ohio, USA
| | - Nicole R Friedman
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Michael Hong
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Fox AE, Cooper AR, Pape AL, Tobias-Wallingford HM, DeCoteau WE. Time perception and delay discounting in the FMR1 knockout rat. J Exp Anal Behav 2024. [PMID: 39513510 DOI: 10.1002/jeab.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
There is substantial evidence for timing (time perception) abnormalities related to developmental disabilities, particularly autism spectrum disorder. These findings have been reported in humans and nonhuman preclinical models. Our research objective was to extend that work to a genetic knockout (KO) model of fragile X/developmental disability, the FMR1 KO rat. We also sought to test delay discounting in the model and assess potential relations between timing and choice behavior. Consistent with previous human and nonhuman work, we found reduced timing precision in the FMR1 KO rats. We also discovered significantly increased smaller, sooner reward choice in the FMR1 KO rats. Performance on the timing task appeared to be unrelated to performance on the choice task for both model and control rats. These results add to what has become increasingly clear: timing is disrupted in humans diagnosed with developmental disabilities and in nonhuman models designed to model developmental disabilities. Our findings are consistent with those of previous work and the first to our knowledge to show such effects in the FMR1 KO rat. We discuss the potential clinical implications and future directions surrounding potential "timing interventions" for individuals diagnosed with developmental disabilities.
Collapse
Affiliation(s)
- Adam E Fox
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | - Abbie R Cooper
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | - Amelia L Pape
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | | | | |
Collapse
|
4
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
5
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
6
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Catania MV. Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective. Neurosci Biobehav Rev 2024; 162:105731. [PMID: 38763180 DOI: 10.1016/j.neubiorev.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.
Collapse
Affiliation(s)
- S D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - M Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - C M Bonaccorso
- Oasi Research Institute - IRCCS, via Conte Ruggero 73, Troina 94018, Italy
| | - M V Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
8
|
Erickson CA, Shaffer RC, Will M, Schmitt LM, Horn P, Hirst K, Pedapati EV, Ober N, Tumuluru RV, Handen BL, Beversdorf DQ. Brief Report: A Double-Blind, Placebo-Controlled, Crossover, Proof-of-Concept Study of Minocycline in Autism Spectrum Disorder. J Autism Dev Disord 2023:10.1007/s10803-023-06132-1. [PMID: 38102393 DOI: 10.1007/s10803-023-06132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2023] [Indexed: 12/17/2023]
Abstract
Neuroinflammatory mechanisms have been implicated in the pathophysiology of autism spectrum disorder (ASD). Minocycline is a matrix metalloproteinase inhibitor 9 (MMP9) inhibitor tetracycline antibiotic with known anti-inflammatory properties. In preclinical animal models of ASD, minocycline has demonstrated potential positive effects on phenotypes that may have relevance to ASD. We conducted the first placebo-controlled study of minocycline in ASD. This double-blind, placebo-controlled crossover trial employed four week treatment periods with a two week washout period. Twenty-four 12-22 year olds (mean age 17.4 years; range 12.9-22.5 years) with ASD were enrolled. Overall minocycline was well tolerated. No minocycline-associated clinical changes were noted with treatment on any performance or clinician or caregiver completed measures were noted. We hypothesize that either minocycline does not have potential therapeutic effects in ASD or our project was underpowered to define potential subject subgroups who may potentially respond positively to this drug.
Collapse
Affiliation(s)
- Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rebecca C Shaffer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith Will
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathy Hirst
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole Ober
- Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Benjamin L Handen
- Psychiatry, Pediatrics, Psychology, and Education Departments, University of Pittsburgh, Pittsburgh, USA
| | - David Q Beversdorf
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA
- Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Glass TJ, Lenell C, Fisher EH, Yang Q, Connor NP. Ultrasonic vocalization phenotypes in the Ts65Dn and Dp(16)1Yey mouse models of Down syndrome. Physiol Behav 2023; 271:114323. [PMID: 37573959 PMCID: PMC10592033 DOI: 10.1016/j.physbeh.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Down syndrome (DS) is a developmental disorder associated with a high incidence of challenges in vocal communication. DS can involve medical co-morbidities and structural social factors that may impact communication outcomes, which can present difficulties for the study of vocal communication challenges. Mouse models of DS may be used to study vocal communication differences associated with this syndrome and allow for greater control and consistency of environmental factors. Prior work has demonstrated differences in ultrasonic vocalization (USV) of the Ts65Dn mouse model of DS at a young adult age, however it is not known how USV characteristics are manifested at mature ages. Given that the aging process and age-related co-morbidities may also impact communication in DS, addressing this gap in knowledge may be of value for efforts to understand communication difficulties in DS across the lifespan. The current study hypothesized that the Ts65Dn and Dp(16)1Yey mouse models of DS would demonstrate differences in multiple measures of USV communication at a mature adult age of 5 months. METHODS Ts65Dn mice (n = 16) and euploid controls (n = 19), as well as Dp(16)1Yey mice (n = 20) and wild-type controls (n = 22), were evaluated at 5 months of age for USV production using a mating paradigm. Video footage of USV sessions were analyzed to quantify social behaviors of male mice during USV testing sessions. USV recordings were analyzed using Deepsqueak software to identify 10 vocalization types, which were quantified for 11 acoustic measures. RESULTS Ts65Dn, but not Dp(16)1Yey, showed significantly lower proportions of USVs classified as Step Up, Short, and Frequency Steps, and significantly higher proportions of USVs classified as Inverted U, than euploid controls. Both Ts65Dn and Dp(16)1Yey groups had significantly greater values for power and tonality for USVs than respective control groups. While Ts65Dn showed lower frequencies than controls, Dp(16)1Yey showed higher frequencies than controls. Finally, Ts65Dn showed reductions in a measure of complexity for some call types. No significant differences between genotype groups were identified in analysis of behaviors during testing sessions. CONCLUSION While both Ts65Dn and Dp(16)1Yey show significant differences in USV measures at 5 months of age, of the two models, Ts65Dn shows a relatively greater numbers of differences. Characterization of communication phenotypes in mouse models of DS may be helpful in laying the foundation for future translational advances in the area of communication difficulties associated with DS.
