1
|
Biddinger JE, Elson AET, Fathi PA, Sweet SR, Nishimori K, Ayala JE, Simerly RB. AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation. Proc Natl Acad Sci U S A 2024; 121:e2403810121. [PMID: 39585985 PMCID: PMC11626166 DOI: 10.1073/pnas.2403810121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
During postnatal life, leptin specifies neuronal inputs to the paraventricular nucleus of the hypothalamus (PVH) and activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms impact refinement of sensory circuits, but whether leptin-mediated postnatal neuronal activity specifies hypothalamic neural projections is largely unexplored. Here, we used chemogenetics to manipulate the activity of AgRP neurons during a discrete postnatal critical period and evaluated the development of AgRP inputs to the PVH and descending efferent outflow to the dorsal vagal complex (DVC). In leptin-deficient mice, targeting of AgRP neuronal outgrowth to PVH oxytocin neurons was reduced, and despite the lack of leptin receptors found on oxytocin neurons in the PVH, oxytocin-containing connections to the DVC were also impaired. Activation of AgRP neurons during early postnatal life not only normalized AgRP inputs to the PVH but also oxytocin outputs to the DVC in leptin-deficient mice. Blocking AgRP neuron activity during the same postnatal period reduced the density of AgRP inputs to the PVH of wild type mice, as well as the density of oxytocin-containing DVC fibers, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that leptin-mediated AgRP neuronal activity is required for the development of PVH connectivity and represents a unique activity-dependent mechanism for specification of neural pathways involved in the hypothalamic integration of autonomic responses.
Collapse
Affiliation(s)
- Jessica E. Biddinger
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Amanda E. T. Elson
- Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA90027
| | - Payam A. Fathi
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Serena R. Sweet
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City960-1295, Japan
| | - Julio E. Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Richard B. Simerly
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
2
|
Maloney SE, McCullough KB, Chaturvedi SM, Selmanovic D, Chase R, Chen J, Wu D, Granadillo JL, Kroll KL, Dougherty JD. A survey of hypothalamic phenotypes identifies molecular and behavioral consequences of MYT1L haploinsufficiency in male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625294. [PMID: 39651298 PMCID: PMC11623628 DOI: 10.1101/2024.11.25.625294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The transcription factor MYT1L supports proper neuronal differentiation and maturation during brain development. MYT1L haploinsufficiency results in a neurodevelopmental disorder characterized by intellectual disability, developmental delay, autism, behavioral disruptions, aggression, obesity and epilepsy. While MYT1L is expressed throughout the brain, how it supports proper neuronal function in distinct regions has not been assessed. Some features of MYT1L Neurodevelopmental Syndrome suggest disruption of hypothalamic function, such as obesity and endocrine issues, and previous research showed changes in hypothalamic neuropeptide expression following knockdown in zebrafish. Here, we leveraged our heterozygous Myt1l mutant, previously shown to recapitulate aspects of the human syndrome such as hyperactivity, social challenges, and obesity, to examine the impact of MYT1L loss on hypothalamic function. Examining the molecular profile of the MYT1L haploinsufficient hypothalamus revealed a similar scale of disruption to previously studied brain regions, yet with region-specific roles for MYT1L, including regulation of neuropeptide systems. Alterations in oxytocin and arginine vasopressin cell numbers were also found. Behaviors studied included maternal care, social group hierarchies, and aggression, all of which were unchanged. Feeding and metabolic markers were also largely unchanged in MYT1L haploinsufficient mice, yet an interaction was observed between diet and MYT1L genotype on weight gain. Our findings here suggest that gross endocrine function was not altered by MYT1L haploinsufficiency, and that key sex-specific behaviors related to proper hypothalamic function remain intact. Further study is needed to understand the functional impact of the altered hypothalamic molecular profile and changes in neuropeptide cell numbers that result from MYT1L haploinsufficiency.
Collapse
Affiliation(s)
- Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine B. McCullough
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sneha M. Chaturvedi
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Din Selmanovic
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Chase
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiayang Chen
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Doris Wu
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge L. Granadillo
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L. Kroll
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D. Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Read JE, Vasile‐Tudorache A, Newsome A, Lorente MJ, Agustín‐Pavón C, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024; 1541:83-99. [PMID: 39431640 PMCID: PMC11580780 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E. Read
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alexandru Vasile‐Tudorache
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Carmen Agustín‐Pavón
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
- Department of Paediatric EndocrinologyBarts Health NHS TrustLondonUK
| |
Collapse
|
4
|
Biddinger JE, Elson AET, Fathi PA, Sweet SR, Nishimori K, Ayala JE, Simerly RB. AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.592838. [PMID: 38895484 PMCID: PMC11185571 DOI: 10.1101/2024.06.02.592838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
During postnatal life, the adipocyte-derived hormone leptin is required for proper targeting of neural inputs to the paraventricular nucleus of the hypothalamus (PVH) and impacts the activity of neurons containing agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms are known to play a defining role during postnatal organization of neural circuits, but whether leptin-mediated postnatal neuronal activity specifies neural projections to the PVH or impacts downstream connectivity is largely unexplored. Here, we blocked neuronal activity of AgRP neurons during a discrete postnatal period and evaluated development of AgRP inputs to defined regions in the PVH, as well as descending projections from PVH oxytocin neurons to the dorsal vagal complex (DVC) and assessed their dependence on leptin or postnatal AgRP neuronal activity. In leptin-deficient mice, AgRP inputs to PVH neurons were significantly reduced, as well as oxytocin-specific neuronal targeting by AgRP. Moreover, downstream oxytocin projections from the PVH to the DVC were also impaired, despite the lack of leptin receptors found on PVH oxytocin neurons. Blocking AgRP neuron activity specifically during early postnatal life reduced the density of AgRP inputs to the PVH, as well as the density of projections from PVH oxytocin neurons to the DVC, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that postnatal targeting of descending PVH oxytocin projections to the DVC requires leptin-mediated AgRP neuronal activity, and represents a novel activity-dependent mechanism for hypothalamic specification of metabolic circuitry, with consequences for autonomic regulation. Significance statement Hypothalamic neural circuits maintain homeostasis by coordinating endocrine signals with autonomic responses and behavioral outputs to ensure that physiological responses remain in tune with environmental demands. The paraventricular nucleus of the hypothalamus (PVH) plays a central role in metabolic regulation, and the architecture of its neural inputs and axonal projections is a defining feature of how it receives and conveys neuroendocrine information. In adults, leptin regulates multiple aspects of metabolic physiology, but it also functions during development to direct formation of circuits controlling homeostatic functions. Here we demonstrate that leptin acts to specify the input-output architecture of PVH circuits through an activity-dependent, transsynaptic mechanism, which represents a novel means of sculpting neuroendocrine circuitry, with lasting effects on how the brain controls energy balance.
Collapse
|
5
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
6
|
Parker KJ. Tales from the life and lab of a female social neuroscientist. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100202. [PMID: 38108026 PMCID: PMC10724734 DOI: 10.1016/j.cpnec.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 12/19/2023] Open
Abstract
This narrative review charts my unconventional path to becoming a social neuroscientist and describes my research findings - some baffling, some serendipitous, some pivotal - in the field of neuropeptide biology. I trace my childhood as a Bell Labs "brat" to my adolescence as a soccer-playing party girl, to my early days as a graduate student, when I first encountered oxytocin and vasopressin. These two molecules instantly captivated - and held - my attention and imagination. For more than 25 years, a core goal of my research program has been to better understand how these neuropeptides regulate social functioning across a range of species (e.g., meadow voles, mice, squirrel monkeys, rhesus monkeys, and humans), and to translate fundamental insights from this work to guide development of novel pharmacotherapies to treat social impairments in clinical populations. I also discuss my experience of being a woman and a mother in STEM, and identify the important people and events which helped shape my career and the scientist I am today.
