1
|
Aksoy-Aksel A, Ferraguti F, Holmes A, Lüthi A, Ehrlich I. Amygdala intercalated cells form an evolutionarily conserved system orchestrating brain networks. Nat Neurosci 2024:10.1038/s41593-024-01836-8. [PMID: 39672964 DOI: 10.1038/s41593-024-01836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
The amygdala attributes valence and emotional salience to environmental stimuli and regulates how these stimuli affect behavior. Within the amygdala, a distinct class of evolutionarily conserved neurons form the intercalated cell (ITC) clusters, mainly located around the boundaries of the lateral and basal nuclei. Here, we review the anatomical, physiological and molecular characteristics of ITCs, and detail the organization of ITC clusters and their connectivity with one another and other brain regions. We describe how ITCs undergo experience-dependent plasticity and discuss emerging evidence demonstrating how ITCs are innervated and functionally regulated by neuromodulatory systems. We summarize recent findings showing that experience alters the balance of activity between different ITC clusters, thereby determining prevailing behavioral output. Finally, we propose a model in which ITCs form a key system for integrating divergent inputs and orchestrating brain-wide circuits to generate behavioral states attuned to current environmental circumstances and internal needs.
Collapse
Affiliation(s)
- Ayla Aksoy-Aksel
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Ehrlich
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Varin C, de Kerchove d'Exaerde A. Neuronal encoding of behaviors and instrumental learning in the dorsal striatum. Trends Neurosci 2024:S0166-2236(24)00225-X. [PMID: 39632222 DOI: 10.1016/j.tins.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The dorsal striatum is instrumental in regulating motor control and goal-directed behaviors. The classical description of the two output pathways of the dorsal striatum highlights their antagonistic control over actions. However, recent experimental evidence implicates both pathways and their coordinated activities during actions. In this review, we examine the different models proposed for striatal encoding of actions during self-paced behaviors and how they can account for evidence harvested during goal-directed behaviors. We also discuss how the activation of striatal ensembles can be reshaped and reorganized to support the formation of instrumental learning and behavioral flexibility. Future work integrating these considerations may resolve controversies regarding the control of actions by striatal networks.
Collapse
Affiliation(s)
- Christophe Varin
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| | - Alban de Kerchove d'Exaerde
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| |
Collapse
|
3
|
Osborne KJ, Walther S, Mittal VA. Motor actions across psychiatric disorders: A research domain criteria (RDoC) perspective. Clin Psychol Rev 2024; 114:102511. [PMID: 39510028 DOI: 10.1016/j.cpr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The motor system is critical for understanding the pathophysiology and treatment of mental illness. Abnormalities in the processes that allow us to plan and execute movement in a goal-directed, context-appropriate manner (i.e., motor actions) are especially central to clinical motor research. Within this context, the NIMH Research Domain Criteria (RDoC) framework now includes a Motor Actions construct within the recently incorporated Sensorimotor Systems Domain, providing a useful framework for conducting research on motor action processes. However, there is limited available resources for understanding or implementing this framework. We address this gap by providing a comprehensive critical review and conceptual integration of the current clinical literature on the subconstructs comprising the Motor Actions construct. This includes a detailed discussion of each Motor Action subconstruct (e.g., action planning/execution) and its measurement across different units of analysis (e.g., molecules to behavior), the temporal and conceptual relationships among the Motor Action subconstructs (and other relevant RDoC domain constructs), and how abnormalities in these Motor Action subconstructs manifest in mental illness. Together, the review illustrates how motor system dysfunction is implicated in the pathophysiology of many psychiatric conditions and demonstrates shared and distinct mechanisms that may account for similar manifestations of motor abnormalities across disorders.
Collapse
Affiliation(s)
- K Juston Osborne
- Washington University in St. Louis, Department of Psychiatry, 4444 Forest Park Ave., St. Louis, MO, USA; Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA.
| | - Sebastian Walther
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA; Northwestern University, Department of Psychiatry, 676 N. St. Claire, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), 633 Clark St., Evanston, Chicago, IL, USA
| |
Collapse
|
4
|
Weber SJ, Kawa AB, Beutler MM, Kuhn HM, Moutier AL, Westlake JG, Koyshman LM, Moreno CD, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. Neuropsychopharmacology 2024; 50:461-471. [PMID: 39300272 PMCID: PMC11632087 DOI: 10.1038/s41386-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or "incubates" during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex or significant interaction of sex with other factors in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Hayley M Kuhn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Giossi C, Bahuguna J, Rubin JE, Verstynen T, Vich C. Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum. Proc Natl Acad Sci U S A 2024; 121:e2408505121. [PMID: 39536079 PMCID: PMC11588131 DOI: 10.1073/pnas.2408505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here, we investigate this suggestion by harnessing a biologically constrained spiking model of the cortico-basal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect pathway spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| | - Jyotika Bahuguna
- Laboratoire de Neurosciences Cognitives et Adaptatives, Universite of Strasbourg, Strasbourg67000, France
| | - Jonathan E. Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15213
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA15213
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| |
Collapse
|
6
|
Fearey B, Tong Y, Alexander A, Graham B, Howe M. Dynamic imbalances in cell-type specific striatal ensemble activity during visually guided locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620847. [PMID: 39554032 PMCID: PMC11565797 DOI: 10.1101/2024.10.29.620847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Locomotion is continuously regulated by an animal's position within an environment relative to goals. Direct and indirect pathway striatal output neurons (dSPNs and iSPNs) influence locomotion, but how their activity is naturally coordinated by changing environments is unknown. We found, in head-fixed mice, that the relative balance of dSPN and iSPN activity was dynamically modulated with respect to position within a visually-guided locomotor trajectory to retrieve reward. Imbalances were present within ensembles of position-tuned SPNs which were sensitive to the visual environment. Our results suggest a model in which competitive imbalances in striatal output are created by learned associations with sensory input to shape context dependent locomotion.