Collapse
Affiliation(s)
- Tiffany J Glass
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA.
| | - Charles Lenell
- Department of Communication Sciences and Disorders, University of Northern Colorado, Greeley, CO, USA
| | - Erin H Fisher
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA
| | - Qiuyu Yang
- Department of Surgery, Statistical Analysis and Research Programming Core, University of Wisconsin, Madison, WI, USA
| | - Nadine P Connor
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Sterling ML, Teunisse R, Englitz B. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming. eLife 2023; 12:e86126. [PMID: 37493217 PMCID: PMC10522333 DOI: 10.7554/elife.86126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Collapse
Affiliation(s)
- Max L Sterling
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Visual Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Ruben Teunisse
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
11
|
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, Pietropaolo S. Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome. Cells 2023; 12:1927. [PMID: 37566006 PMCID: PMC10416983 DOI: 10.3390/cells12151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.
Collapse
Affiliation(s)
- Marika Premoli
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Fyke
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, University of Bordeaux, 33077 Bordeaux, France
| | - Valerie Lemaire
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | |
Collapse
|
12
|
Liao X, Chen M, Li Y. The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Front Neuroendocrinol 2023; 70:101064. [PMID: 36889545 DOI: 10.1016/j.yfrne.2023.101064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The present study aimed to systematically and quantitatively review evidence derived from both postmortem brain and PET studies to explore the pathological role of glia induced neuroinflammation in the pathogenesis of ASD, and discuss the implications of these findings in relation to disease pathogenesis and therapeutic strategies. METHOD An online databases search was performed to collate postmortem studies and PET studies regarding glia induced neuroinflammation in ASD as compared to controls. Two authors independently conducted the literature search, study selection and data extraction. The discrepancies generated in these processes was resolved through robust discussions among all authors. RESULT The literature search yielded the identification of 619 records, from which 22 postmortem studies and 3 PET studies were identified as eligible for the qualitative synthesis. Meta-analysis of postmortem studies reported increased microglial number and microglia density as well as increased GFAP protein expression and GFAP mRNA expression in ASD subjects as compared to controls. Three PET studies produced different outcomes and emphasized different details, with one reported increased and two reported decreased TSPO expression in ASD subjects as compared to controls. CONCLUSION Both postmortem evidences and PET studies converged to support the involvement of glia induced neuroinflammation in the pathogenesis of ASD. The limited number of included studies along with the considerable heterogeneity of these studies prevented the development of firm conclusions and challenged the explanation of variability. Future research should prioritize the replication of current studies and the validation of current observations.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Sharghi S, Flunkert S, Daurer M, Rabl R, Chagnaud BP, Leopoldo M, Lacivita E, Hutter-Paier B, Prokesch M. Evaluating the effect of R-Baclofen and LP-211 on autistic behavior of the BTBR and Fmr1-KO mouse models. Front Neurosci 2023; 17:1087788. [PMID: 37065917 PMCID: PMC10097904 DOI: 10.3389/fnins.2023.1087788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionAutism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology.MethodsThe GABAB receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3tf/J and B6.129P2-Fmr1tm1Cgr/J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests.ResultsBTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice’s ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice.ConclusionOur results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.
Collapse
Affiliation(s)
- Shirin Sharghi
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
- Institute for Biology, Karl-Franzens-Universität Graz, Graz, Austria
- *Correspondence: Shirin Sharghi,
| | - Stefanie Flunkert
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Magdalena Daurer
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Roland Rabl
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | | | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Manuela Prokesch
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| |
Collapse
|
14
|
Perez-Fernandez C, Matamala Montoya M, Morales-Navas M, Guardia-Escote L, Cabré M, Colomina MT, Giménez E, Sánchez-Santed F. Influence of Gestational Chlorpyrifos Exposure on ASD-like Behaviors in an fmr1-KO Rat Model. Mol Neurobiol 2022; 59:5835-5855. [PMID: 35802248 DOI: 10.1007/s12035-022-02933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Based on previous reports, exposure to pesticides could be linked to the prevalence increase of autism spectrum disorders (ASD). Gestational exposure to chlorpyrifos (CPF) has been associated with ASD diagnosis in humans and ASD-like behaviors in rodents. However, ASD severity degree results from the complex relationship between genetic background and environmental factors. Thus, animals with a genetic vulnerability and prenatally exposed to CPF could have a more severe ASD-like phenotype. Fragile X syndrome is one of the most common monogenic causes of ASD, characterized by a mutation in the X chromosome which alters the expression of the fragile X mental retardation protein (FMRP). Based on this, some fmr1 knockout (KO) rodent models have been developed to study the physiological and genetic basis of ASD. Both fmr1-KO and wild-type male rats (F2 generation) were used in the present study. F1 pregnant females were randomly exposed to 1 mg/kg/mL/day of CPF (s.c.) from GD12.5-15.5 or vehicle. Different behavioral, developmental, and molecular variables were analyzed in F2 males. KO rats were heavier, emitted altered USVs, were socially inefficient, reacted more to a novel stimulus, were hyperactive when exploring a new context, but hypoactive when exploring anxiety-inducing environments, and had an upregulated hippocampal expression of the grin2c gene. When exposed to low doses of CPF during gestation, these KO rats showed decreased climbing capacity, dysfunctional social interaction, and increased hippocampal expression for kcc1 and 5ht2c genes. Gestational CPF exposure increased the ASD-like phenotype in those animals with a genetic vulnerability, although its effect was less generalized than expected. It is the first time that this additive effect of CPF exposure and the fmr1-KO genetic vulnerability model is explored concerning social traits or any other behavior.
Collapse
Affiliation(s)
- Cristian Perez-Fernandez
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Matamala Montoya
- Biomolecular Mass Spectrometry and Proteomics Group, Faculty of Science, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Miguel Morales-Navas
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira I Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - María Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira I Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Estela Giménez
- Department of Biology and Geology, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
15
|
Targeted therapy of cognitive deficits in fragile X syndrome. Mol Psychiatry 2022; 27:2766-2776. [PMID: 35354925 PMCID: PMC7612812 DOI: 10.1038/s41380-022-01527-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
Breaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1). Further, to investigate the impact of our therapeutic strategy on neuronal plasticity we perform long-term potentiation recordings and high-resolution electron microscopy. We show that central amygdala-targeted delivery of TIMP-1 designer nanoparticles reverses impaired cognition in Fmr1 knockouts, while having no impact on deficits of social behavior, hence corroborating symptom-specificity of the proposed approach. Moreover, we elucidate the neural correlates of the highly specific behavioral rescue by showing that the applied therapeutic intervention restores functional synaptic plasticity and ultrastructure of neurons in the central amygdala. Thus, we present a targeted, symptom-specific and mechanism-based strategy to remedy cognitive deficits in Fragile X syndrome.