Collapse
Affiliation(s)
- Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
- California National Primate Research Center, Davis, CA, 95616, USA
| |
Collapse
|
7
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
8
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
9
|
Nannette G, Bar C, Diene G, Pienkowski C, Oliver-Petit I, Jouret B, Cartault A, Porquet-Bordes V, Salles JP, Grunenwald S, Edouard T, Molinas C, Tauber M. Obesity, Overweight, and Pituitary Stalk Interruption Syndrome in Children and Young Adults. J Clin Endocrinol Metab 2023; 108:323-330. [PMID: 36201475 DOI: 10.1210/clinem/dgac583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Indexed: 01/27/2023]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS) is rare in the pediatric population. It combines ectopic posterior pituitary stalk interruption and anterior pituitary hypoplasia with hormonal deficiencies. The phenotype is highly heterogeneous and obesity/overweight seems to be underreported in the literature. OBJECTIVE To identify patients with PSIS and obesity or overweight, describe their phenotype, and compare them with patients with PSIS without overweight/obesity. METHODS Sixty-nine children and young adults with PSIS in a Toulouse cohort from 1984 to 2019 were studied. We identified 25 obese or overweight patients (OB-OW group), and 44 were nonobese/overweight (NO group). Then the groups were compared. RESULTS All cases were sporadic. The sex ratio was 1.6. The main reason for consultation in both groups was growth retardation (61% in OB-OW group, 77% in NO group). History of neonatal hypoglycemia was more common in the OB-OW than in the NO group (57% vs 14%, P = .0008), along with extrapituitary malformations (64% vs 20%, P < 0001). The incidence of caesarean section was higher in the OB-OW group (52%) than in the NO group (23%), although not significant (P = .07). CONCLUSION Patients with PSIS who are obese/overweight display interesting phenotypic differences that suggest hypothalamic defects. Studies are needed that include additional information on hormonal levels, particularly regarding oxytocin and ghrelin.
Collapse
Affiliation(s)
- Gaëlle Nannette
- Faculty of Medicine West Indies and Guyana, Guadeloupe, France
| | - Céline Bar
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Gwenaëlle Diene
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Catherine Pienkowski
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Isabelle Oliver-Petit
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Béatrice Jouret
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Audrey Cartault
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Valérie Porquet-Bordes
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Jean-Pierre Salles
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Solange Grunenwald
- Unité d'Endocrinologie, maladies métaboliques et Nutrition, Hôpital Rangueil CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Thomas Edouard
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Catherine Molinas
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Maithé Tauber
- Unité d'endocrinologie, Obésités, Maladies osseuses et Gynécologie médicale, Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Université Toulouse III, Toulouse, France
| |
Collapse
|
10
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
11
|
Oztan O, Zyga O, Stafford DEJ, Parker KJ. Linking oxytocin and arginine vasopressin signaling abnormalities to social behavior impairments in Prader-Willi syndrome. Neurosci Biobehav Rev 2022; 142:104870. [PMID: 36113782 PMCID: PMC11024898 DOI: 10.1016/j.neubiorev.2022.104870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder. Global hypothalamic dysfunction is a core feature of PWS and has been implicated as a driver of many of PWS's phenotypic characteristics (e.g., hyperphagia-induced obesity, hypogonadism, short stature). Although the two neuropeptides (i.e., oxytocin [OXT] and arginine vasopressin [AVP]) most implicated in mammalian prosocial functioning are of hypothalamic origin, and social functioning is markedly impaired in PWS, there has been little consideration of how dysregulation of these neuropeptide signaling pathways may contribute to PWS's social behavior impairments. The present article addresses this gap in knowledge by providing a comprehensive review of the preclinical and clinical PWS literature-spanning endogenous neuropeptide measurement to exogenous neuropeptide administration studies-to better understand the roles of OXT and AVP signaling in this population. The preponderance of evidence indicates that OXT and AVP signaling are indeed dysregulated in PWS, and that these neuropeptide pathways may provide promising targets for therapeutic intervention in a patient population that currently lacks a pharmacological strategy for its debilitating social behavior symptoms.
Collapse
Affiliation(s)
- Ozge Oztan
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Olena Zyga
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Diane E J Stafford
- Center for Academic Medicine, 453 Quarry Road, Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Karen J Parker
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; 300 Pasteur Drive, Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Takayama K, Tobori S, Andoh C, Kakae M, Hagiwara M, Nagayasu K, Shirakawa H, Ago Y, Kaneko S. Autism Spectrum Disorder Model Mice Induced by Prenatal Exposure to Valproic Acid Exhibit Enhanced Empathy-Like Behavior <i>via</i> Oxytocinergic Signaling. Biol Pharm Bull 2022; 45:1124-1132. [DOI: 10.1248/bpb.b22-00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaito Takayama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masako Hagiwara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
13
|
Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice. J Neurosci 2022; 42:5021-5033. [PMID: 35606144 PMCID: PMC9233446 DOI: 10.1523/jneurosci.0307-22.2022] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Oxytocin (Oxt) neurons regulate diverse physiological responses via direct connections with different neural circuits. However, the lack of comprehensive input-output wiring diagrams of Oxt neurons and their quantitative relationship with Oxt receptor (Oxtr) expression presents challenges to understanding circuit-specific Oxt functions. Here, we establish a whole-brain distribution and anatomic connectivity map of Oxt neurons, and their relationship with Oxtr expression using high-resolution 3D mapping methods in adult male and female mice. We use a flatmap to describe Oxt neuronal expression in four hypothalamic domains including under-characterized Oxt neurons in the tuberal nucleus (TU). Oxt neurons in the paraventricular hypothalamus (PVH) broadly project to nine functional circuits that control cognition, brain state, and somatic visceral response. In contrast, Oxt neurons in the supraoptic (SO) and accessory (AN) nuclei have limited central projection to a small subset of the nine circuits. Surprisingly, quantitative comparison between Oxt output and Oxtr expression showed no significant correlation across the whole brain, suggesting abundant indirect Oxt signaling in Oxtr-expressing areas. Unlike output, Oxt neurons in both the PVH and SO receive similar monosynaptic inputs from a subset of the nine circuits mainly in the thalamic, hypothalamic, and cerebral nuclei areas. Our results suggest that PVH-Oxt neurons serve as a central modulator to integrate external and internal information via largely reciprocal connection with the nine circuits while the SO-Oxt neurons act mainly as unidirectional Oxt hormonal output. In summary, our Oxt wiring diagram provides anatomic insights about distinct behavioral functions of Oxt signaling in the brain.SIGNIFICANCE STATEMENT Oxytocin (Oxt) neurons regulate diverse physiological functions from prosocial behavior to pain sensation via central projection in the brain. Thus, understanding detailed anatomic connectivity of Oxt neurons can provide insight on circuit-specific roles of Oxt signaling in regulating different physiological functions. Here, we use high-resolution mapping methods to describe the 3D distribution, monosynaptic input and long-range output of Oxt neurons, and their relationship with Oxt receptor (Oxtr) expression across the entire mouse brain. We found Oxt connections with nine functional circuits controlling cognition, brain state, and somatic visceral response. Furthermore, we identified a quantitatively unmatched Oxt-Oxtr relationship, suggesting broad indirect Oxt signaling. Together, our comprehensive Oxt wiring diagram advances our understanding of circuit-specific roles of Oxt neurons.
Collapse
|
14
|
Parker KJ. Leveraging a translational research approach to drive diagnostic and treatment advances for autism. Mol Psychiatry 2022; 27:2650-2658. [PMID: 35365807 PMCID: PMC9167797 DOI: 10.1038/s41380-022-01532-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a prevalent and poorly understood neurodevelopmental disorder. There are currently no laboratory-based diagnostic tests to detect ASD, nor are there any disease-modifying medications that effectively treat ASD's core behavioral symptoms. Scientific progress has been impeded, in part, by overreliance on model organisms that fundamentally lack the sophisticated social and cognitive abilities essential for modeling ASD. We therefore saw significant value in studying naturally low-social rhesus monkeys to model human social impairment, taking advantage of a large outdoor-housed colony for behavioral screening and biomarker identification. Careful development and validation of our animal model, combined with a strong commitment to evaluating the translational utility of our preclinical findings directly in patients with ASD, yielded a robust neurochemical marker (cerebrospinal fluid vasopressin concentration) of trans-primate social impairment and a first-in-class medication (intranasal vasopressin) shown in a small phase 2a pilot trial to improve social abilities in children with ASD. This translational research approach stands to advance our understanding of ASD in a manner not readily achievable with existing animal models, and can be adapted to investigate a variety of other human brain disorders which currently lack valid preclinical options, thereby streamlining translation and amplifying clinical impact more broadly.
Collapse
Affiliation(s)
- Karen J Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA.
