1
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
2
|
Michinaga S. Drug Discovery Research for Traumatic Brain Injury Focused on Functional Molecules in Astrocytes. Biol Pharm Bull 2024; 47:350-360. [PMID: 38296549 DOI: 10.1248/bpb.b23-00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Traumatic brain injury (TBI) is severe damage to the head caused by traffic accidents, falls, and sports. Because TBI-induced disruption of the blood-brain barrier (BBB) causes brain edema and neuroinflammation, which are major causes of death or serious disabilities, protection and recovery of BBB function may be beneficial therapeutic strategies for TBI. Astrocytes are key components of BBB integrity, and astrocyte-derived bioactive factors promote and suppress BBB disruption in TBI. Therefore, the regulation of astrocyte function is essential for BBB protection. In the injured cerebrum of TBI model mice, we found that the endothelin ETB receptor, histamine H2 receptor, and transient receptor potential vanilloid 4 (TRPV4) were predominantly expressed in reactive astrocytes. We also showed that repeated administration of an ETB receptor antagonist, H2 receptor agonist, and TRPV4 antagonist alleviated BBB disruption and brain edema in a TBI mouse model. Furthermore, these drugs decreased the expression levels of astrocyte-derived factors promoting BBB disruption and increased the expression levels of astrocyte-derived protective factors in the injured cerebrum after TBI. These results suggest that the ETB receptor, H2 receptor, and TRPV4 are molecules that regulate astrocyte function, and might be attractive candidates for the development of therapeutic drugs for TBI.
Collapse
|
3
|
Tentu PM, Bazaz MR, Pasam T, Shaikh AS, Rahman Z, Mourya A, Kaki VR, Madan J, Dandekar MP. Oxyberberine an oxoderivative of berberine confers neuroprotective effects in controlled-cortical impact mouse model of traumatic brain injury. Int J Neurosci 2023:1-16. [PMID: 37982448 DOI: 10.1080/00207454.2023.2286209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is known as a silent epidemic that causes many deaths and disabilities worldwide. We examined the response of oxyberberine (OBB) in lipopolysaccharide-stimulated BV2 microglial cells and a controlled-cortical impact (CCI) mouse model of TBI. METHODS We synthesized OBB from berberine, and also prepared OBB-nanocrystals (OBB-NC). Male C57BL/6 mice were used for CCI surgery, and post-CCI neurobehavioral deficits were assessed from 1 h after injury through 21 days post-injury (dpi). RESULTS OBB treatment reduced the lipopolysaccharide-triggered elevated levels of reactive oxygen species, nitric oxide, and nuclear factor kappa B (NF-κB) in BV2 microglial cells, indicating a neuroprotective potential. CCI-operated mice exhibited significant neurological deficits on 1, 3, and 5 dpi in neurological severity scoring and rotarod assay. OBB (25 and 50 mg/kg/day) and OBB-NC (3 mg/kg/day) ameliorated these neurological aberrations. Mice subjected to CCI surgery also displayed anxiogenic- and depression-like behaviours, and cognitive impairments in forced-swimming test and elevated-zero maze, and novel object recognition task, respectively. Administration of OBB reduced these long-term neuropsychiatric complications, and also levels of toll-like receptor 4 (TLR4), high-motility group protein 1 (HMGB1), NF-κB, tumour necrosis factor-alpha and interleukin 6 cytokines in the ipsilateral cortex of mice. CONCLUSION We suggest that the administration of OBB offers neuroprotective effects via inhibition of HMGB1-mediated TLR4/NFκB pathway.
Collapse
Affiliation(s)
- Priya Mounika Tentu
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Tulasi Pasam
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Ziaur Rahman
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
4
|
Sivandzade F, Alqahtani F, Dhaibar H, Cruz-Topete D, Cucullo L. Antidiabetic Drugs Can Reduce the Harmful Impact of Chronic Smoking on Post-Traumatic Brain Injuries. Int J Mol Sci 2023; 24:6219. [PMID: 37047198 PMCID: PMC10093862 DOI: 10.3390/ijms24076219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a primary cause of cerebrovascular and neurological disorders worldwide. The current scientific researchers believe that premorbid conditions such as tobacco smoking (TS) can exacerbate post-TBI brain injury and negatively affect recovery. This is related to vascular endothelial dysfunction resulting from the exposure to TS-released reactive oxygen species (ROS), nicotine, and oxidative stress (OS) stimuli impacting the blood-brain barrier (BBB) endothelium. Interestingly, these pathogenic modulators of BBB impairment are similar to those associated with hyperglycemia. Antidiabetic drugs such as metformin (MF) and rosiglitazone (RSG) were shown to prevent/reduce BBB damage promoted by chronic TS exposure. Thus, using in vivo approaches, we evaluated the effectiveness of post-TBI treatment with MF or RSG to reduce the TS-enhancement of BBB damage and brain injury after TBI. For this purpose, we employed an in vivo weight-drop TBI model using male C57BL/6J mice chronically exposed to TS with and without post-traumatic treatment with MF or RSG. Our results revealed that these antidiabetic drugs counteracted TS-promoted downregulation of nuclear factor erythroid 2-related factor 2 (NRF2) expression and concomitantly dampened TS-enhanced OS, inflammation, and loss of BBB integrity following TBI. In conclusion, our findings suggest that MF and RSG could reduce the harmful impact of chronic smoking on post-traumatic brain injuries.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hemangini Dhaibar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Michinaga S, Hishinuma S, Koyama Y. Roles of Astrocytic Endothelin ET B Receptor in Traumatic Brain Injury. Cells 2023; 12:cells12050719. [PMID: 36899860 PMCID: PMC10000579 DOI: 10.3390/cells12050719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
6
|
Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X, Li L. TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation 2022; 19:289. [PMID: 36463233 PMCID: PMC9719652 DOI: 10.1186/s12974-022-02651-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1β, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.
Collapse
Affiliation(s)
- Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
- Department of Neuro-oncology, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
7
|
Sun M, Baker TL, Wilson CT, Brady RD, Mychasiuk R, Yamakawa GR, Vo A, Wilson T, McDonald SJ, Shultz SR. Treatment with vascular endothelial growth factor-A worsens cognitive recovery in a rat model of mild traumatic brain injury. Front Mol Neurosci 2022; 15:937350. [PMID: 36385769 PMCID: PMC9643175 DOI: 10.3389/fnmol.2022.937350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common and unmet clinical issue, with limited treatments available to improve recovery. The cerebrovascular system is vital to provide oxygen and nutrition to the brain, and a growing body of research indicates that cerebrovascular injury contributes to mTBI symptomatology. Vascular endothelial growth factor-A (VEGF-A) is a potent promoter of angiogenesis and an important modulator of vascular health. While indirect evidence suggests that increased bioavailability of VEGF-A may be beneficial after mTBI, the direct therapeutic effects of VEGF-A in this context remains unknown. This study therefore aimed to determine whether intracerebroventricular administration of recombinant VEGF-A could improve recovery from mTBI in a rat model. Male and female Sprague-Dawley rats were assigned to four groups: sham + vehicle (VEH), sham + VEGF-A, mTBI + VEH, mTBI + VEGF-A. The mTBI was induced using the lateral impact model, and treatment began at the time of the injury and continued until the end of the study. Rats underwent behavioral testing between days 1 and 10 post-injury, and were euthanized on day 11 for post-mortem analysis. In males, the mTBI + VEGF-A group had significantly worse cognitive recovery in the water maze than all other groups. In females, the VEGF treatment worsened cognitive performance in the water maze regardless of mTBI or sham injury. Analysis of hippocampal tissue found that these cognitive deficits occurred in the presence of gene expression changes related to neuroinflammation and hypoxia in both male and female rats. These findings indicate that the VEGF-A treatment paradigm tested in this study failed to improve mTBI outcomes in either male or female rats.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T. Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L. The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 2022; 13:965661. [PMID: 36204225 PMCID: PMC9531148 DOI: 10.3389/fphar.2022.965661] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2 receptor agonist that is routinely used in the clinic for sedation and anesthesia. Recently, an increasing number of studies have shown that DEX has a protective effect against brain injury caused by traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), cerebral ischemia and ischemia–reperfusion (I/R), suggesting its potential as a neuroprotective agent. Here, we summarized the neuroprotective effects of DEX in several models of neurological damage and examined its mechanism based on the current literature. Ultimately, we found that the neuroprotective effect of DEX mainly involved inhibition of inflammatory reactions, reduction of apoptosis and autophagy, and protection of the blood–brain barrier and enhancement of stable cell structures in five way. Therefore, DEX can provide a crucial advantage in neurological recovery for patients with brain injury. The purpose of this study was to further clarify the neuroprotective mechanisms of DEX therefore suggesting its potential in the clinical management of the neurological injuries.
