1
|
Christopher-Hayes NJ, Haynes SC, Kenyon NJ, Merchant VD, Schweitzer JB, Ghetti S. Asthma and Memory Function in Children. JAMA Netw Open 2024; 7:e2442803. [PMID: 39527060 PMCID: PMC11555544 DOI: 10.1001/jamanetworkopen.2024.42803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Asthma is a chronic respiratory disease affecting approximately 5 million children in the US. Rodent models of asthma indicate memory deficits, but little is known about whether asthma alters children's memory development. Objective To assess whether childhood asthma is associated with lower memory abilities in children. Design, Setting, and Participants This cohort study used observational data from the Adolescent Brain Cognitive Development (ABCD) Study, a multisite longitudinal investigation that began enrollment in 2015. Approximately 11 800 children aged 9 to 10 years were enrolled at baseline with follow-up at 1 and 2 years. Participants were selected based on exposures described subsequently to determine longitudinal and cross-sectional associations between asthma and memory. Data were analyzed from Month year to Month year. Exposures Asthma was determined from parent reports. For the longitudinal analysis, children were selected if they had asthma at baseline and at the 2-year follow-up (earlier childhood onset), at the 2-year follow-up only (later childhood onset), or no history of asthma. For the cross-sectional analysis, children were selected if they had asthma at any time point, or no history of asthma. The comparison group of children with asthma history was matched on demographic and health covariates for each analysis. Main Outcomes and Measures The primary outcome was episodic memory. Secondary outcomes included processing speed, inhibition and attention. Results Four hundred seventy-four children were included in the longitudinal analysis (earlier childhood onset: 135 children; mean [SD] age, 9.90 [0.63] years; 76 [56%] male; 53 [28%] Black, 29 [21%] Hispanic or Latino, and 91 [48%] White; later childhood onset: 102 children; mean [SD] age 9.88 [0.59] years; 54 [53%] female; 22 [17%] Black, 19 [19%] Hispanic or Latino, and 83 [63%] White; comparison: 237 children; mean [SD] age, 9.89 [0.59] years; 121 [51%] male; 47 [15%] Black, 48 [20%] Hispanic or Latino, and 194 [62%] White). Children with earlier onset of asthma exhibited lower rates of longitudinal memory improvements relative to the comparison group (β = -0.17; 95% CI, -0.28 to -0.05; P = .01). Two thousand sixty-two children were selected for the cross-sectional analysis (with asthma: 1031 children; mean [SD] age, 11.99 [0.66] years; 588 [57%] male; 360 [27%] Black, 186 [18%] Hispanic or Latino, and 719 [54%] White; without asthma: 1031 children; mean [SD] age 12.00 [0.66] years; 477 [54%] female; 273 [21%] Black, 242 [23%] Hispanic or Latino, and 782 [59%] White). Children with asthma (1031 children) showed lower scores on episodic memory (β = -0.09; 95% CI, -0.18 to -0.01; P = .04), processing speed (β = -0.13; 95% CI, -0.22 to -0.03; P = .01), and inhibition and attention (β = -0.11; 95% CI, -0.21 to -0.02; P = .02). Conclusions and Relevance In this cohort study, asthma was associated with memory difficulties in children, which may be more severe if asthma onset is earlier in childhood and may extend to executive function abilities.