- California National Primate Research Center, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
DuBois M, Tseng A, Francis SM, Haynos AF, Peterson CB, Jacob S. Utility of Downstream Biomarkers to Assess and Optimize Intranasal Delivery of Oxytocin. Pharmaceutics 2022; 14:1178. [PMID: 35745751 PMCID: PMC9228821 DOI: 10.3390/pharmaceutics14061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT), a mammalian neurohormone associated with social cognition and behavior, can be administered in its synthetic form intranasally (IN) and impact brain chemistry and behavior. IN-OT shows potential as a noninvasive intervention for disorders characterized by social challenges, e.g., autism spectrum disorder (ASD) and anorexia nervosa (AN). To evaluate IN-OT's efficacy, we must quantify OT uptake, availability, and clearance; thus, we assessed OT levels in urine (uOT) before and after participants (26 ASD, 7 AN, and 7 healthy controls) received 40 IU IN-OT or placebo across two sessions using double-blind, placebo-controlled crossover designs. We also measured uOT and plasma (pOT) levels in a subset of participants to compare the two sampling methods. We found significantly higher uOT and pOT following intranasal delivery of active compound versus placebo, but analyses yielded larger effect sizes and more clearly differentiated pre-post-OT levels for uOT than pOT. Further, we applied a two-step cluster (TSC), blinded backward-chaining approach to determine whether active/placebo groups could be identified by uOT and pOT change alone; uOT levels may serve as an accessible and accurate systemic biomarker for OT dose-response. Future studies will explore whether uOT levels correlate directly with behavioral targets to improve dosing for therapeutic goals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.D.); (A.T.); (S.M.F.); (A.F.H.); (C.B.P.)
| |
Collapse
|
16
|
Wee CL, Song E, Nikitchenko M, Herrera KJ, Wong S, Engert F, Kunes S. Social isolation modulates appetite and avoidance behavior via a common oxytocinergic circuit in larval zebrafish. Nat Commun 2022; 13:2573. [PMID: 35545618 PMCID: PMC9095721 DOI: 10.1038/s41467-022-29765-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Animal brains have evolved to encode social stimuli and transform these representations into advantageous behavioral responses. The commonalities and differences of these representations across species are not well-understood. Here, we show that social isolation activates an oxytocinergic (OXT), nociceptive circuit in the larval zebrafish hypothalamus and that chemical cues released from conspecific animals are potent modulators of this circuit's activity. We delineate an olfactory to subpallial pathway that transmits chemical social cues to OXT circuitry, where they are transformed into diverse outputs simultaneously regulating avoidance and feeding behaviors. Our data allow us to propose a model through which social stimuli are integrated within a fundamental neural circuit to mediate diverse adaptive behaviours.
Collapse
Affiliation(s)
- Caroline L Wee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Erin Song
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim Nikitchenko
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Duke University, Durham, North Carolina, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Sandy Wong
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| | - Samuel Kunes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
17
|
A short period of early life oxytocin treatment rescues social behavior dysfunction via suppression of hippocampal hyperactivity in male mice. Mol Psychiatry 2022; 27:4157-4171. [PMID: 35840800 PMCID: PMC9718675 DOI: 10.1038/s41380-022-01692-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Early sensory experiences interact with genes to shape precise neural circuits during development. This process is vital for proper brain function in adulthood. Neurological dysfunctions caused by environmental alterations and/or genetic mutation may share the same molecular or cellular mechanisms. Here, we show that early life bilateral whisker trimming (BWT) subsequently affects social discrimination in adult male mice. Enhanced activation of the hippocampal dorsal CA3 (dCA3) in BWT mice was observed during social preference tests. Optogenetic activation of dCA3 in naive mice impaired social discrimination, whereas chemogenetic silencing of dCA3 rescued social discrimination deficit in BWT mice. Hippocampal oxytocin (OXT) is reduced after whisker trimming. Neonatal intraventricular compensation of OXT relieved dCA3 over-activation and prevented social dysfunction. Neonatal knockdown of OXT receptor in dCA3 mimics the effects of BWT, and cannot be rescued by OXT treatment. Social behavior deficits in a fragile X syndrome mouse model (Fmr1 KO mice) could also be recovered by early life OXT treatment, through negating dCA3 over-activation. Here, a possible avenue to prevent social dysfunction is uncovered.
Collapse
|
18
|
Çalışkan E, Şahin MN, Güldağ MA. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:623-635. [PMID: 34970101 PMCID: PMC8686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Williams Syndrome (WS) is a rare genetic multisystem disorder that occurs because of a deletion of approximately 25 genes in the 7q11.23 chromosome region. This causes dysmorphic facial appearances, multiple congenital cardiovascular defects, delayed motor skills, and abnormalities in connective tissues and the endocrine system. The patients are mostly diagnosed with mild to moderate mental retardation, however, they have a hyper sociable, socially dis-inhibited, and outgoing personality, empathetic behavior, and are highly talkative. Oxytocin (OT), a neuropeptide synthesized at the hypothalamus, plays an important role in cognition and behavior, and is thought to be affecting WS patients' attitudes at its different amounts. Oxytocin receptor gene (OXTR), on chromosome 3p25.3, is considered regulating oxytocin receptors, via which OT exerts its effect. WS is a crucial disorder to understand gene, hormone, brain, and behavior associations in terms of sociality and neuropsychiatric conditions. Alterations to the WS gene region offer an opportunity to deepen our understandings of autism spectrum disorder, schizophrenia, anxiety, or depression. We aim to systematically present the data available of OT/OXTR regulation and expression, and the evidence for whether these mechanisms are dysregulated in WS. These results are important, as they predict strong epigenetic control over social behavior by methylation, single nucleotide polymorphisms, and other alterations. The comparison and collaboration of these studies may help to establish a better treatment or management approach for patients with WS if backed up with future research.
Collapse
Affiliation(s)
- Elif Çalışkan
- Trakya University School of Medicine, Edirne,
Turkey,To whom all correspondence should be addressed:
Elif Çalışkan, Trakya University School of Medicine, Edirne, Turkey;
| | | | | |
Collapse
|
19
|
Bertoni A, Schaller F, Tyzio R, Gaillard S, Santini F, Xolin M, Diabira D, Vaidyanathan R, Matarazzo V, Medina I, Hammock E, Zhang J, Chini B, Gaiarsa JL, Muscatelli F. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol Psychiatry 2021; 26:7582-7595. [PMID: 34290367 PMCID: PMC8872977 DOI: 10.1038/s41380-021-01227-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Oxytocin is an important regulator of the social brain. In some animal models of autism, notably in Magel2tm1.1Mus-deficient mice, peripheral administration of oxytocin in infancy improves social behaviors until adulthood. However, neither the mechanisms responsible for social deficits nor the mechanisms by which such oxytocin administration has long-term effects are known. Here, we aimed to clarify these oxytocin-dependent mechanisms, focusing on social memory performance. Using in situ hybridization (RNAscope), we have established that Magel2 and oxytocin receptor are co-expressed in the dentate gyrus and CA2/CA3 hippocampal regions involved in the circuitry underlying social memory. Then, we have shown that Magel2tm1.1Mus-deficient mice, evaluated in a three-chamber test, present a deficit in social memory. Next, in hippocampus, we conducted neuroanatomical and functional studies using immunostaining, oxytocin-binding experiments, ex vivo electrophysiological recordings, calcium imaging and biochemical studies. We demonstrated: an increase of the GABAergic activity of CA3-pyramidal cells associated with an increase in the quantity of oxytocin receptors and of somatostatin interneurons in both DG and CA2/CA3 regions. We also revealed a delay in the GABAergic development sequence in Magel2tm1.1Mus-deficient pups, linked to phosphorylation modifications of KCC2. Above all, we demonstrated the positive effects of subcutaneous administration of oxytocin in the mutant neonates, restoring hippocampal alterations and social memory at adulthood. Although clinical trials are debated, this study highlights the mechanisms by which peripheral oxytocin administration in neonates impacts the brain and demonstrates the therapeutic value of oxytocin to treat infants with autism spectrum disorders.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Fabienne Schaller
