1
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Rout M, Vaughan A, Sidorov EV, Sanghera DK. Improving Stroke Outcome Prediction Using Molecular and Machine Learning Approaches in Large Vessel Occlusion. J Clin Med 2024; 13:5917. [PMID: 39407977 PMCID: PMC11477941 DOI: 10.3390/jcm13195917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes for this specific patient population. The present study aimed to confirm whether sudden metabolic changes due to blood-brain barrier (BBB) disruption during LVO reflect differences in circulating metabolites and RNA between small and large core strokes. The second objective was to evaluate whether integrating molecular markers with existing neurological and imaging tools can enhance outcome predictions in LVO strokes. Methods: The infarction volume in patients was measured using magnetic resonance diffusion-weighted images, and the 90-day stroke outcome was defined by a modified Rankin Scale (mRS). Differential expression patterns of miRNAs were identified by RNA sequencing of serum-driven exosomes. Nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites associated with AIS with small and large infarctions. Results: We identified 41 miRNAs and 11 metabolites to be significantly associated with infarct volume in a multivariate regression analysis after adjusting for the confounders. Eight miRNAs and ketone bodies correlated significantly with infarct volume, NIHSS (severity), and mRS (outcome). Through integrative analysis of clinical, radiological, and omics data using machine learning, our study identified 11 top features for predicting stroke outcomes with an accuracy of 0.81 and AUC of 0.91. Conclusions: Our study provides a future framework for advancing stroke therapeutics by incorporating molecular markers into the existing neurological and imaging tools to improve predictive efficacy and enhance patient outcomes.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Wang H, Wang L, Zeng X, Zhang S, Huang Y, Zhang Q. Inflammatory bowel disease and risk for hemorrhoids: a Mendelian randomization analysis. Sci Rep 2024; 14:16677. [PMID: 39030236 PMCID: PMC11271563 DOI: 10.1038/s41598-024-66940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Observational studies have reported an association between inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), and hemorrhoids (HEM). However, the presence of a causal relationship within this observed association remains to be confirmed. Consequently, we utilized the Mendelian randomization (MR) method to assess the causal effects of IBD on hemorrhoids. We validated the association between IBD and hemorrhoids in humans based on genome-wide association studies (GWAS) data. To investigate the causal relationship between IBD and hemorrhoids, we performed a two-sample Mendelian randomization study using training and validation sets. The genetic variation data for IBD, CD, UC, and hemorrhoids were derived from published genome-wide association studies (GWAS) of individuals of European. Two-sample Mendelian randomization and Multivariable Mendelian randomization (MVMR) were employed to determine the causal relationship between IBD (CD or UC) and hemorrhoids. Genetically predicted overall IBD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.39 × 10-4) and 1.02 (95% CIs 1.01-1.03, P = 4.99 × 10-5) in the training and validation sets, respectively. Furthermore, we found that CD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.12 × 10-6) and 1.02 (95% CIs 1.01-1.02, P = 3.78 × 10-5) for CD in the training and validation sets, respectively. In addition, we found that UC in the training set was positively associated with hemorrhoids risk (ORs 1.02, 95% CIs 1.01-1.03, P = 4.65 × 10-3), while no significant causal relationship between UC and hemorrhoids was shown in the validation set (P > 0.05). However, after MVMR adjustment, UC in the training set was not associated with an increased risk of hemorrhoids. Our study showed that there is a causal relationship between CD and hemorrhoids, which may suggest that clinicians need to prevent the occurrence of hemorrhoids in CD patients.
Collapse
Affiliation(s)
- HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - ShiPeng Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - QinXiu Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
5
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
6
|
Pinosanu LR, Capitanescu B, Glavan D, Godeanu S, Cadenas IF, Doeppner TR, Hermann DM, Balseanu AT, Bogdan C, Popa-Wagner A. Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. Aging Dis 2023; 14:63-83. [PMID: 36818562 PMCID: PMC9937697 DOI: 10.14336/ad.2022.0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies. To this end, this review provides a comparison between the transcriptomic activity of astroglia cells during development, aging and neurodegenerative diseases, including cerebral ischemia. During fetal brain development, astrocytes and microglia often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, and synaptic pruning. In the adult brain astrocytes are a critical player in the synapse remodeling by mediating synapse elimination while microglia activity has been associated with changes in synaptic plasticity and remove cell debris by constantly sensing the environment. However, in the lesioned brain astrocytes proliferate and play essential functions with regard to energy supply to the neurons, neurotransmission and buildup of a protective scar isolating the lesion site from the surroundings. Inflammation, neurodegeneration, or loss of brain homeostasis induce changes in microglia gene expression, morphology, and function, generally referred to as "primed" microglia. These changes in gene expression are characterized by an enrichment of phagosome, lysosome, and antigen presentation signaling pathways and is associated with an up-regulation of genes encoding cell surface receptors. In addition, primed microglia are characterized by upregulation of a network of genes in response to interferon gamma. Conclusion. A comparison of astroglia cells transcriptomic activity during brain development, aging and neurodegenerative disorders might provide us with new therapeutic strategies with which to protect the aging brain and improve clinical outcome.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Bogdan Capitanescu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Daniela Glavan
- Psychiatric clinic, University of Medicine and Pharmacy Craiova, Craiova, Romania.
| | - Sanziana Godeanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Israel Ferna´ndez Cadenas
- Stroke Pharmacogenomics and Genetics group, Sant Pau Hospital Institute of Research, Barcelona, Spain.
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Giessen, Giessen, Germany.,University of Göttingen Medical School, Department of Neurology, Göttingen, Germany.
| | - Dirk M. Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.