Collapse
Affiliation(s)
- Brenna Fearey
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yuxin Tong
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Andrew Alexander
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Psychological & Brain Sciences, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Ben Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
7
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
8
|
Kim SY, Lim W. Quantifying harmony between direct and indirect pathways in the basal ganglia: healthy and Parkinsonian states. Cogn Neurodyn 2024; 18:2809-2829. [PMID: 39555274 PMCID: PMC11564607 DOI: 10.1007/s11571-024-10119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) show a variety of functions for motor and cognition. There are two competitive pathways in the BG; direct pathway (DP) which facilitates movement and indirect pathway (IP) which suppresses movement. It is well known that diverse functions of the BG may be made through "balance" between DP and IP. But, to the best of our knowledge, so far no quantitative analysis for such balance was done. In this paper, as a first time, we introduce the competition degree C d between DP and IP. Then, by employing C d , we quantify their competitive harmony (i.e., competition and cooperative interplay), which could lead to improving our understanding of the traditional "balance" so clearly and quantitatively. We first consider the case of normal dopamine (DA) level ofϕ ∗ = 0.3 . In the case of phasic cortical input (10 Hz), a healthy state withC d ∗ = 2.82 (i.e., DP is 2.82 times stronger than IP) appears. In this case, normal movement occurs via harmony between DP and IP. Next, we consider the case of decreased DA level, ϕ = ϕ ∗ ( = 0.3 ) x DA ( 1 > x DA ≥ 0 ). With decreasing x DA from 1, the competition degree C d between DP and IP decreases monotonically from C d ∗ , which results in appearance of a pathological Parkinsonian state with reduced C d . In this Parkinsonian state, strength of IP is much increased than that in the case of normal healthy state, leading to disharmony between DP and IP. Due to such break-up of harmony between DP and IP, impaired movement occurs. Finally, we also study treatment of the pathological Parkinsonian state via recovery of harmony between DP and IP.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
9
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
10
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
11
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613147. [PMID: 39345421 PMCID: PMC11429699 DOI: 10.1101/2024.09.15.613147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal protein in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
12
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
13
|
Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556301. [PMID: 37732280 PMCID: PMC10508778 DOI: 10.1101/2023.09.05.556301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that it produces. We show that CBGTPy is extensible enough to apply to a range of experimental protocols and to allow for the implementation of model extensions with minimal developmental effort.
Collapse
Affiliation(s)
- Matthew Clapp
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
14
|
Banuelos C, Creswell K, Walsh C, Manuck SB, Gianaros PJ, Verstynen T. D2 dopamine receptor expression, reactivity to rewards, and reinforcement learning in a complex value-based decision-making task. Soc Cogn Affect Neurosci 2024; 19:nsae050. [PMID: 38988197 PMCID: PMC11281849 DOI: 10.1093/scan/nsae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Different dopamine (DA) subtypes have opposing dynamics at postsynaptic receptors, with the ratio of D1 to D2 receptors determining the relative sensitivity to gains and losses, respectively, during value-based learning. This effective sensitivity to different reward feedback interacts with phasic DA levels to determine the effectiveness of learning, particularly in dynamic feedback situations where the frequency and magnitude of rewards need to be integrated over time to make optimal decisions. We modeled this effect in simulations of the underlying basal ganglia pathways and then tested the predictions in individuals with a variant of the human dopamine receptor D2 (DRD2; -141C Ins/Del and Del/Del) gene that associates with lower levels of D2 receptor expression (N = 119) and compared their performance in the Iowa Gambling Task to noncarrier controls (N = 319). Ventral striatal (VS) reactivity to rewards was measured in the Cards task with fMRI. DRD2 variant carriers made less effective decisions than noncarriers, but this effect was not moderated by VS reward reactivity as is hypothesized by our model. These results suggest that the interaction between DA receptor subtypes and reactivity to rewards during learning may be more complex than originally thought.