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Roman Tyzio
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Francesca Santini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy. Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Marion Xolin
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Diabé Diabira
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Valery Matarazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Igor Medina
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy. NeuroMI Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Jean-Luc Gaiarsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Françoise Muscatelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
20
|
Naderi M, Puar P, JavadiEsfahani R, Kwong RWM. Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish. Neurotoxicology 2021; 88:144-154. [PMID: 34808222 DOI: 10.1016/j.neuro.2021.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Dysregulation of the oxytocinergic system and excitation/inhibition (E/I) balance in synaptic transmission and neural circuits are common hallmarks of various neurodevelopmental disorders. Several experimental and epidemiological studies have shown that perinatal exposure to endocrine-disrupting chemicals bisphenol A (BPA) and bisphenol S (BPS) may contribute to a range of childhood neurodevelopmental disorders. However, the effects of BPA and BPS on social-cognitive development and the associated mechanisms remain largely unknown. In this study, we explored the impacts of early developmental exposure (2hpf-5dpf) to environmentally relevant concentrations of BPA, and its analog BPS (0.001, 0.01, and 0.1 μM), on anxiety, social behaviors, and memory performance in 21 dpf zebrafish larvae. Our results revealed that early-life exposure to low concentrations of BPA and BPS elevated anxiety-like behavior, while fish exposed to higher concentrations of these chemicals displayed social deficits and impaired object recognition memory. Additionally, we found that co-exposure with an aromatase inhibitor antagonized BPA- and BPS-induced effects on anxiety levels and social behaviors, while the co-exposure to an estrogen receptor antagonist restored recognition memory in zebrafish larvae. These results indicate that BPA and BPS may affect social-cognitive function through distinct mechanisms. On the other hand, exposure to low BPA/BPS concentrations increased both the mRNA and protein levels of isotocin (zebrafish oxytocin) in the zebrafish brain, whereas a reduction in its mRNA level was observed at higher concentrations. Further, alterations in the transcript abundance of chloride transporters, and molecular markers of gamma-aminobutyric acid (GABA) and glutamatergic systems, were observed in the zebrafish brain, suggesting possible E/I imbalance following BPA or BPS exposure. Collectively, the results of this study demonstrate that early-life exposure to low concentrations of the environmental contaminants BPA and BPS can interfere with the isotocinergic signaling pathway and disrupts the establishment of E/I balance in the developing brain, subsequently leading to the onset of a suite of behavioral deficits and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
21
|
Coursimault J, Guerrot AM, Morrow MM, Schramm C, Zamora FM, Shanmugham A, Liu S, Zou F, Bilan F, Le Guyader G, Bruel AL, Denommé-Pichon AS, Faivre L, Tran Mau-Them F, Tessarech M, Colin E, El Chehadeh S, Gérard B, Schaefer E, Cogne B, Isidor B, Nizon M, Doummar D, Valence S, Héron D, Keren B, Mignot C, Coutton C, Devillard F, Alaix AS, Amiel J, Colleaux L, Munnich A, Poirier K, Rio M, Rondeau S, Barcia G, Callewaert B, Dheedene A, Kumps C, Vergult S, Menten B, Chung WK, Hernan R, Larson A, Nori K, Stewart S, Wheless J, Kresge C, Pletcher BA, Caumes R, Smol T, Sigaudy S, Coubes C, Helm M, Smith R, Morrison J, Wheeler PG, Kritzer A, Jouret G, Afenjar A, Deleuze JF, Olaso R, Boland A, Poitou C, Frebourg T, Houdayer C, Saugier-Veber P, Nicolas G, Lecoquierre F. MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects. Hum Genet 2021; 141:65-80. [PMID: 34748075 DOI: 10.1007/s00439-021-02383-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.
Collapse
Affiliation(s)
- Juliette Coursimault
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Anne-Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | | | - Catherine Schramm
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | | | | | | | | | - Frédéric Bilan
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, BP577, 86021, Poitiers, France
| | - Gwenaël Le Guyader
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, BP577, 86021, Poitiers, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Inter-Région est, FHU TRANSLAD, CHU Dijon-Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France.,Univ Angers, [CHU Angers], INSERM, CNRS, MITOVASC, ICAT, 49000, Angers, SFR, France
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Bénédicte Gérard
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Diane Doummar
- Hôpital Trousseau, APHP.Sorbonne Université, Service de Neuropédiatrie, Paris, France
| | - Stéphanie Valence
- Hôpital Trousseau, APHP.Sorbonne Université, Service de Neuropédiatrie, Paris, France
| | - Delphine Héron
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP.Sorbonne Université, Paris, France
| | - Boris Keren
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP.Sorbonne Université, Paris, France
| | - Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP.Sorbonne Université, Paris, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, UMR 5309, CNRS, Université Grenoble Alpes, Inserm U1209, Grenoble, France
| | | | - Anne-Sophie Alaix
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Jeanne Amiel
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Laurence Colleaux
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Arnold Munnich
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Karine Poirier
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Marlène Rio
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Sophie Rondeau
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Giulia Barcia
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Bert Callewaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Candy Kumps
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Wendy K Chung
- Columbia University Irving Medical Center, New York, NY, USA
| | - Rebecca Hernan
- Columbia University Irving Medical Center, New York, NY, USA
| | - Austin Larson
- School of Medicine and Children's Hospital, University of Colorado, Aurora, CO, USA
| | - Kelly Nori
- School of Medicine and Children's Hospital, University of Colorado, Aurora, CO, USA
| | - Sarah Stewart
- School of Medicine and Children's Hospital, University of Colorado, Aurora, CO, USA
| | - James Wheless
- Division of Pediatric Neurology, University of Tennessee, Health Science Center, Memphis, USA
| | - Christina Kresge
- Division of Clinical Genetics, Rutgers New Jersey Medical School, Newark, USA
| | - Beth A Pletcher
- Division of Clinical Genetics, Rutgers New Jersey Medical School, Newark, USA
| | - Roseline Caumes
- Université de Lille, CHU de Lille, Clinique de Génétique « Guy Fontaine », EA7364 RADEMEF-59000, Lille, France
| | - Thomas Smol
- Université de Lille, CHU de Lille, Institut de Génétique Médicale, EA7364 RADEMEF-59000, Lille, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital Timone Enfant, Marseille, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Margaret Helm
- Department of Pediatrics, Division of Genetics. Portland, Maine Medical Center, Maine, USA
| | - Rosemarie Smith
- Department of Pediatrics, Division of Genetics. Portland, Maine Medical Center, Maine, USA
| | | | | | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Guillaume Jouret
- National Center of Genetics (NCG), Laboratoire National de Santé (LNS), L-3555, Dudelange, Luxembourg
| | - Alexandra Afenjar
- Centre de Référence Malformations et Maladies Congénitales du Cervelet et Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, 75012, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, 91057, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, 91057, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, 91057, Evry, France
| | - Christine Poitou
- Service de Nutrition, Hôpital de la Pitié Salpêtrière - AP-HP, Paris, France
| | - Thierry Frebourg
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Claude Houdayer
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Gaël Nicolas
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France.
