1
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
3
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
4
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
5
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
6
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
7
|
López-Canul M, He Q, Sasson T, Ettaoussi M, Gregorio DD, Ochoa-Sanchez R, Catoire H, Posa L, Rouleau G, Beaulieu JM, Comai S, Gobbi G. Selective Enhancement of REM Sleep in Male Rats through Activation of Melatonin MT 1 Receptors Located in the Locus Ceruleus Norepinephrine Neurons. J Neurosci 2024; 44:e0914232024. [PMID: 38744530 PMCID: PMC11255427 DOI: 10.1523/jneurosci.0914-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.
Collapse
Affiliation(s)
- Martha López-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Qianzi He
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Tania Sasson
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mohamed Ettaoussi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Research Institute, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
8
|
Helden EV, Kranendonk J, Vermulst A, Boer AD, Reuver PD, Rosman C, Wilt JD, Laarhoven KV, Scheffer GJ, Keijzer C, Warlé M. Early postoperative pain and 30-day complications following major abdominal surgery: a retrospective cohort study. Reg Anesth Pain Med 2024:rapm-2024-105277. [PMID: 38839084 DOI: 10.1136/rapm-2024-105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Increasing evidence supports a positive relationship between the intensity of early postoperative pain, and the risk of 30-day postoperative complications. Higher pain levels may hamper recovery and contribute to immunosuppression after surgery. This leaves patients at risk of postoperative complications. METHODS One thousand patients who underwent major abdominal surgery (cytoreductive surgery and hyperthermic intraperitoneal chemotherapy, esophageal, liver, or pancreas surgery) at the Radboud university medical center were randomly selected from eligible patients between 2014 and 2020. Pain scores on day 1, the independent variable of interest, were extracted from the electronic patient files. Outcome measures were 30-day postoperative complications (infectious, non-infectious, total complications and classification according to Clavien-Dindo). RESULTS Seven hundred ninety complications occurred in 572 patients within 30 days after surgery, of which 289 (36.7%) were of infectious origin, and 501 (63.4%) complications were non-infectious. The mean duration from the end of surgery to the occurrence of infectious complications was 6.5 days (SD 5.6) and 4.1 days (SD 4.7) for non-infectious complications (p<0.001). Logistic regression analysis revealed that pain scores on postoperative day 1 (POD1) were significantly positively associated with 30-day total complications after surgery (OR=1.132, 95% CI (1.076 to 1.190)), Clavien-Dindo classification (OR=1.131, 95% CI (1.071 to 1.193)), infectious complications (OR=1.126, 95% CI (1.059 to 1.196)), and non-infectious complications (OR=1.079, 95% CI (1.022 to 1.140)). CONCLUSIONS After major abdominal surgery, higher postoperative pain scores on day 1 are associated with an increased risk of 30-day postoperative complications. Further studies should pursue whether optimization of perioperative analgesia can improve immune homeostasis, reduce complications after surgery and enhance postoperative recovery.
Collapse
Affiliation(s)
| | | | - Ad Vermulst
- Mental Healthcare East-Brabant Region Helmond-Peelland, Boekel, Oost-Brabant, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
10
|
Rubia K, Johansson L, Carter B, Stringer D, Santosh P, Mehta MA, Conti AA, Bozhilova N, Eraydin IE, Cortese S. The efficacy of real versus sham external Trigeminal Nerve Stimulation (eTNS) in youth with Attention-Deficit/Hyperactivity Disorder (ADHD) over 4 weeks: a protocol for a multi-centre, double-blind, randomized, parallel-group, phase IIb study (ATTENS). BMC Psychiatry 2024; 24:326. [PMID: 38689273 PMCID: PMC11059677 DOI: 10.1186/s12888-024-05650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Attention Deficit/Hyperactivity Disorder (ADHD), if severe, is usually treated with stimulant or non-stimulant medication. However, users prefer non-drug treatments due to side effects. Alternative non-medication treatments have so far only shown modest effects. External trigeminal nerve stimulation (eTNS) is a minimal risk, non-invasive neuromodulation device, targeting the trigeminal system. It was approved for ADHD in 2019 by the USA Food and Drug administration (FDA) based on a small proof of concept randomised controlled trial (RCT) in 62 children with ADHD showing improvement of ADHD symptoms after 4 weeks of nightly real versus sham eTNS with minimal side effects. We present here the protocol of a larger confirmatory phase IIb study testing efficacy, longer-term persistency of effects and underlying mechanisms of action. METHODS A confirmatory, sham-controlled, double-blind, parallel-arm, multi-centre phase IIb RCT of 4 weeks of eTNS in 150 youth with ADHD, recruited in London, Portsmouth, and Southampton, UK. Youth with ADHD will be randomized to either real or sham eTNS, applied nightly for 4 weeks. Primary outcome is the change in the investigator-administered parent rated ADHD rating scale. Secondary outcomes are other clinical and cognitive measures, objective hyperactivity and pupillometry measures, side effects, and maintenance of effects over 6 months. The mechanisms of action will be tested in a subgroup of 56 participants using magnetic resonance imaging (MRI) before and after the 4-week treatment. DISCUSSION This multi-centre phase IIb RCT will confirm whether eTNS is effective in a larger age range of children and adolescents with ADHD, whether it improves cognition and other clinical measures, whether efficacy persists at 6 months and it will test underlying brain mechanisms. The results will establish whether eTNS is effective and safe as a novel non-pharmacological treatment for ADHD. TRIAL REGISTRATION ISRCTN82129325 on 02/08/2021, https://doi.org/10.1186/ISRCTN82129325 .