Collapse
Affiliation(s)
- Yijun Hu
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Zhou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Huanxin Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunlong Sui
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhen Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yuntao Zou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kunquan Li
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunyi Zhao
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jiangbo Xie
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Lunzhong Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- *Correspondence: Lunzhong Zhang,
| |
Collapse
|
9
|
Li YF, Ren X, Zhang L, Wang YH, Chen T. Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front Aging Neurosci 2022; 14:901117. [PMID: 35978950 PMCID: PMC9376354 DOI: 10.3389/fnagi.2022.901117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that threatens life and health of people. It poses a great economic burden on the healthcare system. Thus, seeking effective therapy to cure a patient with TBI is a matter of great urgency. Microglia are macrophages in the central nervous system (CNS) and play an important role in neuroinflammation. When TBI occurs, the human body environment changes dramatically and microglia polarize to one of two different phenotypes: M1 and M2. M1 microglia play a role in promoting the development of inflammation, while M2 microglia play a role in inhibiting inflammation. How to regulate the polarization direction of microglia is of great significance for the treatment of patients with TBI. The polarization of microglia involves many cellular signal transduction pathways, such as the TLR-4/NF-κB, JAK/STAT, HMGB1, MAPK, and PPAR-γ pathways. These provide a theoretical basis for us to seek therapeutic drugs for the patient with TBI. There are several drugs that target these pathways, including fingolimod, minocycline, Tak-242 and erythropoietin (EPO), and CSF-1. In this study, we will review signaling pathways involved in microglial polarization and medications that influence this process.
Collapse
Affiliation(s)
| | | | | | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| |
Collapse
|
10
|
Role of Bevacizumab on Vascular Endothelial Growth Factor in Apolipoprotein E Deficient Mice after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23084162. [PMID: 35456980 PMCID: PMC9024601 DOI: 10.3390/ijms23084162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB). Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI and to be overexpressed in the absence of apolipoprotein E (ApoE). Bevacizumab, a VEGF inhibitor, demonstrated neuroprotective activity in several models of TBI. However, the effects of bevacizumab on Apo-E deficient mice are not well studied. The present study aimed to evaluate VEGF expression and the effects of bevacizumab on BBB and neuroinflammation in ApoE−/− mice undergoing TBI. Furthermore, for the first time, this study evaluates the effects of bevacizumab on the long-term consequences of TBI, such as atherosclerosis. The results showed that motor deficits induced by controlled cortical impact (CCI) were accompanied by increased brain edema and VEGF expression. Treatment with bevacizumab significantly improved motor deficits and significantly decreased VEGF levels, as well as brain edema compared to the control group. Furthermore, the results showed that bevacizumab preserves the integrity of the BBB and reduces the neuroinflammation induced by TBI. Regarding the effects of bevacizumab on atherosclerosis, it was observed for the first time that its ability to modulate VEGF in the acute phase of head injury prevents the acceleration of atherosclerosis. Therefore, the present study demonstrates not only the neuroprotective activity of bevacizumab but also its action on the vascular consequences related to TBI.
Collapse
|
11
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Hu J, Wang X, Chen X, Fang Y, Chen K, Peng W, Wang Z, Guo K, Tan X, Liang F, Lin L, Xiong Y. Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway. J Neuroinflammation 2022; 19:71. [PMID: 35346242 PMCID: PMC8961949 DOI: 10.1186/s12974-022-02430-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Background After traumatic brain injury (TBI), an acute, robust inflammatory cascade occurs that is characterized by the activation of resident cells such as microglia, the migration and recruitment of peripheral immune cells and the release of inflammatory mediators that induce secondary cell death and impede neurological recovery. In addition, neuroinflammation can alter blood–brain barrier (BBB) permeability. Controlling inflammatory responses is considered a promising therapeutic approach for TBI. Hydroxychloroquine (HCQ) has already been used clinically for decades, and it is still widely used to treat various autoimmune diseases. However, the effects of HCQ on inflammation and the potential mechanism after TBI remain to be defined. The aim of the current study was to elucidate whether HCQ could improve the neurological recovery of mice post-TBI by inhibiting the inflammatory response via the TLR4/NF-κB signaling pathway. Methods C57BL/6 mice were subjected to controlled cortical impact (CCI) and randomly divided into groups that received intraperitoneal HCQ or vehicle daily after TBI. TAK-242 (3.0 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h before TBI. Behavioral assessments were performed on days 1 and 3 post-TBI, and the gene expression levels of inflammatory cytokines were analyzed by qRT-PCR. The presence of infiltrated immune cells was examined by flow cytometry and immunostaining. In addition, BBB permeability, tight junction expression and brain edema were investigated. Results HCQ administration significantly ameliorated TBI-induced neurological deficits. HCQ alleviated neuroinflammation, the activation and accumulation of microglia and immune cell infiltration in the brain, attenuated BBB disruption and brain edema, and upregulated tight junction expression. Combined administration of HCQ and TAK-242 did not enhance the neuroprotective effects of HCQ. Conclusions HCQ reduced proinflammatory cytokine expression, and the underlying mechanism may involve suppressing the TLR4/NF-κB signaling pathway, suggesting that HCQ is a potential therapeutic agent for TBI treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02430-0.
Collapse
|
13
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Michinaga S, Onishi K, Shimizu K, Mizuguchi H, Hishinuma S. Pharmacological Inhibition of Transient Receptor Potential Vanilloid 4 Reduces Vasogenic Edema after Traumatic Brain Injury in Mice. Biol Pharm Bull 2021; 44:1759-1766. [PMID: 34719652 DOI: 10.1248/bpb.b21-00512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasogenic edema results from blood-brain barrier (BBB) disruption after traumatic brain injury (TBI), and although it can be fatal, no promising therapeutic drugs have been developed as yet. Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel that is sensitive to temperature and osmotic pressure. As TRPV4 is known to be responsible for various pathological conditions following brain injury, we investigated the effects of pharmacological TRPV4 antagonists on TBI-induced vasogenic edema in this study. A TBI model was established by inflicting fluid percussion injury (FPI) in the mouse cerebrum and cultured astrocytes. Vasogenic brain edema and BBB disruption were assessed based on brain water content and Evans blue (EB) extravasation into brain tissue, respectively. After FPI, brain water content and EB extravasation increased. Repeated intracerebroventricular administration of the specific TRPV4 antagonists HC-067047 and RN-1734 dose-dependently reduced brain water content and alleviated EB extravasation in FPI mice. Additionally, real-time PCR analysis indicated that administration of HC-067047 and RN-1734 reversed the FPI-induced increase in mRNA levels of endogenous causal factors for BBB disruption, including matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and endothelin-1 (ET-1). In astrocytes, TRPV4 level was observed to be higher than that in brain microvascular endothelial cells. Treatment with HC-067047 and RN-1734 inhibited the increase in mRNA levels of MMP-9, VEGF-A, and ET-1 in cultured astrocytes subjected to in vitro FPI. These results suggest that pharmacological inhibition of TRPV4 is expected to be a promising therapeutic strategy for treating TBI-induced vasogenic edema.