Collapse
Affiliation(s)
| | - Sarah C. Haynes
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento
| | - Nicholas J. Kenyon
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento
| | | | - Julie B. Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento
- MIND Institute, University of California Davis School of Medicine, Sacramento
| | - Simona Ghetti
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| |
Collapse
|
2
|
Tanaka E, Yamasaki R, Saitoh BY, Abdelhadi A, Nagata S, Yoshidomi S, Inoue Y, Matsumoto K, Kira JI, Isobe N. Postnatal Allergic Inhalation Induces Glial Inflammation in the Olfactory Bulb and Leads to Autism-Like Traits in Mice. Int J Mol Sci 2024; 25:10464. [PMID: 39408806 PMCID: PMC11476352 DOI: 10.3390/ijms251910464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. To explore its pathophysiology, we investigated the association between neonatal allergic exposure and behavioral changes. Adult female C57BL/6J mice were immunized with adjuvant (aluminum hydroxide) or ovalbumin emulsified with adjuvant. After immunization, the mice were mated, and offspring were born at full term. The postnatal dams and infants were then simultaneously exposed to an allergen (ovalbumin) or vehicle via inhalation. After weaning, behavioral testing and histopathological analyses were conducted on male offspring. Compared with the vehicle-exposed offspring, the ovalbumin-exposed offspring had decreased sociability and increased repetitive behavior, thus representing an ASD-like phenotype in mice. Moreover, histopathological analyses revealed that the ovalbumin-exposed mice had increased astroglial, microglial, and eosinophilic infiltration in the olfactory bulb, as well as increased eosinophils in the nasal mucosa. The ovalbumin-exposed mice also had decreased dendritic spine density and a lower proportion of mature spines, suggesting the impairment of stimulus-induced synaptogenesis. In conclusion, postnatal allergic exposure induced an ASD-like phenotype, as well as allergic rhinitis, which was followed by glial inflammation in the olfactory bulb parenchyma.
Collapse
Affiliation(s)
- Eizo Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kita-Takamatsu-Cho, Miyazaki 880-8510, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ban-yu Saitoh
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Himeno Hospital, 2316 Oaza-Nishiro, Hirokawa-machi, Yame-gun, Fukuoka 834-0115, Japan
| | - Amina Abdelhadi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sato Yoshidomi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuka Inoue
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Matsumoto
- Division of Respirology, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, 2-6-11 Yakuin, Chuo-ku, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Esmaeilpour K, Jafari E, Rostamabadi F, Khaleghi M, Akhgarandouz F, Hosseini M, Najafipour H, Khodadoust M, Sheibani V, Rajizadeh MA. Myrtenol Inhalation Mitigates Asthma-Induced Cognitive Impairments: an Electrophysiological, Behavioral, Histological, and Molecular Study. Mol Neurobiol 2024; 61:4891-4907. [PMID: 38148370 DOI: 10.1007/s12035-023-03863-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Asthma is an inflammatory disorder with significant health problems. It generally affects the lungs but can also impact brain performance via several mechanisms. Some investigations have proposed that asthma impairs cognition. This study assessed the impacts of myrtenol as a monoterpene on cognitive disorders following asthma at behavioral, molecular, and synaptic levels. Asthma was induced by injection and inhalation of ovalbumin (OVA). Male Wistar rats were allocated to five groups: control, asthma, asthma/vehicle, asthma/myrtenol, and asthma/budesonide. Myrtenol (8 mg/kg) or budesonide (160 μg/kg) was administered through inhalation once a day for 1 week, and at the end of the inhalation period, behavioral tests (MWM and Open Field), field potential recording, hippocampal brain-derived neurotrophic factor (BDNF), IL1β (ELISA), and NFκB measurement (Western blot) were performed to evaluate cognitive performance. Moreover, H&E (hematoxylin and eosin) staining was used for hippocampus histological evaluation. Myrtenol improved spatial learning, memory, LTP (long-term potentiation) impairments, and anxiety-like behaviors following asthma. Myrtenol inhalation increased the BDNF level and decreased the IL1β level and NFκB expression in the hippocampus of the asthmatic rats. The neuronal damage in the hippocampus following allergic asthma was alleviated via myrtenol administration. Myrtenol, as an herbal extract, protects the hippocampus from asthma consequences. Our observations revealed that myrtenol can improve spatial learning, memory, synaptic plasticity impairments, and anxiety-like behaviors following asthma. We believe that these ameliorating effects of myrtenol can be attributed to inflammation suppression and increased BDNF in the hippocampus.