Collapse
Affiliation(s)
- Katya Rubia
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Department of Child & Adolescent Psychiatry, Technical University, Dresden, Germany.
| | - Lena Johansson
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Ben Carter
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Stringer
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
- National and Specialist CAMHS, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Department for Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aldo Alberto Conti
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Natali Bozhilova
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Irem Ece Eraydin
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- SOLENT NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Center, New York City, NY, USA
| |
Collapse
|
11
|
Cao F, Guo Y, Guo S, Hao X, Yang L, Cao J, Zhou Z, Mi W, Tong L. Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia. CNS Neurosci Ther 2024; 30:e14675. [PMID: 38488453 PMCID: PMC10941502 DOI: 10.1111/cns.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS General anesthesia has been used in surgical procedures for approximately 180 years, yet the precise mechanism of anesthetic drugs remains elusive. There is significant anatomical connectivity between the ventral tegmental area (VTA) and the prelimbic cortex (PrL). Projections from VTA dopaminergic neurons (VTADA ) to the PrL play a role in the transition from sevoflurane anesthesia to arousal. It is still uncertain whether the prelimbic cortex pyramidal neuron (PrLPyr ) and its projections to VTA (PrLPyr -VTA) are involved in anesthesia-arousal regulation. METHODS We employed chemogenetics and optogenetics to selectively manipulate neuronal activity in the PrLPyr -VTA pathway. Electroencephalography spectra and burst-suppression ratios (BSR) were used to assess the depth of anesthesia. Furthermore, the loss or recovery of the righting reflex was monitored to indicate the induction or emergence time of general anesthesia. To elucidate the receptor mechanisms in the PrLPyr -VTA projection's impact on anesthesia and arousal, we microinjected NMDA receptor antagonists (MK-801) or AMPA receptor antagonists (NBQX) into the VTA. RESULTS Our findings show that chemogenetic or optogenetic activation of PrLPyr neurons prolonged anesthesia induction and promoted emergence. Additionally, chemogenetic activation of the PrLPyr -VTA neural pathway delayed anesthesia induction and promoted anesthesia emergence. Likewise, optogenetic activation of the PrLPyr -VTA projections extended the induction time and facilitated emergence from sevoflurane anesthesia. Moreover, antagonizing NMDA receptors in the VTA attenuates the delayed anesthesia induction and promotes emergence caused by activating the PrLPyr -VTA projections. CONCLUSION This study demonstrates that PrLPyr neurons and their projections to the VTA are involved in facilitating emergence from sevoflurane anesthesia, with the PrLPyr -VTA pathway exerting its effects through the activation of NMDA receptors within the VTA.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of AnesthesiologyThe Sixth Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Yongxin Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Shuting Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xinyu Hao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Lujia Yang
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiangbei Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhikang Zhou
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Weidong Mi
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Li Tong
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans: a randomized controlled crossover pilot study. Sci Rep 2024; 14:3975. [PMID: 38368486 PMCID: PMC10874458 DOI: 10.1038/s41598-024-54026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p = 0.00052) and visual performance by 23% (p = 0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p = 0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc., New York, NY, USA
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, USA
| | - Qi Wang
- Sharper Sense, Inc., New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY, USA.
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY, USA.
| |
Collapse
|
13
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
14
|
Liu R, Guo Z, Li M, Liu S, Zhi Y, Jiang Z, Liang X, Hu H, Zhu J. Lower fractional dimension in Alzheimer's disease correlates with reduced locus coeruleus signal intensity. Magn Reson Imaging 2024; 106:24-30. [PMID: 37541457 DOI: 10.1016/j.mri.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aimed to determine the pattern of fractional dimension (FD) in Alzheimer's disease (AD) patients, and investigate the relationship between FD and the locus coeruleus (LC) signal intensity.A total of 27 patients with AD and 25 healthy controls (HC) were collected to estimate the pattern of fractional dimension (FD) and cortical thickness (CT) using the Computational Anatomy Toolbox (CAT12), and statistically analyze between groups on a vertex level using statistical parametric mapping 12. In addition, they were examined by neuromelanin sensitive MRI(NM-MRI) technique to calculate the locus coeruleus signal contrast ratios (LC-CRs). Additionally, correlations between the pattern of FD and LC-CRs were further examined.Compared to HC, AD patients showed widespread lower CT and FD Furthermore, significant positive correlation was found between local fractional dimension (LFD) of the left rostral middle frontal cortex and LC-CRs. Results suggest lower cortical LFD is associated with LCCRs that may reflect a reduction due to broader neurodegenerative processes. This finding may highlight the potential utility for advanced measures of cortical complexity in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhiwen Guo
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai 200241, China; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
15
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
16
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.08.552508. [PMID: 37609169 PMCID: PMC10441305 DOI: 10.1101/2023.08.08.552508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p=0.00052) and visual performance by 23% (p=0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p=0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B. Carmel
- Sharper Sense, Inc., New York, NY
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY
| | - Qi Wang
- Sharper Sense, Inc., New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY
| |
Collapse
|
17
|
Ramsden CE, Zamora D, Horowitz MS, Jahanipour J, Calzada E, Li X, Keyes GS, Murray HC, Curtis MA, Faull RM, Sedlock A, Maric D. ApoER2-Dab1 disruption as the origin of pTau-associated neurodegeneration in sporadic Alzheimer's disease. Acta Neuropathol Commun 2023; 11:197. [PMID: 38093390 PMCID: PMC10720169 DOI: 10.1186/s40478-023-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA.
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Mark S Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Calzada
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Richard M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023; 18:83. [PMID: 37951933 PMCID: PMC10640762 DOI: 10.1186/s13024-023-00676-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany.
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Cuéllar-Pérez R, Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Montero S, Lemus M, Roces de Álvarez-Buylla E, García-Estrada J, Luquín S. K252a Prevents Microglial Activation Induced by Anoxic Stimulation of Carotid Bodies in Rats. TOXICS 2023; 11:871. [PMID: 37888721 PMCID: PMC10610815 DOI: 10.3390/toxics11100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions.