| | - Adrian-Tudor Balseanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
7
|
López-Cepeda L, Castro JD, Aristizábal-Pachón AF, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, González J. Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery. Life (Basel) 2022; 12:1720. [PMID: 36362875 PMCID: PMC9696502 DOI: 10.3390/life12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2024] Open
Abstract
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
Collapse
Affiliation(s)
- Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Juan David Castro
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
8
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
9
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
10
|
Bai X, Bian Z. MicroRNA-21 Is a Versatile Regulator and Potential Treatment Target in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:842288. [PMID: 35173580 PMCID: PMC8841607 DOI: 10.3389/fnmol.2022.842288] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded RNAs with a length of approximately 22 nucleotides that are found in eukaryotes. miRNAs are involved in the regulation of cell differentiation, proliferation, invasion, apoptosis, and metabolism by regulating the expression of their target genes. Emerging studies have suggested that various miRNAs play key roles in the pathogenesis of central nervous system (CNS) disorders and may be viable therapeutic targets. In particular, miR-21 has prominently emerged as a focus of increasing research on the mechanisms of its involvement in CNS disorders. Herein, we reviewed recent studies on the critical roles of miR-21, including its dysregulated expression and target genes, in the regulation of pathophysiological processes of CNS disorders, with a special focus on apoptosis and inflammation. Collectively, miR-21 is a versatile regulator in the progression of CNS disorders and could be a promising biomarker and therapeutic target for these diseases. An in-depth understanding of the mechanisms by which miR-21 affects the pathogenesis of CNS disorders could pave the way for miR-21 to serve as a therapeutic target for these conditions.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhigang Bian,
| |
Collapse
|
11
|
Shao LL, Gao MM, Gong JX, Yang LY. DUSP1 regulates hippocampal damage in epilepsy rats via ERK1/2 pathway. J Chem Neuroanat 2021; 118:102032. [PMID: 34562585 DOI: 10.1016/j.jchemneu.2021.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of DUSP1 on the hippocampal injury of young rats with epilepsy (EP) through mediating ERK1/2 signaling pathway. METHODS Young SD rats were selected and divided into Control, EP, EP + LV-GFP, EP + LV-DUSP1, EP + LV-siDUSP1, and EP + LV-siDUSP1 + U0126 groups. Morris Water Maze Test was used to detect the spatial learning and memory. Nissl staining and TUNEL staining were conducted and the inflammatory factors and oxidative stress-related indicators were also measured. Western blotting was utilized to detect the expression of DUSP1 and ERK1/2 pathway. EP cell model was constructed in vitro to verify the in vivo results. RESULTS Compared with Control group, young rats in EP group had decreased spatial learning and memory abilities and increased apoptotic rate and decreased number of Nissl positive cells. Besides, the up-regulated levels in inflammatory factors (IL-1β, IL-6), MDA content, and p-ERK1/2/ERK1/2 protein expression, as well as the down-regulated levels in DUSP1 protein expression and SOD content were also observed in EP rats. The EP rats treated with LV-DUSP1 showed obvious improvements regarding the above indicators, while those treated with LV-siDUSP1 had aggravated injury. But the effect of LV-siDUSP1 can be reversed by the treatment with ERK1/2 pathway inhibitor U0126. Further in vitro investigation verified the in vivo results. CONCLUSION DUSP1 may ameliorate the oxidative stress and inflammatory injury, as well as improve spatial learning and memory abilities via inhibiting ERK1/2 pathway, eventually playing protective roles in hippocampal injury of young rats with EP.
Collapse
Affiliation(s)
- Li-Li Shao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China.
| | - Miao-Miao Gao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Jing-Xin Gong
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Li-Yong Yang
- Department of Diagnostic CT, Cangzhou Central Hospital Yanshan Branch, Cangzhou 061399, PR China
| |
Collapse
|
12
|
Tu Y, Hu Y. MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: involvement of anti-apoptotic and anti-inflammatory activities. Metab Brain Dis 2021; 36:1341-1351. [PMID: 33842985 DOI: 10.1007/s11011-021-00724-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are known as important regulators of gene expression and play important roles in diverse biological activities. However, the involvement of miRNAs in cerebral ischemia remains elusive. In the present study, using the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury model, we found that the expression levels of miR-34c-5p were significantly reduced in MCAO rats and OGD/RP cells. Overexpression of miR-34c-5p could improve the increased brain infarction, brain water content and neurological scores in MCAO rats, as well as the abnormal expression of inflammatory cytokines (TNF-α, IL-6, COX-2, iNOS, IL-10) in OGD/RP cells. Moreover, overexpression of miR-34c-5p was found to inhibit the activity of nuclear factor-kappa B (NF-κB) by regulating the expression of nuclear receptor coactivator 1 (NCOA1), and increase the apoptotic rate of cortical neurons by inhibiting the expression of Caspase-3 and Bax and upregulating the expression of Bcl-2. Taken together, our findings demonstrated that miR-34c-5p plays an important role in cerebral ischemia/reperfusion injury, which may be mediated through inflammatory and apoptotic signaling pathways.
Collapse
Affiliation(s)
- Yaoran Tu
- Trauma Center, Third Affiliated Hospital of Nanchang University, No. 739 Qingshan South Road, Nanchang City, Jiangxi Province, 330000, People's Republic of China
| | - Yong Hu
- Trauma Center, Third Affiliated Hospital of Nanchang University, No. 739 Qingshan South Road, Nanchang City, Jiangxi Province, 330000, People's Republic of China.
| |
Collapse
|
13
|
Xu B, Yang R, Fu J, Yang B, Chen J, Tan C, Chen H, Wang X. LncRSPH9-4 Facilitates Meningitic Escherichia coli-Caused Blood-Brain Barrier Disruption via miR-17-5p/MMP3 Axis. Int J Mol Sci 2021; 22:ijms22126343. [PMID: 34198485 PMCID: PMC8231991 DOI: 10.3390/ijms22126343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood–brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
14
|
Network Pharmacology-Based Prediction of Catalpol and Mechanisms against Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2541316. [PMID: 33505489 PMCID: PMC7810528 DOI: 10.1155/2021/2541316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022]
Abstract
Aim To apply the network pharmacology method to screen the target of catalpol prevention and treatment of stroke, and explore the pharmacological mechanism of Catalpol prevention and treatment of stroke. Methods PharmMapper, GeneCards, DAVID, and other databases were used to find key targets. We selected hub protein and catalpol which were screened for molecular docking verification. Based on the results of molecular docking, the ITC was used to determine the binding coefficient between the highest scoring protein and catalpol. The GEO database and ROC curve were used to evaluate the correlation between key targets. Results 27 key targets were obtained by mapping the predicted catalpol-related targets to the disease. Hub genes (ALB, CASP3, MAPK1 (14), MMP9, ACE, KDR, etc.) were obtained in the key target PPI network. The results of KEGG enrichment analysis showed that its signal pathway was involved in angiogenic remodeling such as VEGF, neurotrophic factors, and inflammation. The results of molecular docking showed that ACE had the highest docking score. Therefore, the ITC was used for the titration of ACE and catalpol. The results showed that catalpol had a strong binding force with ACE. Conclusion Network pharmacology combined with molecular docking predicts key genes, proteins, and signaling pathways for catalpol in treating stroke. The strong binding force between catalpol and ACE was obtained by using ITC, and the results of molecular docking were verified to lay the foundation for further research on the effect of catalpol on ACE. ROC results showed that the AUC values of the key targets are all >0.5. This article uses network pharmacology to provide a reference for a more in-depth study of catalpol's mechanism and experimental design.