Collapse
Affiliation(s)
- Cristina Banuelos
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kasey Creswell
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Catherine Walsh
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
15
|
Tye KM, Miller EK, Taschbach FH, Benna MK, Rigotti M, Fusi S. Mixed selectivity: Cellular computations for complexity. Neuron 2024; 112:2289-2303. [PMID: 38729151 PMCID: PMC11257803 DOI: 10.1016/j.neuron.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
Collapse
Affiliation(s)
- Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Felix H Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA; Biological Science Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Marcus K Benna
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
17
|
Weber SJ, Kawa AB, Moutier AL, Beutler MM, Koyshman LM, Moreno CD, Westlake JG, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600812. [PMID: 38979157 PMCID: PMC11230461 DOI: 10.1101/2024.06.26.600812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or 'incubates' during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
18
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
19
|
Bahuguna J, Verstynen T, Rubin JE. How cortico-basal ganglia-thalamic subnetworks can shift decision policies to maximize reward rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595174. [PMID: 38826315 PMCID: PMC11142098 DOI: 10.1101/2024.05.21.595174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
All mammals exhibit flexible decision policies that depend, at least in part, on the cortico-basal ganglia-thalamic (CBGT) pathways. Yet understanding how the complex connectivity, dynamics, and plasticity of CBGT circuits translates into experience-dependent shifts of decision policies represents a longstanding challenge in neuroscience. Here we used a computational approach to address this problem. Specifically, we simulated decisions driven by CBGT circuits under baseline, unrewarded conditions using a spiking neural network, and fit the resulting behavior to an evidence accumulation model. Using canonical correlation analysis, we then replicated the existence of three recently identified control ensembles (responsiveness, pliancy and choice) within CBGT circuits, with each ensemble mapping to a specific configuration of the evidence accumulation process. We subsequently simulated learning in a simple two-choice task with one optimal (i.e., rewarded) target. We find that value-based learning, via dopaminergic signals acting on cortico-striatal synapses, effectively manages the speed-accuracy tradeoff so as to increase reward rate over time. Within this process, learning-related changes in decision policy can be decomposed in terms of the contributions of each control ensemble, and these changes are driven by sequential reward prediction errors on individual trials. Our results provide a clear and simple mechanism for how dopaminergic plasticity shifts specific subnetworks within CBGT circuits so as to strategically modulate decision policies in order to maximize effective reward rate.
Collapse
Affiliation(s)
- Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
20
|
Giossi C, Bahuguna J, Rubin JE, Verstynen T, Vich C. Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592321. [PMID: 38746308 PMCID: PMC11092778 DOI: 10.1101/2024.05.03.592321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here we investigate this suggestion by harnessing a biologically-constrained spiking model of the corticobasal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect path-way spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.
Collapse
|
21
|
Du Y, Forrence AD, Metcalf DM, Haith AM. Action initiation and action inhibition follow the same time course when compared under matched experimental conditions. J Neurophysiol 2024; 131:757-767. [PMID: 38478894 DOI: 10.1152/jn.00434.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
The ability to initiate an action quickly when needed and the ability to cancel an impending action are both fundamental to action control. It is often presumed that they are qualitatively distinct processes, yet they have largely been studied in isolation and little is known about how they relate to one another. Comparing previous experimental results shows a similar time course for response initiation and response inhibition. However, the exact time course varies widely depending on experimental conditions, including the frequency of different trial types and the urgency to respond. For example, in the stop-signal task, where both action initiation and action inhibition are involved and could be compared, action inhibition is typically found to be much faster. However, this apparent difference is likely due to there being much greater urgency to inhibit an action than to initiate one in order to avoid failing at the task. This asymmetry in the urgency between action initiation and action inhibition makes it impossible to compare their relative time courses in a single task. Here, we demonstrate that when action initiation and action inhibition are measured separately under conditions that are matched as closely as possible, their speeds are not distinguishable and are positively correlated across participants. Our results raise the possibility that action initiation and action inhibition may not necessarily be qualitatively distinct processes but may instead reflect complementary outcomes of a single decision process determining whether or not to act.NEW & NOTEWORTHY The time courses of initiating an action and canceling an action have largely been studied in isolation, and little is known about their relationship. Here, we show that when measured under comparable conditions the speeds of action initiation and action inhibition are the same. This finding raises the possibility that these two functions may be more closely related than previously assumed, with potentially important implications for their underlying neural basis.
