1
|
Pontifex CS, Zaman M, Fanganiello RD, Shutt TE, Pfeffer G. Valosin-Containing Protein (VCP): A Review of Its Diverse Molecular Functions and Clinical Phenotypes. Int J Mol Sci 2024; 25:5633. [PMID: 38891822 PMCID: PMC11172259 DOI: 10.3390/ijms25115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.
Collapse
Affiliation(s)
- Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
| | - Mashiat Zaman
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Timothy E. Shutt
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Heritage Medical Research Building 155, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Pan Y, Qiu D, Chen S, Han X, Li R. High glucose inhibits neural differentiation by excessive autophagy <em>via</em> peroxisome proliferator-activated receptor gamma. Eur J Histochem 2023; 67. [PMID: 37170914 DOI: 10.4081/ejh.2023.3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The high prevalence of prediabetes and diabetes globally has led to the widespread occurrence of severe complications, such as diabetic neuropathy, which is a result of chronic hyperglycemia. Studies have demonstrated that maternal diabetes can lead to neural tube defects by suppressing neurogenesis during neuroepithelium development. While aberrant autophagy has been associated with abnormal neuronal differentiation, the mechanism by which high glucose suppresses neural differentiation in stem cells remains unclear. Therefore, we developed a neuronal cell differentiation model of retinoic acid induced P19 cells to investigate the impact of high glucose on neuronal differentiation in vitro. Our findings indicate that high glucose (HG) hinders neuronal differentiation and triggers excessive. Furthermore, HG treatment significantly reduces the expression of markers for neurons (Tuj1) and glia (GFAP), while enhancing autophagic activity mediated by peroxisome proliferator-activated receptor gamma (PPARγ). By manipulating PPARγ activity through pharmacological approaches and genetically knocking it down using shRNA, we discovered that altering PPARγ activity affects the differentiation of neural stem cells exposed to HG. Our study reveals that PPARγ acts as a downstream mediator in high glucose-suppressed neural stem cell differentiation and that refining autophagic activity via PPARγ at an appropriate level could improve neuronal differentiation efficiency. Our data provide novel insights and potential therapeutic targets for the clinical management of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Yin Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Di Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Shu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| |
Collapse
|
3
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
4
|
Yang YT, Jin S, Bai YB, Liu Y, Hogervorst E. Association of Subclinical Thyroid Dysfunction with Cognitive Impairment in Rats: The Role of Autophagy. J NIPPON MED SCH 2023; 90:372-380. [PMID: 37940558 DOI: 10.1272/jnms.jnms.2023_90-506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND We investigated the effect of subclinical hyperthyroidism and subclinical hypothyroidism on cognitive function in rats and the role of autophagy in this process. METHODS Forty Wistar rats were randomized into normal control (NC), hyperthyroidism (Hyper), hypothyroidism (Hypo), subclinical hyperthyroidism (sHyper), and subclinical hypothyroidism (sHypo) groups. Cognitive function (spatial learning and memory) was tested by the Morris water maze test. Hippocampal histopathology was analyzed by H&E staining, and expression levels of caspase-3 in hippocampal CA1 neurons were measured. In addition, immunoblot analysis was performed to detect hippocampal autophagy-related proteins. RESULTS Escape latency from day 1 to day 4 was significantly longer in the Hypo, Hyper, and sHyper groups than in the NC group (P < 0.01). In addition, the number of rats crossing the virtual platform was significantly lower in the Hypo, Hyper, and sHyper groups than in the NC group (P < 0.01). Compared with the NC group, all four groups had significantly lower residence time in the target quadrant (P < 0.05). Beclin-1 and LC3-II protein expression in hippocampal tissues was significantly higher in the Hyper and sHyper groups than in the NC group (P < 0.01). Beclin-1 and LC3-II protein expression in hippocampal tissues did not significantly differ between the sHypo group and NC group (P > 0.05). CONCLUSIONS Subclinical thyroid dysfunction in rats might lead to cognitive impairment. Subclinical hyperthyroidism might be associated with excessive activation of autophagy and hippocampal neuron damage and necrosis.