Collapse
Affiliation(s)
| | - Kazuya Onishi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University
| | - Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University
| | | |
Collapse
|
15
|
Yang GL, Wang S, Zhang S, Liu Y, Liu X, Wang D, Wei H, Xiong J, Zhang ZS, Wang Z, Li LY, Zhang J. A Protective Role of Tumor Necrosis Factor Superfamily-15 in Intracerebral Hemorrhage-Induced Secondary Brain Injury. ASN Neuro 2021; 13:17590914211038441. [PMID: 34596444 PMCID: PMC8642778 DOI: 10.1177/17590914211038441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Destabilization of blood vessels by the activities of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) following intracerebral hemorrhage (ICH) has been considered the main causes of aggravated secondary brain injury. Here, we show that tumor necrosis factor superfamily-15 (TNFSF15; also known as vascular endothelial growth inhibitor), an inhibitor of VEGF-induced vascular hyper-permeability, when overexpressed in transgenic mice, exhibits a neuroprotective function post-ICH. In this study, we set-up a collagenase-induced ICH model with TNFSF15-transgenic mice and their transgene-negative littermates. We observed less lesion volume and neural function perturbations, together with less severe secondary injuries in the acute phase that are associated with brain edema and inflammation, including vascular permeability, oxidative stress, microglia/macrophage activation and neutrophil infiltration, and neuron degeneration, in the TNFSF15 group compared with the littermate group. Additionally, we show that there is an inhibition of VEGF-induced elevation of MMP-9 in the perihematomal blood vessels of the TNFSF15 mice following ICH, concomitant with enhanced pericyte coverage of the perihematomal blood vessels. These findings are consistent with the view that TNFSF15 may have a potential as a therapeutic agent for the treatment of secondary injuries in the early phase of ICH.
Collapse
Affiliation(s)
- Gui-Li Yang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shizhao Wang
- 128790North China University of Science and Technology Affiliated Hospital, Tangshan, HeBei Province, China
| | - Shu Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ye Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianhua Xiong
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
16
|
Jiang H, Li H, Cao Y, Zhang R, Zhou L, Zhou Y, Zeng X, Wu J, Wu D, Wu D, Guo X, Li X, Wu H, Li P. Effects of cannabinoid (CBD) on blood brain barrier permeability after brain injury in rats. Brain Res 2021; 1768:147586. [PMID: 34289379 DOI: 10.1016/j.brainres.2021.147586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1β) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.
Collapse
Affiliation(s)
- Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China; Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ruilin Zhang
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Lei Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ying Zhou
- Department of Kunming Medical University Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China
| | - Xiaofeng Zeng
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Jia Wu
- Department of Morphology Laboratory, Kunming Medical University, Kunming 650500, China
| | - Douwei Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, Zibo 255213, Shandong, China
| | - Xiaobing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xiaowen Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
17
|
Ahmed CM, Patel AP, Ildefonso CJ, Johnson HM, Lewin AS. Corneal Application of R9-SOCS1-KIR Peptide Alleviates Endotoxin-Induced Uveitis. Transl Vis Sci Technol 2021; 10:25. [PMID: 34003962 PMCID: PMC7995917 DOI: 10.1167/tvst.10.3.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Uveitis is an ocular inflammation that can affect individuals of all ages and is a major cause of blindness. We have tested the therapeutic efficacy of a cell penetrating peptide from the kinase inhibitory region of suppressor of cytokine signaling 1, denoted as R9-SOCS1-KIR. Methods We stimulated J774A.1 cells with lipopolysaccharide (LPS) in the presence of R9-SOCS1-KIR or its inactive control peptide. Effect on inflammatory pathways was followed by the nuclear translocation of nuclear factor κB p65 subunit and phosphorylated-p38. Synthesis of inflammatory markers induced by LPS was tested by reverse transcriptase polymerase chain reaction, Western blot analysis, and ELISA of cell supernatants. We monitored effects on the barrier properties of a differentiated ARPE-19 monolayer treated with LPS. We treated C57BL/6 mice topically with either R9-SOCS1-KIR or vehicle and injected their eyes intravitreally with LPS. Eyes were analyzed by fundoscopy, fluorescein angiography, optical coherence tomography, histology, Western blotting, multiplex enzyme-linked immunosorbent assay, and flow cytometry. Results Treatment with R9-SOCS1-KIR resulted in suppression of signaling through nuclear factor κB and p-p38 pathways. R9-SOCS1-KIR suppressed the expression of inflammatory genes, the secretion of inflammatory makers such as nitric oxide, and IL-1β induced by LPS. Increased permeability of retinal pigment epithelial cell monolayers was prevented. Corneal administration of R9-SOCS1-KIR blocked the acute inflammation observed in LPS-injected mouse eyes. Conclusions Treatment with R9-SOCS1-KIR alleviated the inflammatory responses in cell culture. Topical delivery of this peptide on mouse eyes protected against LPS-induced damage. Translational Relevance Topical delivery of R9-SOCS1-KIR peptide allows the patient to self-administer the drug, while preventing any systemic effects on unrelated organs.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | | | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Michinaga S, Koyama Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22126418. [PMID: 34203960 PMCID: PMC8232783 DOI: 10.3390/ijms22126418] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
19
|
Baker TL, Agoston DV, Brady RD, Major B, McDonald SJ, Mychasiuk R, Wright DK, Yamakawa GR, Sun M, Shultz SR. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2021; 28:594-612. [PMID: 33966527 DOI: 10.1177/10738584211012264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Michinaga S, Inoue A, Sonoda K, Mizuguchi H, Koyama Y. Down-regulation of astrocytic sonic hedgehog by activation of endothelin ET B receptors: Involvement in traumatic brain injury-induced disruption of blood brain barrier in a mouse model. Neurochem Int 2021; 146:105042. [PMID: 33838160 DOI: 10.1016/j.neuint.2021.105042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
In the adult brain, sonic hedgehog acts on cerebral microvascular endothelial cells to stabilize the blood-brain barrier. The expression of sonic hedgehog by astrocytes is altered during brain injury, and this change has been shown to affect permeability of blood-brain barrier. However, much remains unknown about the regulation of astrocytic sonic hedgehog production. Our results showed that endothelin-1 reduced sonic hedgehog mRNA expression and extracellular protein release in mouse cerebral cultured astrocytes, but had no effect in bEnd.3, a mouse brain microvascular endothelial-derived cell line. The effect of endothelin-1 on astrocyte sonic hedgehog expression was suppressed by an ETB antagonist BQ788, but was unchanged by the ETA antagonist FR139317. In cultured astrocytes and bEnd.3, endothelin-1 did not affect the expression of the sonic hedgehog receptor-related molecules, patched-1 and smoothened. In an animal model of traumatic brain injury, fluid percussion injury on the mouse cerebrum increased the expression of sonic hedgehog, patched-1, and smoothened. Repeated administration of BQ788 enhanced sonic hedgehog expression at 5 days after fluid percussion injury. Histochemical examination revealed sonic hedgehog expression in glial fibrillary acidic protein-positive astrocytes in the cerebrum after fluid percussion injury. Administration of exogenous sonic hedgehog and BQ788 suppressed Evans blue extravasation, an indicator of blood vessel permeability, induced by fluid percussion injury. The effects of BQ788 on fluid percussion injury-induced Evans blue extravasation were reduced by the administration of jervine, a sonic hedgehog inhibitor. Altogether, these results suggest that endothelin-1 down-regulates astrocytic sonic hedgehog to promote disruption of the blood-brain barrier during traumatic brain injury.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Kyomi Sonoda
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita, Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
21
|
Zhong J, Yu R, Zhou Q, Liu P, Liu Z, Bian Y. Naringenin prevents TNF-α-induced gut-vascular barrier disruption associated with inhibiting the NF-κB-mediated MLCK/p-MLC and NLRP3 pathways. Food Funct 2021; 12:2715-2725. [PMID: 33667286 DOI: 10.1039/d1fo00155h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvasculature endothelium accurately regulates the passage of molecules across the gut-vascular barrier (GVB), which plays an essential role in intestinal immunity. Naringenin is reported to have therapeutic potential against several intestinal disorders. However, the effect of naringenin on GVB disruption has been rarely studied. This study aims to investigate the effect of naringenin on GVB function and the potential mechanism. In the present study, the in vitro GVB disruption of rat intestinal microvascular endothelial cells (RIMVEC) was induced by 50 ng mL-1 of tumor necrosis factor-α (TNF-α). The integrity of the in vitro GVB was determined by Evans blue (EB)-albumin efflux assay and trans-endothelial electrical resistance (TER). Meanwhile, the expression of tight junction proteins and the related NF-κB, MLCK/p-MLC and NLRP3 pathways were determined using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence. The results show that naringenin (100 μM) inhibits TNF-α-induced interleukin (IL)-6 hypersecretion, alleviates GVB disruption and mitigates the change in the tight junction protein expression pattern. Naringenin inhibits the GVB-disruption-associated activation of the MLCK/p-MLC system and TLR4/NF-κB/NLRP3 pathways. Furthermore, naringenin shows a similar effect to that of NF-κB inhibitor Bay 11-7082 in reducing the TNF-α-induced activation of NLRP3, p-MLC and secondary GVB disruption. The results suggest that naringenin evidently alleviates TNF-α-induced in vitro GVB disruption via the maintenance of a tight junction protein pattern, partly with the inhibition of the NF-κB-mediated MLCK/p-MLC and NLRP3 pathway activation.