Collapse
Affiliation(s)
- Yue Du
- Department of NeurologyJohns Hopkins University, BaltimoreMarylandUnited States
| | | | - Delaney M Metcalf
- Department of NeurologyJohns Hopkins University, BaltimoreMarylandUnited States
| | - Adrian M Haith
- Department of NeurologyJohns Hopkins University, BaltimoreMarylandUnited States
| |
Collapse
|
22
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
23
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Bond K, Rasero J, Madan R, Bahuguna J, Rubin J, Verstynen T. Competing neural representations of choice shape evidence accumulation in humans. eLife 2023; 12:e85223. [PMID: 37818943 PMCID: PMC10624421 DOI: 10.7554/elife.85223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Making adaptive choices in dynamic environments requires flexible decision policies. Previously, we showed how shifts in outcome contingency change the evidence accumulation process that determines decision policies. Using in silico experiments to generate predictions, here we show how the cortico-basal ganglia-thalamic (CBGT) circuits can feasibly implement shifts in decision policies. When action contingencies change, dopaminergic plasticity redirects the balance of power, both within and between action representations, to divert the flow of evidence from one option to another. When competition between action representations is highest, the rate of evidence accumulation is the lowest. This prediction was validated in in vivo experiments on human participants, using fMRI, which showed that (1) evoked hemodynamic responses can reliably predict trial-wise choices and (2) competition between action representations, measured using a classifier model, tracked with changes in the rate of evidence accumulation. These results paint a holistic picture of how CBGT circuits manage and adapt the evidence accumulation process in mammals.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Raghav Madan
- Department of Biomedical and Health Informatics, University of WashingtonSeattleUnited States
| | - Jyotika Bahuguna
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
25
|
Rusheen AE, Rojas-Cabrera J, Goyal A, Shin H, Yuen J, Jang DP, Bennet KE, Blaha CD, Lee KH, Oh Y. Deep brain stimulation alleviates tics in Tourette syndrome via striatal dopamine transmission. Brain 2023; 146:4174-4190. [PMID: 37141283 PMCID: PMC10545518 DOI: 10.1093/brain/awad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release. Here, we use electrophysiology, electrochemistry, optogenetics, pharmacological treatments and behavioural measurements to mechanistically examine how thalamic DBS modulates synaptic and tonic dopamine activity in the dorsomedial striatum. Previous studies demonstrated focal disruption of GABAergic transmission in the dorsolateral striatum of rats led to repetitive motor tics recapitulating the major symptom of Tourette syndrome. We employed this model under light anaesthesia and found CMPf DBS evoked synaptic dopamine release and elevated tonic dopamine levels via striatal cholinergic interneurons while concomitantly reducing motor tic behaviour. The improvement in tic behaviour was found to be mediated by D2 receptor activation as blocking this receptor prevented the therapeutic response. Our results demonstrate that release of striatal dopamine mediates the therapeutic effects of CMPf DBS and points to striatal dopamine dysfunction as a driver for motor tics in the pathoneurophysiology of Tourette syndrome.
Collapse
Affiliation(s)
- Aaron E Rusheen
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Juan Rojas-Cabrera
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Abhinav Goyal
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- IMPACT—the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, VIC 3216, Australia
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Keven E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Division of Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
26
|
Ranieri CM, Moioli RC, Vargas PA, Romero RAF. A neurorobotics approach to behaviour selection based on human activity recognition. Cogn Neurodyn 2023; 17:1009-1028. [PMID: 37522044 PMCID: PMC10374508 DOI: 10.1007/s11571-022-09886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Behaviour selection has been an active research topic for robotics, in particular in the field of human-robot interaction. For a robot to interact autonomously and effectively with humans, the coupling between techniques for human activity recognition and robot behaviour selection is of paramount importance. However, most approaches to date consist of deterministic associations between the recognised activities and the robot behaviours, neglecting the uncertainty inherent to sequential predictions in real-time applications. In this paper, we address this gap by presenting an initial neurorobotics model that embeds, in a simulated robot, computational models of parts of the mammalian brain that resembles neurophysiological aspects of the basal ganglia-thalamus-cortex (BG-T-C) circuit, coupled with human activity recognition techniques. A robotics simulation environment was developed for assessing the model, where a mobile robot accomplished tasks by using behaviour selection in accordance with the activity being performed by the inhabitant of an intelligent home. Initial results revealed that the initial neurorobotics model is advantageous, especially considering the coupling between the most accurate activity recognition approaches and the computational models of more complex animals.
Collapse
Affiliation(s)
- Caetano M. Ranieri
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Avenida Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590 Brazil
| | - Renan C. Moioli
- Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal, RN 59078-970 Brazil
| | - Patricia A. Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Roseli A. F. Romero
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Avenida Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590 Brazil
| |
Collapse
|
27
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
28
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
29
|
Barnett WH, Kuznetsov A, Lapish CC. Distinct cortico-striatal compartments drive competition between adaptive and automatized behavior. PLoS One 2023; 18:e0279841. [PMID: 36943842 PMCID: PMC10030038 DOI: 10.1371/journal.pone.0279841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/15/2022] [Indexed: 03/23/2023] Open
Abstract
Cortical and basal ganglia circuits play a crucial role in the formation of goal-directed and habitual behaviors. In this study, we investigate the cortico-striatal circuitry involved in learning and the role of this circuitry in the emergence of inflexible behaviors such as those observed in addiction. Specifically, we develop a computational model of cortico-striatal interactions that performs concurrent goal-directed and habit learning. The model accomplishes this by distinguishing learning processes in the dorsomedial striatum (DMS) that rely on reward prediction error signals as distinct from the dorsolateral striatum (DLS) where learning is supported by salience signals. These striatal subregions each operate on unique cortical input: the DMS receives input from the prefrontal cortex (PFC) which represents outcomes, and the DLS receives input from the premotor cortex which determines action selection. Following an initial learning of a two-alternative forced choice task, we subjected the model to reversal learning, reward devaluation, and learning a punished outcome. Behavior driven by stimulus-response associations in the DLS resisted goal-directed learning of new reward feedback rules despite devaluation or punishment, indicating the expression of habit. We repeated these simulations after the impairment of executive control, which was implemented as poor outcome representation in the PFC. The degraded executive control reduced the efficacy of goal-directed learning, and stimulus-response associations in the DLS were even more resistant to the learning of new reward feedback rules. In summary, this model describes how circuits of the dorsal striatum are dynamically engaged to control behavior and how the impairment of executive control by the PFC enhances inflexible behavior.