Collapse
Affiliation(s)
- Yun-Tian Yang
- School of Sport, Exercise and Health Sciences, Loughborough University
- Departments of Neurology, Affiliated Hospital of Inner Mongolia Medical University
| | - Shan Jin
- School of Sport, Exercise and Health Sciences, Loughborough University
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University
| | - Yin-Bao Bai
- Departments of Thyroid Surgery, People's Hospital of Inner Mongolia Autonomous Region
| | - Yousheng Liu
- Department of General Surgery, Datong Third People's Hospital
| | - Eef Hogervorst
- School of Sport, Exercise and Health Sciences, Loughborough University
| |
Collapse
|
5
|
Shen Q, Jiang Y, Jia X, Zhou X, Zhou QH. Amelioratory Effect of Melatonin on Cognition Dysfunction Induced by Sevoflurane Anesthesia in Aged Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133971. [PMID: 36896324 PMCID: PMC9990511 DOI: 10.5812/ijpr-133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Background Postoperative cognitive dysfunction (POCD) can be described as a clinical phenomenon characterized by cognitive impairment in patients, particularly elderly patients, after anesthesia and surgery. Researchers have focused on the probable effect of general anesthesia drugs on cognitive functioning status in older adults. Melatonin is an indole-type neuroendocrine hormone with broad biological activity and potent anti-inflammatory, anti-apoptotic, and neuroprotective effects. This study investigated the effects of melatonin on cognitive behavior in aged mice anesthetized with sevoflurane. In addition, melatonin's molecular mechanism was determined. Objectives This study aimed to investigate the mechanisms of melatonin against sevoflurane-induced neurotoxicity. Methods A total of 94 aged C57BL/6J mice were categorized into different groups, namely control (control + melatonin (10 mg/kg)), sevoflurane (sevoflurane + melatonin (10 mg/kg)), sevoflurane + melatonin (10 mg/kg) + phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 (30 mg/kg), and sevoflurane + melatonin (10 mg/kg) + mammalian target of rapamycin (mTOR) inhibitor (10 mg/kg). The open field and Morris water maze tests were utilized to assess the neuroprotective effects of melatonin on sevoflurane-induced cognitive impairment in aged mice. The expression levels of the apoptosis-linked proteins, PI3K/Akt/mTOR signaling pathway, and pro-inflammatory cytokines in the brain's hippocampus region were determined using the Western blotting technique. The apoptosis of the hippocampal neurons was observed using the hematoxylin and eosin staining technique. Results Neurological deficits in aged, sevoflurane-exposed mice were significantly decreased after melatonin treatment. Mechanistically, melatonin treatment restored sevoflurane-induced down-regulated PI3K/Akt/mTOR expression and significantly attenuated sevoflurane-induced apoptotic cells and neuroinflammation. Conclusions The findings of this study have highlighted the neuroprotective effect of melatonin on sevoflurane-induced cognitive impairment via regulating the PI3K/Akt/mTOR pathway, which might be effective in the clinical treatment of elderly patients with anesthesia-induced POCD.
Collapse
Affiliation(s)
- Qihong Shen
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanyu Jiang
- Department of Anesthesia Medicine, Bengbu Medical College, Bengbu, China
| | - Xiaoyu Jia
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xuyan Zhou
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qing-he Zhou
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- Corresponding Author: Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
6
|
Zhang Y, Yang M, Yuan Q, He Q, Ping H, Yang J, Zhang Y, Fu X, Liu J. Piperine ameliorates ischemic stroke-induced brain injury in rats by regulating the PI3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115309. [PMID: 35597410 DOI: 10.1016/j.jep.2022.115309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piperine (PIP), a main active component isolated from Piper nigrum L., exerts neuroprotective effects in a rat model of ischemic stroke (IS). However, studies on the effects of PIP on neuroprotection and autophagy after IS are limited. AIM OF THE STUDY This study aimed to prove the protective effects of PIP against brain IS and elucidate its underlying mechanisms. MATERIALS AND METHODS Specific pathogen-free male Sprague-Dawley rats were selected to establish a permanent middle cerebral artery occlusion model. The experiment was randomly divided into six groups: sham group, model group, PIP intervention group (10, 20, and 30 mg/kg group), and nimodipine group (Nimo group, 12 mg/kg). Neurological function score, postural reflex score, body swing score, balance beam test, and grip strength test were used to detect behavioral changes of rats. The area of cerebral infarction was detected by TTC staining, and the number and morphological changes of neurons were observed by Nissl and HE staining. In addition, the ultrastructure of hippocampal dentate gyrus neurons was observed using a transmission electron microscope. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins, namely, Beclin1 and LC3, in the hippocampus and cortex. Cell experiments established an in vitro model of oxygen-glucose deprivation (OGD) with the HT22 cell line to verify the mechanism. The experiment was divided into five groups: control group, OGD group, OGD + PIP 20 μg/mL group, OGD + PIP 30 μg/mL group, and OGD + PIP 40 μg/mL group. CCK-8 was used to measure cell activity, and Western blot was used to measure the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins (Beclin1 and LC3). RESULTS Compared with the model group, the neurological function scores, body swing scores, and postural reflex scores of rats in the 10, 20, and 30 mg/kg PIP intervention groups and Nimo groups decreased, whereas the balance beam score and grip test scores increased (all p < 0.05). After 10, 20, and 30 mg/kg PIP and Nimo intervention, the cerebral infarction area of pMCAO rats was reduced (p < 0.01), and Nissl and HE staining results showed that the number of neurons survived in the 30 mg/kg PIP and Nimo intervention groups increased. Cell morphology and structure were significantly improved (p < 0.05). Most of the hippocampal dentate gyrus neurons and their organelles gradually returned to normal in the 30 mg/kg PIP and Nimo intervention groups, with less neuronal damage. The expression levels of p-mTOR, p-AKT, and p-PI3K in the hippocampus and cortex of the 30 mg/kg PIP and Nimo intervention groups decreased, whereas the expression level of PI3K increased (all p < 0.05). In addition, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 mg/kg PIP and Nimo intervention groups decreased (all p < 0.05). Results of CCK-8 showed that after 1 h of OGD, the 30 and 40 μg/mL PIP intervention groups had higher cell viability than the OGD group (p < 0.01). Western blot results showed that compared with the OGD group, the expression level of p-mTOR, p-AKT, and p-PI3K in the 30 and 40 μg/mL PIP intervention groups decreased, and the expression level of PI3K increased (all p < 0.05). Moreover, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 and 40 μg/mL PIP intervention groups decreased (all p < 0.05). CONCLUSIONS This study shows that PIP is a potential compound with neuroprotective effects. PIP can inhibit the PI3K/AKT/mTOR pathway and autophagy. Its inhibition of autophagy is possibly related to modulating the PI3K/AKT/mTOR pathway. These findings provide new insights into the use of PIP for the treatment of IS and its underlying mechanism.