Collapse
Affiliation(s)
- Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| | | | | | | | | | | |
Collapse
|
22
|
Liu T, Liao XZ, Zhou MT. Ulinastatin alleviates traumatic brain injury by reducing endothelin-1. Transl Neurosci 2021; 12:1-8. [PMID: 33505713 PMCID: PMC7788573 DOI: 10.1515/tnsci-2021-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.
Collapse
Affiliation(s)
- Ting Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Zhi Liao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mai-Tao Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Quinpirole-Mediated Regulation of Dopamine D2 Receptors Inhibits Glial Cell-Induced Neuroinflammation in Cortex and Striatum after Brain Injury. Biomedicines 2021; 9:biomedicines9010047. [PMID: 33430188 PMCID: PMC7825629 DOI: 10.3390/biomedicines9010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-β) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood–brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpirole reversed the microglial condition media complex-mediated deleterious effects and regulated D2R levels in HT22 cells. This study showed that quinpirole administration after TBI reduced secondary brain injury-induced glial cell activation and neuroinflammation via regulation of the D2R/Akt/GSK3-β signaling pathways. Our study suggests that quinpirole may be a safe therapeutic agent against TBI-induced neurodegeneration.
Collapse
|
24
|
Zhang J, Wang RJ, Chen M, Liu XY, Ma K, Xu HY, Deng WS, Ye YC, Li WX, Chen XY, Sun HT. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury. Neural Regen Res 2021; 16:1068-1077. [PMID: 33269752 PMCID: PMC8224125 DOI: 10.4103/1673-5374.300458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site, resulting in poor adhesion and proliferation of neural stem cells at the injured area. To enhance the targeted delivery of exogenous stem cells to the injury site, cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury. Collagen/heparan sulfate porous scaffolds, prepared using a freeze-drying method, have stable physical and chemical properties. These scaffolds also have good cell biocompatibility because of their high porosity, which is suitable for the proliferation and migration of neural stem cells. In the present study, collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury, which was established using the controlled cortical impact method. At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells, there was significantly improved regeneration of neurons, nerve fibers, synapses, and myelin sheaths in the injured brain tissue. Furthermore, brain edema and cell apoptosis were significantly reduced, and rat motor and cognitive functions were markedly recovered. These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury. This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force, China (approval No. 2017-0007.2) on February 10, 2019.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Ren-Jie Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Miao Chen
- Graduate School, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Yin Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Hui-You Xu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wu-Sheng Deng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wei-Xin Li
- Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
25
|
Xiong J, Gao Y, Li X, Li K, Li Q, Shen J, Han Z, Zhang J. Losartan Treatment Could Improve the Outcome of TBI Mice. Front Neurol 2020; 11:992. [PMID: 33178092 PMCID: PMC7593661 DOI: 10.3389/fneur.2020.00992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury frequently leads to serious mortality and physical disability, yet effective treatments remains insufficient. TBI always leads to a series of secondary brain injuries including neuronal apoptosis, continuous inflammation, endoplasmic reticulum stress, and disruption of the blood-brain barrier. Sartans that block angiotensin II type 1 receptors are strongly neuroprotective, neurorestorative and anti-inflammatory. However, whether losartan, a FDA-approved and widely used drug for regulating blood pressure, is beneficial for improving the prognosis of TBI need more evidence. Through a controlled cortical impact injury mice model, we confirmed that losartan treatment could ameliorate CCI-induced secondary brain injury. We found that losartan treatment decreased brain lesion volume, neuronal apoptosis and ER stress protein ATF4 and eIF2α. Moreover, our results showed that losartan also improved neurological and motor function. It is worth pointing out that losartan increased the expression of tight junction proteins ZO-1 and alleviated brain edema and blood brain barrier leakage. Additionally, losartan inhibited pro-inflammatory factor TNF-α and improve anti-inflammatory factor IL-10. Taken together, our data demonstrated that losartan could improve the prognosis of TBI and may be a promising therapeutic method for mitigating TBI.
Collapse
Affiliation(s)
- Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qifeng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Shen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenying Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Xiong R, Zhou XG, Tang Y, Wu JM, Sun YS, Teng JF, Pan R, Law BYK, Zhao Y, Qiu WQ, Wang XL, Liu S, Wang YL, Yu L, Yu CL, Mei QB, Qin DL, Wu AG. Lychee seed polyphenol protects the blood-brain barrier through inhibiting Aβ(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice. Phytother Res 2020; 35:954-973. [PMID: 32893437 DOI: 10.1002/ptr.6849] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/15/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aβ(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1β, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aβ(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1β, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aβ(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.
Collapse
Affiliation(s)
- Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yue-Shan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jin-Feng Teng
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Rong Pan
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ya Zhao
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Wen-Qiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Xiu-Ling Wang
- Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sha Liu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Yi-Ling Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi-Bing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
VEGI Improves Outcomes in the Early Phase of Experimental Traumatic Brain Injury. Neuroscience 2020; 438:60-69. [PMID: 32380270 DOI: 10.1016/j.neuroscience.2020.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Excessive expression of vascular endothelial growth factor (VEGF) is a common cause of blood-brain barrier (BBB) breakdown that triggers severe complications following traumatic brain injury (TBI). It has been shown that inhibition of VEGF activities may attenuate cerebral edema in pathological conditions. Vascular endothelial growth inhibitor (VEGI; also known as TNFSF15), a cytokine produced largely by vascular endothelial cells, is capable of downregulating VEGF expression and inhibiting VEGF receptor-2 (VEGFR2) activation. In this study we found that TBI can cause breakdown of BBB and sharp increases of VEGF/VEGI and Angpt2/Angpt1 ratios in the injured tissues. VEGI treatment resulted in a marked decrease of BBB permeability and concomitant restoration of normal ratios of VEGF/VEGI and Angpt2/Angpt1. Consistently, alleviated edema, decreased neuron cell death, and improved neurological functions were observed when the experimental animals were treated with VEGI in the early phase of TBI. Our findings suggest that administration of VEGI recombinant protein at early phases of TBI is beneficial to stabilization of the disease conditions.
