1
|
Poitras M, Doiron A, Plamondon H. Selective estrogen receptor activation prior to global cerebral ischemia in female rats impacts microglial activation and anxiety-like behaviors without effects on CA1 neuronal injury. Behav Brain Res 2024; 470:115094. [PMID: 38844057 DOI: 10.1016/j.bbr.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 μg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERβ agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.
Collapse
Affiliation(s)
- Marilou Poitras
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Alexandra Doiron
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Hélène Plamondon
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
2
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
3
|
Qi S, Ngwa C, Al Mamun A, Romana S, Wu T, Marrelli SP, Arnold AP, McCullough LD, Liu F. X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals. Transl Stroke Res 2023; 14:776-789. [PMID: 35906327 PMCID: PMC10490444 DOI: 10.1007/s12975-022-01070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023]
Abstract
Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Non-genomic Effect of Estradiol on the Neurovascular Unit and Possible Involvement in the Cerebral Vascular Accident. Mol Neurobiol 2023; 60:1964-1985. [PMID: 36596967 DOI: 10.1007/s12035-022-03178-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Cerebrovascular diseases, such as ischemic cerebral vascular accident (CVA), are responsible for causing high rates of morbidity, mortality, and disability in the population. The neurovascular unit (NVU) during and after ischemic CVA plays crucial roles in cell regulation and preservation, the immune and inflammatory response, and cell and/or tissue survival and repair. Cellular responses to 17β-estradiol (E2) can be triggered by two mechanisms: one called classical or genomic, which is due to the activation of the "classical" nuclear estrogen receptors α (ERα) and β (ERβ), and the non-genomic or rapid mechanism, which is due to the activation of the G protein-coupled estrogen receptor 1 (GPER) that is located in the plasma membrane and some in intracellular membranes, such as in the Golgi apparatus and endoplasmic reticulum. Nuclear receptors can regulate gene expression and cellular functions. On the contrary, activating the GPER by E2 and/or its G-1 agonist triggers several rapid cell signaling pathways. Therefore, E2 or its G-1 agonist, by mediating GPER activation and/or expression, can influence several NVU cell types. Most studies argue that the activation of the GPER may be used as a potential therapeutic target in various pathologies, such as CVA. Thus, with this review, we aimed to summarize the existing literature on the role of GPER mediated by E2 and/or its agonist G-1 in the physiology and pathophysiology of NVU.
Collapse
|
5
|
Geng LM, Jiang JG. The neuroprotective effects of formononetin: Signaling pathways and molecular targets. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Horm Behav 2021; 136:105085. [PMID: 34749277 DOI: 10.1016/j.yhbeh.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.
Collapse
|
7
|
Oppong-Gyebi A, Metzger D, Doan T, Han J, Vann PH, Yockey RA, Sumien N, Schreihofer DA. Long-term hypogonadism diminishes the neuroprotective effects of dietary genistein in young adult ovariectomized rats after transient focal ischemia. J Neurosci Res 2021; 100:598-619. [PMID: 34713481 DOI: 10.1002/jnr.24981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/19/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
Increasing age disproportionately increases the risk of stroke among women compared to men of similar age, especially after menopause. One of the reasons for this observation is a sharp drop in circulating estrogens. However, the timing of initiation of estrogen replacement after menopause is associated with mixed beneficial and detrimental effects, hence contributing to widespread mistrust of estrogen use. Agents including soy isoflavones are being assessed as viable alternatives to estrogen therapy. In this study, we hypothesized that the neuroprotective effects of genistein, a soy isoflavone are less sensitive to the length of hypogonadism in young adult ovariectomized rats following cerebral ischemia. We expected that long-term hypogonadism will worsen motor and cognitive function, increase post-stroke inflammation with no effect on the neuroprotection of genistein. We compared the effect of treatment with dietary genistein (GEN) on short-term (2 weeks) and long-term hypogonadism (12 weeks) in young adult ovariectomized Sprague-Dawley rats on sensorimotor function, cognition and inflammation after focal ischemia. Dorsal Silastic implant of 17β-estradiol (E2) was used as a control for hormone therapy. Long-term hypogonadism stroked rats performed worse than the short-term hypogonadism stroked rats on the motor and cognitive function tests. GEN did not improve neurological assessment and motor learning after either short-term or long-term hypogonadism. GEN improved cognitive flexibility after short-term hypogonadism but not after the long-term. Both GEN and E2 reduced tissue loss after short-term hypogonadism and reduced GFAP expression at the contralateral side of ischemia after long-term hypogonadism. The length of hypogonadism may differentially influence the neuroprotective effects of both GEN and E2 on the motor and cognitive functions in young adult rats.
Collapse
Affiliation(s)
- Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.,Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.,Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Trinh Doan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jordan Han
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Phillip H Vann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.,Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - R Andrew Yockey
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.,Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.,Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
8
|
Khaksari M, Hajializadeh Z, Mahani SE, Soltani Z, Asadikaram G. Estrogen receptor agonists induce anti‑edema effects by altering α and β estrogen receptor gene expression. Acta Neurobiol Exp (Wars) 2021; 81:286-294. [PMID: 34672299 DOI: 10.21307/ane-2021-027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study aimed to examine whether the attenuation of estrogen receptor expression is prevented by propyl pyrazole triol (PPT), an agonist for estrogen receptor α (ERα) or and diarypropiolnitrile (DPN), an agonist for estrogen receptor β (ERβ) after traumatic brain injury (TBI). The tests performed on ovariectomized female Wistar rats included sham group, vehicle group, and treated groups: PPT, DPN, and PPT+DPN 30 minutes after TBI. Blood‑brain barrier (BBB) disruption and brain water content were estimated. RT‑PCR and\r\nwestern blotting were utilized to evaluate ESR1 and ESR2 gene and protein expression. The data indicated that PPT, DPN, and PPT+DPN attenuated TBI‑induced brain edema. Also, BBB disruption after TBI was prevented in PPT, DPN, and PPT+DPN‑treated TBI animals. Estrogen agonist‑treated animals showed a significant elevation in Esr1 mRNA and protein expression levels in the brain tissue of TBI rats. In addition, the data indicated a significant elevation of Esr2 mRNA and protein expression levels in the brain tissue of estrogen agonist‑treated TBI rats. The data shows that both ESR1 and ESR2 agonists can enhance ER mRNA and protein levels in TBI animals' brain. It appears that this effect contributes to the neuroprotective function of ER agonists.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran;
| | - Zahra Hajializadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Bottenfield KR, Bowley BGE, Pessina MA, Medalla M, Rosene DL, Moore TL. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biol Sex Differ 2021; 12:54. [PMID: 34627376 PMCID: PMC8502310 DOI: 10.1186/s13293-021-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. METHODS Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. RESULTS Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. CONCLUSIONS These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.