Collapse
|
15
|
Yi S, Zhang C, Li N, Fu Y, Li H, Zhang J. miR-325-3p Protects Neurons from Oxygen-Glucose Deprivation and Reoxygenation Injury via Inhibition of RIP3. Dev Neurosci 2020; 42:83-93. [PMID: 33130681 DOI: 10.1159/000509108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recent reports have corroborated that micro-RNAs (miRs) are related to the pathological changes of cerebral ischemia-reperfusion (CIR) induced injury. This work aimed to unearth the role and potential mechanism of miR-325-3p in regulating neuronal survival in CIR injury. METHODS To conduct this investigation, we established an in vitro model of CIR injury by subjecting neurons to oxygen-glucose deprivation and reoxygenation (OGD/R). Gain and loss of function of miR-325-3p and receptor-interacting serine-threonine kinase 3 (RIP3) in neurons were performed to observe its effect on cell apoptosis and the release of lactate dehydrogenase. The levels of miR-325-3p and RIP3 in neurons were detected by qRT-PCR. Western blot was employed to inspect the levels of caspase3, Bax, and Bcl-2, as well as p38 and JNK phosphorylation. The relationship between miR-325-3p and RIP3 was detected by TargetScan and validated by dual-luciferase reporter assay. RESULTS Firstly, miR-325-3p expression was obviously downregulated while RIP3 expression was upregulated in neurons following OGD/R treatment. Overexpressed miR-325-3p or downexpressed RIP3 ameliorated OGD/R-induced neuronal injury. Besides, RIP3 was a direct target mRNA of miR-325-3p. Additionally, Western blot revealed the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of miR-325-3p on OGD/R-induced neuronal injury. Furthermore, miR-325-3p was verified to hinder OGD/R-induced neuronal injury through downregulating RIP3. CONCLUSION This study demonstrated that miR-325-3p targets RIP3 to inactivate the MAPK pathway, thereby protecting neurons against OGD/R-induced injury.
Collapse
Affiliation(s)
- Song Yi
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chuqin Zhang
- Department of Otorhinolaryngology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hongkun Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China,
| |
Collapse
|
16
|
Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status. Int J Mol Sci 2020; 21:ijms21186728. [PMID: 32937836 PMCID: PMC7555634 DOI: 10.3390/ijms21186728] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Collapse
|
17
|
唐 兆, 王 文, 刘 自, 孙 晓, 廖 正, 陈 飞, 蒋 光, 霍 钢. [Blocking ERK signaling pathway lowers MMP-9 expression to alleviate brain edema after traumatic brain injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1018-1022. [PMID: 32895167 PMCID: PMC7386209 DOI: 10.12122/j.issn.1673-4254.2020.07.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate the effects of blocking the activation of ERK pathway on the expression of matrix metalloproteinase-9 (MMP-9) and the formation of cerebral edema in SD rats after brain injury. METHODS Ninety SD rats were randomly divided into 3 equal groups, including a sham-operated group, modified Feeney's traumatic brain injury model group, and ERK inhibition group where the ERK inhibitor SCH772984 (500 μg/kg) was injected via the femoral vein 15 min before brain trauma. At 2 h and 2 days after brain trauma, the permeability of blood-brain barrier was assessed by Evans blue method, the water content of the brain tissue was determined, and the phosphorylation level of ERK and the expression level of MMP-9 mRNA and protein were measured by RT-PCR and Western blotting. RESULTS Compared with the sham-operated group, the rats with brain trauma exhibited significantly increased level of ERK phosphorylation at 2 h and significantly increased expression of MMP-9 mRNA and protein 2 days after the injury (P < 0.01). Treatment with the ERK inhibitor significantly decreased the phosphorylation level of ERK after the injury (P < 0.01), suppressed over-expression of MMP-9 mRNA and protein 2 days after the injury (P < 0.01). The permeability of blood-brain barrier increased significantly 2 h after brain trauma (P < 0.05) and increased further at 2 days (P < 0.01); the water content of the brain did not change significantly at 2 h (P > 0.05) but increased significantly 2 d after the injury (P < 0.01). Treatment with the ERK inhibitor significantly lowered the permeability of blood-brain barrier and brain water content after brain trauma (P < 0.01). CONCLUSIONS Blocking the activation of ERK pathway significantly reduced the over-expression of MMP-9 and alleviates the damage of blood-brain barrier and traumatic brain edema, suggesting that ERK signaling pathway plays an important role in traumatic brain edema by regulating the expression of MMP-9.
Collapse
Affiliation(s)
- 兆华 唐
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 文涛 王
- 西北大学附属医院神经外科,陕西 西安 710018Department of Neurosurgery, Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - 自力 刘
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 晓川 孙
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 正步 廖
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 飞兰 陈
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 光远 蒋
- 重庆 市中医院神经外科,重庆 400021Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - 钢 霍
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
18
|
Zhang Q, Abouelfetouh MM, Chen S, Li M, Ding M, Ding Y. MicroRNA Let-7b-5p Induces Electroacupuncture Tolerance by Downregulating the MKP-1 Gene in Rats Subjected to CFA-induced Inflammatory Nociception. J Mol Neurosci 2020; 70:1198-1207. [PMID: 32240501 PMCID: PMC7359146 DOI: 10.1007/s12031-020-01527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 11/03/2022]
Abstract
Electroacupuncture (EA) treatment has proved to significantly decrease nociception in inflammatory nociception model by suppressing the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). However, repeated EA treatment results in gradual attenuation of its analgesic effects, which was defined as “EA tolerance.” Recent studies have shown that let-7b-5p microRNA (miRNA) contributes to the EA tolerance. The present study aimed to explore the function of let-7b-5p in p38MAPK pathway and the development of EA tolerance in the inflammatory nociception. Dual luciferase reporter gene experiments were used in cortical neurons to determine the target gene locus of let-7b-5p. The threshold of nociception was assessed by tail flick latency (TFL) and paw withdrawal threshold (PWT). Western blots were used to measure the expression of mitogen-activated protein kinase phosphatase 1 (MKP-1) and phosphorylation level of p38MAPK after intracerebroventricular (ICV) injections of let-7b-5p agomir, antagomir, and controls. In vitro dual luciferase experiments demonstrated that the MKP-1-3′ untranslated region (UTR) is a target of let-7b-5p. In vivo experiment, rat with repeated EA treatment exhibits gradual decrease in TFL and PWT, which showed formation of EA tolerance. This trend was delayed after IVC injection of let-7b-5p antagomir and facilitated after IVC injection of let-7b-5p agomir. The protein levels of MKP-1 in the EA+let-7b-5p antagomir group were significantly higher than in the EA + let-7b-5p agomir group. However, P-p38MAPK in the EA+let-7b-5p antagomir group was significantly lower than in the EA+let-7b-5p agomir group. By upregulating the p38MAPK pathway through the inactivation of the MKP-1 gene, let-7b-5p contributes to EA tolerance in complete Freund’s adjuvant (CFA)-induced inflammatory nociception rats. Our work revealed the mechanism of EA tolerance and indicated that let-7b-5p could be targeted to improve the long-term effects of EA.