Collapse
|
28
|
Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y. Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology 2020; 175:108182. [PMID: 32561219 DOI: 10.1016/j.neuropharm.2020.108182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is induced by the immediate physical disruption of brain tissue. TBI causes disruption of the blood-brain barrier (BBB) and brain edema. In the cerebrospinal fluid (CSF) of TBI patients, endothelin-1 (ET-1) is increased, suggesting that ET-1 aggravates TBI-induced brain damage. In this study, the effect of bosentan (ETA/ETB antagonist) and ambrisentan (ETA antagonist) on BBB dysfunction and brain edema were examined in a mouse model of TBI using lateral fluid percussion injury (FPI). FPI to the mouse cerebrum increased the expression levels of ET-1 and ETB receptors. Administration of bosentan (3 or 15 mg/kg/day) and ambrisentan (0.1 or 0.5 mg/kg/day) at 6 and 24 h after FPI ameliorated BBB disruption and cerebral brain edema. Delayed administration of bosentan from 2 days after FPI also reduced BBB disruption and brain edema, while ambrisentan had no significant effects. FPI-induced expression levels of ET-1 and ETB receptors were reduced by bosentan, but not by ambrisentan. In cultured mouse astrocytes and brain microvessel endothelial cells, ET-1 (100 nM) increased prepro--ET-1 mRNA, which was inhibited by bosentan, but not by ambrisentan. FPI-induced alterations of the expression levels of matrix metalloproteinase-9, vascular endothelial growth factor-A, and angiopoietin-1 in the mouse cerebrum were reduced by delayed administration of bosentan, while ambrisentan had no significant effects. These results suggest that ET antagonists are effective in improving BBB disruption and cerebral edema in TBI patients and that an ETA/ETB non-selective type of antagonists is more effective.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hayato Yamamoto
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ryotaro Ryu
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
29
|
Zhang B, Gao Y, Li Q, Sun D, Dong X, Li X, Xin W, Zhang J. Effects of Brain-Derived Mitochondria on the Function of Neuron and Vascular Endothelial Cell After Traumatic Brain Injury. World Neurosurg 2020; 138:e1-e9. [DOI: 10.1016/j.wneu.2019.11.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
30
|
VX765 Attenuates Pyroptosis and HMGB1/TLR4/NF- κB Pathways to Improve Functional Outcomes in TBI Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7879629. [PMID: 32377306 PMCID: PMC7181015 DOI: 10.1155/2020/7879629] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
Background Traumatic brain injury (TBI) refers to temporary or permanent damage to brain function caused by penetrating objects or blunt force trauma. TBI activates inflammasome-mediated pathways and other cell death pathways to remove inactive and damaged cells, however, they are also harmful to the central nervous system. The newly discovered cell death pattern termed pyroptosis has become an area of interest. It mainly relies on caspase-1-mediated pathways, leading to cell death. Methods Our research focus is VX765, a known caspase-1 inhibitor which may offer neuroprotection after the process of TBI. We established a controlled cortical impact (CCI) mouse model and then controlled the degree of pyroptosis in TBI with VX765. The effects of caspase-1 inhibition on inflammatory response, pyroptosis, blood-brain barrier (BBB), apoptosis, and microglia activation, in addition to neurological deficits, were investigated. Results We found that TBI led to NOD-like receptors (NLRs) as well as absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the damaged cerebral cortex. VX765 curbed the expressions of indispensable inflammatory subunits (caspase-1 as well as key downstream proinflammatory cytokines such as interleukin- (IL-) 1β and IL-18). It also inhibited gasdermin D (GSDMD) cleavage and apoptosis-associated spot-like protein (ASC) oligomerization in the injured cortex. In addition to the above, VX765 also inhibited the inflammatory activity of the high-mobility cassette -1/Toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-kappa B) pathway. By inhibiting pyroptosis and inflammatory mediator expression, we demonstrated that VX765 can decrease blood-brain barrier (BBB) leakage, apoptosis, and microglia polarization to exhibit its neuroprotective effects. Conclusion In conclusion, VX765 can counteract neurological damage after TBI by reducing pyroptosis and HMGB1/TLR4/NF-κB pathway activities. VX765 may have a good therapeutic effect on TBI.
Collapse
|
31
|
Zhu Z, Chuckowree JA, Musgrove R, Dickson TC, Blizzard CA. The pathologic outcomes and efficacy of epothilone treatment following traumatic brain injury is determined by age. Neurobiol Aging 2020; 93:85-96. [PMID: 32480164 DOI: 10.1016/j.neurobiolaging.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) can affect individuals at any age, with the potential of causing lasting neurologic consequences. The lack of effective therapeutic solutions and recommendations for patients that acquire a TBI can be attributed, at least in part, to an inability to confidently predict long-term outcomes following TBI, and how the response of the brain differs across the life span. The purpose of this study was to determine how age specifically affects TBI outcomes in a preclinical model. Male Thy1-YFPH mice, that express yellow fluorescent protein in the cytosol of a subset of Layer V pyramidal neurons in the neocortex, were subjected to a lateral fluid percussion injury over the right parietal cortex at distinct time points throughout the life span (1.5, 3, and 12 months of age). We found that the degree of neuronal injury, astrogliosis, and microglial activation differed depending on the age of the animal when the injury occurred. Furthermore, age affected the initial injury response and how it resolved over time. Using the microtubule stabilizing agent Epothilone D, to potentially protect against these pathologic outcomes, we found that the neuronal response was different depending on age. This study clearly shows that age must be taken into account in neurologic studies and preclinical trials involving TBI, and that future therapeutic interventions must be tailored to age.