Collapse
Affiliation(s)
- Ricardo Cuéllar-Pérez
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Fernando Jauregui-Huerta
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Yaveth Ruvalcaba-Delgadillo
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Sergio Montero
- Facultad de Medicina, Universidad de Colima, Colima 28040, Mexico
| | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28040, Mexico
| | | | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Sonia Luquín
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| |
Collapse
|
20
|
Lee VG. The attentional boost effect overcomes dual-task interference in choice-response tasks. Q J Exp Psychol (Hove) 2023; 76:2241-2255. [PMID: 36717536 DOI: 10.1177/17470218231156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dual-task interference often arises when people respond to an incoming stimulus according to an arbitrary rule, such as choosing between the gas pedal and the brake when driving. Severe interference from response selection yields a brief "Psychological Refractory Period," during which a concurrent task is put on hold. Here, we show that response selection in one task does not always hamper the processing of a secondary task. Responding to a target may paradoxically enhance the processing of secondary tasks, even when the target requires complex response selection. In three experiments, participants encoded pictures of common objects to memory while simultaneously monitoring a rapid serial visual presentation (RSVP) of characters or colours. Some of the RSVP stimuli were targets, requiring participants to press one of the two buttons to report their identity; others were distractors that participants ignored. Despite the increased response selection demands on target trials, pictures encoded with the RSVP targets were better remembered than those encoded with the RSVP distractors. Contrary to previous reports and predictions from dual-task interference, the attentional boost from target detection overcomes increased interference from response selection.
Collapse
Affiliation(s)
- Vanessa G Lee
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Hatsukawa H, Ishikawa M. Psychological states affecting initial pupil size changes after olfactory stimulation in healthy participants. Sci Rep 2023; 13:16050. [PMID: 37749199 PMCID: PMC10520065 DOI: 10.1038/s41598-023-43004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Odor perception affects physiological and psychological states. Pupillary light reflex (PLR) parameters can be affected by olfactory stimulation and psychological states, although it remains unclear whether the olfactory stimulation-induced psychological changes can associate with PLR parameter changes. This study aimed to investigate effects of olfactory stimulation-induced psychological changes on PLR parameter changes with repeated measurements. We collected data on six mood subscales of the profile of mood states, and on five PLR parameter measurements from 28 healthy participants. Participants underwent a 10-min olfactory stimulation on different days with six odorants available with the T&T olfactometer. As obtained data were clustered, we used linear mixed-effects models for statistical analyses. The olfactory stimulation using the no-odor liquid did not affect mood states and the initial pupil size (INIT). The sweat odorant worsened all mood subscales including fatigue-inertia (Fatigue)/Vigor-Activity (Vigor), and decreased INIT compared to the no-odor liquid. When comparing INIT responses related to changes in mood subscales between the no-odor liquid and the sweat odorant, worsened states of Fatigue/Vigor were associated with decreased INIT in the sweat odorant. Fatigue/Vigor can be used as mental fatigue indicators. Thus, mental fatigue can be associated with decreased INIT in the olfactory stimulation.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan.
| |
Collapse
|
22
|
Deantoni M, Reyt M, Berthomier C, Muto V, Hammad G, De Haan S, Dourte M, Taillard J, Lambot E, Cajochen C, Reichert CF, Maire M, Baillet M, Schmidt C. Association between circadian sleep regulation and cortical gyrification in young and older adults. Sleep 2023; 46:zsad094. [PMID: 37010079 DOI: 10.1093/sleep/zsad094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Indexed: 04/04/2023] Open
Abstract
The circadian system orchestrates sleep timing and structure and is altered with increasing age. Sleep propensity, and particularly REM sleep is under strong circadian control and has been suggested to play an important role in brain plasticity. In this exploratory study, we assessed whether surface-based brain morphometry indices are associated with circadian sleep regulation and whether this link changes with age. Twenty-nine healthy older (55-82 years; 16 men) and 28 young participants (20-32 years; 13 men) underwent both structural magnetic resonance imaging and a 40-h multiple nap protocol to extract sleep parameters over day and night time. Cortical thickness and gyrification indices were estimated from T1-weighted images acquired during a classical waking day. We observed that REM sleep was significantly modulated over the 24-h cycle in both age groups, with older adults exhibiting an overall reduction in REM sleep modulation compared to young individuals. Interestingly, when taking into account the observed overall age-related reduction in REM sleep throughout the circadian cycle, higher day-night differences in REM sleep were associated with increased cortical gyrification in the right inferior frontal and paracentral regions in older adults. Our results suggest that a more distinctive allocation of REM sleep over the 24-h cycle is associated with regional cortical gyrification in aging, and thereby point towards a protective role of circadian REM sleep regulation for age-related changes in brain organization.
Collapse
Affiliation(s)
- Michele Deantoni
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Mathilde Reyt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | | | - Vincenzo Muto
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Gregory Hammad
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Stella De Haan
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Marine Dourte
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit, Center for Research in Cognition and Neurosciences, Neurosciences Institute, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Eric Lambot
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Marion Baillet
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
Dolphin H, Dyer AH, McHale C, O'Dowd S, Kennelly SP. An Update on Apathy in Alzheimer's Disease. Geriatrics (Basel) 2023; 8:75. [PMID: 37489323 PMCID: PMC10366907 DOI: 10.3390/geriatrics8040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Apathy is a complex multi-dimensional syndrome that affects up to 70% of individuals with Alzheimer's disease (AD). Whilst many frameworks to define apathy in AD exist, most include loss of motivation or goal-directed behaviour as the central feature. Apathy is associated with significant impact on persons living with AD and their caregivers and is also associated with accelerated cognitive decline across the AD spectrum. Neuroimaging studies have highlighted a key role of fronto-striatial circuitry including the anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and associated subcortical structures. Importantly, the presence and severity of apathy strongly correlates with AD stage and neuropathological biomarkers of amyloid and tau pathology. Following from neurochemistry studies demonstrating a central role of biogenic amine neurotransmission in apathy syndrome in AD, recent clinical trial data suggest that apathy symptoms may improve following treatment with agents such as methylphenidate-which may have an important role alongside emerging non-pharmacological treatment strategies. Here, we review the diagnostic criteria, rating scales, prevalence, and risk factors for apathy in AD. The underlying neurobiology, neuropsychology and associated neuroimaging findings are reviewed in detail. Finally, we discuss current treatment approaches and strategies aimed at targeting apathy syndrome in AD, highlighting areas for future research and clinical trials in patient cohorts.