Collapse
Affiliation(s)
- Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianqian Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianxiong He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Honglu Ping
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianrong Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yiqiang Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
7
|
Zhang Y, Sun YY, Xu M, Shen LL, Xia CL. The Stem Cell Potential of O-2A Lineage Astroglia. Dev Neurosci 2022; 44:487-497. [PMID: 35537406 DOI: 10.1159/000524921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Astrocytes are the most common glial type in the central nervous system. They play pivotal roles in neurophysiological and neuropathological processes. Mounting evidence indicates that astrocytes may act as neural stem cells and contribute to adult neurogenesis. In previous reports, freshly isolated O-2A progenitors were shown to revert to neural stem-like cells (NSLCs) when cultured with a serum-containing glial medium or bone morphogenic proteins for 3 days and with basic fibroblast growth factor consecutively. NSLCs possess self-renewal and multipotential capacities that can give rise to neurons and glial cells, which suggests that they have stem cell-like properties. However, the underlying molecular mechanisms and cell fate commitment when exposed to a neural conditioned medium remain obscure. In this study, we demonstrated that NSLCs grown in the serum-containing neurobasal medium can differentiate into induced neural-like cells (iNLCs). It was noteworthy that astroglia mixed in these cells, particularly in iNLCs, were gradually replaced by neural phenotypes during this glia-neuron conversion. Remarkably, these glial cells can maintain high levels of proliferation and self-renewal ability by activating the NF-κB and MAPK signals. Finally, we found that Notch, STAT3, autophagy, bHLH, and Wnt signals appear to be critical modulators of these intricate events. Altogether, these data demonstrate that O-2A lineage astroglia can function as neural stem cells and display neurogenic plasticity. Dissecting the regulatory pathways involved in these processes is essential to the understanding of glial cell fate and its precise functions. This finding may foster a better understanding of astrocytic heterogeneity and lead to innovative ways to readily apply stem-like astroglia cells as candidate cell sources for neural repair.
Collapse
Affiliation(s)
- Ye Zhang
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yan-Yun Sun
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Min Xu
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ling-Ling Shen
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chun-Lin Xia
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Yin S, Meng Y, Liu C, Wang Y. MIUH Inhibits the Hippocampal Neuron Growth in Fetal Rat by Affecting the PTEN Pathway. Neurochem Res 2021; 46:2046-2055. [PMID: 34003417 DOI: 10.1007/s11064-021-03342-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Mild intrauterine hypoperfusion (MIUH) can induce placental dysfunction and lead to long-term changes during the process of brain development. A better understanding of the mechanism of MIUH will help in the development of new neuroprotective strategies for the placental chamber. To better understand the mechanism of the effect of MIUH on the neural development of offspring, we constructed a model of MIUH in pregnant rats. The proliferation, apoptosis, and autophagy of hippocampal neurons in fetal rats were studied via flow cytometry, immunofluorescence staining, JC-1 staining, western blotting, and real-time polymerase chain reaction at different time points (6, 24, 48, and 72 h). The results showed that MIUH significantly inhibited the proliferation of hippocampal neurons and promoted their apoptosis and autophagy. Simultaneously, MIUH could promote PTEN expression and affect the PTEN signaling pathway. bpV, an inhibitor of PTEN, could restore the inhibition of hippocampal nerve cell growth caused by MIUH. MIUH may inhibit neuronal proliferation and promote neuronal apoptosis and autophagy by regulating the PTEN signaling pathway.