Collapse
|
16
|
Caruso A, Ricceri L, Caruso A, Nicoletti F, Gaetano A, Scaccianoce S. Postweaning social isolation and autism-like phenotype: a biochemical and behavioral comparative analysis. Behav Brain Res 2022; 428:113891. [PMID: 35421428 DOI: 10.1016/j.bbr.2022.113891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Adolescence is a critical period for brain development. In most mammalian species, disturbances experienced during adolescence constitute a risk factor for several neuropsychiatric disorders. In this study, we compared the biochemical and behavioral profile induced by postweaning social isolation (PWSI) in inbred C57BL/6N mice with that of BTBR mice, a rodent model of autism spectrum disorders. Male C57BL/6N mice were either housed in groups of four or isolated from weaning (postnatal day 21) for four weeks before experimental analyses. After weaning, male BTBR mice were housed four per cage and analyzed at 48 days of age. PWSI reduced hippocampal levels of type 2 metabotropic glutamate (mGlu2) receptors, and glucocorticoid and mineralocorticoid receptors. A similar reduction was seen in group-housed BTBR mice. Plasma corticosterone levels in basal conditions were not influenced by PWSI, but were increased in BTBR mice. Social investigation (total and head sniffing) and the number of ultrasonic vocalizations were reduced in both PWSI mice and age-matched group-housed BTBR mice, indicating a lower social responsiveness in both groups of mice. These results suggest that absence of social stimuli during adolescence induces an endophenotype with social deficit features, which mimics the phenotype of a mouse model of autism spectrum disorders.
Collapse
Affiliation(s)
- Alessandra Caruso
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy.
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Alessandra Gaetano
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| |
Collapse
|
17
|
Kenny A, Wright D, Stanfield AC. EEG as a translational biomarker and outcome measure in fragile X syndrome. Transl Psychiatry 2022; 12:34. [PMID: 35075104 PMCID: PMC8786970 DOI: 10.1038/s41398-022-01796-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.
Collapse
Affiliation(s)
- Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Damien Wright
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| | - Andrew C. Stanfield
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| |
Collapse
|
18
|
Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psychiatry 2021; 12:720752. [PMID: 34690832 PMCID: PMC8529206 DOI: 10.3389/fpsyt.2021.720752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.
Collapse
Affiliation(s)
- Khaleel A. Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M. Ethell
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
19
|
Fyke W, Premoli M, Echeverry Alzate V, López-Moreno JA, Lemaire-Mayo V, Crusio WE, Marsicano G, Wöhr M, Pietropaolo S. Communication and social interaction in the cannabinoid-type 1 receptor null mouse: Implications for autism spectrum disorder. Autism Res 2021; 14:1854-1872. [PMID: 34173729 DOI: 10.1002/aur.2562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Clinical and preclinical findings have suggested a role of the endocannabinoid system (ECS) in the etiopathology of autism spectrum disorder (ASD). Previous mouse studies have investigated the role of ECS in several behavioral domains; however, none of them has performed an extensive assessment of social and communication behaviors, that is, the main core features of ASD. This study employed a mouse line lacking the primary endocannabinoid receptor (CB1r) and characterized ultrasonic communication and social interaction in CB1-/- , CB1+/- , and CB1+/+ males and females. Quantitative and qualitative alterations in ultrasonic vocalizations (USVs) were observed in CB1 null mice both during early development (i.e., between postnatal days 4 and 10), and at adulthood (i.e., at 3 months of age). Adult mutants also showed marked deficits in social interest in the three-chamber test and social investigation in the direct social interaction test. These behavioral alterations were mostly observed in both sexes and appeared more marked in CB1-/- than CB1+/- mutant mice. Importantly, the adult USV alterations could not be attributed to differences in anxiety or sensorimotor abilities, as assessed by the elevated plus maze and auditory startle tests. Our findings demonstrate the role of CB1r in social communication and behavior, supporting the use of the CB1 full knockout mouse in preclinical research on these ASD-relevant core domains. LAY SUMMARY: The endocannabinoid system (ECS) is important for brain development and neural function and is therefore likely to be involved in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Here we investigated changes in social behavior and communication, which are core features of ASD, in male and female mice lacking the chief receptor of this system. Our results show that loss of this receptor results in several changes in social behavior and communication both during early development and in adulthood, thus supporting the role of the ECS in these ASD-core behavioral domains.
Collapse
Affiliation(s)
- William Fyke
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Victor Echeverry Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain.,Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, Spain
| | - José A López-Moreno
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain
| | | | - Wim E Crusio
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Markus Wöhr
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven, Belgium.,KU Leuven, Leuven Brain Institute, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| | | |
Collapse
|
20
|
Lovelace JW, Rais M, Palacios AR, Shuai XS, Bishay S, Popa O, Pirbhoy PS, Binder DK, Nelson DL, Ethell IM, Razak KA. Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cereb Cortex 2021; 30:969-988. [PMID: 31364704 DOI: 10.1093/cercor/bhz141] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading genetic cause of autism with symptoms that include sensory processing deficits. In both humans with FXS and a mouse model [Fmr1 knockout (KO) mouse], electroencephalographic (EEG) recordings show enhanced resting state gamma power and reduced sound-evoked gamma synchrony. We previously showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to these phenotypes by affecting perineuronal nets (PNNs) around parvalbumin (PV) interneurons in the auditory cortex of Fmr1 KO mice. However, how different cell types within local cortical circuits contribute to these deficits is not known. Here, we examined whether Fmr1 deletion in forebrain excitatory neurons affects neural oscillations, MMP-9 activity, and PV/PNN expression in the auditory cortex. We found that cortical MMP-9 gelatinase activity, mTOR/Akt phosphorylation, and resting EEG gamma power were enhanced in CreNex1/Fmr1Flox/y conditional KO (cKO) mice, whereas the density of PV/PNN cells was reduced. The CreNex1/Fmr1Flox/y cKO mice also show increased locomotor activity, but not the anxiety-like behaviors. These results indicate that fragile X mental retardation protein changes in excitatory neurons in the cortex are sufficient to elicit cellular, electrophysiological, and behavioral phenotypes in Fmr1 KO mice. More broadly, these results indicate that local cortical circuit abnormalities contribute to sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine
| | | | | | | | - Otilia Popa
- Division of Biomedical Sciences, School of Medicine
| | | | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - David L Nelson
- Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - Khaleel A Razak