Collapse
Affiliation(s)
- Helena Dolphin
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| | - Adam H Dyer
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| | - Cathy McHale
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
| | - Sean O'Dowd
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Neurology, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, D02R590 Dublin, Ireland
| | - Sean P Kennelly
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| |
Collapse
|
24
|
Rojas-Thomas F, Artigas C, Wainstein G, Morales JP, Arriagada M, Soto D, Dagnino-Subiabre A, Silva J, Lopez V. Impact of acute psychosocial stress on attentional control in humans. A study of evoked potentials and pupillary response. Neurobiol Stress 2023; 25:100551. [PMID: 37362419 PMCID: PMC10285563 DOI: 10.1016/j.ynstr.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Psychosocial stress has increased considerably in our modern lifestyle, affecting global mental health. Deficits in attentional control are cardinal features of stress disorders and pathological anxiety. Studies suggest that changes in the locus coeruleus-norepinephrine system could underlie the effects of stress on top-down attentional control. However, the impact of psychosocial stress on attentional processes and its underlying neural mechanisms are poorly understood. This study aims to investigate the effect of psychosocial stress on attentional processing and brain signatures. Evoked potentials and pupillary activity related to the oddball auditory paradigm were recorded before and after applying the Montreal Imaging Stress Task (MIST). Electrocardiogram (ECG), salivary cortisol, and subjective anxiety/stress levels were measured at different experimental periods. The control group experienced the same physical and cognitive effort but without the psychosocial stress component. The results showed that stressed subjects exhibited decreased P3a and P3b amplitude, pupil phasic response, and correct responses. On the other hand, they displayed an increase in Mismatch Negativity (MMN). N1 amplitude after MIST only decreased in the control group. We found that differences in P3b amplitude between the first and second oddball were significantly correlated with pupillary dilation and salivary cortisol levels. Our results suggest that under social-evaluative threat, basal activity of the coeruleus-norepinephrine system increases, enhancing alertness and decreasing voluntary attentional resources for the cognitive task. These findings contribute to understanding the neurobiological basis of attentional changes in pathologies associated with chronic psychosocial stress.
Collapse
Affiliation(s)
- F. Rojas-Thomas
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - C. Artigas
- Departamento de Biología, Universidad Autónoma de Chile, Santiago, Chile
| | - G. Wainstein
- Departamento de Psiquiatría, Escuela de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Pablo Morales
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - M. Arriagada
- College of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O'Higgins University, Santiago, Chile
| | - D. Soto
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - A. Dagnino-Subiabre
- Laboratorio de Neurobiología del Estrés, Instituto de Fisiología, CENFI, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - J. Silva
- Instituto de Bienestar Socioemocional (IBEM), Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - V. Lopez
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Örzsik B, Palombo M, Asllani I, Dijk DJ, Harrison NA, Cercignani M. Higher order diffusion imaging as a putative index of human sleep-related microstructural changes and glymphatic clearance. Neuroimage 2023; 274:120124. [PMID: 37084927 DOI: 10.1016/j.neuroimage.2023.120124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited. Here we acquired multi-shell diffusion weighted MRI (dwMRI) in twenty-one healthy young participants (6 female, 22.3 ± 3.2 years) each scanned twice, once during wakefulness and once during sleep induced by a combination of one night of sleep deprivation and 10 mg of the hypnotic zolpidem 30 min before scanning. To capture hypothesised sleep-associated changes in intra/extracellular space, dwMRI were analysed using higher order diffusion modelling with the prediction that sleep-associated increases in interstitial (extracellular) fluid volume would result in a decrease in diffusion kurtosis, particularly in areas associated with slow wave generation at the onset of sleep. In line with our hypothesis, we observed a global reduction in diffusion kurtosis (t15=2.82, p = 0.006) during sleep as well as regional reductions in brain areas associated with slow wave generation during early sleep and default mode network areas that are highly metabolically active during wakefulness. Analysis with a higher-order representation of diffusion (MAP-MRI) further indicated that changes within the intra/extracellular domain rather than membrane permeability likely underpin the observed sleep-associated decrease in kurtosis. These findings identify higher-order modelling of dwMRI as a potential new non-invasive method for imaging glymphatic clearance and extend rodent findings to suggest that sleep is also associated with an increase in interstitial fluid volume in humans.
Collapse
Affiliation(s)
- Balázs Örzsik
- Radiology, Leiden University Medical Center, Leiden, the Netherlands; CISC, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | - Marco Palombo
- CUBRIC, Cardiff University, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Iris Asllani
- CISC, Brighton and Sussex Medical School, Brighton, United Kingdom; Rochester Institute of Technology, New York, United States
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford UK
| | | | | |
Collapse
|
26
|
Ramsden CE, Zamora D, Horowitz M, Jahanipour J, Keyes G, Li X, Murray HC, Curtis MA, Faull RM, Sedlock A, Maric D. ApoER2-Dab1 disruption as the origin of pTau-related neurodegeneration in sporadic Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2968020. [PMID: 37461602 PMCID: PMC10350181 DOI: 10.21203/rs.3.rs-2968020/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
BACKGROUND Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.