Collapse
Affiliation(s)
- Shaowei Yin
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Yilin Meng
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Caixia Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
9
|
Deslauriers J, Toth M, Scadeng M, McKenna BS, Bussell R, Gresack J, Rissman R, Risbrough VB, Brown GG. DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain. Psychiatry Res Neuroimaging 2020; 304:111137. [PMID: 32731113 PMCID: PMC7508966 DOI: 10.1016/j.pscychresns.2020.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022]
Abstract
Increased corticotroping releasing factor (CRF) contributes to brain circuit abnormalities associated with stress-related disorders including posttraumatic stress disorder. However, the causal relationship between CRF hypersignaling and circuit abnormalities associated with stress disorders is unclear. We hypothesized that increased CRF exposure induces changes in limbic circuit morphology and functions. An inducible, forebrain-specific overexpression of CRF (CRFOE) transgenic mouse line was used to longitudinally investigate its chronic effects on behaviors and microstructural integrity of several brain regions. Behavioral and diffusion tensor imaging studies were performed before treatment, after 3-4 wks of treatment, and again 3 mo after treatment ended to assess recovery. CRFOE was associated with increased perseverative movements only after 3 wks of treatment, as well as reduced fractional anisotropy at 3 wks in the medial prefrontal cortex and increased fractional anisotropy in the ventral hippocampus at 3 mo compared to the control group. In the dorsal hippocampus, mean diffusivity was lower in CRFOE mice both during and after treatment ended. Our data suggest differential response and recovery patterns of cortical and hippocampal subregions in response to CRFOE. Overall these findings support a causal relationship between CRF hypersignaling and microstructural changes in brain regions relevant to stress disorders.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mate Toth
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Miriam Scadeng
- Department of Radiology, University of California San Diego, La Jolla, CA; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
| | - Benjamin S McKenna
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Robert Bussell
- Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Robert Rissman
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| |
Collapse
|
10
|
Zhu JW, Zou MM, Li YF, Chen WJ, Liu JC, Chen H, Fang LP, Zhang Y, Wang ZT, Chen JB, Huang W, Li S, Jia WQ, Wang QQ, Zhen XC, Liu CF, Li S, Xiao ZC, Xu GQ, Schwamborn JC, Schachner M, Ma QH, Xu RX. Absence of TRIM32 Leads to Reduced GABAergic Interneuron Generation and Autism-like Behaviors in Mice via Suppressing mTOR Signaling. Cereb Cortex 2020; 30:3240-3258. [PMID: 31828304 DOI: 10.1093/cercor/bhz306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling plays essential roles in brain development. Hyperactive mTOR is an essential pathological mechanism in autism spectrum disorder (ASD). Here, we show that tripartite motif protein 32 (TRIM32), as a maintainer of mTOR activity through promoting the proteasomal degradation of G protein signaling protein 10 (RGS10), regulates the proliferation of medial/lateral ganglionic eminence (M/LGE) progenitors. Deficiency of TRIM32 results in an impaired generation of GABAergic interneurons and autism-like behaviors in mice, concomitant with an elevated autophagy, which can be rescued by treatment embryonically with 3BDO, an mTOR activator. Transplantation of M/LGE progenitors or treatment postnatally with clonazepam, an agonist of the GABAA receptor, rescues the hyperexcitability and the autistic behaviors of TRIM32-/- mice, indicating a causal contribution of GABAergic disinhibition. Thus, the present study suggests a novel mechanism for ASD etiology in that TRIM32 deficiency-caused hypoactive mTOR, which is linked to an elevated autophagy, leads to autism-like behaviors via impairing generation of GABAergic interneurons. TRIM32-/- mouse is a novel autism model mouse.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Ming-Ming Zou
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Yi-Fei Li
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Wen-Jin Chen
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Ji-Chuan Liu
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hong Chen
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Li-Pao Fang
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Zhao-Tao Wang
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| | - Ji-Bo Chen
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Shen Li
- Neurology Department, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China
| | - Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qin-Qin Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chun-Feng Liu
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Guo-Qiang Xu
- Neurology Department, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Quan-Hong Ma
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Third Military Medical University, Beijing 100700, China
| |
Collapse
|
11
|
Perrone L, Squillaro T, Napolitano F, Terracciano C, Sampaolo S, Melone MAB. The Autophagy Signaling Pathway: A Potential Multifunctional Therapeutic Target of Curcumin in Neurological and Neuromuscular Diseases. Nutrients 2019; 11:nu11081881. [PMID: 31412596 PMCID: PMC6723827 DOI: 10.3390/nu11081881] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is the major intracellular machinery for degrading proteins, lipids, polysaccharides, and organelles. This cellular process is essential for the maintenance of the correct cellular balance in both physiological and stress conditions. Because of its role in maintaining cellular homeostasis, dysregulation of autophagy leads to various disease manifestations, such as inflammation, metabolic alterations, aging, and neurodegeneration. A common feature of many neurologic and neuromuscular diseases is the alteration of the autophagy-lysosomal pathways. For this reason, autophagy is considered a target for the prevention and/or cure of these diseases. Dietary intake of polyphenols has been demonstrated to prevent/ameliorate several of these diseases. Thus, natural products that can modulate the autophagy machinery are considered a promising therapeutic strategy. In particular, curcumin, a phenolic compound widely used as a dietary supplement, exerts an important effect in modulating autophagy. Herein, we report on the current knowledge concerning the role of curcumin in modulating the autophagy machinery in various neurological and neuromuscular diseases as well as its role in restoring the autophagy molecular mechanism in several cell types that have different effects on the progression of neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Chemistry and Biology, University Grenoble Alpes, 2231 Rue de la Piscine, 38400 Saint-Martin-d'Hères, France
| | - Tiziana Squillaro
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Chiara Terracciano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| |
Collapse
|
12
|
Ha S, Jeong SH, Yi K, Chu JJM, Kim S, Kim EK, Yu SW. Autophagy Mediates Astrogenesis in Adult Hippocampal Neural Stem Cells. Exp Neurobiol 2019; 28:229-246. [PMID: 31138991 PMCID: PMC6526118 DOI: 10.5607/en.2019.28.2.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) have the ability to self-renew and differentiate into neurons, oligodendrocytes, and astrocytes. Highly dynamic nature of NSC differentiation requires the intimate involvement of catabolic processes such as autophagy. Autophagy is a major intracellular degradation pathway necessary for cellular homeostasis and remodeling. Autophagy is important for mammalian development and its role in neurogenesis has recently drawn much attention. However, little is known about how autophagy is associated with differentiation of NSCs into other neural lineages. Here, we report that autophagy plays a critical role in differentiation of adult rat hippocampal neural stem (HCN) cells into astrocytes. During differentiation, autophagy flux peaked at early time points, and remained high. Pharmacological or genetic suppression of autophagy by stable knockdown of Atg7, LC3 or CRISPR-Cas9-mediated knockout (KO) of p62 impaired astrogenesis, while reintroduction of p62 recovered astrogenesis in p62 KO HCN cells. Taken together, our findings suggest that autophagy plays a key role in astrogenesis in adult NSCs.