Collapse
Affiliation(s)
- Karen R Bottenfield
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Monica A Pessina
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Maria Medalla
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24 h after hippocampal silent infarct in male Sprague-Dawley rats. Horm Behav 2021; 134:105016. [PMID: 34242875 DOI: 10.1016/j.yhbeh.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERβ in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERβ, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.
Collapse
|
11
|
Sulliman NC, Ghaddar B, Gence L, Patche J, Rastegar S, Meilhac O, Diotel N. HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Sci Rep 2021; 11:6439. [PMID: 33742021 PMCID: PMC7979862 DOI: 10.1038/s41598-021-85183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
High density lipoproteins (HDLs) display pleiotropic functions such as anti-inflammatory, antioxidant, anti-protease, and anti-apoptotic properties. These effects are mediated by four main receptors: SCARB1 (SR-BI), ABCA1, ABCG1, and CD36. Recently, HDLs have emerged for their potential involvement in brain functions, considering their epidemiological links with cognition, depression, and brain plasticity. However, their role in the brain is not well understood. Given that the zebrafish is a well-recognized model for studying brain plasticity, metabolic disorders, and apolipoproteins, it could represent a good model for investigating the role of HDLs in brain homeostasis. By analyzing RNA sequencing data sets and performing in situ hybridization, we demonstrated the wide expression of scarb1, abca1a, abca1b, abcg1, and cd36 in the brain of adult zebrafish. Scarb1 gene expression was detected in neural stem cells (NSCs), suggesting a possible role of HDLs in NSC activity. Accordingly, intracerebroventricular injection of HDLs leads to their uptake by NSCs without modulating their proliferation. Next, we studied the biodistribution of HDLs in the zebrafish body. In homeostatic conditions, intraperitoneal injection of HDLs led to their accumulation in the liver, kidneys, and cerebral endothelial cells in zebrafish, similar to that observed in mice. After telencephalic injury, HDLs were diffused within the damaged parenchyma and were taken up by ventricular cells, including NSCs. However, they failed to modulate the recruitment of microglia cells at the injury site and the injury-induced proliferation of NSCs. In conclusion, our results clearly show a functional HDL uptake process involving several receptors that may impact brain homeostasis and suggest the use of HDLs as delivery vectors to target NSCs for drug delivery to boost their neurogenic activity.
Collapse
Affiliation(s)
- Nora Cassam Sulliman
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
12
|
Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol 2021; 21:91. [PMID: 33632142 PMCID: PMC7908649 DOI: 10.1186/s12883-021-02116-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.
Collapse
|
13
|
Kumar A, McCullough L. Cerebrovascular disease in women. Ther Adv Neurol Disord 2021; 14:1756286420985237. [PMID: 33552237 PMCID: PMC7844450 DOI: 10.1177/1756286420985237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cerebrovascular disease is a major cause of morbidity, mortality, and disability in women. The spectrum of disease differs between men and women, with women being particularly vulnerable to certain conditions, especially during specific periods of life such as pregnancy. There are several unique risk factors for cerebrovascular disease in women, and the influence of some traditional risk factors for stroke is stronger in women. Moreover, disparities persist in representation of women in clinical trials, acute intervention, and stroke outcomes. In this review, we aimed to explore the epidemiology, etiologies, and management of cerebrovascular disease in women, highlighting some of these differences and the growing need for sex-specific management guidelines and health policies.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, 6431 Fannin Street, Houston, TX 77030, USA
| | | |
Collapse
|
14
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
15
|
Petrine JCP, Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 2020; 35:180-197. [PMID: 32780464 DOI: 10.1002/ptr.6816] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Functional foods have nutritional properties and organic functions, which are beneficial to health. Certain types of functional food components are so-called phytoestrogens, non-steroidal compounds derived from the metabolism of precursors contained in plants, which originate secondary metabotypes known to induce biological responses and by mimicry or modulating the action of endogenous estrogen. These molecules are involved in several physiological and pathological processes related to reproduction, bone remodeling, skin, cardiovascular, nervous, immune systems, and metabolism. This review aimed to present an overview of phytoestrogens regarding their chemical structure, actions, and effects in the organism given several pathologies. Several studies have demonstrated beneficial phytoestrogen actions, such as lipid profile improvement, cognitive function, menopause, oxidative stress, among others. Phytoestrogens effects are not completely elucidated, being necessary future research to understand the exact action mechanisms, whether they are via estrogen receptor or whether other hidden mechanisms produce these effects. Thus, this review makes a general approach to the phytoestrogen actions, beneficial effects, risk and limitations. However, the complexities of biological effects after ingestion of phytoestrogens and the differences in their metabolism and bioavailability indicate that interpretation of either risk or benefits needs to be made with caution.