Collapse
Affiliation(s)
- William H. Barnett
- Department of Psychology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Alexey Kuznetsov
- Department of Mathematics, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Christopher C. Lapish
- Department of Psychology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Stark Neurosciences Research Institute, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
30
|
Matikainen-Ankney BA, Legaria AA, Pan Y, Vachez YM, Murphy CA, Schaefer RF, McGrath QJ, Wang JG, Bluitt MN, Ankney KC, Norris AJ, Creed MC, Kravitz AV. Nucleus Accumbens D 1 Receptor-Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biol Psychiatry 2023; 93:512-523. [PMID: 36494220 DOI: 10.1016/j.biopsych.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.
Collapse
Affiliation(s)
| | - Alex A Legaria
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yiyan Pan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Yvan M Vachez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlin A Murphy
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robert F Schaefer
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Quinlan J McGrath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Justin G Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Maya N Bluitt
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin C Ankney
- Department of Economics, Georgetown University, Washington, DC
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
31
|
Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues. Nat Commun 2022; 13:7924. [PMID: 36564387 PMCID: PMC9789106 DOI: 10.1038/s41467-022-35601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
The ability to learn Pavlovian associations from environmental cues predicting positive outcomes is critical for survival, motivating adaptive behaviours. This cued-motivated behaviour depends on the nucleus accumbens (NAc). NAc output activity mediated by spiny projecting neurons (SPNs) is regulated by dopamine, but also by cholinergic interneurons (CINs), which can release acetylcholine and glutamate via the activity of the vesicular acetylcholine transporter (VAChT) or the vesicular glutamate transporter (VGLUT3), respectively. Here we investigated behavioural and neurochemical changes in mice performing a touchscreen Pavlovian approach task by recording dopamine, acetylcholine, and calcium dynamics from D1- and D2-SPNs using fibre photometry in control, VAChT or VGLUT3 mutant mice to understand how these signals cooperate in the service of approach behaviours toward reward-predicting cues. We reveal that NAc acetylcholine-dopaminergic signalling is continuously updated to regulate striatal output underlying the acquisition of Pavlovian approach learning toward reward-predicting cues.
Collapse
|
32
|
Koch ET, Sepers MD, Cheng J, Raymond LA. Early Changes in Striatal Activity and Motor Kinematics in a Huntington's Disease Mouse Model. Mov Disord 2022; 37:2021-2032. [PMID: 35880748 PMCID: PMC9796416 DOI: 10.1002/mds.29168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Huntington's disease is a progressive neurodegenerative disorder with no disease-modifying treatments. Patients experience motor, cognitive, and psychiatric disturbances, and the dorsal striatum is the main target of neurodegeneration. Mouse models of Huntington's disease show altered striatal synaptic signaling in vitro, but how these changes relate to behavioral deficits in vivo is unclear. OBJECTIVES We aimed to investigate how striatal activity correlates with behavior in vivo during motor learning and spontaneous behavior in a Huntington's disease mouse model at two disease stages. METHODS We used fiber photometry to record jGCaMP7f fluorescence, a read-out of neuronal activity, in the dorsal striatum of YAC128 (yeast artificial chromosome-128CAG) mice during accelerating rotarod and open-field behavior. RESULTS Mice showed increased striatal activity on the rotarod, which diminished by late stages of learning, leading to an inverse correlation between latency to fall and striatal activity. The 2- to 3-month-old YAC128 mice did not show a deficit in latency to fall, but displayed significant differences in paw kinematics, including increased paw slip frequency and variability in paw height. These mice exhibited a weaker correlation between latency to fall and striatal activity and aberrant striatal activity during paw slips. At 6 to 7 months, the YAC128 mice showed significantly reduced latency to fall, impaired paw kinematics, and increased striatal activity while on the rotarod. In the open field, the YAC128 mice showed elevated neuronal activity at rest. CONCLUSIONS We uncovered impaired motor coordination at a stage thought to be premotor manifest in YAC128 mice and aberrant striatal activity during the accelerating rotarod and open-field exploration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ellen T. Koch
- Department of PsychiatryDjavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverBCCanada,Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBCCanada
| | - Marja D. Sepers
- Department of PsychiatryDjavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverBCCanada
| | - Judy Cheng
- Department of PsychiatryDjavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverBCCanada,Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBCCanada
| | - Lynn A. Raymond
- Department of PsychiatryDjavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverBCCanada
| |
Collapse
|
33
|
Chen X, Yang Z, Shao Y, Kim K, Wang Y, Wang Y, Wu H, Xu X, Le W. Pitx3 deficiency promotes age-dependent alterations in striatal medium spiny neurons. Front Aging Neurosci 2022; 14:960479. [PMID: 36158557 PMCID: PMC9490232 DOI: 10.3389/fnagi.2022.960479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background The classical motor symptoms of Parkinson's disease (PD) are tightly linked to the gradual loss of dopamine within the striatum. Concomitantly, medium spiny neurons (MSNs) also experience morphological changes, such as reduced dendritic complexity and spine density, which may be potentially associated with motor dysfunction as well. Thus, MSNs may serve as the emerging targets for PD therapy besides the midbrain dopaminergic neurons. Results To comprehensively examine pathological alterations of MSNs longitudinally, we established a TH Cre/ Pitx3 fl/fl (Pitx3cKO ) mouse model that developed canonical PD features, including a significant loss of SNc DAergic neurons and motor deficits. During aging, the targeted neurotransmitter, MSNs morphology and DNA methylation profile were significantly altered upon Pitx3 deficiency. Specifically, dopamine, GABA and glutamate decreased in the model at the early stage. While nuclear, soma and dendritic atrophy, as well as nuclear invaginations increased in the aged MSNs of Pitx3cko mice. Furthermore, more nuclear DNA damages were characterized in MSNs during aging, and Pitx3 deficiency aggravated this phenomenon, together with alterations of DNA methylation profiling associated with lipoprotein and nucleus pathway at the late stage. Conclusion The early perturbations of the neurotransmitters within MSNs may potentially contribute to the alterations of metabolism, morphology and epigenetics within the striatum at the late stage, which may provide new perspectives on the diagnosis and pathogenesis of PD.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kunhyok Kim