Collapse
Affiliation(s)
- Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Shuhuai Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Meng Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Yong YX, Yang H, Lian J, Xu XW, Han K, Hu MY, Wang HC, Zhou LM. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18:1868-1881. [PMID: 31204565 DOI: 10.1080/15384101.2019.1632133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. Therefore, the purpose of present study was to explore the effect of microRNA-199b-3p (miR-199b-3p) on the cerebral microvascular endothelial cells (CMECs) in middle cerebral artery occlusion-reperfusion (MCAO-R) mice by regulating MAPK/ERK/EGR1 axis. Mice were used to establish MCAO-R models and to measure the expression of miR-199b-3p and the MAPK/ERK/EGR1 axis-related genes. CMECs were extracted from the MCAO-R mice. A series of mimic or inhibitor for miR-199b-3p, or U0126 (an inhibitor for the MAPK/ERK/EGR1 axis) were introduced to treat these CMECs. The levels of miR-199b-3p and MAPK/ERK/EGR1 axis-related genes in tissues and cells were detected. The effects miR-199b-3p on the process of CMECs, including cell viability, cell cycle and cell apoptosis were evaluated. miR-199b-3p expressed poorly in the brain tissues after MCAO-R, along with activated MAPK/ERK/EGR1 axis and increased CMECs apoptosis. CMECs transfected with miR-199b-3p mimics and U0126 manifested with increased cell viability, more cells arrested at the S stage, and inhibited apoptosis of CMECs. In conclusion, these key results demonstrated up-regulated miR-199b-3p could protect mice against ischemic stroke by inhibiting the apoptosis of CMECs through blockade of MAPK/ERK/EGR1 axis.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- a Guizhou Medical University , Guiyang , P. R. China.,b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua Yang
- a Guizhou Medical University , Guiyang , P. R. China.,c Institute of Medical Sciences, Guizhou Medical University , Guiyang , P.R. China.,d Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University , Guiyang , P. R. China
| | - Jia Lian
- e Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P.R. China
| | - Xiao-Wei Xu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ke Han
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ming-Yi Hu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua-Cheng Wang
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Lie-Min Zhou
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| |
Collapse
|
20
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
21
|
MiR-539 Targets MMP-9 to Regulate the Permeability of Blood–Brain Barrier in Ischemia/Reperfusion Injury of Brain. Neurochem Res 2018; 43:2260-2267. [DOI: 10.1007/s11064-018-2646-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
|
22
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
23
|
microRNA-21 Confers Neuroprotection Against Cerebral Ischemia-Reperfusion Injury and Alleviates Blood-Brain Barrier Disruption in Rats via the MAPK Signaling Pathway. J Mol Neurosci 2018; 65:43-53. [DOI: 10.1007/s12031-018-1067-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023]
|
24
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
25
|
Yu D, Geng H, Liu Z, Zhao L, Liang Z, Zhang Z, Xie D, Wang Y, Zhang T, Min J, Zhong C. Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways. Oncotarget 2018; 8:8791-8800. [PMID: 28060741 PMCID: PMC5352442 DOI: 10.18632/oncotarget.14456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoke has been shown to be a major risk factor for bladder cancer. Epithelial-mesenchymal transition (EMT) is a crucial process in cancer development. The role of MAPK pathways in regulating cigarette smoke-triggered urocystic EMT remains to be elucidated. Human normal urothelial cells and BALB/c mice were used as in vitro and in vivo cigarette smoke exposure models. Exposure of human normal urothelial cells to cigarette smoke induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression, along with the activation of MAPK pathways. Moreover, we revealed that ERK1/2 and p38 inhibitors, but rather JNK inhibitor, effectively attenuated cigarette smoke-induced urocystic EMT. Importantly, the regulatory function of ERK1/2 and p38 pathways in cigarette smoke-triggered urocystic EMT was further confirmed in mice exposed to CS for 12 weeks. These findings could provide new insight into the molecular mechanisms of cigarette smoke-associated bladder cancer development as well as its potential intervention.
Collapse
Affiliation(s)
- Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li Zhao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhaofeng Liang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Jiangsu 212013, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Dongdong Xie
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie Min
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Caiyun Zhong
- Department of Toxicology and Nutritional Science, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Shin NR, Ryu HW, Ko JW, Park SH, Yuk HJ, Kim HJ, Kim JC, Jeong SH, Shin IS. Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:108-115. [PMID: 28735728 DOI: 10.1016/j.jep.2017.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/08/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi is a traditional herbal medicine in Korea and commonly called as mugwort. It is traditionally used as food source and tea to control abdominal pain, dysmenorrhea, uterine hemorrhage, and inflammation. AIM OF THE STUDY We investigated the effects of A. argyi (TOTAL) and dehydromatricarin A (DA), its active component on ovalbumin (OVA)-induced allergic asthma. MATERIALS AND METHODS The animals were sensitized on day 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On day 21, 22 and 23 after the initial sensitization, the animals received an airway challenge with OVA for 1h using an ultrasonic nebulizer. TOTAL (50 and 100mg/kg) or DA (10 and 20mg/kg) were administered to mice by oral gavage once daily from day 18-23. Airway hyperresponsiveness (AHR) was measured 24h after final OVA challenge. RESULT TOTAL and DA treated animals reduced inflammatory cell counts, cytokines and AHR in asthmatic animals, which was accompanied with inflammatory cell accumulation and mucus hypersecretion. Furthermore, TOTAL and DA significantly declined Erk phosphorylation and the expression of MMP-9 in asthmatic animals. CONCLUSION In conclusion, we indicate that Total and DA suppress allergic inflammatory responses caused by OVA challenge. It was considered that A. argyi has a potential for treating allergic asthma.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience&Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 28116, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Heung-Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience&Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 28116, Republic of Korea
| | - Ha-Jung Kim
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Seong-Hun Jeong
- Namhae Garlic Research Institute, Namhae-gun, Kyungnam 668-812, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
27
|
Zhang L, He S, Yang F, Yu H, Xie W, Dai Q, Zhang D, Liu X, Zhou S, Zhang K. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Can J Physiol Pharmacol 2016; 94:1249-1256. [PMID: 27704873 DOI: 10.1139/cjpp-2016-0066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate the therapeutic effects of hyperoside (Hyp) on glomerulosclerosis in diabetic nephropathy and its underlying mechanisms. Blood glucose, kidney mass, and renal function of mice were measured. Renal morphology was observed using hematoxylin and eosin, periodic acid - Schiff's, and Masson's trichrome stain. Fibronectin (FN) and collagen IV (COL IV) in kidney were determined by Western blot and immunohistochemical studies. Matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 in renal tissues were detected on both the mRNA and protein levels. miRNA expression and artificial alterations by miRNA agomir transfection were evaluated to investigate the protective mechanism of Hyp in mesangial cells. Hyp effectively improved renal function and physiologic features of db/db mice. Hyp also ameliorated glomerulosclerosis by suppressing FN, COL IV, and TIMP-1 expressions and promoting MMP-9 and MMP-2 expressions. The change in MMP-9 mRNA expression was inconsistent with that in protein levels in kidney, indicating that there was a post-transcriptional regulation. Further exploration in vitro showed that miR-21 was downregulated by Hyp, increasing expression of its target, MMP-9. These results suggest that Hyp can ameliorate glomerulosclerosis in diabetic nephropathy by downregulating miR-21 to increase expression of its target, MMP-9.