- Department of Psychology.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| |
Collapse
|
21
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
22
|
Hodges SL, Womble PD, Kwok EM, Darner AM, Senger SS, Binder MS, Faust AM, Condon SM, Nolan SO, Quintero SI, Lugo JN. Rapamycin, but not minocycline, significantly alters ultrasonic vocalization behavior in C57BL/6J pups in a flurothyl seizure model. Behav Brain Res 2021; 410:113317. [PMID: 33910029 DOI: 10.1016/j.bbr.2021.113317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Eliesse M Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Alyssa M Darner
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Savannah S Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Amanda M Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Siena M Condon
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Saul I Quintero
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
23
|
Nolan SO, Hodges SL, Okoh JT, Binder MS, Lugo JN. Prenatal High-Fat Diet Rescues Communication Deficits in Fmr1 Mutant Mice in a Sex-Specific Manner. Dev Neurosci 2021; 42:94-104. [PMID: 33395685 PMCID: PMC7864857 DOI: 10.1159/000509797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Using high-throughput analysis methods, the present study sought to determine the impact of prenatal high-fat dietary manipulations on isolation-induced ultrasonic vocalization production in both male and female Fmr1mutants on postnatal day 9. Prior to breeding, male FVB/129 Fmr1 wildtype and female Fmr1 heterozygous breeding pairs were assigned to 1 of 3 diet conditions: standard lab chow, omega-3 fatty acid-enriched chow, and a diet controlling for the fat increase. Prenatal exposure to omega-3 fatty acids improved reductions in the number of calls produced by Fmr1heterozygotes females. Moreover, diminished spectral purity in the female Fmr1homozygous mouse was rescued by exposure to both high-fat diets, although these effects were not seen in the male Fmr1knockout. Prenatal dietary fat manipulation also influenced several other aspects of vocalization production, such as the number of calls produced and their fundamental frequency, aside from effects due to loss of Fmr1.Specifically, in males, regardless of genotype, prenatal exposure to high omega-3s increased the average fundamental frequency of calls. These data support the need for future preclinical and clinical work elucidating the full potential of prenatal high-fat diets as a novel therapeutic alternative forFragile X syndrome.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - James T Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA,
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA,
- Department of Biology, Baylor University, Waco, Texas, USA,
| |
Collapse
|
24
|
Champigny C, Morin-Parent F, Bellehumeur-Lefebvre L, Çaku A, Lepage JF, Corbin F. Combining Lovastatin and Minocycline for the Treatment of Fragile X Syndrome: Results From the LovaMiX Clinical Trial. Front Psychiatry 2021; 12:762967. [PMID: 35058813 PMCID: PMC8763805 DOI: 10.3389/fpsyt.2021.762967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Limited success of previous clinical trials for Fragile X syndrome (FXS) has led researchers to consider combining different drugs to correct the pleiotropic consequences caused by the absence of the Fragile X mental retardation protein (FMRP). Here, we report the results of the LovaMiX clinical trial, the first trial for FXS combining two disease-modifying drugs, lovastatin, and minocycline, which have both shown positive effects when used independently. Aim: The main goals of the study were to assess the safety and efficacy of a treatment combining lovastatin and minocycline for patients with FXS. Design: Pilot Phase II open-label clinical trial. Patients with a molecular diagnostic of FXS were first randomized to receive, in two-step titration either lovastatin or minocycline for 8 weeks, followed by dual treatment with lovastatin 40 mg and minocycline 100 mg for 2 weeks. Clinical assessments were performed at the beginning, after 8 weeks of monotherapy, and at week 20 (12 weeks of combined therapy). Outcome Measures: The primary outcome measure was the Aberrant Behavior Checklist-Community (ABC-C) global score. Secondary outcome measures included subscales of the FXS specific ABC-C (ABC-CFX), the Anxiety, Depression, and Mood Scale (ADAMS), the Social Responsiveness Scale (SRS), the Behavior Rating Inventory of Executive Functions (BRIEF), and the Vineland Adaptive Behavior Scale second edition (VABS-II). Results: Twenty-one individuals out of 22 completed the trial. There were no serious adverse events related to the use of either drugs alone or in combination, suggesting good tolerability and safety profile of the combined therapy. Significant improvement was noted on the primary outcome measure with a 40% decrease on ABC-C global score with the combined therapy. Several outcome measures also showed significance. Conclusion: The combination of lovastatin and minocycline is safe in patients for FXS individuals and appears to improve several elements of the behavior. These results set the stage for a larger, placebo-controlled double-blind clinical trial to confirm the beneficial effects of the combined therapy.
Collapse
Affiliation(s)
- Camille Champigny
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | | | - Laurence Bellehumeur-Lefebvre
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Artuela Çaku
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Jean-François Lepage
- Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Faculty of Medicine and Health Sciences, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
25
|
Romero-Miguel D, Lamanna-Rama N, Casquero-Veiga M, Gómez-Rangel V, Desco M, Soto-Montenegro ML. Minocycline in neurodegenerative and psychiatric diseases: An update. Eur J Neurol 2020; 28:1056-1081. [PMID: 33180965 DOI: 10.1111/ene.14642] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Minocycline is a broad-spectrum antibiotic, effective as a chronic treatment for recurrent bacterial infections. Beyond its antibiotic action, minocycline also has important anti-inflammatory, antioxidant and antiapoptotic properties. Its efficacy has therefore been evaluated in many neurodegenerative and psychiatric diseases that have an inflammatory basis. Our aim was to review preclinical and clinical studies performed in neurological and psychiatric diseases whose treatment involved the use of minocycline and thereby to discern the possible beneficial effect of minocycline in these disorders. METHODS Completed and ongoing preclinical studies and clinical trials of minocycline for both neurodegenerative diseases and psychiatric disorders, published from January 1995 to January 2020, were identified through searching relevant databases (https://www.ncbi.nlm.nih.gov/pubmed/, https://clinicaltrials.gov/). A total of 74 preclinical studies and 44 clinical trials and open-label studies were selected. RESULTS The results of the nearly 20 years of research identified are diverse. While minocycline mostly proved to be effective in animal models, clinical results showed divergent outcomes, with positive results in some studies counterbalanced by a number of cases with no significant improvements. Specific data for each disease are further individually described in this review. CONCLUSIONS Despite minocycline demonstrating antioxidant and anti-inflammatory effects, discrepancies between preclinical and clinical data indicate that we should be cautious in analyzing the outcomes. Improving and standardizing protocols and refining animal models could help us to determine if minocycline really is a useful drug in the treatment of these pathologies.