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuanyuan Wang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Wang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haifeng Wu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaolan Xu
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Delevich K, Hoshal B, Zhou LZ, Zhang Y, Vedula S, Lin WC, Chase J, Collins AGE, Wilbrecht L. Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Rep 2022; 40:111129. [PMID: 35905722 PMCID: PMC10481643 DOI: 10.1016/j.celrep.2022.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The dorsomedial striatum (DMS) plays a key role in action selection, but less is known about how direct and indirect pathway spiny projection neurons (dSPNs and iSPNs, respectively) contribute to choice rejection in freely moving animals. Here, we use pathway-specific chemogenetic manipulation during a serial choice foraging task to test the role of dSPNs and iSPNs in learned choice rejection. We find that chemogenetic activation, but not inhibition, of iSPNs disrupts rejection of nonrewarded choices, contrary to predictions of a simple "select/suppress" heuristic. Our findings suggest that iSPNs' role in stopping and freezing does not extend in a simple fashion to choice rejection in an ethological, freely moving context. These data may provide insights critical for the successful design of interventions for addiction or other conditions in which it is desirable to strengthen choice rejection.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Benjamin Hoshal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lexi Z Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuting Zhang
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Satya Vedula
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juliana Chase
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Codol O, Gribble PL, Gurney KN. Differential Dopamine Receptor-Dependent Sensitivity Improves the Switch Between Hard and Soft Selection in a Model of the Basal Ganglia. Neural Comput 2022; 34:1588-1615. [PMID: 35671472 DOI: 10.1162/neco_a_01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
The problem of selecting one action from a set of different possible actions, simply referred to as the problem of action selection, is a ubiquitous challenge in the animal world. For vertebrates, the basal ganglia (BG) are widely thought to implement the core computation to solve this problem, as its anatomy and physiology are well suited to this end. However, the BG still display physiological features whose role in achieving efficient action selection remains unclear. In particular, it is known that the two types of dopaminergic receptors (D1 and D2) present in the BG give rise to mechanistically different responses. The overall effect will be a difference in sensitivity to dopamine, which may have ramifications for action selection. However, which receptor type leads to a stronger response is unclear due to the complexity of the intracellular mechanisms involved. In this study, we use an existing, high-level computational model of the BG, which assumes that dopamine contributes to action selection by enabling a switch between different selection regimes, to predict which of D1 or D2 has the greater sensitivity. Thus, we ask, Assuming dopamine enables a switch between action selection regimes in the BG, what functional sensitivity values would result in improved action selection computation? To do this, we quantitatively assessed the model's capacity to perform action selection as we parametrically manipulated the sensitivity weights of D1 and D2. We show that differential (rather than equal) D1 and D2 sensitivity to dopaminergic input improves the switch between selection regimes during the action selection computation in our model. Specifically, greater D2 sensitivity compared to D1 led to these improvements.
Collapse
Affiliation(s)
- Olivier Codol
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul L Gribble
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada.,Haskins Laboratories, New Haven, CT 06511, U.S.A.
| | - Kevin N Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, U.K.
| |
Collapse
|
36
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
37
|
Barakchian Z, Vahabie AH, Nili Ahmadabadi M. Implicit Counterfactual Effect in Partial Feedback Reinforcement Learning: Behavioral and Modeling Approach. Front Neurosci 2022; 16:631347. [PMID: 35620668 PMCID: PMC9127865 DOI: 10.3389/fnins.2022.631347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Context remarkably affects learning behavior by adjusting option values according to the distribution of available options. Displaying counterfactual outcomes, the outcomes of the unchosen option alongside the chosen one (i.e., providing complete feedback), would increase the contextual effect by inducing participants to compare the two outcomes during learning. However, when the context only consists of the juxtaposition of several options and there is no such explicit counterfactual factor (i.e., only partial feedback is provided), it is not clear whether and how the contextual effect emerges. In this research, we employ Partial and Complete feedback paradigms in which options are associated with different reward distributions. Our modeling analysis shows that the model that uses the outcome of the chosen option for updating the values of both chosen and unchosen options in opposing directions can better account for the behavioral data. This is also in line with the diffusive effect of dopamine on the striatum. Furthermore, our data show that the contextual effect is not limited to probabilistic rewards, but also extends to magnitude rewards. These results suggest that by extending the counterfactual concept to include the effect of the chosen outcome on the unchosen option, we can better explain why there is a contextual effect in situations in which there is no extra information about the unchosen outcome.