Collapse
Affiliation(s)
- Shinwon Ha
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seol-Hwa Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungrim Yi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jamie Jeong-Min Chu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
13
|
Li H, Liu Y, Wen M, Zhao F, Zhao Z, Liu Y, Lin X, Wang L. Hydroxysafflor yellow A (HSYA) alleviates apoptosis and autophagy of neural stem cells induced by heat stress via p38 MAPK/MK2/Hsp27-78 signaling pathway. Biomed Pharmacother 2019; 114:108815. [PMID: 30954890 DOI: 10.1016/j.biopha.2019.108815] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
This study aimed to explore mechanisms of the effects of hydroxysafflor yellow A (HSYA) on neural stem cells (NSCs) after heat stress (HS). Rat NSCs cells were cultured at 42 °C to impose heat stress. Cell counting kit-8 and Edu assay were used to analyze NSC proliferation. Annexin V/PI apoptosis kit was used to detect NSC apoptosis. Expression and phosphorylation of autophagy and apoptosis-associated proteins were determined by western blotting. We showed that HSYA significantly promoted proliferation and attenuated apoptosis of NSCs after heat stress. HSYA also increased Bcl-2 expression but decreased the expression of Bax and cleaved caspase-3 in NSCs induced by heat stress. In addition, HSYA decreased p38 and Hsp27-78 phosphorylation and MK-2 expression after heat stress, which was consistent with NSCs treated with SB203850 treatment or p38 knockdown. Furthermore, we demonstrated that heat stress increased LC3-II expression and mTOR phosphorylation, and decreased the expression of p62 in NSCs, while HSYA, SB203850 treatment or p38 knockdown reversed these alterations. In conclusion, HSYA significantly reversed the apoptosis and autophagy of NSCs induced by heat stress (P < 0.05), via downregulating MK2 expression and p38 and Hsp27-78 phosphorylation.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanan Liu
- Department of Intensive Care Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Minyong Wen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fu Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhihui Zhao
- Department of Traditional Chinese Medicine Surgery, Jilin People's Hospital, Jilin, 132000, China
| | - Yunsong Liu
- Intensive Care Unit, Clifford Hospital, Guangzhou University of Chinese Medicine, No.3 Hongfu Road, Panyu District, Guangzhou 511495, PR China.
| | - Xinfeng Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lin Wang
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
14
|
Zeng H, Zheng J, Wen S, Luo J, Shao G, Zhang Y. MicroRNA-339 inhibits human hepatocellular carcinoma proliferation and invasion via targeting ZNF689. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:435-445. [PMID: 30774308 PMCID: PMC6349411 DOI: 10.2147/dddt.s186352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer mortality worldwide, however, the prognosis for HCC remains unsatisfactory. This study aimed to explore the role of miR-339-5p in HCC. Methods We first used quantitative real-time PCR to examine the level of miR-339-5p in HCC tissues. Then we further adopted Western blotting assay, CCK8, cell invasion assays, apoptosis detection assay, and luciferase assay to analyze how it mediate the development of HCC. Results We found that miR-339 is significantly decreased in primary HCC tissues. Overexpression of miR-339 in HCC cells remarkably suppressed proliferation and invasion and induced apoptosis. However, silencing miR-339 in HCC cells promoted proliferation and invasion, and reduced apoptosis. Moreover, we demonstrated that ZNF689 is a target of miR-339 and there is a negative correlation between miR-339 and ZNF689 expression in the HCC tissues. Overexpression of ZNF689 in miR-339-overexpressing HCC cells partially antagonized the inhibitory effects of miR-339. Conclusion Our study revealed that miR-339 inhibits HCC growth through targeting oncoprotein ZNF689 and restoration of miR-339 might be feasible therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| | - Jiaping Zheng
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| | - Song Wen
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| | - Jun Luo
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| | - Guoliang Shao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| | - Yongjun Zhang
- Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, P.R. China,
| |
Collapse
|
15
|
Park S, Lee SHS, Lee WI, Choi R, Kim SW, Woo HN, Lee H. MicroRNA expression profiling of adult hippocampal neural stem cells upon cell death reveals an autophagic cell death-like pattern. Biochem Biophys Res Commun 2019; 509:674-679. [PMID: 30612732 DOI: 10.1016/j.bbrc.2018.12.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Adult hippocampal neural (HCN) stem cells promptly undergo irreversible autophagic cell death (ACD) if deprived of insulin in culture. Small, non-coding microRNAs (miRNA) play an important role in regulating biological processes, including proliferation and cell death. However, there have been no reports thus far regarding miRNA involvement in the induction of adult HCN stem cell death under insulin-deprived conditions, for which we performed a microarray-based analysis to examine the expression signature of miRNAs in adult rat HCN stem cells. Three independent specimens per culture condition either with or without insulin were prepared and a miRNA microarray analysis carried out. A total of 12 exhibited significantly altered expression levels upon cell death due to the absence of insulin when compared to HCN