Collapse
Affiliation(s)
- Jéssica C P Petrine
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brasil
| | | |
Collapse
|
16
|
Sun HY, Qu QM. Hypermethylation of ERа-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients. QJM 2019; 112:351-354. [PMID: 30690641 DOI: 10.1093/qjmed/hcz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the methylation status in promoter region of estrogen receptor alpha (ERа)-A gene and its relation with plasma homocysteine (Hcy) level and cognitive impairment in white matter hyperintensity (WMH) patients. PATIENTS AND METHODS 210 patients aged 65 and older were selected. The methylation status of CpG islands in ERа-A gene promoter was analyzed by nested methylation-specific PCR. Serum Hcy and estradiol levels were measured by enzyme-linked immunosorbent assay. Cognitive function were evaluated using minimum mental state examination, the montreal cognitive assessment, Stroop color-word test, symbol digit modalities, trail making test B and instrumental activities of daily living (IADL). The severity of WMH was evaluated with the Fazekas scale by brain magnetic resonance imaging. RESULTS We found a significant association between the severity of WMH and CpG island methylation of ERа-A gene (P < 0.05). Multiple regression analysis showed that serum Hcy level, methylation of ERа-A gene and WMH severity were significant determining factors for cognitive impairment (P < 0.05). The spearman rank correlation analysis showed a significant correlation of methylation of ERа-A gene with serum Hcy level, WMH severity, cognitive function and IADL status (P < 0.05). CONCLUSION Methylation of ERа-A gene promoter has a high frequency in WMH patients with cognitive impairment and is correlated with high plasma Hcy level.
Collapse
Affiliation(s)
- H-Y Sun
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Q-M Qu
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
Shakya R, Chongthammakun S. 17β-Estradiol attenuates the influence of chronic activated microglia on SH-SY5Y cell proliferation via canonical WNT signaling pathway. Neurosci Lett 2019; 692:174-180. [PMID: 30391546 DOI: 10.1016/j.neulet.2018.10.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/21/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The decline in circulating estrogen following menopause or aging is likely to initiate chronic inflammatory disorders, leading to neurodegenerative disease. Though, WNT1 paracrine molecules are crucial in embryonic neuroblastoma cell proliferation, very less is known about its role in adult brain that is associated with estrogen as preventive therapeutic strategy. The present study evidenced for the first time that 17β-estradiol (E2), a potent form of estrogen, could compensate the chronic neuroinflammation-associated loss of neurons by upregulating canonical WNT signaling pathway. Lipopolysaccharide was used to induce inflammatory responses in microglial cell line. The increased secretion of IL-6 cytokine was confirmed as a marker of chronic microglial activation. LPS-conditioned microglial media significantly reduced the viable cells and proliferative markers, BrdU and CyclinD1 in SH-SY5Y. It also decreased the expression of canonical WNT signaling components; WNT1 and β-catenin, which were significantly rescued with pre- and co-treatment of 10 nM E2. Furthermore, estrogen antagonist ICI 182,780 abolished the E2-mediated recovery in WNT1 expression. Whereas, canonical WNT receptor antagonist, Dkk1 was able to inhibit E2-mediated recovery in the expression of downstream component, β-catenin. It suggests a promising role of canonical WNT signaling pathway in estrogen mediated prevention of neuronal cell loss under chronic neuroinflammatory condition.
Collapse
Affiliation(s)
- Rubina Shakya
- Anatomy and Structural Biology Graduate Program, Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Park CJ, Kim H, Jin J, Barakat R, Lin PC, Choi JM, Ko CJ. Porcine intestinal lymphoid tissues synthesize estradiol. J Vet Sci 2018; 19:477-482. [PMID: 29486537 PMCID: PMC6070586 DOI: 10.4142/jvs.2018.19.4.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Estradiol (17β-estradiol) is synthesized primarily in the gonads of both sexes and regulates the development and function of reproductive organs. Recently, we reported that intestinal lymphocyte homeostasis is regulated by estradiol synthesized de novo in the endothelial cells of the high endothelial venules (HEVs) of mesenteric lymph nodes and Peyer's patches in mice. This observation prompted us to hypothesize that HEVs of intestinal lymphoid tissues are sites of estradiol synthesis across species. In this study, we examined whether estradiol is synthesized in the intestinal lymphoid tissues of adolescent piglets. Comparisons of estradiol levels in blood and tissue showed that estradiol concentrations in mesenteric lymph nodes and Peyer's patches were significantly higher than the level in serum. Reverse transcription polymerase chain reaction showed that porcine intestinal lymphoid tissues express mRNAs for steroidogenic enzymes (StAR, 17β-Hsd,3β-Hsd, Cyp17a1, and Cyp19a1), and immunohistochemical results in ilial tissue showed expression of aromatase (CYP19) in Peyer's patch-localized endothelial cells of HEVs. When mesenteric lymph node and Peyer's patch tissues were cultured in vitro, they produced estradiol. Taken together, the results indicate that mesenteric lymph nodes and Peyer's patches are sites of estradiol synthesis in adolescent piglets.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - Heehyen Kim
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jooyoung Jin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - Jeong Moon Choi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| |
Collapse
|
19
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
20
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
21
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Marin R, Diaz M. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Front Neurosci 2018; 12:128. [PMID: 29559883 PMCID: PMC5845729 DOI: 10.3389/fnins.2018.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD). Part of these actions takes place through binding to estrogen receptors (ER) embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA) exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies, namely AD and Parkinson disease. Altogether, these findings indicate that E2 may participate in brain preservation through a dual membrane-related mechanism. On the one hand, E2 interacting with ER related signalosomes may protect against neurotoxic insults. On the other hand, E2 may exert lipostatic actions to preserve lipid balance in neuronal membrane microdomains. The different aspects of the emerging multifunctional role of estrogens in membrane-related signalosomes will be discussed in this review.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine, Faculty of Health Sciences, University of La Laguna, Tenerife, Spain.,Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain
| | - Mario Diaz
- Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, Tenerife, Spain
| |
Collapse
|
23
|
Sørvik IB, Solum EJ, Labba NA, Hansen TV, Paulsen RE. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radic Res 2018; 52:273-287. [DOI: 10.1080/10715762.2018.1430363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Irene B. Sørvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eirik Johansson Solum
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils A. Labba
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
25