Collapse
Affiliation(s)
- Le Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Siyi He
- b Department of Cardiovascular Surgery, Chengdu Military General Hospital, Chengdu 610083, China
| | - Fan Yang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yu
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Xie
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Dai
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Di Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaoqin Liu
- c Department of Applied Chemistry, Chongqing Chemical Industry Vocational College, Chongqing 400020, China
| | - Shiwen Zhou
- d National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Kebin Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
28
|
Wang Y, He Z, Deng S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des Devel Ther 2016; 10:1663-74. [PMID: 27274199 PMCID: PMC4876798 DOI: 10.2147/dddt.s103829] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Activators of PPARs, particularly PPARγ, may be effective neuroprotective drugs against inflammatory responses in cerebral ischemia and reperfusion injury. Ursolic acid (UA) may act as a PPARγ agonist and serve as an anti-inflammatory agent. In this study, we used a rat middle cerebral artery occlusion and reperfusion model to examine how UA acts as a neuroprotective agent to modulate the metalloprotease/anti-metalloprotease balance. METHODS The middle cerebral artery occlusion and reperfusion model (occlusion for 2 hours followed by reperfusion for 48 hours) was induced in male Sprague Dawley rats. UA was administered intragastrically 0.5, 24, and 47 hours after reperfusion. Bisphenol A diglycidyl ether (a PPARγ antagonist) was intraperitoneally administered 1, 24.5, and 47.5 hours after reperfusion. Forty-eight hours after reperfusion, neurological deficits and infarct volume were estimated. The PPARγ level and the metalloprotease/anti-metalloprotease balance were examined by Western blotting and immunohistochemistry. The activation of MAPK signaling pathways was also assessed. RESULTS UA-treated (5, 10, or 20 mg/kg) rats showed significant improvement in neurological deficit score, infarct volume, and the number of intact neurons compared with control rats (P<0.01). Both the PPARγ protein level and the percentage of PPARγ-positive cells were increased in the UA-treated groups (P<0.01). Compared with the control group, the UA-treated groups exhibited reduced protein levels of MMP2, MMP9, and activated MAPKs (P<0.01) but an increased level of TIMP1 (P<0.01). UA exerted its protective effects in a dose-dependent manner. Co-treatment with UA and bisphenol A diglycidyl ether completely abolished the UA-induced changes in PPARγ expression; however UA continued to exert a significant but partial neuroprotective effect. CONCLUSION UA can act as a PPARγ agonist to improve the metalloprotease/anti-metalloprotease balance, possibly by inhibiting the activation of the MAPK signaling pathway, thereby attenuating cerebral ischemia and reperfusion injury. Therefore, UA may serve as a novel neuroprotective therapeutic agent.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Shumin Deng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
29
|
The MicroRNA-224 Inhibitor Prevents Neuronal Apoptosis via Targeting Spastic Paraplegia 7 After Cerebral Ischemia. J Mol Neurosci 2016; 59:421-9. [PMID: 27165196 DOI: 10.1007/s12031-016-0769-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
Recently, the study of microRNA expression profile has shown that miR-224 was implicated in neuron injury, but the mechanism of miR-224 on regulating neuronal apoptosis is completely unclear until now. Therefore, the current study aims to illuminate the miR-224 and its target gene on the modulation of neuronal cell apoptosis induced by ischemic injury. In this study, we used oxygen/glucose deprivation (OGD)-induced human-derived HCN-2 cells to establish the model of cerebral ischemia injury. We found that miR-224 was upregulated in injured cells (human brain cortical neuron). Using bioinformatics analyses, we found that miR-224 targeted the 3'UTR of spastic paraplegia 7 (SPG7) and the miR-224 inhibitor promoted expression of SPG7 and promoter activity of SPG7 3'UTR. In addition, we further found that miR-224 inhibitor enhanced interaction SPG7 with mitochondrial voltage-dependent anion channel (VDAC1) detected by co-immunoprecipitation in injured cells. The knockdown of SPG7 reduced mitochondrial membrane potential and caused higher mitochondrial calcium retention in injured cells. Knockdown of SPG7 inhibits expression of nicotinic acetylcholine receptor. Besides, the miR-224 inhibitor reduced neuronal cell apoptosis was increased by knockdown of either SPG7 or VDAC1. Overall, miR-224 inhibitor may prevent neuronal cell apoptosis by targeting SPG7 3'UTR and promote interaction SPG7 with VDAC1 after cerebral ischemia. Downregulation of SPG7 induces VDAC1 to form mitochondria permeability transition pore probably by inhibiting expression of nicotinic acetylcholine receptor, resulting in mitochondrial membrane depolarization and higher mitochondrial calcium retention.
Collapse
|
30
|
Liu X, Luo F, Ling M, Lu L, Shi L, Lu X, Xu H, Chen C, Yang Q, Xue J, Li J, Zhang A, Liu Q. MicroRNA-21 activation of ERK signaling via PTEN is involved in arsenite-induced autophagy in human hepatic L-02 cells. Toxicol Lett 2016; 252:1-10. [PMID: 27107786 DOI: 10.1016/j.toxlet.2016.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Autophagy, an evolutionarily conserved cellular process, has diverse physiological and pathological roles in biological functions. Whether autophagy is induced by arsenite, a well-established human carcinogen, and the molecular mechanisms involved, remain to be established. Further, microRNAs (miRNAs) act as regulators in various cancers, but how miRNAs regulate autophagy remains largely unexplored. We have found that, in human hepatic epithelial (L-02) cells, arsenite increases levels of autophagy-related proteins in a concentration- and time-dependent manner and elevates the number of autophagic vacuoles (AVs). Arsenite also activates the ERK pathway in a dose- and time-dependent manner. In L-02 cells exposed to arsenite, microRNA-21 (miRNA-21) is over-expressed, and its target proteins, PTEN, PDCD4, and Spry1, are decreased. Moreover, inhibition of miR-21 increases levels of PTEN, and reduces levels of Beclin 1 and LC3 II/I, indicating that miR-21 is involved in arsenite-induced autophagy. In addition, ectopic expression of PTEN blocks the effect of miR-21 on the arsenite-induced autophagy and decreases p-ERK levels. Also, ERK promotes the autophagy induced by arsenite. In sum, upon exposure of cells to arsenite, over-expression of miR-21 activates ERK through PTEN, factors that participate in arsenite-induced autophagy. This link, mediated through miRNAs, establishes a mechanism for the development of autophagy that is associated with arsenic toxicity. Such information contributes to an understanding of the liver toxicity caused by arsenite.