Collapse
Affiliation(s)
| | - Daisy Zamora
- National Institute on Aging Laboratory of Clinical Investigation
| | - Mark Horowitz
- National Institute on Aging Intramural Research Program
| | | | - Gregory Keyes
- National Institute on Aging Laboratory of Clinical Investigation
| | - Xiufeng Li
- National Institute on Aging Laboratory of Clinical Investigation
| | - Helen C Murray
- The University of Auckland Faculty of Medical and Health Sciences
| | - Maurice A Curtis
- The University of Auckland Faculty of Medical and Health Sciences
| | - Richard M Faull
- The University of Auckland Faculty of Medical and Health Sciences
| | - Andrea Sedlock
- NINDS: National Institute of Neurological Disorders and Stroke
| | - Dragan Maric
- NINDS: National Institute of Neurological Disorders and Stroke
| |
Collapse
|
27
|
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study. J Neurosci 2023; 43:4709-4724. [PMID: 37221097 PMCID: PMC10286950 DOI: 10.1523/jneurosci.2004-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Lorenza Colzato
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
28
|
Linkovski O, Naftalovich H, David M, Seror Y, Kalanthroff E. The Effect of Symptom-Provocation on Inhibitory Control in Obsessive-Compulsive Disorder Patients Is Contingent upon Chronotype and Time of Day. J Clin Med 2023; 12:4075. [PMID: 37373768 DOI: 10.3390/jcm12124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Studies have shown that alertness can affect inhibitory control, the mechanism responsible for stopping behaviors, thoughts, or emotions. Inhibitory control is particularly important for helping individuals with Obsessive-Compulsive Disorder (OCD) resisting their symptoms. Chronotype is the mechanism governing an individual's fluctuation of alertness throughout the day. Previous studies have shown that individuals with a 'morning' chronotype have worse OCD symptoms in the evening and vice versa. We administered a novel 'symptom-provocation stop signal task' (SP-SST), in which individually tailored OCD triggers were presented and inhibitory control was measured. Twenty-five treatment-seeking OCD patients completed the SP-SST three times per day for seven consecutive days. Stop signal reaction time (SSRT), which measures inhibitory control, was calculated separately for symptom-provocation trials and for neutral trials. Results yielded that: (a) stopping was significantly harder in the symptom-provocation compared to neutral trials, and (b) the chronotype by time-of-day interaction predicts inhibition for both symptom-provocation and neutral trials, indicating better inhibition in the optimal time of day. Furthermore, we concluded that individually tailored OCD triggers have a detrimental effect on inhibitory control. Most importantly, higher alertness levels, which can be predicted by the interaction of chronotype and time of day, affect inhibitory control, both in general and for OCD triggers specifically.
Collapse
Affiliation(s)
- Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hadar Naftalovich
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mor David
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuval Seror
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Eyal Kalanthroff
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
29
|
Van Egroo M, Riphagen JM, Ashton NJ, Janelidze S, Sperling RA, Johnson KA, Yang HS, Bennett DA, Blennow K, Hansson O, Zetterberg H, Jacobs HIL. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau. Mol Psychiatry 2023; 28:2412-2422. [PMID: 37020050 PMCID: PMC10073793 DOI: 10.1038/s41380-023-02041-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Autopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP). We found that higher plasma measures of phosphorylated tau, in particular ptau231, correlated negatively with dorso-rostral LC integrity, whereas correlations for neurodegenerative plasma markers (neurofilament light, total tau) were scattered throughout the LC including middle to caudal sections. In contrast, the plasma Aβ42/40 ratio, associated with brain amyloidosis, did not correlate with LC integrity. These findings were specific to the rostral LC and not observed when using the entire LC or the hippocampus. Furthermore, in the MAP data, we observed higher rostral than caudal tangle density in the LC, independent of the disease stage. The in vivo LC-phosphorylated tau correlations became significant from midlife, with the earliest effect for ptau231, starting at about age 55. Finally, interactions between lower rostral LC integrity and higher ptau231 concentrations predicted lower cognitive performance. Together, these findings demonstrate a specific rostral vulnerability to early phosphorylated tau species that can be detected with dedicated magnetic resonance imaging measures, highlighting the promise of LC imaging as an early marker of AD-related processes.
Collapse
Grants
- R01 AG017917 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG074220 NIA NIH HHS
- K23 AG062750 NIA NIH HHS
- R01 AG068062 NIA NIH HHS
- K01 AG001016 NIA NIH HHS
- ZEN-21-848495 Alzheimer's Association
- P01 AG036694 NIA NIH HHS
- R01 AG062559 NIA NIH HHS
- R01 AG015819 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- Alzheimer Nederland WE.03-2019-02
- BrightFocus Foundation (BrightFocus)
- Alzheimer’s Association
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236)
- Cure Alzheimer’s Fund (Alzheimer’s Disease Research Foundation)
- Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2021-0293), The Parkinson foundation of Sweden (1280/20), the Cure Alzheimer’s fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712 and #101053962), Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Reisa A Sperling
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun-Sik Yang
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Ramsden CE, Zamora D, Horowitz MS, Jahanipour J, Keyes GS, Li X, Murray HC, Curtis MA, Faull RM, Sedlock A, Maric D. ApoER2-Dab1 disruption as the origin of pTau-related neurodegeneration in sporadic Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.19.23290250. [PMID: 37333406 PMCID: PMC10274982 DOI: 10.1101/2023.05.19.23290250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.
Collapse
Affiliation(s)
- Christopher E. Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark S. Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Gregory S. Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Richard M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
31
|
Galgani A, Bartolini E, D’Amora M, Faraguna U, Giorgi FS. The Central Noradrenergic System in Neurodevelopmental Disorders: Merging Experimental and Clinical Evidence. Int J Mol Sci 2023; 24:5805. [PMID: 36982879 PMCID: PMC10055776 DOI: 10.3390/ijms24065805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this article is to highlight the potential role of the locus-coeruleus-noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Tuscany PhD Programme in Neurosciences, 50121 Florence, Italy
| | - Marta D’Amora
- Department of Biology, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| |
Collapse
|
32
|
Demiral ŞB, Kure Liu C, Benveniste H, Tomasi D, Volkow ND. Activation of brain arousal networks coincident with eye blinks during resting state. Cereb Cortex 2023:6991186. [PMID: 36653022 DOI: 10.1093/cercor/bhad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Eye-blinking has been implicated in arousal and attention. Here we test the hypothesis that blinking-moments represent arousal surges associated with activation of the ascending arousal network (AAN) and its thalamic projections. For this purpose, we explored the temporal relationship between eye-blinks and fMRI BOLD activity in AAN and thalamic nuclei, as well as whole brain cluster corrected activations during eyes-open, resting-state fMRI scanning. We show that BOLD activations in the AAN nuclei peaked prior to the eye blinks and in thalamic nuclei peaked prior to and during the blink, consistent with the role of eye blinking in arousal surges. Additionally, we showed visual cortex peak activation prior to the eye blinks, providing further evidence of the visual cortex's role in arousal, and document cerebellar peak activation post eye blinks, which might reflect downstream engagement from arousal surges.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
34
|