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 575] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174:1263-1280. [PMID: 27723080 PMCID: PMC5429336 DOI: 10.1111/bph.13622] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Phytoestrogens are plant-derived dietary compounds with structural similarity to 17-β-oestradiol (E2), the primary female sex hormone. This structural similarity to E2 enables phytoestrogens to cause (anti)oestrogenic effects by binding to the oestrogen receptors. The aim of the present review is to present a state-of-the-art overview of the potential health effects of dietary phytoestrogens. Various beneficial health effects have been ascribed to phytoestrogens, such as a lowered risk of menopausal symptoms like hot flushes and osteoporosis, lowered risks of cardiovascular disease, obesity, metabolic syndrome and type 2 diabetes, brain function disorders, breast cancer, prostate cancer, bowel cancer and other cancers. In contrast to these beneficial health claims, the (anti)oestrogenic properties of phytoestrogens have also raised concerns since they might act as endocrine disruptors, indicating a potential to cause adverse health effects. The literature overview presented in this paper illustrates that several potential health benefits of phytoestrogens have been reported but that, given the data on potential adverse health effects, the current evidence on these beneficial health effects is not so obvious that they clearly outweigh the possible health risks. Furthermore, the data currently available are not sufficient to support a more refined (semi) quantitative risk-benefit analysis. This implies that a definite conclusion on possible beneficial health effects of phytoestrogens cannot be made. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Karsten Beekmann
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
27
|
Ozdemirci S, Kasapoglu T, Dilbaz B, Salgur F, Duran B, Koc O, Unverdi H, Hucumenoglu S. The effect of surgical menopause on the intima-media thickness of the carotid and coronary arteries. Climacteric 2016; 19:452-7. [PMID: 27538242 DOI: 10.1080/13697137.2016.1212007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the effect of prior bilateral oophorectomy on the intima-media thickness (IMT) of coronary and carotid arteries. METHODS A total of 25 Wistar albino rats, aged 8-10 weeks, were assigned to three groups: ovariectomized (n = 10), control (n = 10) and sham (n = 5). The rats in the sham group only underwent midline laparotomy, while the other rats' ovaries were removed by the same type of laparotomy. All rats were sacrificed to evaluate microscopically the impact of a prolonged 26-week surgical menopause (menopausal period) on the IMT of the carotid and coronary arterial structure. RESULTS The mean IMTs of both the carotid and coronary arteries in the ovariectomized group were significantly thicker than those of the control and sham groups (carotid arteries: 268.69 ± 53.67, 195.61 ± 47.60 and 193.86 ± 75.01 μm, p = 0.014; coronary arteries: 182.40 ± 30.22, 136.00 ± 35.82 and 165.24 ± 40.68 μm, p = 0.022, respectively). CONCLUSION According to the results of this study, surgical menopause results in a noteworthy increase in the IMT of the carotid and coronary arteries when compared with the controls. This interventional effect may have a significant role in accelerating the process of atherosclerosis.
Collapse
Affiliation(s)
- S Ozdemirci
- a Department of Gynecology , Gynecological Clinic, Etlik Zubeyde Hanim Women's Health Education and Research Hospital , Ankara , Turkey
| | - T Kasapoglu
- b Department of Obstetrics and Gynecology, Perinatology & High-Risk Pregnancy Clinic , Etlik Zubeyde Hanim Women's Health Education and Research Hospital , Ankara , Turkey ;,c Department of Epidemiology , Institute of Health Sciences, Hacettepe University , Ankara , Turkey
| | - B Dilbaz
- d Etlik Zübeyde Hanim Women's Teaching and Research Hospital , Department of Obstetrics and Gynecology Infertility Unit , Ankara , Turkey
| | - F Salgur
- e Hizan Government Hospital , Department of Family Medicine , Bitlis , Turkey
| | - B Duran
- f Abant Izzet Baysal University , Department of Obstetrics and Gynecology , Bolu , Turkey
| | - O Koc
- f Abant Izzet Baysal University , Department of Obstetrics and Gynecology , Bolu , Turkey
| | - H Unverdi
- g Ankara Teaching and Research Hospital , Department of Pathology , Ankara , Turkey
| | - S Hucumenoglu
- g Ankara Teaching and Research Hospital , Department of Pathology , Ankara , Turkey
| |
Collapse
|
28
|
Carpenter RS, Iwuchukwu I, Hinkson CL, Reitz S, Lee W, Kukino A, Zhang A, Pike MM, Ardelt AA. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke. Brain Res 2016; 1639:200-13. [PMID: 26995494 DOI: 10.1016/j.brainres.2016.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/03/2015] [Accepted: 01/17/2016] [Indexed: 01/15/2023]
Abstract
Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Sydney Reitz
- The College, University of Chicago, Chicago, IL, USA
| | - Wonhee Lee
- The College, University of Chicago, Chicago, IL, USA
| | - Ayaka Kukino
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | - An Zhang
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | | |
Collapse
|
29
|
Shin JA, Yoon JC, Kim M, Park EM. Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury. Free Radic Biol Med 2016; 92:78-89. [PMID: 26784014 DOI: 10.1016/j.freeradbiomed.2016.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
Ischemic stroke, which induces oxidative stress in the brain, disrupts tight junctions (TJs) between brain endothelial cells, resulting in blood-brain barrier (BBB) breakdown and brain edema. Estrogen reduces oxidative stress and protects brain endothelial cells from ischemic insult. The aim of this study was to determine the protective effects of estrogen on TJ disruption and to examine the roles of classical estrogen receptor (ER) subtypes, ERα- and ERβ, in estrogen effects in brain endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Estrogen pretreatment prevented OGD/R-induced decreases in cell viability and TJ protein levels. ERα- and ERβ-specific agonists also reduced TJ disruption. Knockdown of ERα or ERβ expression partially inhibited the effects of estrogen, but completely reversed the effects of corresponding ER subtype-specific agonists on the outcomes of OGD/R. During the early reperfusion period, activation of extracellular signal-regulated kinase1/2 and hypoxia-inducible factor 1α/vascular endothelial growth factor was associated with decreased expression of occludin and claudin-5, respectively, and these changes in TJ protein levels were differentially regulated by ER subtype-specific agonists. Our results suggest that ERα and ERβ activation reduce TJ disruption via inhibition of signaling molecules after ischemic injury and that targeting each ER subtype can be a useful strategy for protecting the BBB from ischemic stroke in postmenopausal women.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Joo Chun Yoon
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
30
|
ERα Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy(1,2,3). eNeuro 2016; 3:eN-TNC-0025-15. [PMID: 26839918 PMCID: PMC4731462 DOI: 10.1523/eneuro.0025-15.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 01/19/2023] Open
Abstract
Male neonate brains are more susceptible to the effects of perinatal asphyxia resulting in hypoxia and ischemia (HI)-related brain injury. The relative resistance of female neonatal brains to adverse consequences of HI suggests that there are sex-specific mechanisms that afford females greater neuroprotection and/or facilitates recovery post-HI. We hypothesized that HI preferentially induces estrogen receptor α (ERα) expression in female neonatal hippocampi and that ERα is coupled to Src family kinase (SFK) activation that in turn augments phosphorylation of the TrkB and thereby results in decreased apoptosis. After inducing the Vannucci’s HI model on P9 (C57BL/6J) mice, female and male ERα wild-type (ERα+/+) or ERα null mutant (ERα−/−) mice received vehicle control or the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF). Hippocampi were collected for analysis of mRNA of ERα and BDNF, protein levels of ERα, p-TrkB, p-src, and cleaved caspase 3 (c-caspase-3) post-HI. Our results demonstrate that: (1) HI differentially induces ERα expression in the hippocampus of the female versus male neonate, (2) src and TrkB phosphorylation post-HI is greater in females than in males after 7,8-DHF therapy, (3) src and TrkB phosphorylation post-HI depend on the presence of ERα, and (4) TrkB agonist therapy decreases the c-caspase-3 only in ERα+/+ female mice hippocampus. Together, these observations provide evidence that female-specific induction of ERα expression confers neuroprotection with TrkB agonist therapy via SFK activation and account for improved functional outcomes in female neonates post-HI.