Collapse
Affiliation(s)
- Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Chao Chen
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, PR China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
31
|
Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L. The Emerging Role of Epigenetics in Cerebral Ischemia. Mol Neurobiol 2016; 54:1887-1905. [PMID: 26894397 DOI: 10.1007/s12035-016-9788-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia. Specifically, we focus on DNA methylation, histone deacetylase, histone methylation, and microRNAs (miRNAs) in the regulation of vascular and neuronal regeneration after cerebral ischemia. Additionally, we highlight epigenetic strategies for ischemic stroke treatments, including the inhibition of histone deacetylase enzyme and DNA methyltransferase activities, and miRNAs. These therapeutic strategies are far from clinic use, but preliminary data indicate that neuroprotective agents targeting these pathways can modulate neural cell regeneration and promote brain repair and functional recovery after cerebral ischemia. A better understanding of how epigenetics influences the process and progress of cerebral ischemia will pave the way for discovering more sensitive and specific biomarkers and new targets and therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bingwu Zhong
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Traditional Chinese Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jieqiong Tan
- National Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, Hunan, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiang Lei
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
32
|
Cui L, Ding Y, Feng Y, Chen S, Xu Y, Li M, Hu M, Qiu Z, Ding M. MiRNAs are involved in chronic electroacupuncture tolerance in the rat hypothalamus. Mol Neurobiol 2016; 54:1429-1439. [PMID: 26846282 DOI: 10.1007/s12035-016-9759-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
Abstract
Acupuncture tolerance is the gradual decrease in analgesic effect due to its prolonged application. However, its mechanism in terms of miRNA is still unknown. To explore the role of miRNAs in electroacupuncture (EA) tolerance of rats using deep sequencing, rats with more than a 50 % increase in tail flick latency (TFL) in response to EA were selected for this experiment. EA tolerance was induced by EA once daily for eight consecutive days. The hypothalami were harvested for deep sequencing. As a result, 49 differentially expressed miRNAs were identified and validated by real-time PCR. Of them, let-7b-5p, miR-148a-3p, miR-124-3p, miR-107-3p, and miR-370-3p were further confirmed to be related to EA tolerance by an intracerebroventricular injection of agomirs or antagomirs of these miRNAs. Potential targets of the 49 miRNAs were enriched in 9 pathways and 282 gene ontology (GO) terms. Five miRNAs were confirmed to participate in EA tolerance probably through the functional categories related to nerve impulse transmission, receptor signal pathways, and gene expression regulation, as well as pathways related to MAPK, neurotrophin, fatty acid metabolism, lysosome, and the degradation of valine, leucine, and isoleucine. Our findings reveal a characterized panel of the differentially expressed miRNAs in the hypothalamus in response to EA and thus provide a solid experimental framework for future analysis of the mechanisms underlying EA-induced tolerance.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhuai Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingqing Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manli Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengying Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 2016; 73:57-77. [PMID: 26403789 PMCID: PMC11108286 DOI: 10.1007/s00018-015-2050-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
As the primary protective barrier for neurons in the brain, the blood-brain barrier (BBB) exists between the blood microcirculation system and the brain parenchyma. The normal BBB integrity is essential in protecting the brain from systemic toxins and maintaining the necessary level of nutrients and ions for neuronal function. This integrity is mediated by structural BBB components, such as tight junction proteins, integrins, annexins, and agrin, of a multicellular system including endothelial cells, astrocytes, pericytes, etc. BBB dysfunction is a significant contributor to the pathogeneses of a variety of brain disorders. Many signaling factors have been identified to be able to control BBB permeability through regulating the structural components. Among those signaling factors are inflammatory mediators, free radicals, vascular endothelial growth factor, matrix metalloproteinases, microRNAs, etc. In this review, we provide a summary of recent progress regarding these structural components and signaling factors, relating to their roles in various brain disorders. Attention is also devoted to recent research regarding impact of pharmacological agents such as isoflurane on BBB permeability and how iron ion passes across BBB. Hopefully, a better understanding of the factors controlling BBB permeability helps develop novel pharmacological interventions of BBB hyperpermeability under pathological conditions.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Chen Gong
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050016, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA.
| |
Collapse
|
34
|
Wang T, Zhai L, Guo Y, Pei H, Zhang M. Picroside II has a neuroprotective effect by inhibiting ERK1/2 activation after cerebral ischemic injury in rats. Clin Exp Pharmacol Physiol 2015; 42:930-939. [PMID: 26175147 DOI: 10.1111/1440-1681.12445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
In the study, the neuroprotective effect and underlying mechanism of picroside II were explored, and its involvement in the ERK1/2 signal pathway after cerebral ischemia injury in rats. A monofilament thread was inserted to generate middle cerebral artery occlusion (MCAO) in 100 Wistar rats that were administered an intraperitoneal injection of picroside II (20 mg/kg). The neurobehavioural function of rats was evaluated using a modified neurological severity score (mNSS) test. The cerebral infarct volume (CIV) was measured using tetrazolium chloride (TTC) staining. The morphology and ultra-structure of the nerve cells in the cortex were observed using hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM), respectively. The apoptotic cells were counted using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression of extracellular signal-regulated kinase 1/2 (pERK1/2) in the cortex was determined using immunohistochemistry and Western blot analysis. Neurological dysfunction was observed in all rats with MCAO. In both the model and lipopolysaccharide (LPS) groups, the CIV increased, the neuronal damage in the cortex was more severe, and the number of apoptotic cells and the pERK1/2 expression significantly increased compared with the control group (P < 0.05). In treatment and U0126 groups, the neurological function was improved, the CIV decreased, the neuronal damage in the cortex was attenuated, and the number of apoptotic cells and the pERK1/2 expression significantly decreased compared with the model group (P < 0.05). No significant differences in these indices were observed between model and LPS groups or treatment and U0126 groups (P > 0.05). The results suggest that activation of ERK1/2 in cerebral ischaemia induces neuronal apoptosis and picroside II may reduce neuronal apoptosis to confer protection against cerebral ischemic injury by inhibiting ERK1/2 activation.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Li Zhai
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Haitao Pei
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Meizeng Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| |
Collapse
|
35
|
Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem 2015; 116:233-41. [PMID: 25186498 DOI: 10.1002/jcb.24960] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022]
Abstract
Several studies have reported that microRNA (MIR) is involved in the pathogenesis and progression of ischemic diseases, including cerebral ischemia, and that MIR-22 may inhibit the inflammatory response and cell apoptosis, which contribute to ischemia/reperfusion (I/R) injury. However, the specific function of MIR-22 in cerebral I/R injury remains far from clear. This study aimed to examine the potential protective effect of MIR-22 against cerebral I/R injury and its mechanism. As predicted, adenovirus-mediated MIR-22 overexpression markedly reduced the neurological score and infarct size (P < 0.05). We demonstrated that MIR-22 overexpression resulted in a reduction in inflammatory cytokines TNF-α, IL-6, COX-2, and iNOS, whereas the level of IL-10 was enhanced. MIR-22 overexpression significantly inhibited NF-κB activity by decreasing NF-κB coactivator NCOA1 expression. Furthermore, we found that MIR-22 could reduce the apoptotic rate of cortical neurons. Caspase-3 activity was inhibited by MIR-22, and the expression of the anti-apoptosis gene Bcl-2 in neurons was increased and that of the pro-apoptosis gene Bax decreased following MIR-22 overexpression. Our results suggest that MIR-22 could be used to treat cerebral I/R injury and that its neuroprotective effect may be attributed to a reduction in inflammation and apoptosis.