Collapse
Affiliation(s)
- Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
32
|
Ahmed CM, Ildefonso CJ, Johnson HM, Lewin AS. A C-terminal peptide from type I interferon protects the retina in a mouse model of autoimmune uveitis. PLoS One 2020; 15:e0227524. [PMID: 32101556 PMCID: PMC7043762 DOI: 10.1371/journal.pone.0227524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/04/2020] [Indexed: 01/26/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) in rodents recapitulates many features of the disease in humans and has served as a useful tool for the development of therapeutics. A peptide from C-terminus of interferon α1, conjugated to palmitoyl-lysine for cell penetration, denoted as IFNα-C, was tested for its anti-inflammatory properties in ARPE-19 cells, followed by testing in a mouse model of EAU. Treatment with IFNα-C and evaluation by RT-qPCR showed the induction of anti-inflammatory cytokines and chemokine. Inflammatory markers induced by treatment with TNFα were suppressed when IFNα-C was simultaneously present. TNF-α mediated induction of NF-κB and signaling by IL-17A were attenuated by IFNα-C. Differentiated ARPE-19 cells were treated with TNFα in the presence or absence IFNα-C and analyzed by immmunhistochemistry. IFNα-C protected against the disruption integrity of tight junction proteins. Similarly, loss of transepithelial resistance caused by TNFα was prevented by IFNα-C. B10.RIII mice were immunized with a peptide from interphotoreceptor binding protein (IRBP) and treated by gavage with IFNα-C. Development of uveitis was monitored by histology, fundoscopy, SD-OCT, and ERG. Treatment with IFNα-C prevented uveitis in mice immunized with the IRBP peptide. Splenocytes isolated from mice with ongoing EAU exhibited antigen-specific T cell proliferation that was inhibited in the presence of IFNα-C. IFNα-C peptide exhibits anti-inflammatory properties and protects mice against damage to retinal structure and function suggesting that it has therapeutic potential for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
33
|
Lu M, Yan XF, Si Y, Chen XZ. CTGF Triggers Rat Astrocyte Activation and Astrocyte-Mediated Inflammatory Response in Culture Conditions. Inflammation 2020; 42:1693-1704. [PMID: 31183597 PMCID: PMC6717176 DOI: 10.1007/s10753-019-01029-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To improve clinical outcomes for patients with traumatic brain injury (TBI), it is necessary to explore the mechanism of traumatic brain injury (TBI)-induced neuroinflammation. Connective tissue growth factors (CTGF) have been reported to be involved in the process of inflammatory response or tissue repair, whereas whether and how CTGF participates in the astrocyte-mediated inflammation after TBI remains unclear. In the present study, the TBI-induced activation of astrocytes and augmentation of inflammatory response were simulated by stimulating rat astrocytes with TGF-β1 or CTGF in cultured conditions. TGF-β1 and CTGF both upregulated the expression of GFAP in astrocytes and facilitated the production of inflammatory cytokines and chemokines. Activation of astrocytes by CTGF is in an autocrine manner. According to the results of Boyden chamber assay, CTGF enhanced the recruitment of peripheral blood mononuclear cells (PBMCs) by reactive astrocytes. Besides, CTGF-mediated activation of astrocytes and augmentation of inflammatory response can be terminated by the inhibitor of ASK1 or p38 and JNK. Thus, our data suggested that CTGF could activate astrocytes in an autocrine manner and promote astrocyte-mediated inflammatory response by triggering the ASK1-p38/JNK-NF-κB/AP-1 pathways in astrocytes. Collectively, our study provided evidence that astrocyte-secreted CTGF serves as an amplifier of neuroinflammatory and could be a potential target for alleviating TBI-induced inflammation.
Collapse
Affiliation(s)
- Ming Lu
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xiao-Feng Yan
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China.
| | - Yun Si
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xin-Zhi Chen
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| |
Collapse
|
34
|
Wang T, Li J, Xie R, Wang J, Zhang W, Jiang F, Du M, Wang X, Huang B, Brant R, Zhang C, Yan H. Intraocular tumour necrosis factor ligand related molecule 1 A links disease progression of proliferative diabetic retinopathy after primary vitrectomy. Clin Exp Pharmacol Physiol 2020; 47:966-976. [PMID: 32064668 DOI: 10.1111/1440-1681.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 11/30/2022]
Abstract
Tumour necrosis factor ligand related molecule 1 A (TL1A), a member of tumour necrosis factor superfamily, has been identified as a crucial regulator for vascular homeostasis and inflammation. However, the function of TL1A in diabetic retinopathy (DR) is largely unknown. This study aims to examine levels of TL1A in serum and intraocular fluid in patients with proliferative diabetic retinopathy (PDR), and to explore the correlation of intraocular TL1A with the prognosis of PDR progression after primary vitrectomy. Seventy-five patients (75 eyes) with PDR who underwent pars plana vitrectomy (PPV) and 19 patients (19 eyes) who received vitrectomy for idiopathic macular holes (IMH) as non-diabetic control group were enrolled in this prospective study. Serum, aqueous and vitreous fluid samples were collected during cataract and PPV surgery. Protein expressions of TL1A as well as other angiogenic and inflammatory cytokines in serum and intraocular fluid were measured. Correlations of intraocular TL1A concentrations with inflammatory cytokines were analyzed. We found both aqueous and vitreous TL1A levels were significantly higher in the PDR group than in control group (Paqueous = 0.026; Pvitreous <0.001). Angiogenic and inflammatory cytokines such as VEGF, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β were significantly higher in intraocular fluid in PDR group than in controls, which MCP-1 and MIP-1α showed positive correlation with intraocular TL1A levels. There is no significant difference in the levels of serum TL1A as well as other inflammatory cytokines between PDR patients and controls. Intraocular levels of TL1A were significantly lower in PDR progression group than in the stable group (Paqueous <0.001; Pvitreous <0.001). Multivariate logistic regression analyses revealed that lower levels of intraocular TL1A was an important risk factor for predicting PDR progression after primary PPV (ORaqueous = 0.717, Paqueous = 0.001; ORvitreous = 0.684; Pvitreous = 0.002). In conclusion, TL1A and multiple inflammatory cytokines were highly enriched in the intraocular fluid of PDR patients compared with the controls. Lower levels of intraocular TL1A were associated with development of PDR complications after primary PPV and might be used as prognostic factor in predicting the vitrectomy outcome in PDR patients.
Collapse
Affiliation(s)
- Tian Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianan Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruotian Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Huang
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rodrigo Brant
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Cheng Zhang
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
35
|
Michinaga S, Tanabe A, Nakaya R, Fukutome C, Inoue A, Iwane A, Minato Y, Tujiuchi Y, Miyake D, Mizuguchi H, Koyama Y. Angiopoietin-1/Tie-2 signal after focal traumatic brain injury is potentiated by BQ788, an ET B receptor antagonist, in the mouse cerebrum: Involvement in recovery of blood-brain barrier function. J Neurochem 2020; 154:330-348. [PMID: 31957020 DOI: 10.1111/jnc.14957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
Angiopoietin-1, an angiogenic factor, stabilizes brain microvessels through Tie-2 receptor tyrosine kinase. In traumatic brain injury, blood-brain barrier (BBB) disruption is an aggravating factor that induces brain edema and neuroinflammation. We previously showed that BQ788, an endothelin ETB receptor antagonist, promoted recovery of BBB function after lateral fluid percussion injury (FPI) in mice. To clarify the mechanisms underlying BBB recovery mediated by BQ788, we examined the involvements of the angiopoietin-1/Tie-2 signal. When angiopoietin-1 production and Tie-2 phosphorylation were assayed by quantitative reverse transcription polymerase chain reaction and western blotting, increased angiopoietin-1 production and Tie-2 phosphorylation were observed in 7-10 days after FPI in the mouse cerebrum, whereas no significant effects were obtained at 5 days. When BQ788 (15 nmol/day, i.c.v.) were administered in 2-5 days after FPI, increased angiopoietin-1 production and Tie-2 phosphorylation were observed. Immunohistochemical observations showed that brain microvessels and astrocytes contained angiopoietin-1 after FPI, and brain microvessels also contained phosphorylated Tie-2. Treatment with endothelin-1 (100 nM) decreased angiopoietin-1 production in cultured astrocytes and the effect was inhibited by BQ788 (1 μM). Five days after FPI, increased extravasation of Evans blue dye accompanied by reduction in claudin-5, occludin, and zonula occludens-1 proteins were observed in mouse cerebrum while these effects of FPI were reduced by BQ788 and exogenous angiopoietin-1 (1 μg/day, i.c.v.). The effects of BQ788 were inhibited by co-administration of a Tie-2 kinase inhibitor (40 nmol/day, i.c.v.). These results suggest that BQ788 administration after traumatic brain injury promotes recovery of BBB function through activation of the angiopoietin-1/Tie-2 signal.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ayami Tanabe
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ryusei Nakaya
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Chihiro Fukutome
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Aya Iwane
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yukiko Minato
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yu Tujiuchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Daisuke Miyake
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
36
|
Li TT, Yang WC, Wang YZ, Sun T, Cao HL, Chen JF, Li WZ. Effects of a high concentration of hydrogen on neurological function after traumatic brain injury in diabetic rats. Brain Res 2020; 1730:146651. [PMID: 31926128 DOI: 10.1016/j.brainres.2020.146651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species, inflammation, and apoptosis are major contributors to secondary injuries that follow traumatic brain injury (TBI) in diabetic patients. Hydrogen (H2) can selectively neutralize reactive oxygen species and downregulate inflammatory and apoptotic factors. Therefore, we investigated the effects of inhaled high and low concentrations of hydrogen on neurological function after TBI in diabetic rats and the potential mechanism. We found that the inhalation of high concentrations of H2 significantly improved outcomes following TBI in diabetic rats. The inhalation of 42% H2 for one hour per day for 48 h significantly reduced brain edema, decreased the extravasation of sodium fluorescein, and reduced oxidative stress markers (p < 0.05). In addition, the inhalation of a high concentration of H2 (42% for one hour per day for 7 days) improved neurological deficits (p < 0.05) and reduced the expression of apoptotic protein markers (p < 0.05). However, the inhalation of 3% H2 did not yield significant effects. These results showed that the inhalation of 42% H2 can alleviate nerve damage and improve neurological function after TBI in diabetic rats. Therefore, the inhalation of a high concentration of H2 may be associated with the treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China.