Collapse
|
31
|
Cordeau P, Lalancette-Hébert M, Weng YC, Kriz J. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice. Neurobiol Aging 2016; 40:50-60. [PMID: 26973103 DOI: 10.1016/j.neurobiolaging.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
Estrogens are known to exert neuroprotective and immuneomodulatory effects after stroke. However, at present, little is known about the role of estrogens and its receptors in postischemic inflammation after menopause. Here, we provide important in vivo evidence of a distinct shift in microglial phenotypes in the model of postmenopause brain. Using a model-system for live imaging of microglial activation in the context of chronic estrogen- and ERα-deficiency associated with aging, we observed a marked deregulation of the TLR2 signals and/or microglial activation in ovariectomized and/or ERα knockout mice. Further analysis revealed a 5.7-fold increase in IL-6, a 4.7-fold increase in phospho-Stat3 levels suggesting an overactivation of JAK/STAT3 pathway and significantly larger infarction in ERα knockouts chronically deprived of estrogen. Taken together, our results suggest that in the experimental model of menopause and/or aging, ERα mediates innate immune responses and/or microglial activation, and ischemia-induced production of IL-6. Based on our results, we propose that the loss of functional ERα may lead to deregulation of postischemic inflammatory responses and increased vulnerability to ischemic injury in aging female brains.
Collapse
Affiliation(s)
- Pierre Cordeau
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Research Centre of Institut universitaire en santé mentale de Québec, Laval University, Québec, Québec, Canada
| | - Mélanie Lalancette-Hébert
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Research Centre of Institut universitaire en santé mentale de Québec, Laval University, Québec, Québec, Canada
| | - Yuan Cheng Weng
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Research Centre of Institut universitaire en santé mentale de Québec, Laval University, Québec, Québec, Canada
| | - Jasna Kriz
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Research Centre of Institut universitaire en santé mentale de Québec, Laval University, Québec, Québec, Canada.
| |
Collapse
|
32
|
Cascio C, Deidda I, Russo D, Guarneri P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015; 103:31-41. [PMID: 26265586 DOI: 10.1016/j.steroids.2015.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
These last two decades have seen an explosion of clinical and epidemiological research, and basic research devoted to envisage the influence of gender and hormonal fluctuations in the retina/ocular diseases. Particular attention has been paid to age-related disorders because of the overlap of endocrine and neuronal dysfunction with aging. Hormonal withdrawal has been considered among risk factors for diseases such as glaucoma, diabetic retinopathy and age-related macular disease (AMD), as well as, for Alzheimer's disease, Parkinson's disease, or other neurodegenerative disorders. Sex hormones and aging have been also suggested to drive the incidence of ocular surface diseases such as dry eye and cataract. Hormone therapy has been approached in several clinical trials. The discovery that the retina is another CNS tissue synthesizing neurosteroids, among which neuroactive steroids, has favored these studies. However, the puzzling data emerged from clinical, epidemiological and experimental studies have added several dimensions of complexity; the current landscape is inherently limited to the weak information on the influence and interdependence of endocrine, paracrine and autocrine regulation in the retina, but also in the brain. Focusing on the estrogenic retina, we here review our knowledge on local 17β-oestradiol (E2) synthesis from cholesterol-based neurosteroidogenic path and testosterone aromatization, and presence of estrogen receptors (ERα and ERβ). The first cholesterol-limiting step and the final aromatase-limiting step are discussed as possible check-points of retinal functional/dysfunctional E2. Possible E2 neuroprotection is commented as a group of experimental evidence on excitotoxic and oxidative retinal paradigms, and models of retinal neurodegenerative diseases, such as glaucoma, diabetic retinopathy and AMD. These findings may provide a framework to support clinical studies, although further basic research is needed.