Collapse
Affiliation(s)
| | | | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid
| | | | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid
| |
Collapse
|
26
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Caruso A, Ricceri L, Scattoni ML. Ultrasonic vocalizations as a fundamental tool for early and adult behavioral phenotyping of Autism Spectrum Disorder rodent models. Neurosci Biobehav Rev 2020; 116:31-43. [DOI: 10.1016/j.neubiorev.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
28
|
Niemczura AC, Grimsley JM, Kim C, Alkhawaga A, Poth A, Carvalho A, Wenstrup JJ. Physiological and Behavioral Responses to Vocalization Playback in Mice. Front Behav Neurosci 2020; 14:155. [PMID: 33033474 PMCID: PMC7490332 DOI: 10.3389/fnbeh.2020.00155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
In mice, the caller’s production of social vocalizations has been extensively studied but the effect of these vocalizations on the listener is less understood, with playback studies to date utilizing one vocalization category or listeners of one sex. This study examines how several categories of mouse vocalizations affect listeners of both sexes to better understand the communicative functions of these vocal categories. We examined physiological and behavioral responses of male and female CBA/CaJ mice to playback of four social vocalization categories: ultrasonic vocalizations (USVs), low-frequency harmonic calls, mid-frequency vocalizations, and noisy calls. Based on the conditions under which these calls are emitted, we hypothesized that playback of these vocal categories would have differential effects on the listeners. In females, playback of all four vocalization categories increased stress hormone levels (corticosterone), but only the non-USV categories increased corticosterone in males. The magnitude of corticosterone increase in non-USV trials was greater in females than in males. In open field tests, all four vocal categories decreased central ambulation in males and females, indicating an increase in anxiety-related behavior. Further, we found that the proportions of USVs emitted by subjects, but not their overall calling rates, were affected by playback of some vocal categories, suggesting that vocalization categories have different communication content. These results show that, even in the absence of behavioral and acoustic contextual features, each vocal category evokes physiological and behavioral responses in mice, with some differences in responses as a function of the listener’s sex and playback signal. These findings suggest that at least some of the vocal categories have distinct communicative functions.
Collapse
Affiliation(s)
- Alexandra C Niemczura
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Chae Kim
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ahmad Alkhawaga
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Austin Poth
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alyssa Carvalho
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
29
|
Lovelace JW, Ethell IM, Binder DK, Razak KA. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front Neurosci 2020; 14:771. [PMID: 32848552 PMCID: PMC7417521 DOI: 10.3389/fnins.2020.00771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability. Many symptoms of FXS overlap with those in autism including repetitive behaviors, language delays, anxiety, social impairments and sensory processing deficits. Electroencephalogram (EEG) recordings from humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, show remarkably similar phenotypes suggesting that EEG phenotypes can serve as biomarkers for developing treatments. This includes enhanced resting gamma band power and sound evoked total power, and reduced fidelity of temporal processing and habituation of responses to repeated sounds. Given the therapeutic potential of the antibiotic minocycline in humans with FXS and animal models, it is important to determine sensitivity and selectivity of EEG responses to minocycline. Therefore, in this study, we examined if a 10-day treatment of adult Fmr1 KO mice with minocycline (oral gavage, 30 mg/kg per day) would reduce EEG abnormalities. We tested if minocycline treatment has specific effects based on the EEG measurement type (e.g., resting versus sound-evoked) from the frontal and auditory cortex of the Fmr1 KO mice. We show increased resting EEG gamma power and reduced phase locking to time varying stimuli as well as the 40 Hz auditory steady state response in the Fmr1 KO mice in the pre-drug condition. Minocycline treatment increased gamma band phase locking in response to auditory stimuli, and reduced sound-evoked power of auditory event related potentials (ERP) in Fmr1 KO mice compared to vehicle treatment. Minocycline reduced resting EEG gamma power in Fmr1 KO mice, but this effect was similar to vehicle treatment. We also report frequency band-specific effects on EEG responses. Taken together, these data indicate that sound-evoked EEG responses may serve as more sensitive measures, compared to resting EEG measures, to isolate minocycline effects from placebo in humans with FXS. Given the use of minocycline and EEG recordings in a number of neurodegenerative and neurodevelopmental conditions, these findings may be more broadly applicable in translational neuroscience.
Collapse
Affiliation(s)
- Jonathan W Lovelace
- Department of Psychology and Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Department of Psychology and Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
30
|
Telias M. Pharmacological Treatments for Fragile X Syndrome Based on Synaptic Dysfunction. Curr Pharm Des 2020; 25:4394-4404. [PMID: 31682210 DOI: 10.2174/1381612825666191102165206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment, including intellectual disability, autism, hyperactivity, and epilepsy. METHODS This article reviews the literature pertaining to the role of synaptic dysfunction in FXS. RESULTS In FXS, synaptic dysfunction alters the excitation-inhibition ratio, dysregulating molecular and cellular processes underlying cognition, learning, memory, and social behavior. Decades of research have yielded important hypotheses that could explain, at least in part, the development of these neurological disorders in FXS patients. However, the main goal of translating lab research in animal models to pharmacological treatments in the clinic has been so far largely unsuccessful, leaving FXS a still incurable disease. CONCLUSION In this concise review, we summarize and analyze the main hypotheses proposed to explain synaptic dysregulation in FXS, by reviewing the scientific evidence that led to pharmaceutical clinical trials and their outcome.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
31
|
Blood-Based Biomarkers Predictive of Metformin Target Engagement in Fragile X Syndrome. Brain Sci 2020; 10:brainsci10060361. [PMID: 32531912 PMCID: PMC7349631 DOI: 10.3390/brainsci10060361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in neurobiology have provided several molecular entrees for targeted treatments for Fragile X syndrome (FXS). However, the efficacy of these treatments has been demonstrated mainly in animal models and has not been consistently predictive of targeted drugs' response in the preponderance of human clinical trials. Because of the heterogeneity of FXS at various levels, including the molecular level, phenotypic manifestation, and drug response, it is critically important to identify biomarkers that can help in patient stratification and prediction of therapeutic efficacy. The primary objective of this study was to assess the ability of molecular biomarkers to predict phenotypic subgroups, symptom severity, and treatment response to metformin in clinically treated patients with FXS. We specifically tested a triplex protein array comprising of hexokinase 1 (HK1), RAS (all isoforms), and Matrix Metalloproteinase 9 (MMP9) that we previously demonstrated were dysregulated in the FXS mouse model and in blood samples from patient with FXS. Seventeen participants with FXS, 12 males and 5 females, treated clinically with metformin were included in this study. The disruption in expression abundance of these proteins was normalized and associated with significant self-reported improvement in clinical phenotypes (CGI-I in addition to BMI) in a subset of participants with FXS. Our preliminary findings suggest that these proteins are of strong molecular relevance to the FXS pathology that could make them useful molecular biomarkers for this syndrome.