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Tian Sun
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Jian-Feng Chen
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China.
| |
Collapse
|
37
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
38
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
39
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
40
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
41
|
Disruption of endothelial barrier function is linked with hyposecretion and lymphocytic infiltration in salivary glands of Sjögren's syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3154-3163. [DOI: 10.1016/j.bbadis.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/17/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022]
|
42
|
Wu Y, Liu W, Zhou Y, Hilton T, Zhao Z, Liu W, Wang M, Yeon J, Houck K, Thiagarajan P, Zhang F, Shi FD, Wu X, Li M, Dong JF, Zhang J. von Willebrand factor enhances microvesicle-induced vascular leakage and coagulopathy in mice with traumatic brain injury. Blood 2018; 132:1075-1084. [PMID: 29941674 PMCID: PMC6128082 DOI: 10.1182/blood-2018-03-841932] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive ligand, and its activity is proteolytically regulated by the metalloprotease ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat 13). An elevated level of plasma VWF has been widely considered a marker for endothelial cell activation in trauma and inflammation, but its causal role in these pathological conditions remains poorly defined. Using a fluid percussion injury mouse model, we demonstrated that VWF released during acute traumatic brain injury (TBI) was activated and became microvesicle-bound. The VWF-bound microvesicles promoted vascular leakage and systemic coagulation. Recombinant ADAMTS-13 given either before or after TBI reduced the VWF reactivity with minimal influence on VWF secretion. rADAMTS-13 protected the integrity of endothelial cell barriers and prevented TBI-induced coagulopathy by enhancing VWF cleavage without impairing basal hemostasis. Promoting microvesicle clearance by lactadherin had efficacy similar to that of rADAMTS-13. This study uncovers a novel synergistic action between VWF and cellular microvesicles in TBI-induced vascular leakage and coagulopathy and demonstrates protective effects of rADAMTS-13.
Collapse
Affiliation(s)
- Yingang Wu
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin, China
- Bloodworks Research Institute, Seattle, WA
| | - Wei Liu
- Institute of Pathology, School of Medical Sciences, and
- Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin, China
| | | | - Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Liu
- Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Institute of Neurology, Tianjin, China
| | - Min Wang
- Institute of Pathology, School of Medical Sciences, and
- Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| | - Jason Yeon
- Bloodworks Research Institute, Seattle, WA
| | | | - Perumal Thiagarajan
- Department of Medicine and
- Department of Pathology, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Fangyi Zhang
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, WA
| | - Fu-Dong Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital, Phoenix, AZ; and
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Xiaoping Wu
- Institute of Pathology, School of Medical Sciences, and
| | - Min Li
- Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
- Department of Neurology, Tianjin Institute of Neurology, Tianjin, China
| | - Jing-Fei Dong
- Institute of Pathology, School of Medical Sciences, and
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin, China
- Bloodworks Research Institute, Seattle, WA
| |
Collapse
|
43
|
Xu X, Yin D, Ren H, Gao W, Li F, Sun D, Wu Y, Zhou S, Lyu L, Yang M, Xiong J, Han L, Jiang R, Zhang J. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol Dis 2018; 117:15-27. [DOI: 10.1016/j.nbd.2018.05.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
|
44
|
Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduct Target Ther 2018; 3:21. [PMID: 30101034 PMCID: PMC6085396 DOI: 10.1038/s41392-018-0023-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, −2, and −3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth. These signaling pathways are counterbalanced or, in the case of VEGFR3, augmented by signals induced by tumor necrosis factor superfamily-15 (TNFSF15). TNFSF15 can simultaneously downregulate membrane-bound VEGFR1 and upregulate soluble VEGFR1, thus changing VEGF/VEGFR1 signals from pro-angiogenic to anti-angiogenic. In addition, TNFSF15 inhibits VEGF-induced VEGFR2 phosphorylation, thereby curbing VEGFR2-mediated enhancement of vascular permeability. Third, and perhaps more interestingly, TNFSF15 is capable of stimulating VEGFR3 gene expression in lymphatic endothelial cells, thus augmenting VEGF-C/D-VEGFR3-facilitated lymphangiogenesis. We discuss the intertwining relationship between the actions of TNFSF15 and VEGF in this review. The ability of tumor necrosis factor superfamily-15 (TNFSF15) protein to balance the actions of vascular endothelial growth factors (VEGFs) highlights new therapeutic strategies for the treatment of diseases that disrupt the circulatory system. Gui-Li Yang at the Tianjin Neurological Institute and Lu-Yuan Li at Nankai University describe the mechanisms through which TNFSF15 inhibits blood vessel growth mediated by VEGF receptor-1 (VEGFR1) and counterbalances the increase in vascular permeability mediated by VEGFR2. Interestingly, TNFSF15 enhances the effects of VEGFR3 on the formation of lymphatic vessels by promoting VEGFR3 gene expression in lymphatic endothelial cells. Further research will determine whether TNFSF15′s unique capacity to regulate the properties of both blood and lymph vessels can be harnessed to improve the treatment of conditions such as cancer, stroke, myocardial infarction and lymphoedema.
Collapse
|
45
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
46
|
Shi H, Hua X, Kong D, Stein D, Hua F. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology 2018; 145:259-267. [PMID: 30075158 DOI: 10.1016/j.neuropharm.2018.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying secondary brain damage following traumatic brain injury (TBI) remain unclear. A great many studies have demonstrated that inflammatory cascades contribute to brain damage through the activation of immune/inflammatory responses, including the increased release of cytokines and chemokines, and the recruitment of leukocytes. The cells and tissues damaged by primary mechanical injury release a number of endogenous factors acting as damage-associated molecular patterns (DAMPs), which initiate and perpetuate noninfectious inflammatory responses through transduction signaling pathways. Toll-like receptors (TLRs) are a transmembrane receptor family that can recognize the specific DAMPs released from damaged cells and recruit a set of adaptors leading to the activation of downstream kinases and nuclear factors which regulate the expression of inflammatory genes. The activation of inflammatory responses mediated by TLR signaling is closely associated with brain tissue damage and neurological dysfunction following TBI. TLRs and their downstream protein kinases may be potential targets for the treatment of TBI. Modulation of TLR-mediated signaling may attenuate brain damage and improve TBI outcome. In this review, we briefly discuss the role of TLR-mediated signaling in TBI and the new treatments targeting TLR signaling. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Hongjuan Shi
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xiaodong Hua
- Augusta University/University of Georgia Medical Partnership, Athens, GA, 30606, USA; Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Delian Kong
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Donald Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, 30032, USA
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Key Laboratory of Anesthesiology of Jiangsu Province, Xuzhou, 221002, China.