Collapse
Affiliation(s)
- Houyou Yu
- Department of Emergency Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032,, China
| | | | | | | | | | | |
Collapse
|
36
|
Picroside II Inhibits Neuronal Apoptosis and Improves the Morphology and Structure of Brain Tissue following Cerebral Ischemic Injury in Rats. PLoS One 2015; 10:e0124099. [PMID: 25927985 PMCID: PMC4415915 DOI: 10.1371/journal.pone.0124099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/26/2015] [Indexed: 12/29/2022] Open
Abstract
This paper aimed to explore the protective effects of picroside II against the neuronal apoptosis and changes in morphology and structure that follow cerebral ischemic injury in rats. A focal cerebral ischemic model was established by inserting a monofilament thread to achieve middle cerebral artery occlusion (MCAO) in 60 Wistar rats, and intraperitoneal injections of picroside II (20 mg/kg) were administered. The neurobehavioral functions were evaluated with the modified neurological severity score (mNSS) test. The cerebral infarct volumes were measured with tetrazolium chloride (TTC) staining. The morphology and ultrastructure of the cortical brain tissues were observed with hematoxylin-eosin staining and transmission electron microscopy, respectively. The apoptotic cells were counted with terminal deoxynucleotidyl transferase dUTP nick-end labeling and flow cytometry, and pERK1/2 expression was determined by immunohistochemical assay and Western blot. The results indicated that neurological behavioral malfunctions and cerebral infarcts were present in the MCAO rats. In the model group, the damage to the structures of the neurons and the blood brain barrier (BBB) in the cortex was more severe, and the numbers of apoptotic cells, the early apoptotic ratio (EAR) and pERK1/2 expression were significantly increased in this group compared to the control group (P<0.05). In the treatment group, the neurological behavioral function and the morphology and ultrastructure of the neurons and the BBB were improved including the number of Mi increased and relative area of condensed chromosome and basement (BM) thickness descreased, and the cerebral infarct volume, the number of apoptotic cells, the EAR and pERK1/2 expression were significantly decreased compared to the model group (P<0.05). These results suggest that picroside II reduced apoptosis and improved the morphology and ultrastructure of the neurons and the BBB and that these effects resulted in the recovery of the neurobehavioral function of rats with cerebral ischemia.
Collapse
|
37
|
Wang LY, Liu J, Li Y, Li B, Zhang YY, Jing ZW, Yu YN, Li HX, Guo SS, Zhao YJ, Wang Z, Wang YY. Time-dependent variation of pathways and networks in a 24-hour window after cerebral ischemia-reperfusion injury. BMC SYSTEMS BIOLOGY 2015; 9:11. [PMID: 25884595 PMCID: PMC4355473 DOI: 10.1186/s12918-015-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 02/17/2015] [Indexed: 12/04/2022]
Abstract
Background Cerebral ischemia-reperfusion injury may simultaneously result in functional variation of multiple genes/pathways. However, most prior time-sequence studies on its pathomechanism only focused on a single gene or pathway. Our study aimed to systematically analyze the time-dependent variation in the expression of multiple pathways and networks within 24 h after cerebral ischemia-reperfusion injury. Results By uploading 374 ischemia-related genes into the MetaCore software, the variation in the expression of multiple pathways and networks in 3 h, 12 h, and 24 h after cerebral ischemia-reperfusion injury had been analyzed. The conserved TNFR1-signaling pathway, among the top 10 pathways, was consistently enriched in 3 h, 12 h, and 24 h groups. Three overlapping pathways were found between 3 h and 12 h groups; 2 between 12 h and 24 h groups; and 1 between 3 h and 24 h groups. Five, 4, and 6 non-overlapping pathways were observed in 3 h, 12 h, and 24 h groups, respectively. Apart from pathways reported by earlier studies, we identified a novel pathway related to the time-dependent development of cerebral ischemia pathogenesis. The process of apoptosis stimulation by external signals, among the top 10 processes, was consistently enriched in 3 h, 12 h, and 24 h groups; 2, 1, and 2 processes overlapped between 3 h and 12 h groups, 12 h and 24 h groups, and 3 h and 24 h groups, respectively. Four, 5, and 5 non-overlapping processes were found in 3 h, 12 h and 24 h groups, respectively. The presence of apoptotic processes was observed in all the 3 groups; while anti-apoptotic processes only existed in 3 h and 12 h groups. Additionally, according to node degree, network comparison identified 1, 8,and 5 important genes or proteins (e.g. Pyk2, PKC, E2F1, and VEGF-A) in 3 h, 12 h, and 24 h groups, respectively. The Jaccard similarity index revealed a higher level of similarity between 12 h and 24 h groups than that between 3 h and 12 h groups. Conclusion Time-dependent treatment can be utilized to reduce apoptosis, which may activate anti-apoptotic pathways within 12 h after cerebral ischemia-reperfusion injury. Pathway and network analyses may help identify novel pathways and genes implicated in disease pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yuan Li
- Beijing University of Chinese Medicine, No. 11 East Road, North of 3rd Ring Road, Beijing, 100029, China.
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhi-Wei Jing
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of China Medical Sciences, No.5 Beixiange, Beijing, 100053, China.
| | - Shan-Shan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yi-Jun Zhao
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| |
Collapse
|
38
|
Garbett KA, Vereczkei A, Kálmán S, Brown JA, Taylor WD, Faludi G, Korade Ž, Shelton RC, Mirnics K. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry 2015; 77:256-265. [PMID: 25016317 PMCID: PMC4254393 DOI: 10.1016/j.biopsych.2014.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Peripheral biomarkers for major psychiatric disorders have been an elusive target for the last half a century. Dermal fibroblasts are a simple, relevant, and much underutilized model for studying molecular processes of patients with affective disorders, as they share considerable similarity of signal transduction with neuronal tissue. METHODS Cultured dermal fibroblast samples from patients with major depressive disorder (MDD) and matched control subjects (n = 16 pairs, 32 samples) were assayed for genome-wide messenger RNA (mRNA) expression using microarrays. In addition, a simultaneous quantitative polymerase chain reaction-based assessment of >1000 microRNA (miRNA) species was performed. Finally, to test the relationship between the mRNA-miRNA expression changes, the two datasets were correlated with each other. RESULTS Our data revealed that MDD fibroblasts, when compared with matched control subjects, showed a strong mRNA gene expression pattern change in multiple molecular pathways, including cell-to-cell communication, innate/adaptive immunity, and cell proliferation. Furthermore, the same patient fibroblasts showed altered expression of a distinct panel of 38 miRNAs, which putatively targeted many of the differentially expressed mRNAs. The miRNA-mRNA expression changes appeared to be functionally connected, as the majority of the miRNA and mRNA changes were in the opposite direction. CONCLUSIONS Our data suggest that combined miRNA-mRNA assessments are informative about the disease process and that analyses of dermal fibroblasts might lead to the discovery of promising peripheral biomarkers of MDD that could be potentially used to aid the diagnosis and allow mechanistic testing of disturbed molecular pathways.