stem cells cultured with insulin present (cut-off limit; p < 0.05 and fold-change >1.3) The resulting volcano plot showed that, among these miRNAs, seven were upregulated and five were downregulated. The upregulated miRNAs were capable of modulating HCN stem cell death. Caspase-3 activity analysis, LC3 conversion, and TEM of autophagosome formation consistently suggested that ACD, not apoptosis, was most likely the mechanism affecting HCN cell death. As such, we have come to term these miRNAs, "HCN stem cell-specific autophagic cell death regulators." Taken together, our data suggest that the miRNA expression profile of HCN stem cells is altered during ACD occurring due to insulin deprivation and that differentially expressed miRNAs are involved in HCN stem cell viability. Detailed explorations of the underlying mechanisms regarding HCN stem cell viability modulation by these miRNAs would be beneficial in further understanding the physiological features of adult HCN stem cells and are currently being investigated.
Collapse
Affiliation(s)
- Sujeong Park
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Steven Hyun Seung Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Il Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Rachelle Choi
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Who Kim
- Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ha-Na Woo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res Ther 2018; 9:305. [PMID: 30409213 PMCID: PMC6225658 DOI: 10.1186/s13287-018-1060-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy plays a critical role in the dynamic growth of each cell through different conditions. It seems that this intracellular mechanism acts as a two-edged sword against the numerous cell insults. Previously, autophagy was described in the context of cell activity and behavior, but little knowledge exists related to the role of autophagy in endothelial cells, progenitors, and stem cells biology from different tissues. Angiogenic behavior of endothelial lineage and various stem cells are touted as an inevitable feature in the restoration of different damaged tissues and organs. This capacity was found to be dictated by autophagy signaling pathway. This review article highlights the fundamental role of cell autophagic response in endothelial cells function, stem cells dynamic, and differentiation rate. It seems that elucidation of the mechanisms related to pro- and/or anti-angiogenic potential of autophagy inside endothelial cells and stem cells could help us to modulate stem cell therapeutic feature post-transplantation.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Department of Applied Drug Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
| |
Collapse
|
17
|
Ishimoto T, Masuo Y, Kato Y, Nakamichi N. Ergothioneine-induced neuronal differentiation is mediated through activation of S6K1 and neurotrophin 4/5-TrkB signaling in murine neural stem cells. Cell Signal 2018; 53:269-280. [PMID: 30359715 DOI: 10.1016/j.cellsig.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
The promotion of neurogenesis is considered to be an effective therapeutic strategy for neuropsychiatric disorders because impairment of neurogenesis is associated with the onset and progression of these disorders. We have previously demonstrated that orally ingested ergothioneine (ERGO), a naturally occurring antioxidant and hydrophilic amino acid, promotes neurogenesis in the hippocampal dentate gyrus (DG) with its abundant neural stem cells (NSCs) and exerts antidepressant-like effects in mice. Independent of its antioxidant activities, ERGO induces in cultured NSCs this differentiation through induction of the basic helix-loop-helix transcription factor Math1. However, the upstream signaling of Math1 in the mechanisms underlying ERGO-induced neuronal differentiation remains unclear. The purpose of the present study was to elucidate the upstream signaling with the aim of discovering novel targets for the treatment of neuropsychiatric disorders. We focused on neurotrophic factor signaling, as it is important for the promotion of neurogenesis and the induction of antidepressant effects. We also focused on the signaling of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), a known amino acid sensor, and the members of this signaling pathway, mTOR and p70 ribosomal protein S6 kinase 1 (S6K1). Exposure of cultured NSCs to ERGO significantly increased the expression of phosphorylated S6K1 (p-S6K1) at Thr389 in only 1 h, of phosphorylated mTOR (p-mTOR) in 6 h, and of the gene product of neurotrophin 4/5 (NT5) which activates tropomyosin receptor kinase B (TrkB) in 24 h. ERGO increased the population of βIII-tubulin-positive neurons, and this effect was suppressed by the inhibitors of S6K1 (PF4708671), mTORC1 (rapamycin), and TrkB (GNF5837). Oral administration of ERGO to mice significantly increased in the DG the expression of p-S6K1 at Thr389, the gene product of NT5, and phosphorylated TrkB but not that of p-mTOR. Thus, neuronal differentiation of NSCs induced by ERGO is mediated, at least in part, through phosphorylation of S6K1 at Thr389 and subsequent activation of TrkB signaling through the induction of NT5. Thus, S6K1 and NT5 might be promising target molecules for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
18
|
Marycz K, Michalak I, Kornicka K. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome. Res Vet Sci 2018; 118:115-125. [PMID: 29421480 DOI: 10.1016/j.rvsc.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Katarzyna Kornicka
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland.