Collapse
|
32
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
33
|
Hodges SL, Nolan SO, Tomac LA, Muhammad IDA, Binder MS, Taube JH, Lugo JN. Lipopolysaccharide-induced inflammation leads to acute elevations in pro-inflammatory cytokine expression in a mouse model of Fragile X syndrome. Physiol Behav 2019; 215:112776. [PMID: 31838149 DOI: 10.1016/j.physbeh.2019.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the Fmr1 gene, serving as the largest genetic cause of intellectual disability. Trinucleotide expansion mutations in Fmr1 result in silencing and hypermethylation of the gene, preventing synthesis of the RNA binding protein Fragile X mental retardation protein which functions as a translational repressor. Abnormal immune responses have been demonstrated to play a role in FXS pathophysiology, however, whether these alterations impact how those with FXS respond to an immune insult behaviorally is not entirely known. In the current study, we examine how Fmr1 knockout (KO) and wild type (WT) mice respond to the innate immune stimulus lipopolysaccharide (LPS), both on a molecular and behavioral level, to determine if Fmr1 mutations impact the normal physiological response to an immune insult. In response to LPS, Fmr1 KO mice had elevated hippocampal IL-1β and IL-6 mRNA levels 4 h post-treatment compared to WT mice, with no differences detected in any cytokines at baseline or between genotypes 24 h post-LPS administration. Fmr1 KO mice also had upregulated hippocampal BDNF gene expression 4 h post-treatment compared to WT mice, which was not dependent on LPS administration. There were no differences in hippocampal protein expression between genotypes in microglia (Iba1) or astrocyte (GFAP) reactivity. Further, both genotypes displayed the typical sickness response following LPS stimulation, demonstrated by a significant reduction in food burrowed by LPS-treated mice in a burrowing task. Additional investigation is critical to determine if the transient increases in cytokine expression could lead to long-term changes in downstream molecular signaling in FXS.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Lindsay A Tomac
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Ilyasah D A Muhammad
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Joseph H Taube
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
34
|
Evidence for a Contribution of the Nlgn3/Cyfip1/Fmr1 Pathway in the Pathophysiology of Autism Spectrum Disorders. Neuroscience 2019; 445:31-41. [PMID: 31705895 DOI: 10.1016/j.neuroscience.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. Among these genes are FMR1, CYFIP1 and NLGN3, all present at the synapse and reliably linked to ASD. In this review, we evaluate the evidence for the contribution of these genes to the same biological pathway responsible for the regulation of structural and physiological plasticity. Alterations in dendritic spine density and turnover, as well as long-term depression (LTD), were found in mouse models of mutations of all three genes. This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.
Collapse
|
35
|
Biag HMB, Potter LA, Wilkins V, Afzal S, Rosvall A, Salcedo-Arellano MJ, Rajaratnam A, Manzano-Nunez R, Schneider A, Tassone F, Rivera SM, Hagerman RJ. Metformin treatment in young children with fragile X syndrome. Mol Genet Genomic Med 2019; 7:e956. [PMID: 31520524 PMCID: PMC6825840 DOI: 10.1002/mgg3.956] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metformin is a drug commonly used in individuals with type 2 diabetes, obesity, and impaired glucose tolerance. It has a strong safety profile in both children and adults. Studies utilizing the Drosophila model and knock out mouse model of fragile X syndrome (FXS) have found metformin to rescue memory, social novelty deficits, and neuroanatomical abnormalities. These studies provided preliminary evidence that metformin could be used as a targeted treatment for the cognitive and behavioral problems associated with FXS. Previously, a case series of children and adults with FXS treated with metformin demonstrated improvements in irritability, social responsiveness, language, and hyperactivity. METHODS Here, we present nine children with FXS between 2 and 7 years of age who were treated clinically with metformin and monitored for behavioral and metabolic changes. RESULTS Parent reports and developmental testing before and after metformin are presented. There were improvements in language development and behavior (such as lethargy and stereotypy) in most of the patients. CONCLUSION These results support the need for a controlled trial of metformin in children with FXS under 7 years old whose brains are in a critical developmental window and thus may experience a greater degree of clinical benefit from metformin.
Collapse
Affiliation(s)
- Hazel Maridith B Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - Laura A Potter
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - Victoria Wilkins
- Department of Pediatric Inpatient Medicine, University of Utah and Primary Children's Hospital, Salt Lake City, Utah
| | - Sumra Afzal
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - Alexis Rosvall
- University of California Davis School of Medicine, Sacramento, California
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California
| | - Susan M Rivera
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Psychology, University of California Davis, Davis, California.,Neurocognitive Development Lab, Center for Mind and Brain, Davis, California
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
36
|
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 2019; 76:3207-3228. [PMID: 31172215 PMCID: PMC6647627 DOI: 10.1007/s00018-019-03180-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave components of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expression and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychiatric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and MMPs have also been shown to be important mediators of immune responses.
Collapse
Affiliation(s)
- Anna Beroun
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Piotr Michaluk
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Barbara Pijet
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
37
|
Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behav Brain Res 2019; 372:112068. [PMID: 31271818 DOI: 10.1016/j.bbr.2019.112068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023]
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. The Fmr1 knockout (KO) mouse is a commonly studied pre-clinical model of FXS. Adult male Fmr1 KO mice produce fewer ultrasonic vocalizations (USVs) during mating, suggestive of abnormal social communication. Minocycline treatment for 2 months from birth alleviates a number of FXS phenotypes in mice, including USV call rate deficits. In the current study, we investigated if treatment initiated past the early developmental period would be effective, given that in many cases, individuals with FXS are treated during later developmental periods. Wildtype (WT) and Fmr1 KO mice were treated with minocycline between postnatal day (P) 30 and P58. Mating-related USVs were then recorded from these mice between P75 and P90 and analyzed for call rate, duration, bandwidth, and peak frequency. Untreated Fmr1 KO mice call at a significantly reduced rate compared to untreated WT mice. After minocycline treatment from 1 to 2 months of age, WT and Fmr1 KO mice exhibited similar call rates, due to an increase in calling in the latter group. Minocycline is thought to be effective in reducing FXS symptoms by lowering matrix-metalloproteinase-9 (MMP-9) levels. To determine whether abnormal MMP-9 levels underlie USV deficits, we characterized USVs in Fmr1 KO mice which were heterozygous for MMP-9 (MMP-9+/-/Fmr1 KO). The MMP-9+/-/Fmr1 KO mice were between P75 and P90 at the time of recording. MMP-9+/-/Fmr1 KO mice exhibited significantly increased USV call rates, at times even exceeding WT rates. Taken together, these results suggest that minocycline may reverse USV call rate deficits in Fmr1 KO mice through attenuation of MMP-9 levels. These data suggest targeting MMP-9, even in late development, may reduce FXS symptoms.