Collapse
Affiliation(s)
- Zahra Barakchian
- Department of Cognitive Neuroscience, Institute for Research in Fundamental Sciences, Tehran, Iran
- *Correspondence: Zahra Barakchian
| | - Abdol-Hossein Vahabie
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Majid Nili Ahmadabadi
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
38
|
Adam EM, Brown EN, Kopell N, McCarthy MM. Deep brain stimulation in the subthalamic nucleus for Parkinson's disease can restore dynamics of striatal networks. Proc Natl Acad Sci U S A 2022; 119:e2120808119. [PMID: 35500112 PMCID: PMC9171607 DOI: 10.1073/pnas.2120808119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.
Collapse
Affiliation(s)
- Elie M. Adam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | | |
Collapse
|
39
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
40
|
Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, Metwaly M, Salin P, Fatmi A, Belaidouni Y, Brosse L, Kerkerian-Le Goff L, Fasano L. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry 2022; 12:106. [PMID: 35292625 PMCID: PMC8924251 DOI: 10.1038/s41398-022-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
Collapse
Affiliation(s)
- Xavier Caubit
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Paolo Gubellini
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pierre L. Roubertoux
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, INSERM, MMG, UMR1251 Marseille, France
| | - Michèle Carlier
- grid.463724.00000 0004 0385 2989Aix-Marseille Univ, CNRS, LPC, UMR7290 Marseille, France
| | - Jordan Molitor
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Dorian Chabbert
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Mehdi Metwaly
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pascal Salin
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Ahmed Fatmi
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Yasmine Belaidouni
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Lucie Brosse
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | | | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France.
| |
Collapse
|
41
|
Juarez B, Zweifel LS. Disinhibitory feedback loops for reward and aversion. Cell Res 2022; 32:115-116. [PMID: 34949785 PMCID: PMC8807610 DOI: 10.1038/s41422-021-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Barbara Juarez
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Guo L, Zhang N, Simpson JH. Descending neurons coordinate anterior grooming behavior in Drosophila. Curr Biol 2022; 32:823-833.e4. [PMID: 35120659 DOI: 10.1016/j.cub.2021.12.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
The brain coordinates the movements that constitute behavior, but how descending neurons convey the myriad of commands required to activate the motor neurons of the limbs in the right order and combinations to produce those movements is not well understood. For anterior grooming behavior in the fly, we show that its component head sweeps and leg rubs can be initiated separately, or as a set, by different descending neurons. Head sweeps and leg rubs are mutually exclusive movements of the front legs that normally alternate, and we show that circuits in the ventral nerve cord as well as in the brain can resolve competing commands. Finally, the left and right legs must work together to remove debris. The coordination for leg rubs can be achieved by unilateral activation of a single descending neuron, while a similar manipulation of a different descending neuron decouples the legs to produce single-sided head sweeps. Taken together, these results demonstrate that distinct descending neurons orchestrate the complex alternation between the movements that make up anterior grooming.
Collapse
Affiliation(s)
- Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
43
|
Bond K, Dunovan K, Porter A, Rubin JE, Verstynen T. Dynamic decision policy reconfiguration under outcome uncertainty. eLife 2021; 10:e65540. [PMID: 34951589 PMCID: PMC8806193 DOI: 10.7554/elife.65540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
In uncertain or unstable environments, sometimes the best decision is to change your mind. To shed light on this flexibility, we evaluated how the underlying decision policy adapts when the most rewarding action changes. Human participants performed a dynamic two-armed bandit task that manipulated the certainty in relative reward (conflict) and the reliability of action-outcomes (volatility). Continuous estimates of conflict and volatility contributed to shifts in exploratory states by changing both the rate of evidence accumulation (drift rate) and the amount of evidence needed to make a decision (boundary height), respectively. At the trialwise level, following a switch in the optimal choice, the drift rate plummets and the boundary height weakly spikes, leading to a slow exploratory state. We find that the drift rate drives most of this response, with an unreliable contribution of boundary height across experiments. Surprisingly, we find no evidence that pupillary responses associated with decision policy changes. We conclude that humans show a stereotypical shift in their decision policies in response to environmental changes.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Kyle Dunovan
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Alexis Porter
- Department of Psychology, Northwestern UniversityEvanstonUnited States
| | - Jonathan E Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
44
|
Matikainen-Ankney B. Getting Excited About Learning. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab059. [PMID: 35252871 PMCID: PMC8788849 DOI: 10.1093/function/zqab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
46
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
47
|