| |
Collapse
|
22
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
23
|
Oztan O, Talbot CF, Argilli E, Maness AC, Simmons SM, Mohsin N, Del Rosso LA, Garner JP, Sherr EH, Capitanio JP, Parker KJ. Autism-associated biomarkers: test-retest reliability and relationship to quantitative social trait variation in rhesus monkeys. Mol Autism 2021; 12:50. [PMID: 34238350 PMCID: PMC8268173 DOI: 10.1186/s13229-021-00442-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background Rhesus monkeys (Macaca mulatta) exhibit pronounced individual differences in social traits as measured by the macaque Social Responsiveness Scale-Revised. The macaque Social Responsiveness Scale was previously adapted from the Social Responsiveness Scale, an instrument designed to assess social and autistic trait variation in humans. To better understand potential biological underpinnings of this behavioral variation, we evaluated the trait-like consistency of several biological measures previously implicated in autism (e.g., arginine vasopressin, oxytocin, and their receptors, as well as ERK1/2, PTEN, and AKT(1–3) from the RAS-MAPK and PI3K-AKT pathways). We also tested which biological measures predicted macaque Social Responsiveness Scale-Revised scores. Methods Cerebrospinal fluid and blood samples were collected from N = 76 male monkeys, which, as a sample, showed a continuous distribution on the macaque Social Responsiveness Scale-Revised. In a subset of these subjects (n = 43), samples were collected thrice over a 10-month period. The following statistical tests were used: “Case 2A” intra-class correlation coefficients of consistency, principal component analysis, and general linear modeling. Results All biological measures (except AKT) showed significant test–retest reliability within individuals across time points. We next performed principal component analysis on data from monkeys with complete biological measurement sets at the first time point (n = 57), to explore potential correlations between the reliable biological measures and their relationship to macaque Social Responsiveness Scale-Revised score; a three-component solution was found. Follow-up analyses revealed that cerebrospinal fluid arginine vasopressin concentration, but no other biological measure, robustly predicted individual differences in macaque Social Responsiveness Scale-Revised scores, such that monkeys with the lowest cerebrospinal fluid arginine vasopressin concentration exhibited the greatest social impairment. Finally, we confirmed that this result held in the larger study sample (in which cerebrospinal fluid arginine vasopressin values were available from n = 75 of the subjects). Conclusions These findings indicate that cerebrospinal fluid arginine vasopressin concentration is a stable trait-like measure and that it is linked to quantitative social trait variation in male rhesus monkeys. Supplementary information The online version contains supplementary material available at 10.1186/s13229-021-00442-w.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA
| | - Catherine F Talbot
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alyssa C Maness
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Sierra M Simmons
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Noreen Mohsin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA
| | - Laura A Del Rosso
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA.,Department of Comparative Medicine, Stanford University, 300 Pasteur Dr., Edwards R348, Stanford, CA, 94305, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - John P Capitanio
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA.,Department of Psychology, University of California, 1 Shields Ave., Davis, 95616, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA. .,California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Hollander E, Levine KG, Ferretti CJ, Freeman K, Doernberg E, Desilva N, Taylor BP. Intranasal oxytocin versus placebo for hyperphagia and repetitive behaviors in children with Prader-Willi Syndrome: A randomized controlled pilot trial. J Psychiatr Res 2021; 137:643-651. [PMID: 33190843 DOI: 10.1016/j.jpsychires.2020.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The effects of intranasal oxytocin and placebo on hyperphagia and repetitive behaviors were compared in children and adolescents with Prader Willi Syndrome (PWS). METHODS Children and adolescents with PWS were enrolled in an 8-week double-blind placebo-controlled intranasal oxytocin randomized trial. Twenty-three (23) subjects were assigned to oxytocin (N = 11) or placebo (N = 12). Hyperphagia was measured with the Hyperphagia Questionnaire (HQ), and repetitive behavior was measured with Repetitive Behavior Scale- Revised (RBS-R). RESULTS There were modest significant treatment by-time interactions indicating reduction in hyperphagia and repetitive behaviors across time for placebo but no reduction for oxytocin. Total HQ score showed a greater average reduction of 1.81 points/week for the placebo group vs. oxytocin, with maximum reduction at week 4. There were also greater reductions on HQ-Drive and HQ-Behavior subscales on placebo vs. oxytocin. RBS-R subscales followed similar patterns to the HQ, with a significantly greater reduction in sameness subscale behaviors (average 0.825 points/week) in the placebo group compared to the oxytocin group. Oxytocin was well tolerated, and the only adverse event that was both more common and possibly related to oxytocin vs. placebo was nocturia (n = 1 vs 0). CONCLUSION Placebo was associated with modest improvement in hyperphagia and repetitive behaviors in childhood PWS whereas intranasal oxytocin was not associated with improvement in these domains. More work is needed to understand the meaning and mechanism of these findings on hyperphagia and repetitive behaviors in PWS.
Collapse
Affiliation(s)
- Eric Hollander
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA.
| | - Kayla G Levine
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA
| | - Casara J Ferretti
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA
| | - Katherine Freeman
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA; Biostatistics and Biomedical Sciences, Charles E. Schmidt College Medicine, Florida Atlantic University, and Extrapolate, Florida, USA
| | - Ellen Doernberg
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA; Department of Psychology, Case Western University, Ohio, USA
| | - Nilifa Desilva
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA
| | - Bonnie P Taylor
- Autism and Obsessive Compulsive Spectrum Disorders Program, Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
25
|
Sundaram SM, Schwaninger M. Parvocellular Oxytocin Neurons and Autism Spectrum Disorders. Trends Endocrinol Metab 2021; 32:195-197. [PMID: 33546964 DOI: 10.1016/j.tem.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
The underlying mechanism of oxytocin (OT) neurons in the development of social interaction remains unclear. In a recent study, Lewis et al. characterized OT neuronal subtypes and provided evidence that expression of the autism spectrum disorder (ASD) gene Fmr1 in parvocellular OT neurons is essential for peer-peer but not filial social interactions.
Collapse
Affiliation(s)
- Sivaraj Mohana Sundaram
- University of Luebeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Ratzeburger Allee 160, 23562 Luebeck, Germany.
| | - Markus Schwaninger
- University of Luebeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Ratzeburger Allee 160, 23562 Luebeck, Germany.
| |
Collapse
|
26
|
Siu MT, Goodman SJ, Yellan I, Butcher DT, Jangjoo M, Grafodatskaya D, Rajendram R, Lou Y, Zhang R, Zhao C, Nicolson R, Georgiades S, Szatmari P, Scherer SW, Roberts W, Anagnostou E, Weksberg R. DNA Methylation of the Oxytocin Receptor Across Neurodevelopmental Disorders. J Autism Dev Disord 2021; 51:3610-3623. [PMID: 33394241 DOI: 10.1007/s10803-020-04792-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Many neurodevelopmental disorders (NDDs) share common learning and behavioural impairments, as well as features such as dysregulation of the oxytocin hormone. Here, we examined DNA methylation (DNAm) in the 1st intron of the oxytocin receptor gene, OXTR, in patients with autism spectrum (ASD), attention deficit and hyperactivity (ADHD) and obsessive compulsive (OCD) disorders. DNAm of OXTR was assessed for cohorts of ASD (blood), ADHD (saliva), OCD (saliva), which uncovered sex-specific DNAm differences compared to neurotypical, tissue-matched controls. Individuals with ASD or ADHD exhibiting extreme DNAm values had lower IQ and more social problems, respectively, than those with DNAm within normative ranges. This suggests that OXTR DNAm patterns are altered across NDDs and may be correlated with common clinical outcomes.
Collapse
Affiliation(s)
- Michelle T Siu
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J Goodman
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Isaac Yellan
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darci T Butcher
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Maryam Jangjoo
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Daria Grafodatskaya
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Rageen Rajendram
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Youliang Lou
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rujun Zhang
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Chunhua Zhao
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Peter Szatmari
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Wendy Roberts
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:121-140. [PMID: 34266588 DOI: 10.1016/b978-0-12-819973-2.00009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.
Collapse
|
28
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
29
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
31
|
Martínez-Rodríguez E, Martín-Sánchez A, Kul E, Bose A, Martínez-Martínez FJ, Stork O, Martínez-García F, Lanuza E, Santos M, Agustín-Pavón C. Male-specific features are reduced in Mecp2-null mice: analyses of vasopressinergic innervation, pheromone production and social behaviour. Brain Struct Funct 2020; 225:2219-2238. [PMID: 32749543 DOI: 10.1007/s00429-020-02122-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
Abstract
Deficits in arginine vasopressin (AVP) and oxytocin (OT), two neuropeptides closely implicated in the modulation of social behaviours, have been reported in some early developmental disorders and autism spectrum disorders. Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene are associated to Rett syndrome and other neuropsychiatric conditions. Thus, we first analysed AVP and OT expression in the brain of Mecp2-mutant mice by immunohistochemistry. Our results revealed no significant differences in these systems in young adult Mecp2-heterozygous females, as compared to WT littermates. By contrast, we found a significant reduction in the sexually dimorphic, testosterone-dependent, vasopressinergic innervation in several nuclei of the social brain network and oxytocinergic innervation in the lateral habenula of Mecp2-null males, as compared to WT littermates. Analysis of urinary production of pheromones shows that Mecp2-null males lack the testosterone-dependent pheromone darcin, strongly suggesting low levels of androgens in these males. In addition, resident-intruder tests revealed lack of aggressive behaviour in Mecp2-null males and decreased chemoinvestigation of the intruder. By contrast, Mecp2-null males exhibited enhanced social approach, as compared to WT animals, in a 3-chamber social interaction test. In summary, Mecp2-null males, which display internal testicles, display a significant reduction of some male-specific features, such as vasopressinergic innervation within the social brain network, male pheromone production and aggressive behaviour. Thus, atypical social behaviours in Mecp2-null males may be caused, at least in part, by the effect of lack of MeCP2 over sexual differentiation.