Collapse
Affiliation(s)
- Caterina Cascio
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Irene Deidda
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Domenica Russo
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Patrizia Guarneri
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy.
| |
Collapse
|
33
|
Sex hormones and oxytocin augmentation strategies in schizophrenia: A quantitative review. Schizophr Res 2015; 168:603-13. [PMID: 25914107 DOI: 10.1016/j.schres.2015.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Sex differences in incidence, onset and course of schizophrenia suggest sex hormones play a protective role in the pathophysiology. Such a role is also proposed for oxytocin, another important regulator of reproduction function. Evidence on the efficacy of sex hormones and oxytocin in the treatment of schizophrenia is summarized. METHODS Double-blind, placebo-controlled, randomized studies were included, examining augmentation with estrogens, selective estrogen receptor modulators (SERMs), testosterone, dehydroepiandrosterone (DHEA), pregnenolone, and oxytocin. Outcome measures were total symptom severity, positive and negative symptom subscores, and cognition. In meta-analyses, combined weighted effect sizes (Hedges' g) per hormone were calculated. RESULTS Twenty-four studies were included, examining 1149 patients. Significant effects were found for estrogen action (k=10), regarding total symptoms (Hedges' g=0.63, p=0.001), positive (Hedges' g=0.42, p<0.001), and negative symptoms (Hedges' g=0.35, p=0.001). Subgroup analyses yielded significant results for estrogens in premenopausal women (k=6) for total, positive, and negative symptoms, and for the SERM raloxifene in postmenopausal women (k=3) for total and negative, but not positive symptoms. Testosterone augmentation in males (k=1) was beneficial only for negative symptoms (Hedges' g=0.82, p=0.027). No overall effects were found for DHEA (k=4), pregnenolone (k=4), and oxytocin (k=6). Results for cognition (k=12) were too diverse for meta-analyses, and inspection of these data showed no consistent benefit. CONCLUSIONS Estrogens and SERMs could be effective augmentation strategies in the treatment of women with schizophrenia, although potential side effects, partially associated with longer duration use, should be taken into account. Future trials are needed to study long-term effects and effects on cognition.
Collapse
|
34
|
Relationship between Postmenopausal Estrogen Deficiency and Aneurysmal Subarachnoid Hemorrhage. Behav Neurol 2015; 2015:720141. [PMID: 26538819 PMCID: PMC4619901 DOI: 10.1155/2015/720141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 08/02/2015] [Indexed: 11/18/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is one of the most severe forms of stroke, which results from the rupture of a cerebral aneurysm. SAH is the only type of stroke with a female predominance, suggesting that reproductive factors may play a significant role in the etiology. Estrogen has important effects on vascular physiology and pathophysiology of cerebral aneurysm and SAH and, thus, potential therapeutic implications. There have been growing bodies of epidemiological and experimental studies which support the hypothesis of a significant relationship between estrogen deficiency and cerebral aneurysm formation with subsequent SAH. This hypothesis is the focus of this review as well as possible pathology-based therapeutics with regard to aspects of molecular pathophysiology, especially related to women's health.
Collapse
|
35
|
Demethylation of Circulating Estrogen Receptor Alpha Gene in Cerebral Ischemic Stroke. PLoS One 2015; 10:e0139608. [PMID: 26422690 PMCID: PMC4589317 DOI: 10.1371/journal.pone.0139608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Estrogen is involved in neuron plasticity and can promote neuronal survival in stroke. Its actions are mostly exerted via estrogen receptor alpha (ERα). Previous animal studies have shown that ERα is upregulated by DNA demethylation following ischemic injury. This study investigated the methylation levels in the ERα promoter in the peripheral blood of ischemic stroke patients. Methods The study included 201 ischemic stroke patients, and 217 age- and sex-comparable healthy controls. The quantitative methylation level in the 14 CpG sites of the ERα promoter was measured by pyrosequencing in each participant. Multivariate regression model was used to adjust for stroke traditional risk factors. Stroke subtypes and sex-specific analysis were also conducted. Results The results demonstrated that the stroke cases had a lower ERα methylation level than controls in all 14 CpG sites, and site13 and site14 had significant adjusted p-values of 0.035 and 0.026, respectively. Stroke subtypes analysis showed that large-artery atherosclerosis and cardio-embolic subtypes had significantly lower methylation levels than the healthy controls at CpG site5, site9, site12, site13 and site14 with adjusted p = 0.039, 0.009, 0.025, 0.046 and 0.027 respectively. However, the methylation level for the patients with small vessel subtype was not significant. We combined the methylation data from the above five sites for further sex-specific analysis. The results showed that the significant association only existed in women (adjusted p = 0.011), but not in men (adjusted p = 0.300). Conclusions Female stroke cases have lower ERα methylation levels than those in the controls, especially in large-artery and cardio-embolic stroke subtypes. The study implies that women suffering from ischemic stroke of specific subtype may undergo different protective mechanisms to reduce the brain injury.
Collapse
|
36
|
Han S, Zhao B, Pan X, Song Z, Liu J, Gong Y, Wang M. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity. Neuroscience 2015; 310:224-41. [PMID: 26383254 DOI: 10.1016/j.neuroscience.2015.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity.
Collapse
Affiliation(s)
- S Han
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - B Zhao
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - X Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Z Song
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - J Liu
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - Y Gong
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - M Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
37
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
38
|
Gao B, Huang Q, Jie Q, Wang L, Zhang HY, Liu J, Yang L, Luo ZJ. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie 2015; 110:36-44. [DOI: 10.1016/j.biochi.2015.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/01/2015] [Indexed: 12/11/2022]
|
39
|
Nevzati E, Shafighi M, Bakhtian KD, Treiber H, Fandino J, Fathi AR. Estrogen induces nitric oxide production via nitric oxide synthase activation in endothelial cells. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:141-5. [PMID: 25366614 DOI: 10.1007/978-3-319-04981-6_24] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION 17β-estradiol (E2) has been found to induce vasodilation in the cardiovascular system and at physiological levels, resulting in prevention of cerebral vasospasm following subarachnoid hemorrhage (SAH) in animal models. The goal of this study was to analyze the cellular mechanism of nitric oxide (NO) production and its relation to E2, in vitro in brain and peripheral endothelial cells. METHODS Human umbilical endothelial cells (HUVEC) and brain endothelial cells (bEnd.3) were treated with estradiol (E2, 0.1, 10, 100, and 1,000 nM), and supernatant was collected at 0, 5, 15, 30, 60, and 120 min for nitric oxide metabolome (nitrite, NO₂) measurements. Cells were also treated with E2 in the presence of 1400W, a potent eNOS inhibitor, and ICI, an antagonist of estradiol receptors (ERs). Effects of E2 on eNOS protein expression were assessed with Western blot analysis. RESULTS E2 significantly increased NO2 levels irrespective of its concentration in both cell lines by 35 % and 42 % (p < 0.05). The addition of an E2 antagonist, ICI (10 μM), prevented the E2-induced increases in NO2 levels (11 % p > 0.05). The combination of E2 (10 nM) and a NOS inhibitor (1400W, 5 μM) inhibited NO2 increases in addition (4 %, p > 0.05). E2 induced increases in eNOS protein levels and phosphorylated eNOS (eNOS(p)). CONCLUSIONS This study indicates that E2 induces NO level increases in cerebral and peripheral endothelial cells in vitro via eNOS activation and through E2 receptor-mediated mechanisms. Further in vivo studies are warranted to evaluate the therapeutic value of estrogen for the treatment of SAH-induced vasospasm.