Collapse
|
38
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
39
|
Amorim IS, Lach G, Gkogkas CG. The Role of the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Neuropsychiatric Disorders. Front Genet 2018; 9:561. [PMID: 30532767 PMCID: PMC6265315 DOI: 10.3389/fgene.2018.00561] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis in eukaryotic cells is a complex, multi-step and tightly regulated process. Translation initiation, the rate limiting step in protein synthesis, is dependent on the activity of eukaryotic translation Initiation Factor 4E (eIF4E). eIF4E is the cap-binding protein which, in synergy with proteins such as the helicase eIF4A and the scaffolding protein eIF4G, binds to mRNA, allowing the recruitment of ribosomes and translation initiation. The function of eIF4E is tightly regulated in cells under normal physiological conditions and can be controlled by post-translational modifications, such as phosphorylation, and by the binding of inhibitory proteins, including eIF4E binding proteins (4E-BPs) and CYFIP1. Recent studies have highlighted the importance of eIF4E in normal or aberrant function of the nervous system. In this mini-review, we will highlight the role of eIF4E function and regulation in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,The Patrick Wild Centre, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Sonzogni M, Wallaard I, Santos SS, Kingma J, du Mee D, van Woerden GM, Elgersma Y. A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Mol Autism 2018; 9:47. [PMID: 30220990 PMCID: PMC6137919 DOI: 10.1186/s13229-018-0231-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
Background Angelman syndrome (AS) is a neurodevelopmental disorder caused by mutations affecting UBE3A function. AS is characterized by intellectual disability, impaired motor coordination, epilepsy, and behavioral abnormalities including autism spectrum disorder features. The development of treatments for AS heavily relies on the ability to test the efficacy of drugs in mouse models that show reliable, and preferably clinically relevant, phenotypes. We previously described a number of behavioral paradigms that assess phenotypes in the domains of motor performance, repetitive behavior, anxiety, and seizure susceptibility. Here, we set out to evaluate the robustness of these phenotypes when tested in a standardized test battery. We then used this behavioral test battery to assess the efficacy of minocycline and levodopa, which were recently tested in clinical trials of AS. Methods We combined data of eight independent experiments involving 111 Ube3a mice and 120 wild-type littermate control mice. Using a meta-analysis, we determined the statistical power of the subtests and the effect of putative confounding factors, such as the effect of sex and of animal weight on rotarod performance. We further assessed the robustness of these phenotypes by comparing Ube3a mutants in different genetic backgrounds and by comparing the behavioral phenotypes of independently derived Ube3a-mutant lines. In addition, we investigated if the test battery allowed re-testing the same animals, which would allow a within-subject testing design. Results We find that the test battery is robust across different Ube3a-mutant lines, but confirm and extend earlier studies that several phenotypes are very sensitive to genetic background. We further found that the audiogenic seizure susceptibility phenotype is fully reversible upon pharmacological treatment and highly suitable for dose-finding studies. In agreement with the clinical trial results, we found that minocycline and levodopa treatment of Ube3a mice did not show any sign of improved performance in our test battery. Conclusions Our study provides a useful tool for preclinical drug testing to identify treatments for Angelman syndrome. Since the phenotypes are observed in several independently derived Ube3a lines, the test battery can also be employed to investigate the effect of specific Ube3a mutations on these phenotypes.
Collapse
Affiliation(s)
- Monica Sonzogni
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sara Silva Santos
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jenina Kingma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dorine du Mee
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
41
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
42
|
Wen TH, Binder DK, Ethell IM, Razak KA. The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 2018; 11:270. [PMID: 30123106 PMCID: PMC6085424 DOI: 10.3389/fnmol.2018.00270] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Perineuronal nets (PNN) are extracellular matrix (ECM) assemblies that preferentially ensheath parvalbumin (PV) expressing interneurons. Converging evidence indicates that PV cells and PNN are impaired in a variety of neurological disorders. PNN development and maintenance is necessary for a number of processes within the CNS, including regulation of GABAergic cell function, protection of neurons from oxidative stress, and closure of developmental critical period plasticity windows. Understanding PNN functions may be essential for characterizing the mechanisms of altered cortical excitability observed in neurodegenerative and neurodevelopmental disorders. Indeed, PNN abnormalities have been observed in post-mortem brain tissues of patients with schizophrenia and Alzheimer’s disease. There is impaired development of PNNs and enhanced activity of its key regulator matrix metalloproteinase-9 (MMP-9) in Fragile X Syndrome, a common genetic cause of autism. MMP-9, a protease that cleaves ECM, is differentially regulated in a number of these disorders. Despite this, few studies have addressed the interactions between PNN expression, MMP-9 activity and neuronal excitability. In this review, we highlight the current evidence for PNN abnormalities in CNS disorders associated with altered network function and MMP-9 levels, emphasizing the need for future work targeting PNNs in pathophysiology and therapeutic treatment of neurological disorders.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Psychology Graduate Program, Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
43
|
Saxena K, Webster J, Hallas-Potts A, Mackenzie R, Spooner PA, Thomson D, Kind P, Chattarji S, Morris RGM. Experiential contributions to social dominance in a rat model of fragile-X syndrome. Proc Biol Sci 2018; 285:20180294. [PMID: 29899064 PMCID: PMC6015851 DOI: 10.1098/rspb.2018.0294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/18/2018] [Indexed: 11/12/2022] Open
Abstract
Social withdrawal is one phenotypic feature of the monogenic neurodevelopmental disorder fragile-X. Using a 'knockout' rat model of fragile-X, we examined whether deletion of the Fmr1 gene that causes this condition would affect the ability to form and express a social hierarchy as measured in a tube test. Male fragile-X 'knockout' rats living together could successfully form a social dominance hierarchy, but were significantly subordinate to wild-type animals in mixed group cages. Over 10 days of repeated testing, the fragile-X mutant rats gradually showed greater variance and instability of rank during their tube-test encounters. This affected the outcome of future encounters with stranger animals from other cages, with the initial phenotype of wild-type dominance lost to a more complex picture that reflected, regardless of genotype, the prior experience of winning or losing. Our findings offer a novel insight into the complex dynamics of social interactions between laboratory living groups of fragile-X and wild-type rats. Even though this is a monogenic condition, experience has an impact upon future interactions with other animals. Gene/environment interactions should therefore be considered in the development of therapeutics.