Collapse
Affiliation(s)
- Elena Martínez-Rodríguez
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Departament de Biologia Cel·lular, Funcional i Antropologia Física, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100, Burjassot, Spain
| | - Ana Martín-Sánchez
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Unitat Predepartamental de Medicina, Universitat Jaume I de Castelló, Castelló, Spain.,Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Emre Kul
- Department of Genetics and Molecular Neurobiology, Institute of Biology, and Center for Behavioral Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Aparajita Bose
- Department of Genetics and Molecular Neurobiology, Institute of Biology, and Center for Behavioral Sciences, Otto-von-Guericke University, Magdeburg, Germany.,Neurologie, Ammerland-Klinik GmbH, Westerstede, Germany
| | - Francisco José Martínez-Martínez
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Departament de Biologia Cel·lular, Funcional i Antropologia Física, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100, Burjassot, Spain
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, and Center for Behavioral Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Fernando Martínez-García
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Unitat Predepartamental de Medicina, Universitat Jaume I de Castelló, Castelló, Spain
| | - Enrique Lanuza
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Departament de Biologia Cel·lular, Funcional i Antropologia Física, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100, Burjassot, Spain
| | - Mónica Santos
- Department of Genetics and Molecular Neurobiology, Institute of Biology, and Center for Behavioral Sciences, Otto-von-Guericke University, Magdeburg, Germany. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculdade de Medicina, pólo I, 2º andar, 3004-504, Coimbra, Portugal.
| | - Carmen Agustín-Pavón
- Unitat Mixta d'Investigació Neuroanatomia Funcional, Departament de Biologia Cel·lular, Funcional i Antropologia Física, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100, Burjassot, Spain.
| |
Collapse
|
32
|
Nichols P, Carter B, Han J, Thaker V. Oxytocin for treating Prader-Willi Syndrome. Hippokratia 2020. [DOI: 10.1002/14651858.cd013685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Presley Nichols
- Department of Pediatrics; New York Presbyterian Hospital - Columbia; New York USA
| | - Ben Carter
- Biostatistics and Health Informatics; King's College London; Institute of Psychiatry, Psychology & Neuroscience; London UK
| | - Joan Han
- Department of Pediatrics; The University of Tennessee Health Science Center; Memphis TN USA
| | - Vidhu Thaker
- Division of Molecular Genetics and Department of Pediatrics; Columbia University Medical Center; New York NY USA
- Division of Pediatric Endocrinology; Columbia University Irving Medical Center; New York USA
| |
Collapse
|
33
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Wsol A. The role of oxytocin and vasopressin in the pathophysiology of heart failure in pregnancy and in fetal and neonatal life. Am J Physiol Heart Circ Physiol 2020; 318:H639-H651. [PMID: 32056469 DOI: 10.1152/ajpheart.00484.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy and early life create specific psychosomatic challenges for the mother and child, such as changes in hemodynamics, resetting of the water-electrolyte balance, hypoxia, pain, and stress, that all play an important role in the regulation of the release of oxytocin and vasopressin. Both of these hormones regulate the water-electrolyte balance and cardiovascular functions, maturation of the cardiovascular system, and cardiovascular responses to stress. These aspects may be of particular importance in a state of emergency, such as hypertension in the mother or severe heart failure in the child. In this review, we draw attention to a broad spectrum of actions exerted by oxytocin and vasopressin in the pregnant mother and the offspring during early life. To this end, we discuss the following topics: 1) regulation of the secretion of oxytocin and vasopressin and expression of their receptors in the pregnant mother and child, 2) direct and indirect effects of oxytocin and vasopressin on the cardiovascular system in the healthy mother and fetus, and 3) positive and negative consequences of altered secretion of oxytocin and vasopressin in the mother with cardiovascular pathology and in the progeny with heart failure. The present survey provides evidence that moderate stimulation of the oxytocin and vasopressin receptors plays a beneficial role in the healthy pregnant mother and fetus; however, under pathophysiological conditions the inappropriate action of these hormones exerts several negative effects on the cardiovascular system of the mother and progeny and may potentially contribute to the pathophysiology of heart failure in early life.
Collapse
Affiliation(s)
- E Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Wsol
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Mahmuda NA, Yokoyama S, Munesue T, Hayashi K, Yagi K, Tsuji C, Higashida H. One Single Nucleotide Polymorphism of the TRPM2 Channel Gene Identified as a Risk Factor in Bipolar Disorder Associates with Autism Spectrum Disorder in a Japanese Population. Diseases 2020; 8:diseases8010004. [PMID: 32046066 PMCID: PMC7151227 DOI: 10.3390/diseases8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin 2 (TRPM2) is a non-specific cation channel, resulting in Ca2+ influx at warm temperatures from 34 °C to 47 °C, thus including the body temperature range in mammals. TRPM2 channels are activated by β-NAD+, ADP-ribose (ADPR), cyclic ADPR, and 2′-deoxyadenosine 5′-diphosphoribose. It has been shown that TRPM2 cation channels and CD38, a type II or type III transmembrane protein with ADP-ribosyl cyclase activity, simultaneously play a role in heat-sensitive and NAD+ metabolite-dependent intracellular free Ca2+ concentration increases in hypothalamic oxytocinergic neurons. Subsequently, oxytocin (OT) is released to the brain. Impairment of OT release may induce social amnesia, one of the core symptoms of autism spectrum disorder (ASD). The risk of single nucleotide polymorphisms (SNPs) and variants of TRPM2 have been reported in bipolar disorder, but not in ASD. Therefore, it is reasonable to examine whether SNPs or haplotypes in TRPM2 are associated with ASD. Here, we report a case-control study with 147 ASD patients and 150 unselected volunteers at Kanazawa University Hospital in Japan. The sequence-specific primer-polymerase chain reaction method together with fluorescence correlation spectroscopy was applied. Of 14 SNPs examined, one SNP (rs933151) displayed a significant p-value (OR = 0.1798, 95% CI = 0.039, 0.83; Fisher’s exact test; p = 0.0196). The present research data suggest that rs93315, identified as a risk factor for bipolar disorder, is a possible association factor for ASD.
Collapse
Affiliation(s)
- Naila Al Mahmuda
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Faculty of Business Administration, Eastern University, Dhaka 1205, Bangladesh
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Toshio Munesue
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Kunimasa Yagi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
- Correspondence:
| |
Collapse
|
35
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
36
|
Parker KJ, Garner JP, Oztan O, Tarara ER, Li J, Sclafani V, Del Rosso LA, Chun K, Berquist SW, Chez MG, Partap S, Hardan AY, Sherr EH, Capitanio JP. Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Sci Transl Med 2019; 10:10/439/eaam9100. [PMID: 29720452 DOI: 10.1126/scitranslmed.aam9100] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 11/03/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by core social impairments. ASD remains poorly understood because of the difficulty in studying disease biology directly in patients and the reliance on mouse models that lack clinically relevant, complex social cognition abilities. We use ethological observations in rhesus macaques to identify male monkeys with naturally occurring low sociality. These monkeys showed differences in specific neuropeptide and kinase signaling pathways compared to socially competent male monkeys. Using a discovery and replication design, we identified arginine vasopressin (AVP) in cerebrospinal fluid (CSF) as a key marker of group differences in monkey sociality; we replicated these findings in an independent monkey cohort. We also confirmed in an additional monkey cohort that AVP concentration in CSF is a stable trait-like measure. Next, we showed in a small pediatric cohort that CSF AVP concentrations were lower in male children with ASD compared to age-matched male children without ASD (but with other medical conditions). We demonstrated that CSF AVP concentration was sufficient to accurately distinguish ASD cases from medical controls. These data suggest that AVP and its signaling pathway warrant consideration in future research studies investigating new targets for diagnostics and drug development in ASD.
Collapse
Affiliation(s)
- Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. .,California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Erna R Tarara
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jiang Li
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Valentina Sclafani
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Katie Chun
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Sean W Berquist
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael G Chez
- Sutter Neuroscience Medical Group, Sacramento, CA 95816, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
37
|
Wilczyński KM, Zasada I, Siwiec A, Janas-Kozik M. Differences in oxytocin and vasopressin levels in individuals suffering from the autism spectrum disorders vs general population - a systematic review. Neuropsychiatr Dis Treat 2019; 15:2613-2620. [PMID: 31571878 PMCID: PMC6750159 DOI: 10.2147/ndt.s207580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interactions, communication, and the presence of stereotyped, repetitive behaviors. Oxytocin (OXT) and arginine-vasopressin are neuropeptides produced in hypothalamus and they are related to processing emotions and social behavior. In the light of a growing number of scientific reports related to this issue, the two neurohormones started to be linked with the basis of neurodevelopmental disorders, including the ASD. The aim of this study was a systematic review of previous studies regarding the differences in OXT and vasopressin levels in ASD and neurotypical persons. MATERIALS AND METHODS Literature review focused on publications in the last 10 years located via the MEDLINE/PubMed database as well as the Google Scholar browser. Selection was made by assumptive criteria of inclusion and exclusion. RESULTS From the 487 studies qualified to the initial abstract analysis, 12 met the six inclusion criteria and were included in the full-text review. CONCLUSION Currently, available study reports still do not provide unequivocal answers as to the differences in concentrations of those neuropeptides between children with ASD and neurotypical control. Therefore, it is necessary to continue the research taking into account necessity of proper homogenization of study groups, utilization of objective and quantifiable tools for ASD diagnosis and broadening the range of biochemical and molecular factors analyzed.