| |
Collapse
|
19
|
Luo D, Chen R, Liang FX. Modulation of Acupuncture on Cell Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8268736. [PMID: 29279719 PMCID: PMC5723958 DOI: 10.1155/2017/8268736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Acupuncture has been historically practiced to treat medical disorders by mechanically stimulating specific acupoints. Despite its well-documented efficacy, its biological basis largely remains elusive. Recent studies suggested that cell apoptosis and autophagy might play key roles in acupuncture therapy. Therefore, we searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI), aiming to find the potential relationship between acupuncture and cell apoptosis and autophagy. To provide readers with objective evidence, some problems regarding the design method, acupoints selection, acupuncture intervention measure, and related diseases existing in 40 related researches were shown in this review. These findings demonstrated that acupuncture has a potential role in modulating cell apoptosis and autophagy in animal models, suggesting it as a candidate mechanism in acupuncture therapy to maintain physiologic homeostasis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Rui Chen
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Feng-xia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Traditional Chinese Medicine, No. 1 Tanhualin Street, Wuhan, Hubei 430060, China
| |
Collapse
|
20
|
You T, Cheng Y, Zhong J, Bi B, Zeng B, Zheng W, Wang H, Xu J. Roflupram, a Phosphodiesterase 4 Inhibitior, Suppresses Inflammasome Activation through Autophagy in Microglial Cells. ACS Chem Neurosci 2017; 8:2381-2392. [PMID: 28605578 DOI: 10.1021/acschemneuro.7b00065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) suppressed the inflammatory responses in the brain. However, the underlying mechanisms are poorly understood. Roflupram (ROF) is a novel PDE4 inhibitor. In the present study, we found that ROF enhanced the level of microtubule-associated protein 1 light chain 3 II (LC3-II) and decreased p62 in microglial BV-2 cells. Enhanced fluorescent signals were observed in BV-2 cells treated with ROF by Lysotracker red and acridine orange staining. In addition, immunofluorescence indicated a significant increase in punctate LC3. Moreover, β amyloid 25-35 (Aβ25-35) or lipopolysaccharide (LPS) with ATP was used to activate inflammasome. We found that both LPS plus ATP and Aβ25-35 enhanced the conversion of pro-caspase-1 to cleaved-caspase-1 and increased the production of mature IL-1β in BV-2 cells. Interestingly, these effects were blocked by the treatment of ROF. Consistently, knocking down the expression of PDE4B in primary microglial cells led to enhanced level of LC-3 II and decreased activation of inflammasome. What's more, Hoechst staining showed that ROF decreased the apoptosis of neuronal N2a cells in conditioned media from microglia. Our data also showed that ROF dose-dependently enhanced autophagy, reduced the activation of inflammasome and suppressed the production of IL-1β in mice injected with LPS. These effects were reversed by inhibition of microglial autophagy. These results put together demonstrate that ROF inhibits inflammasome activities and reduces the release of IL-1β by inducing autophagy. Therefore, ROF could be used as a potential therapeutic compound for the intervention of inflammation-associated diseases in the brain.
Collapse
Affiliation(s)
- Tingting You
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang 524023, China
| | - Yufang Cheng
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahong Zhong
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Bi
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Clinical Trial Center, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingqing Zeng
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty
of Health Sciences, University of Macau, Taipa, Macau China
| | - Haitao Wang
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Dhaliwal J, Trinkle-Mulcahy L, Lagace DC. Autophagy and Adult Neurogenesis: Discoveries Made Half a Century Ago Yet in their Infancy of being Connected. Brain Plast 2017; 3:99-110. [PMID: 29765863 PMCID: PMC5928547 DOI: 10.3233/bpl-170047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the brain, the physiological and pathological functions of autophagy in development and throughout the lifespan are being elucidated. This review summarizes recent in vitro and in vivo results that are defining the role of autophagy-related genes during the process of adult neurogenesis. We also discuss the need for future experiments to determine the molecular mechanism and functional significance of autophagy in the different neural stem cell populations and throughout the stages of adult neurogenesis.