Collapse
Affiliation(s)
- K Saxena
- Simons Initiative for the Developing Brain, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- The Patrick Wild Centre, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - J Webster
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
| | - A Hallas-Potts
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
| | - R Mackenzie
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
| | - P A Spooner
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
| | - D Thomson
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
| | - P Kind
- Simons Initiative for the Developing Brain, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- The Patrick Wild Centre, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - S Chattarji
- Simons Initiative for the Developing Brain, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- The Patrick Wild Centre, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
- National Centre for Biological Sciences, Bangalore, 560065, India
| | - R G M Morris
- Simons Initiative for the Developing Brain, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- The Patrick Wild Centre, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
44
|
Yau S, Bettio L, Vetrici M, Truesdell A, Chiu C, Chiu J, Truesdell E, Christie B. Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiol Dis 2018; 113:11-22. [DOI: 10.1016/j.nbd.2018.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022] Open
|
45
|
Yeates J. Naturalness and Animal Welfare. Animals (Basel) 2018; 8:E53. [PMID: 29621140 PMCID: PMC5946137 DOI: 10.3390/ani8040053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/11/2018] [Indexed: 11/30/2022] Open
Abstract
Naturalness is considered important for animals, and is one criterion for assessing how we care for them. However, it is a vague and ambiguous term, which needs definition and assessments suitable for scientific and ethical questions. This paper makes a start on that aim. This paper differentiates the term from other related concepts, such as species-typical behaviour and wellbeing. It identifies contingent ways in which naturalness might be used, as: (i) prompts for further welfare assessment; (ii) a plausible hypothesis for what safeguards wellbeing; (iii) a threshold for what is acceptable; (iv) constraints on what improvements are unacceptable; and (v) demarcating what is not morally wrong, because of a lack of human agency. It then suggests an approach to evaluating animals' behaviour that is quantitative, is based on reality, and which assesses naturalness by degrees. It proposes classing unaffected wild populations as natural by definition. Where animals might have been affected by humans, they should be compared to the closest population(s) of unaffected animals. This approach could allow us both to assess naturalness scientifically, and to make practical decisions about the behaviour of domestic animals.
Collapse
Affiliation(s)
- James Yeates
- RSPCA Wilberforce Way, Southwater, Horsham, West Sussex RH13 9RS, UK.
| |
Collapse
|
46
|
Scattoni ML, Michetti C, Ricceri L. Rodent Vocalization Studies in Animal Models of the Autism Spectrum Disorder. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Castagnola S, Bardoni B, Maurin T. The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality? Front Synaptic Neurosci 2017; 9:15. [PMID: 29163124 PMCID: PMC5681520 DOI: 10.3389/fnsyn.2017.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of intellectual disability and a primary cause of autism. It originates from the lack of the Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein encoded by the Fragile X Mental Retardation Gene 1 (FMR1) gene. Multiple roles have been attributed to this protein, ranging from RNA transport (from the nucleus to the cytoplasm, but also along neurites) to translational control of mRNAs. Over the last 20 years many studies have found a large number of FMRP mRNA targets, but it is still not clear which are those playing a critical role in the etiology of FXS. So far, no therapy for FXS has been found, making the quest for novel targets of considerable importance. Several pharmacological approaches have been attempted, but, despite some promising preclinical results, no strategy gave successful outcomes, due either to the induction of major side effects or to the lack of improvement of the phenotypes. However, these studies suggested that, in order to measure the effectiveness of a specific treatment, trials should be redesigned and new endpoints defined in FXS patients. Nevertheless, the search for new therapeutic targets for FXS is very active. In this context, the advances in animal modeling, coupled with better understanding of neurobiology and physiopathology of FXS, are of crucial importance in developing new selected treatments. Here, we discuss the pathways that were recently linked to the physiopathology of FXS (mGluR, GABAR, insulin, Insulin-like Growth Factor 1 (IGF-1), MPP-9, serotonin, oxytocin and endocannabinoid signaling) and that suggest new approaches to find an effective therapy for this disorder. Our goal with this review article is to summarize some recent relevant findings on FXS treatment strategies in order to have a clearer view of the different pathways analyzed to date emphasizing those shared with other synaptic disorders.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
48
|
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.
Collapse
|
49
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
50
|
Hodges SL, Nolan SO, Reynolds CD, Lugo JN. Spectral and temporal properties of calls reveal deficits in ultrasonic vocalizations of adult Fmr1 knockout mice. Behav Brain Res 2017; 332:50-58. [PMID: 28552599 DOI: 10.1016/j.bbr.2017.05.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
The Fmr1 knockout (KO) mouse has commonly been used to investigate communication impairments, one of the key diagnostic symptoms observed in Fragile X syndrome (FXS) and Autism spectrum disorder (ASD). Many studies have found alterations in ultrasonic vocalizations (USVs) in neonatal Fmr1 KO mice, however, there is limited research investigating whether these deficits continue into adulthood. In the present study, we examine differences in female urine-induced ultrasonic vocalizations, scent marking behavior, odor discrimination, and open field activity in adult male Fmr1 KO and wildtype (WT) mice. Overall, we found extensive alterations between genotypes in both spectral and temporal properties of ultrasonic vocalizations. There was no difference in the average number of calls emitted by both genotypes, however, Fmr1 KO mice emitted calls of a higher frequency, decreased amplitude, and shorter duration than WT mice. Spectrographic analyses revealed statistically significant differences between genotypes in the types of calls emitted. Contrastingly, we found no differences in scent marking behavior, a form of social communication, or in odor discrimination and activity levels of the mice. The results corroborate previous studies emphasizing the importance of qualitative differences observed in vocalization behavior of Fmr1 KO mice, rather than quantitative measurements such as number of calls emitted. Overall, the study confirms the presence of abnormalities in vocalization behavior in adult Fmr1 KO mice that we believe are consistent with communication deficits seen in the syndrome.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|