Asaoka N, Ibi M, Hatakama H, Nagaoka K, Iwata K, Matsumoto M, Katsuyama M, Kaneko S, Yabe-Nishimura C. NOX1/NADPH Oxidase Promotes Synaptic Facilitation Induced by Repeated D 2 Receptor Stimulation: Involvement in Behavioral Repetition. J Neurosci 2021; 41:2780-2794. [PMID: 33563722 PMCID: PMC8018731 DOI: 10.1523/jneurosci.2121-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Repetitive behavior is a widely observed neuropsychiatric symptom. Abnormal dopaminergic signaling in the striatum is one of the factors associated with behavioral repetition; however, the molecular mechanisms underlying the induction of repetitive behavior remain unclear. Here, we demonstrated that the NOX1 isoform of the superoxide-producing enzyme NADPH oxidase regulated repetitive behavior in mice by facilitating excitatory synaptic inputs in the central striatum (CS). In male C57Bl/6J mice, repeated stimulation of D2 receptors induced abnormal behavioral repetition and perseverative behavior. Nox1 deficiency or acute pharmacological inhibition of NOX1 significantly shortened repeated D2 receptor stimulation-induced repetitive behavior without affecting motor responses to a single D2 receptor stimulation. Among brain regions, Nox1 showed enriched expression in the striatum, and repeated dopamine D2 receptor stimulation further increased Nox1 expression levels in the CS, but not in the dorsal striatum. Electrophysiological analyses revealed that repeated D2 receptor stimulation facilitated excitatory inputs in the CS indirect pathway medium spiny neurons (iMSNs), and this effect was suppressed by the genetic deletion or pharmacological inhibition of NOX1. Nox1 deficiency potentiated protein tyrosine phosphatase activity and attenuated the accumulation of activated Src kinase, which is required for the synaptic potentiation in CS iMSNs. Inhibition of NOX1 or β-arrestin in the CS was sufficient to ameliorate repetitive behavior. Striatal-specific Nox1 knockdown also ameliorated repetitive and perseverative behavior. Collectively, these results indicate that NOX1 acts as an enhancer of synaptic facilitation in CS iMSNs and plays a key role in the molecular link between abnormal dopamine signaling and behavioral repetition and perseveration.SIGNIFICANCE STATEMENT Behavioral repetition is a form of compulsivity, which is one of the core symptoms of psychiatric disorders, such as obsessive-compulsive disorder. Perseveration is also a hallmark of such disorders. Both clinical and animal studies suggest important roles of abnormal dopaminergic signaling and striatal hyperactivity in compulsivity; however, the precise molecular link between them remains unclear. Here, we demonstrated the contribution of NOX1 to behavioral repetition induced by repeated stimulation of D2 receptors. Repeated stimulation of D2 receptors upregulated Nox1 mRNA in a striatal subregion-specific manner. The upregulated NOX1 promoted striatal synaptic facilitation in iMSNs by enhancing phosphorylation signaling. These results provide a novel mechanism for D2 receptor-mediated excitatory synaptic facilitation and indicate the therapeutic potential of NOX1 inhibition in compulsivity.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hikari Hatakama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Koki Nagaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
48
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
49
|
Lovinger DM, Gremel CM. A Circuit-Based Information Approach to Substance Abuse Research. Trends Neurosci 2021; 44:122-135. [PMID: 33168235 PMCID: PMC7856012 DOI: 10.1016/j.tins.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 01/25/2023]
Abstract
Recent animal research on substance-use disorders (SUDs) has emphasized learning models and the identification of 'addiction-prone' animals. Meanwhile, basic neuroscientific research has elucidated molecular, cellular, and circuit functions with increasing sophistication. However, SUD-related research is hampered by continued arguments over which animal models are more 'addiction like', as well as the facile assignment of behaviors to a given brain region and vice versa. We argue that SUD-related research would benefit from a 'bottom-up' approach including: (i) the characterization of different brain circuits to understand their normal function as well as how they respond to drugs and contribute to SUDs; and (ii) a focus on the use patterns and neurobiological effects of different substances to understand the range of critical SUD-related in vivo phenotypes.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Christina M Gremel
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Lim SAO, Surmeier DJ. Enhanced GABAergic Inhibition of Cholinergic Interneurons in the zQ175 +/- Mouse Model of Huntington's Disease. Front Syst Neurosci 2021; 14:626412. [PMID: 33551760 PMCID: PMC7854471 DOI: 10.3389/fnsys.2020.626412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that initially manifests itself in the striatum. How intrastriatal circuitry is altered by the disease is poorly understood. To help fill this gap, the circuitry linking spiny projection neurons (SPNs) to cholinergic interneurons (ChIs) was examined using electrophysiological and optogenetic approaches in ex vivo brain slices from wildtype mice and zQ175+/− models of HD. These studies revealed a severalfold enhancement of GABAergic inhibition of ChIs mediated by collaterals of indirect pathway SPNs (iSPNs), but not direct pathway SPNs (dSPNs). This cell-specific alteration in synaptic transmission appeared in parallel with the emergence of motor symptoms in the zQ175+/− model. The adaptation had a presynaptic locus, as it was accompanied by a reduction in paired-pulse ratio but not in the postsynaptic response to GABA. The alterations in striatal GABAergic signaling disrupted spontaneous ChI activity, potentially contributing to the network dysfunction underlying the hyperkinetic phase of HD.
Collapse
Affiliation(s)
- Sean Austin O Lim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Neuroscience Program, College of Science and Health, DePaul University, Chicago, IL, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|