Levinson S, Miller M, Iftekhar A, Justo M, Arriola D, Wei W, Hazany S, Avecillas-Chasin JM, Kuhn TP, Horn A, Bari AA. A structural connectivity atlas of limbic brainstem nuclei. FRONTIERS IN NEUROIMAGING 2023; 1:1009399. [PMID: 37555163 PMCID: PMC10406319 DOI: 10.3389/fnimg.2022.1009399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Background Understanding the structural connectivity of key brainstem nuclei with limbic cortical regions is essential to the development of therapeutic neuromodulation for depression, chronic pain, addiction, anxiety and movement disorders. Several brainstem nuclei have been identified as the primary central nervous system (CNS) source of important monoaminergic ascending fibers including the noradrenergic locus coeruleus, serotonergic dorsal raphe nucleus, and dopaminergic ventral tegmental area. However, due to practical challenges to their study, there is limited data regarding their in vivo anatomic connectivity in humans. Objective To evaluate the structural connectivity of the following brainstem nuclei with limbic cortical areas: locus coeruleus, ventral tegmental area, periaqueductal grey, dorsal raphe nucleus, and nucleus tractus solitarius. Additionally, to develop a group average atlas of these limbic brainstem structures to facilitate future analyses. Methods Each nucleus was manually masked from 197 Human Connectome Project (HCP) structural MRI images using FSL software. Probabilistic tractography was performed using FSL's FMRIB Diffusion Toolbox. Connectivity with limbic cortical regions was calculated and compared between brainstem nuclei. Results were aggregated to produce a freely available MNI structural atlas of limbic brainstem structures. Results A general trend was observed for a high probability of connectivity to the amygdala, hippocampus and DLPFC with relatively lower connectivity to the orbitofrontal cortex, NAc, hippocampus and insula. The locus coeruleus and nucleus tractus solitarius demonstrated significantly greater connectivity to the DLPFC than amygdala while the periaqueductal grey, dorsal raphe nucleus, and ventral tegmental area did not demonstrate a significant difference between these two structures. Conclusion Monoaminergic and other modulatory nuclei in the brainstem project widely to cortical limbic regions. We describe the structural connectivity across the several key brainstem nuclei theorized to influence emotion, reward, and cognitive functions. An increased understanding of the anatomic basis of the brainstem's role in emotion and other reward-related processing will support targeted neuromodulatary therapies aimed at alleviating the symptoms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Department of Neurosurgery, Stanford University, Palo Alto CA, United States
| | - Michelle Miller
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Ahmed Iftekhar
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Monica Justo
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Arriola
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenxin Wei
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | | | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin, Germany
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Massachusetts General Hospital Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ausaf A. Bari
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
Kuo CC, Chan H, Hung WC, Chen RF, Yang HW, Min MY. Carbachol increases locus coeruleus activation by targeting noradrenergic neurons, inhibitory interneurons and inhibitory synaptic transmission. Eur J Neurosci 2023; 57:32-53. [PMID: 36382388 DOI: 10.1111/ejn.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The locus coeruleus (LC) consists of noradrenergic (NA) neurons and plays an important role in controlling behaviours. Although much of the knowledge regarding LC functions comes from studying behavioural outcomes upon administration of muscarinic acetylcholine receptor (mAChR) agonists into the nucleus, the exact mechanisms remain unclear. Here, we report that the application of carbachol (CCh), an mAChR agonist, increased the spontaneous action potentials (sAPs) of both LC-NA neurons and local inhibitory interneurons (LC I-INs) in acute brain slices by activating M1/M3 mAChRs (m1/3 AChRs). Optogenetic activation of LC I-INs evoked inhibitory postsynaptic currents (IPSCs) in LC-NA neurons that were mediated by γ-aminobutyric acid type A (GABAA ) and glycine receptors, and CCh application decreased the IPSC amplitude through a presynaptic mechanism by activating M4 mAChRs (m4 AChRs). LC-NA neurons also exhibited spontaneous phasic-like activity (sPLA); CCh application increased the incidence of this activity. This effect of CCh application was not observed with blockade of GABAA and glycine receptors, suggesting that the sPLA enhancement occurred likely because of the decreased synaptic transmission of LC I-INs onto LC-NA neurons by the m4 AChR activation and/or increased spiking rate of LC I-INs by the m1/3 AChR activation, which could lead to fatigue of the synaptic transmission. In conclusion, we report that CCh application, while inhibiting their synaptic transmission, increases sAP rates of LC-NA neurons and LC I-INs. Collectively, these effects provide insight into the cellular mechanisms underlying the behaviour modulations following the administration of muscarinic receptor agonists into the LC reported by the previous studies.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao Chan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Hung
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ruei-Feng Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Plini ERG, Melnychuk MC, Harkin A, Dahl MJ, McAuslan M, Kühn S, Boyle RT, Whelan R, Andrews R, Düzel S, Drewelies J, Wagner GG, Lindenberger U, Norman K, Robertson IH, Dockree PM. Dietary Tyrosine Intake (FFQ) Is Associated with Locus Coeruleus, Attention and Grey Matter Maintenance: An MRI Structural Study on 398 Healthy Individuals of the Berlin Aging Study-II. J Nutr Health Aging 2023; 27:1174-1187. [PMID: 38151868 DOI: 10.1007/s12603-023-2005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE It is documented that low protein and amino-acid dietary intake is related to poorer cognitive health and increased risk of dementia. Degradation of the neuromodulatory pathways, (comprising the cholinergic, dopaminergic, serotoninergic and noradrenergic systems) is observed in neurodegenerative diseases and impairs the proper biosynthesis of key neuromodulators from micro-nutrients and amino acids. How these micro-nutrients are linked to neuromodulatory pathways in healthy adults is less studied. The Locus Coeruleus-Noradrenergic System (LC-NA) is the earliest subcortical structure affected in Alzheimer's disease, showing marked neurodegeneration, but is also sensitive for age-related changes. The LC-NA system is critical for supporting attention and cognitive control, functions that are enhanced both by tyrosine administration and chronic tyrosine intake. The purpose of this study was to 1) investigate whether the dietary intake of tyrosine, the key precursor for noradrenaline (NA), is related to LC signal intensity 2) whether LC mediates the reported association between tyrosine intake and higher cognitive performance (measured with Trail Making Test - TMT), and 3) whether LC signal intensity relates to an objective measure of brain maintenance (BrainPAD). METHODS The analyses included 398 3T MRIs of healthy participants from the Berlin Aging Study II to investigate the relationship between LC signal intensity and habitual dietary tyrosine intake-daily average (HD-Tyr-IDA - measured with Food Frequency Questionnaire - FFQ). As a control procedure, the same analyses were repeated on other main seeds of the neuromodulators' subcortical system (Dorsal and Medial Raphe, Ventral Tegmental Area and Nucleus Basalis of Meynert). In the same way, the relationships between the five nuclei and BrainPAD were tested. RESULTS Results show that HD-Tyr-IDA is positively associated with LC signal intensity. Similarly, LC disproportionally relates to better brain maintenance (BrainPAD). Mediation analyses reveal that only LC, relative to the other nuclei tested, mediates the relationship between HD-Tyr-IDA I and performance in the TMT and between HD-Tyr-IDA and BrainPAD. CONCLUSIONS These findings provide the first evidence linking tyrosine intake with LC-NA system signal intensity and its correlation with neuropsychological performance. This study strengthens the role of diet for maintaining brain and cognitive health and supports the noradrenergic theory of cognitive reserve. Within this framework, adequate tyrosine intake might increase the resilience of LC-NA system functioning, by preventing degeneration and supporting noradrenergic metabolism required for LC function and neuropsychological performance.