Collapse
Affiliation(s)
- Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
22
|
Ha S, Jeong SH, Yi K, Chung KM, Hong CJ, Kim SW, Kim EK, Yu SW. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 2017; 292:13795-13808. [PMID: 28655770 DOI: 10.1074/jbc.m117.780874] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
In the adult brain, programmed death of neural stem cells is considered to be critical for tissue homeostasis and cognitive function and is dysregulated in neurodegeneration. Previously, we have reported that adult rat hippocampal neural (HCN) stem cells undergo autophagic cell death (ACD) following insulin withdrawal. Because the apoptotic capability of the HCN cells was intact, our findings suggested activation of unique molecular mechanisms linking insulin withdrawal to ACD rather than apoptosis. Here, we report that phosphorylation of autophagy-associated protein p62 by AMP-activated protein kinase (AMPK) drives ACD and mitophagy in HCN cells. Pharmacological inhibition of AMPK or genetic ablation of the AMPK α2 subunit by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing suppressed ACD, whereas AMPK activation promoted ACD in insulin-deprived HCN cells. We found that following insulin withdrawal AMPK phosphorylated p62 at a novel site, Ser-293/Ser-294 (in rat and human p62, respectively). Phosphorylated p62 translocated to mitochondria and induced mitophagy and ACD. Interestingly, p62 phosphorylation at Ser-293 was not required for staurosporine-induced apoptosis in HCN cells. To the best of our knowledge, this is the first report on the direct phosphorylation of p62 by AMPK. Our data suggest that AMPK-mediated p62 phosphorylation is an ACD-specific signaling event and provide novel mechanistic insight into the molecular mechanisms in ACD.
Collapse
Affiliation(s)
- Shinwon Ha
- From the Department of Brain and Cognitive Sciences and
| | | | - Kyungrim Yi
- From the Department of Brain and Cognitive Sciences and
| | | | | | - Seong Who Kim
- the Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eun-Kyoung Kim
- From the Department of Brain and Cognitive Sciences and.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| | - Seong-Woon Yu
- From the Department of Brain and Cognitive Sciences and .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| |
Collapse
|
23
|
Yeo BK, Yu SW. Valosin-containing protein (VCP): structure, functions, and implications in neurodegenerative diseases. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1259181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Ihunwo AO, Tembo LH, Dzamalala C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 2016; 11:1869-1883. [PMID: 28197172 PMCID: PMC5270414 DOI: 10.4103/1673-5374.195278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.
Collapse
Affiliation(s)
- Amadi O. Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lackson H. Tembo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Dzamalala
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Hu YB, Zou Y, Huang Y, Zhang YF, Lourenco GF, Chen SD, Halliday GM, Wang G, Ren RJ. ROCK1 Is Associated with Alzheimer's Disease-Specific Plaques, as well as Enhances Autophagosome Formation But not Autophagic Aβ Clearance. Front Cell Neurosci 2016; 10:253. [PMID: 27853422 PMCID: PMC5089992 DOI: 10.3389/fncel.2016.00253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of late-life dementia in the population, characterized by amyloid plaque formation and increased tau deposition, which is modulated by Rho-associated coiled-coil kinase 1 (ROCK1). In this study, we further analyze whether ROCK1 regulates the metabolism of amyloid precursor protein (APP). We show that ROCK1 is colocalized with mature amyloid-β (Aβ) plaques in patients with AD, in that ROCK1 enhances the amyloidogenic pathway, and that ROCK1 mediated autophagy enhances the intracellular buildup of Aβ in a cell model of AD (confirmed by increased ROCK1 and decreased Beclin 1 protein levels, with neuronal autophagosome accumulation in prefrontal cortex of AD APP/PS1 mouse model). In vitro over-expression of ROCK1 leads to a decrease in Aβ secretion and an increase in the expression of autophagy-related molecules. ROCK1 interacts with Beclin1, an autophagy initiator, and enhances the intracellular accumulation of Aβ. Reciprocally, overexpression of APP/Aβ promotes ROCK1 expression. Our data suggest ROCK1 participates in regulating Aβ secretion, APP shedding and autophagosome accumulation, and that ROCK1, rather than other kinases, is more likely to be a targetable enzyme for AD therapy.
Collapse
Affiliation(s)
- Yong-Bo Hu
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yang Zou
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yue Huang
- Neuroscience Research Australia and Faculty of Medicine, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Yong-Fang Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Guinevere F Lourenco
- Neuroscience Research Australia and Faculty of Medicine, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Sheng-Di Chen
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Glenda M Halliday
- Neuroscience Research Australia and Faculty of Medicine, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Gang Wang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Ru-Jing Ren
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
26
|
E LL, Xu WH, Feng L, Liu Y, Cai DQ, Wen N, Zheng WJ. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med 2016; 37:1475-86. [PMID: 27082697 PMCID: PMC4866970 DOI: 10.3892/ijmm.2016.2559] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3‑month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham‑operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted into the backs of SCID mice for 12 weeks, the results of histological analysis indicated that the constructs derived from the OVX group rats had a few newly formed bones and osteoids; however, a great number of newly formed bones and osteoids were present in the ones from the sham-operated group and the OVX + E2 group rats. Our findings further indicate that estrogen deficiency impairs the osteogenic differentiation potential of PDLSCs, and that ER plays an important role in the bone regeneration ability of PDLSCs. Estrogen enhances the bone regeneration potential of PDLSCs derived from osteoporotic rats and seeded on nHAC/PLA. This study may provide insight into the clinical management of periodontal bone tissue repair in postmenopausal women with the use of estrogen-mediated PDLSCs seeded on nHAC/PLA.
Collapse
Affiliation(s)
- Ling-Ling E
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Huan Xu
- Scientific Research Department, Medical Administrative Division, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Feng
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yi Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Dong-Qing Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ning Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|