Collapse
Affiliation(s)
- Edin Nevzati
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Brocca M, Pietranera L, Roig P, Lima A, De Nicola A. Effects of 17β-estradiol on the cytoarchitecture of pyramidal CA1 neurons in normoglycemic and diabetic male spontaneously hypertensive rats. Neuroscience 2014; 280:243-53. [DOI: 10.1016/j.neuroscience.2014.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
|
41
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
42
|
Li J, Wang B, Wu H, Yu Y, Xue G, Hou Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res 2014; 1593:30-9. [PMID: 25234726 DOI: 10.1016/j.brainres.2014.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that the commonly used anesthetic ketamine can induce widespread neuroapoptosis in the neonatal brain and can cause persistent cognitive impairments as the animal matures. Therefore, searching for adjunctive neuroprotective strategies that inhibit ketamine-induced neuroapoptosis and persistent cognitive impairments is highly warranted. The primary goal of this study was to investigate the protective effect of 17β-estradiol against ketamine-induced neuroapoptosis and persistent cognitive impairments in adult rats. Starting from postnatal day 7, Sprague-Dawley male rat pups were given a daily administration of ketamine (75mg/kg, i.p.) or 17β-estradiol (600μg/kg, s.c.) in combination with ketamine (75mg/kg, i.p.). The animals were treated for three consecutive days. 24h after the last injection, the rats were decapitated, and the prefrontal cortex (PFC) was isolated to detect neuroapoptosis by cleaved caspase-3 immunohistochemistry and by using the TUNEL assay. The neuroactive steroid 17β-estradiol was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The protein levels of BDNF and pAkt were measured by western blot analysis. At two months of age (60 days), the learning and memory abilities were tested using the Morris water maze. The results showed that ketamine triggered significant neuroapoptosis in the neonatal PFC accompanied by the downregulation of 17β-estradiol, BDNF and pAkt. The co-administration of 17β-estradiol with ketamine attenuated these changes. Moreover, 17β-estradiol significantly reversed the learning and memory deficits observed at 60 days of age. In brief, our present data demonstrate that 17β-estradiol attenuates ketamine-induced neuroapoptosis and reverses long-term cognitive deficits in developing rats and thus may be a potential therapeutic and neuroprotective method for the treatment of neurodevelopmental disorders. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei province 050051, China
| | - Bei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei province 050051, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Yang Yu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China.
| |
Collapse
|
43
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
44
|
Coelho BP, Giraldi-Guimarães A. Effect of age and gender on recovery after stroke in rats treated with bone marrow mononuclear cells. Neurosci Res 2014; 88:67-73. [PMID: 25176441 DOI: 10.1016/j.neures.2014.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022]
Abstract
Stroke is a disease of the elderly. However, most of the preclinical studies about the treatment of stroke with bone marrow-derived cells have used young animals. Here, it was assessed whether the sensorimotor recovery promoted by the treatment of the brain ischemia with the bone marrow mononuclear cells (BMMCs) is influenced by age and/or gender. Unilateral cortical ischemia by thermocoagulation was made in the primary motor and sensorimotor cortices in young and middle-aged rats of both genders. Twenty four hours after ischemia, animals received intravenous injection of BMMCs or vehicle. Each combination of age and gender received BMMCs from donor with the same combination. Survival rate and ischemic lesion size were quantified. Sensorimotor recovery was evaluated by the cylinder and adhesive tests. The results showed that the treatment with BMMCs resulted in sensorimotor recovery of both young and middle-aged ischemic rats. No important effect of gender was found, but age was a significant factor. Middle-aged animals had increased mortality and lesion sizes. In the adhesive test, middle-aged animals had lower BMMCs-induced sensorimotor recovery. The results suggest that the treatment of stroke with the BMMCs should be beneficial for males and females in the elderly.
Collapse
Affiliation(s)
- Bárbara Paula Coelho
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Arthur Giraldi-Guimarães
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
45
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
46
|
Gröger M, Plesnila N. The neuroprotective effect of 17β-estradiol is independent of its antioxidative properties. Brain Res 2014; 1589:61-7. [PMID: 25148707 DOI: 10.1016/j.brainres.2014.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION 17β-Estradiol (E2) is neuroprotective in experimental models of stroke. While some postulate a mainly antioxidative action due to E2׳s free C3 hydroxyl group at its A-ring, others suggest that neuroprotection is mediated by a hormonal, receptor mediated effect. The aim of the current study was to clarify this issue by testing whether E2 analogues lacking hormonal activity are also neuroprotective following cerebral ischemia. MATERIAL & METHODS Focal cerebral ischemia was induced in male C57/BL6 mice by laser-Doppler-controlled endovascular occlusion of the middle cerebral artery for 40min. Mice received either 1) memantine, a NMDA-receptor antagonist, as a positive control, 2) E2 (1400µg/kg b.w.), or 3) 2,4,6-trimethylphenol (TMP), an E2 analogue without hormonal activity (1400, 140, or 14µg/kg b.w.). Motor function was tested 3h and 24h after ischemia. Thereafter mice were sacrificed and brain damage was quantified by histomorphometry. RESULTS Treatment with memantine or E2 significantly reduced infarct volume by >40% and significantly improved neurological function while treatment with TMP had no effect. CONCLUSION E2 is equally neuroprotective as antagonization of NMDA receptors while E2 analogues without hormonal activity are not neuroprotective. Therefore the current data suggest that the neuroprotection activity of E2 is independent of its free-radical scavenging properties.