| |
Collapse
|
47
|
Ahmed CM, Massengill MT, Brown EE, Ildefonso CJ, Johnson HM, Lewin AS. A cell penetrating peptide from SOCS-1 prevents ocular damage in experimental autoimmune uveitis. Exp Eye Res 2018; 177:12-22. [PMID: 30048621 DOI: 10.1016/j.exer.2018.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
We describe an immunosuppressive peptide corresponding to the kinase inhibitory region (KIR) of the intracellular checkpoint protein suppressor of cytokine signaling 1 (SOCS-1) that binds to the phospho-tyrosine containing regions of the tyrosine kinases JAK2 and TYK2 and the adaptor protein MAL, and thereby inhibits signaling downstream from these signaling mediators. The peptide, SOCS1-KIR, is thus capable of downregulating overactive JAK/STAT or NF-kB signaling in somatic cells, including those in many compartments of the eye. Attachment of poly-arginine to this peptide (R9-SOCS1-KIR) allows it to penetrate the plasma membrane in aqueous media. R9-SOCS1-KIR was tested in ARPE-19 cells and was found to attenuate mediators of inflammation by blocking the inflammatory effects of IFNγ, TNFα, or IL-17A. R9-SOCS1-KIR and also protected against TNFα or IL-17A mediated damage to the barrier properties of ARPE-19 cells, as evidenced by immunostaining with the tight junction protein, zona occludin 1 (ZO-1), and measurement of transepithelial electrical resistance (TEER). Experimental autoimmune uveitis (EAU) was generated in B10. RIII mice using a peptide of interphotoreceptor retinal binding protein (IRBP161-180) as immunogen. Topical administration of R9-SOCS1-KIR, 2 days before (prophylactic), or 7 days after immunization (therapeutic) protected ocular structure and function as seen by fundoscopy, optical coherence tomography (OCT), and electroretinography (ERG). The ability R9-SOCS1-KIR to suppress ocular inflammation and preserve barrier properties of retinal pigment epithelium makes it a potential candidate for treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | - Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | - Emily E Brown
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | | | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA.
| |
Collapse
|
48
|
Gao W, Li F, Liu L, Xu X, Zhang B, Wu Y, Yin D, Zhou S, Sun D, Huang Y, Zhang J. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol 2018; 307:99-108. [PMID: 29883579 DOI: 10.1016/j.expneurol.2018.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) tends to cause disruption of the blood-brain barrier (BBB). Previous studies have shown that intravenously or intracerebroventricularly infused human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) can home to injury sites and improve outcomes in mice subjected to experimental TBI. Several reports have demonstrated that these cells did not incorporate directly into newly formed vasculature but instead stimulated the proliferation and migration of tissue-resident endothelial cells (ECs) via paracrine mechanisms. In the present study, exosomes, which range from 30 to 150 nm in diameter, were isolated from ECFC-conditioned medium. The exosomes were labeled with PKH67 ex vivo, and we observed that they were taken up by ECs with high efficiency after 12 h of incubation. Pretreatment with ECFC-derived exosomes promoted the migration of ECs subjected to scratch injury, and incubating ECs exposed to hypoxia with ECFC-derived exosomes decreased PTEN expression, stimulated AKT phosphorylation and increased tight junction (TJ) protein expression in the cells. Furthermore, in vivo delivery of ECFC-derived exosomes into TBI mice also inhibited PTEN expression and increased AKT expression, changes accompanied by reductions in Evans blue (EB) dye extravasation, brain edema and TJ degradation. These data demonstrated that ECFC-derived exosomes have beneficial effects on BBB integrity in mice with TBI.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, China
| | - Fei Li
- Department of Neurosurgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Xin Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Baoliang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Yingang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Dongpei Yin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Shuai Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Dongdong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Ying Huang
- Department of Neurosurgery, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, PR China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China.
| |
Collapse
|
49
|
Yin D, Zhou S, Xu X, Gao W, Li F, Ma Y, Sun D, Wu Y, Guo Q, Liu H, Han L, Wang Z, Wang Y, Zhang J. Dexmedetomidine attenuated early brain injury in rats with subarachnoid haemorrhage by suppressing the inflammatory response: The TLR4/NF-κB pathway and the NLRP3 inflammasome may be involved in the mechanism. Brain Res 2018; 1698:1-10. [PMID: 29842860 DOI: 10.1016/j.brainres.2018.05.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Early brain injury (EBI) plays a pivotal role in the prognosis of patients with subarachnoid haemorrhage (SAH). Dexmedetomidine (DEX), a highly selective α2 receptor agonist, is reported to exert multiple protective effects in many neurological diseases. This study was designed to investigate whether DEX had neuroprotective functions in EBI after SAH, and to explore the possible mechanisms. The SAH model was established by an endovascular perforation in adult male Sprague-Dawley (SD) rats. DEX (25 µg/kg) or vehicle was administered intraperitoneally 2 h after SAH. Neurological deficits, brain oedema, inflammation, BBB damage, and cell apoptosis at 24 h after SAH were evaluated. Additionally, the expression of components of the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway, and the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome were also assessed. We demonstrated that DEX treatment improved neurological scores, alleviated brain oedema, reduced the permeability of the blood-brain barrier (BBB), and up-regulated the expression of tight junction proteins. DEX treatment could reduce the neutrophil infiltration, microglial activation, and pro-inflammatory factor release. In addition, DEX alleviated cell apoptosis at 24 h after SAH. Notably, DEX could also suppress the activation of the TLR4/NF-κB pathway and the NLRP3 inflammasome. These findings suggested that treatment with DEX after SAH attenuated SAH-induced EBI, partially through the suppression of the TLR4/NF-κB pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Dongpei Yin
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Shuai Zhou
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Xin Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Weiwei Gao
- Department of Neurology, Tianjin Huan Hu Hospital, 6 Jizhao Road, Tianjin, China
| | - Fei Li
- Department of Neurosurgery, Tianjin Bao Di Hospital, 8 Guangchuan Road, Tianjin, China
| | - Yuyang Ma
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Dongdong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Yingang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Qi Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Huimin Liu
- Department of Digestion, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Lulu Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China
| | - Yi Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, 154 Anshan Road, Tianjin, China.
| |
Collapse
|
50
|
Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 2018; 8:31638-31654. [PMID: 28404943 PMCID: PMC5458236 DOI: 10.18632/oncotarget.15780] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Hypoxic-ischemic and inflammatory (HII) induces the disruption of blood–brain barrier (BBB) which leads to inflammatory responses and neuronal cell death, resulting in brain secondary damage. Previous studies showed that melatonin produced potent neuroprotective effects in neonatal hypoxic-ischaemic models. However, the relationship between BBB disruption and melatonin in HII was still unclear. The present study therefore investigated the beneficial effects of melatonin on BBB after HII and the underlying mechanisms. HII animal model was conducted by receiving lipopolysaccharide followed by 90 min hypoxia-ischaemia in postnatal day 2 Sprague–Dawley rat pups. Melatonin was injected intraperitoneally 1 h before lipopolysaccharide injection and then once a day for 1 week to evaluate the long-term effects. In this study, we demonstrated that melatonin administration inhibited the disruption of BBB permeability and improved the white matter recovery in HII model rats. Melatonin significantly attenuated the degradation of junction proteins and the neuroprotective role was related to the inhibition of microglial toll-like receptor 4/ nuclear factor-kappa B signaling pathway both in vivo and in vitro. Taken together, our data demonstrated that therapeutic strategies targeting inflammation might be suitable for the therapy of preserving BBB integrity after HII.
Collapse
|