Collapse
Affiliation(s)
- E R G Plini
- Emanuele RG Plini, Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gu L, Pan X, Wang C, Wang L. The benefits of propofol on cancer treatment: Decipher its modulation code to immunocytes. Front Pharmacol 2022; 13:919636. [PMID: 36408275 PMCID: PMC9672338 DOI: 10.3389/fphar.2022.919636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2023] Open
Abstract
Anesthetics are essential for cancer surgery, but accumulated research have proven that some anesthetics promote the occurrence of certain cancers, leading to adverse effects in the lives of patients. Although anesthetic technology is mature, there is no golden drug selection standard for surgical cancer treatment. To afford the responsibility of human health, a more specific regimen for cancer resection is indeed necessary. Immunosuppression in oncologic surgery has an adverse influence on the outcomes of patients. The choice of anesthetic strategies influences perioperative immunity. Among anesthetics, propofol has shown positive effects on immunity. Apart from that, propofol's anticancer effect has been generally reported, which makes it more significant in oncologic surgery. However, the immunoregulative function of propofol is not reorganized well. Herein, we have summarized the impact of propofol on different immunocytes, proposed its potential mechanism for the positive effect on cancer immunity, and offered a conceivable hypothesis on its regulation to postoperative inflammation. We conclude that the priority of propofol is high in oncologic surgery and propofol may be a promising immunomodulatory drug for tumor therapy.
Collapse
Affiliation(s)
- Long Gu
- First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Xueqi Pan
- Intensive Care Unit, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chongcheng Wang
- Trauma Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
39
|
Souza GMPR, Stornetta DS, Vitali AJ, Wildner H, Zeilhofer HU, Campbell JN, Abbott SBG. Chemogenetic activation of noradrenergic A5 neurons increases blood pressure and visceral sympathetic activity in adult rats. Am J Physiol Regul Integr Comp Physiol 2022; 323:R512-R531. [PMID: 35993562 PMCID: PMC9602699 DOI: 10.1152/ajpregu.00119.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
In mammals, the pontine noradrenergic system influences nearly every aspect of central nervous system function. A subpopulation of pontine noradrenergic neurons, called A5, are thought to be important in the cardiovascular response to physical stressors, yet their function is poorly defined. We hypothesized that activation of A5 neurons drives a sympathetically mediated increase in blood pressure (BP). To test this hypothesis, we conducted a comprehensive assessment of the cardiovascular effects of chemogenetic stimulation of A5 neurons in male and female adult rats using intersectional genetic and anatomical targeting approaches. Chemogenetic stimulation of A5 neurons in freely behaving rats elevated BP by 15 mmHg and increased cardiac baroreflex sensitivity with a negligible effect on resting HR. Importantly, A5 stimulation had no detectable effect on locomotor activity, metabolic rate, or respiration. Under anesthesia, stimulation of A5 neurons produced a marked elevation in visceral sympathetic nerve activity (SNA) and no change in skeletal muscle SNA, showing that A5 neurons preferentially stimulate visceral SNA. Interestingly, projection mapping indicates that A5 neurons target sympathetic preganglionic neurons throughout the spinal cord and parasympathetic preganglionic neurons throughout in the brainstem, as well as the nucleus of the solitary tract, and ventrolateral medulla. Moreover, in situ hybridization and immunohistochemistry indicate that a subpopulation of A5 neurons coreleases glutamate and monoamines. Collectively, this study suggests A5 neurons are a central modulator of autonomic function with a potentially important role in sympathetically driven redistribution of blood flow from the visceral circulation to critical organs and skeletal muscle.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Alexander J Vitali
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Hanns U Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
40
|
Zampese E, Wokosin DL, Gonzalez-Rodriguez P, Guzman JN, Tkatch T, Kondapalli J, Surmeier WC, D’Alessandro KB, De Stefani D, Rizzuto R, Iino M, Molkentin JD, Chandel NS, Schumacker PT, Surmeier DJ. Ca 2+ channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons. SCIENCE ADVANCES 2022; 8:eabp8701. [PMID: 36179023 PMCID: PMC9524841 DOI: 10.1126/sciadv.abp8701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/12/2022] [Indexed: 05/08/2023]
Abstract
How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - David L. Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patricia Gonzalez-Rodriguez
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jaime N. Guzman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jyothisri Kondapalli
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - William C. Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Karis B. D’Alessandro
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Masamitsu Iino
- Department of Physiology, Nihon University School of Medicine, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Navdeep S. Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
41
|
Sciolino NR, Hsiang M, Mazzone CM, Wilson LR, Plummer NW, Amin J, Smith KG, McGee CA, Fry SA, Yang CX, Powell JM, Bruchas MR, Kravitz AV, Cushman JD, Krashes MJ, Cui G, Jensen P. Natural locus coeruleus dynamics during feeding. SCIENCE ADVANCES 2022; 8:eabn9134. [PMID: 35984878 PMCID: PMC9390985 DOI: 10.1126/sciadv.abn9134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher M. Mazzone
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Leslie R. Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jaisal Amin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher A. McGee
- Comparative Medicine, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sydney A. Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cindy X. Yang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jeanne M. Powell
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael R. Bruchas
- Departments of Anesthesiology and Pharmacology, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael J. Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
42
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022; 61:e202204787. [DOI: 10.1002/anie.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
43
|
Swallow KM, Broitman AW, Riley E, Turker HB. Grounding the Attentional Boost Effect in Events and the Efficient Brain. Front Psychol 2022; 13:892416. [PMID: 35936250 PMCID: PMC9355572 DOI: 10.3389/fpsyg.2022.892416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