Collapse
Affiliation(s)
- Moritz Gröger
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University of Munich Medical Center, Ludwig-Maximilians-University Munich, Germany; Institute for Surgical Research, University of Munich Medical Center, Ludwig-Maximilians-University Munich, Germany
| | - Nikolaus Plesnila
- Institute for Surgical Research, University of Munich Medical Center, Ludwig-Maximilians-University Munich, Germany; Institute for Stroke and Dementia Research, University of Munich Medical Center, Ludwig-Maximilians-University Munich, Germany.
| |
Collapse
|
47
|
Braun CMJ, Roberge C. Gender-related protection from or vulnerability to severe CNS diseases: gonado-structural and/or gonado-activational? A meta-analysis of relevant epidemiological studies. Int J Dev Neurosci 2014; 38:36-51. [PMID: 25109841 DOI: 10.1016/j.ijdevneu.2014.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A vast scientific literature has dealt with gender-specific risk for brain disorder. That field is evolving toward a consensus to the effect that the estrogen hormone family is outstandingly and uniquely neuroprotective. However, the epidemiology relevant to this general outlook remains piecemeal. METHOD The present investigation strategically formats the relevant epidemiological findings around the world in order to quantitatively meta-analyze gender ratio of risk for a variety of relevant severe central nervous system (CNS) diseases at all three gonadal stages of the life cycle, pre pubertal, post adolescent/pre menopausal, and post menopausal. RESULTS The data quantitatively establish that (1) no single epidemiological study should be cited as evidence of gender-specific neuroprotection against the most common severe CNS diseases because the gender-specific risk ratios are contradictory from one study to the other; (2) risk for severe CNS disease is indeed significantly gender-specific, but either gender can be protected: it depends on the disease, not at all on the age bracket. CONCLUSION Our assay of gender-specific risk for severe brain disease around the world has not been able to support the idea according to which any one gender-prevalent gonadal steroid hormone dominates as a neuroprotective agent at natural concentrations.
Collapse
Affiliation(s)
- Claude M J Braun
- Department of Psychology, Université du Québec à Montréal, Canada.
| | - Carl Roberge
- Department of Psychology, Université du Québec à Montréal, Canada
| |
Collapse
|
48
|
Castelló-Ruiz M, Torregrosa G, Burguete MC, Miranda FJ, Centeno JM, López-Morales MA, Gasull T, Alborch E. The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat. Neurosci Lett 2014; 575:53-7. [DOI: 10.1016/j.neulet.2014.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
|
49
|
Liang K, Ye Y, Wang Y, Zhang J, Li C. Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci 2014; 344:100-4. [PMID: 24996490 DOI: 10.1016/j.jns.2014.06.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
Isoflavone formononetin is a typical phytoestrogen isolated from Chinese medical herb red clover. It has been reported that estrogens have neuroprotective properties, and dietary intake of phytoestrogens could reduce stroke injury in cerebral ischemia/reperfusion (I/R) animal models. In the present research, we sought to investigate the molecular mechanisms underlying the neuroprotective effects of formononetin on I/R rats. Male Sprague-Dawley rats were subjected to a 2 h period of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Then neurological deficits and brain edema were evaluated. To provide insight into the functions of phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK (mitogen-activated protein kinase) signaling pathway in formononetin-induced neuroprotection, the expression of ER-α, Bax, Bcl-2, p-Akt (phosphorylated protein kinase B), and p-ERK1/2 (phosphorylated extracellular signal-regulated kinases 1/2) was determined by qPCR or Western blot assay. Consequently, we found that formononetin has significantly reduced the infarcted volume and the brain water content, and improved the neurological deficit. Formononetin also exhibited an upregulation in ER-α and p-Akt, a downregulation in the ratio of Bax/Bcl-2. However, formononetin had little effect on p-ERK1/2 proteins expression. Taken together, formononetin has shown neuroprotective effects in cerebral I/R rats, and the molecular mechanisms may correlate with the downregulation of the Bax/Bcl-2 ratio and the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Kun Liang
- Department of Emergency, Western Hospital, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Yu Ye
- Department of Emergency, Western Hospital, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Yong Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Jianfeng Zhang
- Department of Emergency, Western Hospital, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Chaoqian Li
- Department of Emergency, Western Hospital, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| |
Collapse
|
50
|
Periodic Estrogen Receptor-Beta Activation: A Novel Approach to Prevent Ischemic Brain Damage. Neurochem Res 2014; 40:2009-17. [PMID: 24906488 DOI: 10.1007/s11064-014-1346-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
In women, the risk for cerebral ischemia climbs rapidly after menopause. At menopause, production of ovarian hormones; i.e., progesterone and estrogen, slowly diminishes. Estrogen has been suggested to confer natural protection to premenopausal women from ischemic stroke and some of its debilitating consequences. This notion is also strongly supported by laboratory studies showing that a continuous chronic 17β-estradiol (E2; a potent estrogen) regimen protects brain from ischemic injury. However, concerns regarding the safety of the continuous intake of E2 were raised by the failed translation to the clinic. Recent studies demonstrated that repetitive periodic E2 pretreatments, in contrast to continuous E2 treatment, provided neuroprotection against cerebral ischemia in ovariectomized rats. Periodic E2 pretreatment protects hippocampal neurons through activation of estrogen receptor subtype beta (ER-β). Apart from neuroprotection, periodic activation of ER-β in ovariectomized rats significantly improves hippocampus-dependent learning and memory. Difficulties in learning and memory loss are the major consequence of ischemic brain damage. Periodic ER-β agonist pretreatment may provide pharmacological access to a protective state against ischemic stroke and its debilitating consequences. The use of ER-β-selective agonists constitutes a safer target for future research than ER-α agonist or E2, inasmuch as it lacks the ability to stimulate the proliferation of breast or endometrial tissue. In this review, we highlight ER-β signaling as a guide for future translational research to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women, while avoiding the side effects produced by chronic E2 treatment.
Collapse
|