Collapse
Affiliation(s)
- Krzysztof M Wilczyński
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Ida Zasada
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Andrzej Siwiec
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| | - Małgorzata Janas-Kozik
- Clinical Ward of Developmental Age Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Medical University of Silesia, Katowice, Poland
- John Paul II’s Pediatric Centre in Sosnowiec, Sosnowiec, Poland
| |
Collapse
|
38
|
Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A, Huang H, Gigliucci V, Morelli G, Scheggia D, Managò F, Castellani G, Lefevre A, Cancedda L, Chini B, Grinevich V, Papaleo F. Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Curr Biol 2019; 29:1938-1953.e6. [DOI: 10.1016/j.cub.2019.04.070] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
|
39
|
Higashida H, Munesue T, Kosaka H, Yamasue H, Yokoyama S, Kikuchi M. Social Interaction Improved by Oxytocin in the Subclass of Autism with Comorbid Intellectual Disabilities. Diseases 2019; 7:E24. [PMID: 30813294 PMCID: PMC6473850 DOI: 10.3390/diseases7010024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Approximately half of all autism spectrum disorder (ASD) individuals suffer from comorbid intellectual disabilities. Furthermore, the prevalence of epilepsy has been estimated to be 46% of patients with low intelligence quotient. It is important to investigate the therapeutic benefits and adverse effects of any recently developed drugs for this proportion of individuals with the so-called Kanner type of ASD. Therefore, we investigated the therapeutic and/or adverse effects of intranasal oxytocin (OT) administration, especially in adolescents and adults with ASD and comorbid intellectual disability and epilepsy, with regard to core symptoms of social deficits. We have already reported three randomized placebo-controlled trials (RCTs). However, we revisit results in our pilot studies from the view of comorbidity. Most of the intellectually disabled participants were found to be feasible participants of the RCT. We observed significantly more events regarded as reciprocal social interaction in the OT group compared with the placebo group. In the trial, no or little differences in adverse events were found between the OT and placebo arms, as found in some other reports. However, seizures were induced in three participants with medical history of epilepsy during or after OT treatment. In conclusion, we stress that behavioral changes in ASD patients with intellectual disabilities could be recognized not by the conventional measurements of ASD symptoms but by detailed evaluation of social interactions arising in daily-life situations.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Graduate School of Medical Sciences and Research Center for Child Mental Development, University of Fukui, Eiheiji 910-1193, Japan.
| | - Hidenori Yamasue
- Department of Psychiatry and Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
40
|
Expanding Regulation Theory With Oxytocin: A Psychoneurobiological Model for Infant Development. Nurs Res 2019; 67:133-145. [PMID: 29489634 DOI: 10.1097/nnr.0000000000000261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxytocin (OT), an affiliation hormone released during supportive social interactions, provides an exemplar of how social environments are reflected in our neurobiology from the beginning of life. A growing body of OT research has uncovered previously unknown functions of OT, including modulation of parenting behaviors, neuroprotection, affiliation, and bonding. Regulation theory provides a strong framework for describing how the maternal care environment affects infant neurodevelopment through a symphony of molecules that form the neurobiological milieu of the developing infant brain. OBJECTIVES The purpose of this article was to expand on regulation theory by discussing how OT-based processes contribute to infant neurobiology and by proposing a new model for maternal-infant nursing practice and research. APPROACH We structure our discussion of the socially based, neurobiological processes of OT through its effects in the nested hierarchies of genetic, epigenetic, molecular, cellular, neural circuit, multiorgan, and behavioral levels. Our discussion is also presented chronologically, as OT works through a positive feedback loop during infant neurodevelopment, beginning prenatally and continuing after birth. IMPLICATIONS Nurses are in a unique position to use innovative discoveries made by the biologic sciences to generate new nursing theories that inform clinical practice and inspire the development of innovative interventions that maximize the infant's exposure to supportive maternal care.
Collapse
|
41
|
Butler MG, Miller JL, Forster JL. Prader-Willi Syndrome - Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr Pediatr Rev 2019; 15:207-244. [PMID: 31333129 PMCID: PMC7040524 DOI: 10.2174/1573396315666190716120925] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prader-Willi Syndrome (PWS) is a neurodevelopmental genomic imprinting disorder with lack of expression of genes inherited from the paternal chromosome 15q11-q13 region usually from paternal 15q11-q13 deletions (about 60%) or maternal uniparental disomy 15 or both 15s from the mother (about 35%). An imprinting center controls the expression of imprinted genes in the chromosome 15q11-q13 region. Key findings include infantile hypotonia, a poor suck, failure to thrive and hypogonadism/hypogenitalism. Short stature and small hands/feet due to growth and other hormone deficiencies, hyperphagia and marked obesity occur in early childhood, if uncontrolled. Cognitive and behavioral problems (tantrums, compulsions, compulsive skin picking) are common. OBJECTIVE Hyperphagia and obesity with related complications are major causes of morbidity and mortality in PWS. This report will describe an accurate diagnosis with determination of specific genetic subtypes, appropriate medical management and best practice treatment approaches. METHODS AND RESULTS An extensive literature review was undertaken related to genetics, clinical findings and laboratory testing, clinical and behavioral assessments and summary of updated health-related information addressing the importance of early PWS diagnosis and treatment. A searchable, bulleted and formatted list of topics is provided utilizing a Table of Contents approach for the clinical practitioner. CONCLUSION Physicians and other health care providers can use this review with clinical, genetic and treatment summaries divided into sections pertinent in the context of clinical practice. Frequently asked questions by clinicians, families and other interested participants or providers will be addressed.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
42
|
Oztan O, Garner JP, Partap S, Sherr EH, Hardan AY, Farmer C, Thurm A, Swedo SE, Parker KJ. Cerebrospinal fluid vasopressin and symptom severity in children with autism. Ann Neurol 2018; 84:611-615. [PMID: 30152888 DOI: 10.1002/ana.25314] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 11/12/2022]
Abstract
Autism is a brain disorder characterized by social impairments. Progress in understanding autism has been hindered by difficulty in obtaining brain-relevant tissues (eg, cerebrospinal fluid [CSF]) by which to identify markers of disease and targets for treatment. Here, we overcome this barrier by providing evidence that mean CSF concentration of the "social" neuropeptide arginine vasopressin (AVP) is lower in children with autism versus controls. CSF AVP concentration also significantly differentiates individual cases from controls and is associated with greater social symptom severity in children with autism. These findings indicate that AVP may be a promising CSF marker of autism's social deficits. Ann Neurol 2018;84:611-615.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA.,Department of Comparative Medicine, Stanford University, Stanford, CA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Cristan Farmer
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Audrey Thurm
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Susan E Swedo
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
43
|
Miller J. The potential of oxytocin for the treatment of hyperphagia in Prader-Willi Syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1451326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jennifer Miller
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Oztan O, Jackson LP, Libove RA, Sumiyoshi RD, Phillips JM, Garner JP, Hardan AY, Parker KJ. Biomarker discovery for disease status and symptom severity in children with autism. Psychoneuroendocrinology 2018; 89:39-45. [PMID: 29309996 PMCID: PMC5878709 DOI: 10.1016/j.psyneuen.2017.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by social impairments and repetitive behaviors, and affects 1 in 68 US children. Despite ASD's societal impact, its disease mechanisms remain poorly understood. Recent preclinical ASD biomarker discovery research has implicated the neuropeptides oxytocin (OXT) and arginine vasopressin (AVP), and their receptors, OXTR and AVPR1A, in animal models. Efforts to translate these findings to individuals with ASD have typically involved evaluating single neuropeptide measures as biomarkers of ASD and/or behavioral functioning. Given that ASD is a heterogeneous disorder, and unidimensional ASD biomarker studies have been challenging to reproduce, here we employed a multidimensional neuropeptide biomarker analysis to more powerfully interrogate disease status and symptom severity in a well characterized child cohort comprised of ASD patients and neurotypical controls. These blood-based neuropeptide measures, considered as a whole, correctly predicted disease status for 57 out of 68 (i.e., 84%) participants. Further analysis revealed that a composite measure of OXTR and AVPR1A gene expression was the key driver of group classification, and that children with ASD had lower neuropeptide receptor mRNA levels compared to controls. Lower neuropeptide receptor mRNA levels also predicted greater symptom severity for core ASD features (i.e., social impairments and stereotyped behaviors), but were unrelated to intellectual impairment, an associated feature of ASD. Findings from this research highlight the value of assessing multiple related biological measures, and their relative contributions, in the same study, and suggest that low blood neuropeptide receptor availability may be a promising biomarker of disease presence and symptom severity in ASD.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States.