Collapse
Affiliation(s)
| | - Andrea Vereczkei
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Institute for Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest
| | - Sára Kálmán
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, University of Szeged, Szeged
| | - Jacquelyn A Brown
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - Warren D Taylor
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - Gábor Faludi
- Department of Psychiatry, Kútvölgyi Clinical Centre, Semmelweis University, Budapest, Hungary
| | - Željka Korade
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center for Research on Human Development (ZK, KM), Vanderbilt University, Nashville, Tennessee
| | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, Alabama
| | - Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, University of Szeged, Szeged; Vanderbilt Kennedy Center for Research on Human Development (ZK, KM), Vanderbilt University, Nashville, Tennessee..
| |
Collapse
|
39
|
van Vliet E, Aronica E, Gorter J. Blood–brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 2015; 38:26-34. [DOI: 10.1016/j.semcdb.2014.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
|
40
|
Song J, Ahn C, Chun CH, Jin EJ. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res 2014; 32:1628-35. [PMID: 25196583 DOI: 10.1002/jor.22718] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/19/2014] [Indexed: 02/04/2023]
Abstract
Growth Arrest-Specific 5 (GAS5) is known to negatively regulate cell survival and is aberrantly expressed in several cancers. The influence of GAS5 on osteoarthritis (OA) has not been determined. To address this, articular chondrocytes were isolated from relatively normal (Non-OA) and clear OA regions (OA) of cartilage in total knee replacement (TKR) patients and biopsied normal cartilage. We found that GAS5 was up-regulated in OA chondrocytes compared with Non-OA and normal chondrocytes. The over-expression of GAS5 increased the expression levels of several MMPs, such as MMP-2, MMP-3, MMP-9, MMP-13, and ADAMTS-4; stimulated apoptosis; and suppressed autophagic responses. Furthermore, we subsequently identified miR-21 as a regulator of GAS5 during OA pathogenesis. The expression level of miR-21 was significantly reduced in OA patients, and the ectopic expression of GAS5 is capable of suppressing miR-21 induction. Consistent with GAS5 experiments, the introduction of miR-21 stimulated the apoptosis of chondrocytes and inhibited the expression levels of autophagic complexes, including LC-3B. In vivo, we found that the introduction of miR-21 into the cartilage of OA mice significantly stimulated cartilage destruction. Together, these results show that GAS5 contributes to the pathogenesis of OA by acting as a negative regulator of miR-21 and thereby regulating cell survival.
Collapse
Affiliation(s)
- Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Iksan, Chunbuk, 570-749, Korea
| | | | | | | |
Collapse
|
41
|
Potter DE, Choudhury M. Ketamine: repurposing and redefining a multifaceted drug. Drug Discov Today 2014; 19:1848-54. [PMID: 25224017 DOI: 10.1016/j.drudis.2014.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/01/2014] [Accepted: 08/31/2014] [Indexed: 12/24/2022]
Abstract
This short review will highlight recent clinical and basic research that supports the therapeutic utility of ketamine as a rapid-acting, life-saving antidepressant and a versatile analgesic. After 50 years of use as a dissociative anesthetic and misuse as a street drug, ketamine has re-emerged as a useful off-label agent for ameliorating various types of pain and resistant depression. In addition to its ability to inhibit N-methyl-D-aspartate (NMDA) receptors, the diverse actions of ketamine might involve epigenetic mechanisms such as microRNA regulation. Thus, ketamine is transitioning from being the pharmacologist's nightmare to one of the most interesting developments in the pharmacology of depression and pain.
Collapse
|
42
|
van Vliet E, Aronica E, Gorter J. Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 2014; 277:455-73. [DOI: 10.1016/j.neuroscience.2014.07.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
|
43
|
Di Y, Lei Y, Yu F, Changfeng F, Song W, Xuming M. MicroRNAs expression and function in cerebral ischemia reperfusion injury. J Mol Neurosci 2014; 53:242-50. [PMID: 24696166 DOI: 10.1007/s12031-014-0293-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small (18 ~ 25 nt) noncoding single-stranded RNA molecules that act as negative regulators of gene expression and modulating the stability and/or the translational efficiency of target messenger RNAs. Studies have shown that miRNAs control diverse aspects of brain disease. Recently, several studies have suggested that miRNAs alter the response to ischemia reperfusion injury and regulate the expression of various key elements in cell survival and apoptosis. This review article gives a brief overview of some miRNAs (miR-15a/b, miR-21, miR-29b/c, miR-124, miR-145, miR-181, miR-200 family, miR-338, miR-422a, miR-497, and miR let 7 family) in cerebral ischemia reperfusion injury. Although miRNAs could be potential therapeutic targets for the treatment of ischemia reperfusion injury, their safety and other limitations need further confirmation.
Collapse
Affiliation(s)
- Yu Di
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, 210008, China
| | | | | | | | | | | |
Collapse
|
44
|
Gao D, Huang T, Jiang X, Hu S, Zhang L, Fei Z. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9. Mol Med Rep 2014; 9:2197-204. [PMID: 24682241 DOI: 10.3892/mmr.2014.2086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022] Open
Abstract
It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the expression of the anti-apoptotic molecule Bcl-2, suggesting that resveratrol inhibits MMP-9 expression and cell apoptosis by attenuating the activation of ERK1/2. In conclusion, OGD can induce apoptosis through canonical apoptotic signals and by regulating the expression of MMP-9; the anti-apoptotic activity of resveratrol and its inhibitory effect on MMP-9 expression contribute in the reduced activation of ERK.
Collapse
Affiliation(s)
- Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
45
|
MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med 2014; 46:e79. [PMID: 24577233 PMCID: PMC3944443 DOI: 10.1038/emm.2013.152] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis is a common cause of functional deterioration in older adults and is an immense burden on the aging population. Altered chondrogenesis is the most important pathophysiological process involved in the development of osteoarthritis. However, the molecular mechanism underlying the regulation of chondrogenesis in patients with osteoarthritis requires further elucidation, particularly with respect to the role of microRNAs. MiR-21 expression in cartilage specimens was examined in 10 patients with knee osteoarthritis and 10 traumatic amputees. The effect of miR-21 on chondrogenesis was also investigated in a chondrocyte cell line. The effect of miR-21 on the expression of growth differentiation factor 5 (GDF-5) was further assessed by luciferase reporter assay and western blot. We found that endogenous miR-21 is upregulated in osteoarthritis patients, and overexpression of miR-21 could attenuate the process of chondrogenesis. Furthermore, we identified GDF-5 as the direct target of miR-21 during the regulation of chondrogenesis. Our data suggest that miR-21 has an important role in the pathogenesis of osteoarthritis and is a potential therapeutic target.
Collapse
|