Attention and memory for everyday experiences vary over time, wherein some moments are better attended and subsequently better remembered than others. These effects have been demonstrated in naturalistic viewing tasks with complex and relatively uncontrolled stimuli, as well as in more controlled laboratory tasks with simpler stimuli. For example, in the attentional boost effect (ABE), participants perform two tasks at once: memorizing a series of briefly presented stimuli (e.g., pictures of outdoor scenes) for a later memory test, and responding to other concurrently presented cues that meet pre-defined criteria (e.g., participants press a button for a blue target square and do nothing for a red distractor square). However, rather than increasing dual-task interference, attending to a target cue boosts, rather than impairs, subsequent memory for concurrently presented information. In this review we describe current data on the extent and limitations of the attentional boost effect and whether it may be related to activity in the locus coeruleus neuromodulatory system. We suggest that insight into the mechanisms that produce the attentional boost effect may be found in recent advances in the locus coeruleus literature and from understanding of how the neurocognitive system handles stability and change in everyday events. We consequently propose updates to an early account of the attentional boost effect, the dual-task interaction model, to better ground it in what is currently known about event cognition and the role that the LC plays in regulating brain states.
Collapse
Affiliation(s)
- Khena M. Swallow
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Adam W. Broitman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Hamid B. Turker
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|
45
|
Leal Santos S, Chen BK, Pereira GR, Pham V, Denny CA. Propranolol Administration Modulates Neural Activity in the Hippocampal Hilus During Fear Retrieval. Front Behav Neurosci 2022; 16:919831. [PMID: 35874651 PMCID: PMC9301278 DOI: 10.3389/fnbeh.2022.919831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Altered fear learning is a strong behavioral component of anxiety disorders such as post-traumatic stress disorder (PTSD). Recent efforts have attempted to combine exposure therapies with drugs that target fear memory retrieval and memory reconsolidation, in order to improve treatment efficacy. The noradrenergic (NA) signaling system is of particular interest, due to its role in regulating the stress response and its involvement in fear and learning processes. Importantly, propranolol (P), a non-selective β-adrenergic antagonist, has shown the potential in decreasing exaggerated fear in both humans and animal models. In a previous study, we utilized an activity-dependent tagging murine model to determine the neural mechanisms by which propranolol attenuates learned fear. We found that propranolol acutely decreased memory trace reactivation specifically in the dorsal dentate gyrus (dDG), but not in CA3 or CA1. Here, we extended our previous study by investigating whether propranolol additionally altered activity in the hilus, a polymorphic layer that consists of neurons, mossy cells, and GABAergic interneurons. We found that propranolol acutely reduced overall hilar activity in both the dorsal and ventral hilus. Moreover, we report that propranolol significantly altered the activity of parvalbumin (PV)+ cells in the ventral (vDG), but not dorsal DG (dDG). Together, these results suggest that a β-adrenergic blockade may affect the activity of excitatory and inhibitory cell types in the hilar layer of the DG, and that these alterations may contribute to manipulating fear memory traces.
Collapse
Affiliation(s)
- Sofia Leal Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, United States
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Instituto de Investigação em Ciências da Vida e da Saúde (ICVS)/3Bs - PT Government Associate Laboratory, Guimarães, Portugal
| | - Briana K. Chen
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, United States
| | - Guilherme R. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Instituto de Investigação em Ciências da Vida e da Saúde (ICVS)/3Bs - PT Government Associate Laboratory, Guimarães, Portugal
| | - Vananh Pham
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, United States
| | - Christine A. Denny
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, United States
- *Correspondence: Christine A. Denny,
| |
Collapse
|
46
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
47
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
48
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
49
|
Mirino P, Pecchinenda A, Boccia M, Capirchio A, D’Antonio F, Guariglia C. Cerebellum-Cortical Interaction in Spatial Navigation and Its Alteration in Dementias. Brain Sci 2022; 12:brainsci12050523. [PMID: 35624910 PMCID: PMC9138670 DOI: 10.3390/brainsci12050523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The cerebellum has a homogeneous structure and performs different computational functions such as modulation/coordination of the communication between cerebral regions, and regulation/integration of sensory information. Albeit cerebellar activity is generally associated with motor functions, several recent studies link it to various cognitive functions, including spatial navigation. In addition, cerebellar activity plays a modulatory role in different cognitive domains and brain processes. Depending on the network involved, cerebellar damage results in specific functional alterations, even when no function loss might be detected. In the present review, we discuss evidence of brainstem degeneration and of a substantial reduction of neurons in nuclei connected to the inferior olivary nucleus in the early stages of Alzheimer’s disease. Based on the rich patterns of afferences from the inferior olive nucleus to the cerebellum, we argue that the subtle alterations in spatial navigation described in the early stages of dementia stem from alterations of the neuromodulatory functions of the cerebellum.
Collapse
Affiliation(s)
- Pierandrea Mirino
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Ph.D. Program in Behavioral Neuroscience, “Sapienza” University of Rome, 00185 Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy;
| | - Anna Pecchinenda
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
| | - Adriano Capirchio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy;
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Cecilia Guariglia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
- Correspondence:
| |
Collapse
|
50
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|