| | - Lisa P. Jackson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Robin A. Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Raena D. Sumiyoshi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Jennifer M. Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305,Department of Comparative Medicine, Stanford University, Stanford, CA 94305
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
45
|
Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, Pietto ML, Adolfi F, Manes F. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci 2018; 13:1-39. [PMID: 27707008 PMCID: PMC11177280 DOI: 10.1080/17470919.2016.1245214] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple disorders once jointly conceived as "nervous diseases" became segregated by the distinct institutional traditions forged in neurology and psychiatry. As a result, each field specialized in the study and treatment of a subset of such conditions. Here we propose new avenues for interdisciplinary interaction through a triangulation of both fields with social neuroscience. To this end, we review evidence from five relevant domains (facial emotion recognition, empathy, theory of mind, moral cognition, and social context assessment), highlighting their common disturbances across neurological and psychiatric conditions and discussing their multiple pathophysiological mechanisms. Our proposal is anchored in multidimensional evidence, including behavioral, neurocognitive, and genetic findings. From a clinical perspective, this work paves the way for dimensional and transdiagnostic approaches, new pharmacological treatments, and educational innovations rooted in a combined neuropsychiatric training. Research-wise, it fosters new models of the social brain and a novel platform to explore the interplay of cognitive and social functions. Finally, we identify new challenges for this synergistic framework.
Collapse
Affiliation(s)
- Agustín Ibáñez
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- c Center for Social and Cognitive Neuroscience (CSCN), School of Psychology , Universidad Adolfo Ibáñez , Santiago de Chile , Chile
- d Universidad Autónoma del Caribe , Barranquilla , Colombia
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
| | - Adolfo M García
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- f Faculty of Elementary and Special Education (FEEyE) , National University of Cuyo (UNCuyo) , Mendoza , Argentina
| | - Sol Esteves
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Adrián Yoris
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Edinson Muñoz
- g Departamento de Lingüística y Literatura, Facultad de Humanidades , Universidad de Santiago de Chile , Santiago , Chile
| | - Lucila Reynaldo
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | | | - Federico Adolfi
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Facundo Manes
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
- i Department of Experimental Psychology , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
46
|
Keech B, Crowe S, Hocking DR. Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology 2018; 87:9-19. [PMID: 29032324 DOI: 10.1016/j.psyneuen.2017.09.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Deficits in social cognition are pervasive and characteristic of neurodevelopmental disorders (NDDs). Clinical trials of intranasal oxytocin (IN-OT) to improve social cognition have yielded inconclusive results. The current study is a meta-analysis of randomized controlled trials (RCTs) considering the effect of IN-OT on social cognitive domains across a range of NDDs. Medline, PsychINFO and Scopus were searched for RCTs published through to July 25, 2017. Seventeen studies met inclusion criteria, comprising 466 participants with a NDD. Meta-analysis using a random-effects model, revealed that IN-OT had no significant effect on emotion recognition (Hedges' g=0.08), a moderate but non-significant effect on empathy (Hedges' g=0.49), and a small, significant effect on theory of mind (ToM) (Hedges' g=0.21). Meta-regression indicated that the effect of IN-OT on social cognition was not moderated by the diagnosis or age of participants, or the dose or frequency of IN-OT administration. The results highlight a need for more well-designed RCTs, as it remains difficult to draw conclusions about the potential for IN-OT to improve social cognition in NDDs. The promise of IN-OT should be considered tentative.
Collapse
Affiliation(s)
- Britney Keech
- Developmental Neuromotor & Cognition Lab, School of Psychology & Public Health, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Simon Crowe
- Department of Psychology and Counseling, School of Psychology & Public Health, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Darren R Hocking
- Developmental Neuromotor & Cognition Lab, School of Psychology & Public Health, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
47
|
Wu YJ, Hsu MT, Ng MC, Amstislavskaya TG, Tikhonova MA, Yang YL, Lu KT. Fragile X Mental Retardation-1 Knockout Zebrafish Shows Precocious Development in Social Behavior. Zebrafish 2017; 14:438-443. [PMID: 28829283 DOI: 10.1089/zeb.2017.1446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a generally hereditary form of human mental retardation that is caused by triplet repeat expansion (CGG) mutation in fragile X mental retardation 1 (fmr1) gene promoter and that results in the absence of the fragile X mental retardation protein (FMRP) expression. The common symptoms of FXS patients include learning disabilities, anxiety, autistic behaviors, as well as other behavioral abnormalities. Our previous results demonstrated the behavioral abnormalities in fmr1 knockout (KO) zebrafish such as fear memory impairment and autism-like behavior. Here, we studied the functional role of fmr1 gene on the development of social behavior by behavioral experiments, including shoaling behavior, shoaling preference, light/dark test, and novel tank task. Our results demonstrated that precocious development of shoaling behavior is found in fmr1 KO zebrafish without affecting the shoaling preference on conspecific zebrafish. The shoaling behavior appeared after 14 days postfertilization (dpf), and the level of shoaling elevated in fmr1 KO zebrafish. Furthermore, the fmr1 KO zebrafish at 28 dpf expressed higher anxiety level in novel tank task. These results suggest that the change of shoaling behavior in fmr1 KO zebrafish may result from hyperactivity and an increase of anxiety.
Collapse
Affiliation(s)
- Yao-Ju Wu
- 1 Department of Life Science, National Taiwan Normal University , Taipei, Taiwan
| | - Mao-Ting Hsu
- 1 Department of Life Science, National Taiwan Normal University , Taipei, Taiwan
| | - Ming-Chong Ng
- 2 Center for General Education, National Quemoy University , Quemoy, Taiwan
| | - Tamara G Amstislavskaya
- 3 Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM) , Novosibirsk, Russia .,4 Institute of Medicine and Psychology, Novosibirsk State University , Novosibirsk, Russia
| | - Maria A Tikhonova
- 3 Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM) , Novosibirsk, Russia .,4 Institute of Medicine and Psychology, Novosibirsk State University , Novosibirsk, Russia
| | - Yi-Ling Yang
- 5 Department of Biochemical Science and Technology, National Chia-Yi University , Chia-Yi, Taiwan
| | - Kwok-Tung Lu
- 1 Department of Life Science, National Taiwan Normal University , Taipei, Taiwan
| |
Collapse
|
48
|
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles. J Neurosci 2017; 36:11781-11787. [PMID: 27852784 DOI: 10.1523/jneurosci.2212-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores.
Collapse
|
49
|
Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 2017; 114:8119-8124. [PMID: 28696286 DOI: 10.1073/pnas.1705521114] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by core social deficits. Prognosis is poor, in part, because existing medications target only associated ASD features. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may be a blood-based biomarker of social functioning and a possible treatment for ASD. However, prior OXT treatment trials have produced equivocal results, perhaps because of variability in patients' underlying neuropeptide biology, but this hypothesis has not been tested. Using a double-blind, randomized, placebo-controlled, parallel design, we tested the efficacy and tolerability of 4-wk intranasal OXT treatment (24 International Units, twice daily) in 32 children with ASD, aged 6-12 y. When pretreatment neuropeptide measures were included in the statistical model, OXT compared with placebo treatment significantly enhanced social abilities in children with ASD [as measured by the trial's primary outcome measure, the Social Responsiveness Scale (SRS)]. Importantly, pretreatment blood OXT concentrations also predicted treatment response, such that individuals with the lowest pretreatment OXT concentrations showed the greatest social improvement. OXT was well tolerated, and its effects were specific to social functioning, with no observed decrease in repetitive behaviors or anxiety. Finally, as with many trials, some placebo-treated participants showed improvement on the SRS. This enhanced social functioning was mirrored by a posttreatment increase in their blood OXT concentrations, suggesting that increased endogenous OXT secretion may underlie this improvement. These findings indicate that OXT treatment enhances social abilities in children with ASD and that individuals with pretreatment OXT signaling deficits may stand to benefit the most from OXT treatment.
Collapse
|
50
|
The Role of the Oxytocin/Arginine Vasopressin System in Animal Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 224:135-158. [DOI: 10.1007/978-3-319-52498-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|