Collapse
Affiliation(s)
- Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, ON, Canada
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mina Khaleghi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Akhgarandouz
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Khodadoust
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
5
|
Wang Y, Wang S, Wu J, Liu X, Zhang L. Causal Association Between Allergic Diseases and Dementia: Evidence from Multivariate Mendelian Randomization Study. J Alzheimers Dis 2024; 98:505-517. [PMID: 38393908 DOI: 10.3233/jad-231091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background The link between allergic diseases and dementia remains controversial, and the genetic causality of this link is unclear. Objective This study investigated the causal relationship between allergic diseases and dementia using univariate and multivariate Mendelian randomization (MR) methods. Methods We selected genome-wide association studies including 66,645 patients with allergic diseases and 12,281 patients with dementia, with statistical datasets derived from the FinnGen Consortium of European origin. After a rigorous screening process for single nucleotide polymorphisms to eliminate confounding effects, MR estimation was performed mainly using the inverse variance weighting method and the MR-Egger method. Sensitivity analyses were performed using Cochran's Q test, MR-PRESSO test, MR Pleiotropy residuals and leave-one-out analysis. Results Univariate and multivariate MR together demonstrated a causal relationship between atopic dermatitis and reduced vascular dementia (VaD) risk (OR = 0.89, 95% CI: 0.81-0.99, p = 0.031; OR = 0.85, 95% CI: 0.76-0.95, p = 0.003). MVMR confirmed asthma was associated with a reduction in the risk of Alzheimer's disease (AD) (OR = 0.82, 95% CI: 0.71-0.94, p = 0.005) and may be associated with a reduction in the risk of VaD (OR = 0.80, 95% CI: 0.65-0.99, p = 0.042); allergic rhinitis may be causally associated with an increased risk of AD (OR = 1.16, 95% CI: 1.00-1.35, p = 0.046) and VaD (OR = 1.29, 95% CI: 1.03-1.62, p = 0.027). In sensitivity analyses, these findings were reliable. Conclusions MR methods have only demonstrated that allergic rhinitis dementia is associated with an increased risk of developing dementia. Previously observed associations between other allergic diseases and dementia may be influenced by comorbidities and confounding factors rather than causality.
Collapse
Affiliation(s)
- YuanYing Wang
- Graduate school, Chengdu Medical College, Chengdu, China
| | - ShiHao Wang
- School of Biological Science and Technology, Chengdu Medical College, Chengdu, China
| | - JiaXin Wu
- Graduate school, Chengdu Medical College, Chengdu, China
| | - XinLian Liu
- Department of Neurobiology, Department of Pathology and Pathophysiology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Department of Neurobiology, Department of Pathology and Pathophysiology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
7
|
Nair AK, Van Hulle CA, Bendlin BB, Zetterberg H, Blennow K, Wild N, Kollmorgen G, Suridjan I, Busse WW, Dean DC, Rosenkranz MA. Impact of asthma on the brain: evidence from diffusion MRI, CSF biomarkers and cognitive decline. Brain Commun 2023; 5:fcad180. [PMID: 37377978 PMCID: PMC10292933 DOI: 10.1093/braincomms/fcad180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic systemic inflammation increases the risk of neurodegeneration, but the mechanisms remain unclear. Part of the challenge in reaching a nuanced understanding is the presence of multiple risk factors that interact to potentiate adverse consequences. To address modifiable risk factors and mitigate downstream effects, it is necessary, although difficult, to tease apart the contribution of an individual risk factor by accounting for concurrent factors such as advanced age, cardiovascular risk, and genetic predisposition. Using a case-control design, we investigated the influence of asthma, a highly prevalent chronic inflammatory disease of the airways, on brain health in participants recruited to the Wisconsin Alzheimer's Disease Research Center (31 asthma patients, 186 non-asthma controls, aged 45-90 years, 62.2% female, 92.2% cognitively unimpaired), a sample enriched for parental history of Alzheimer's disease. Asthma status was determined using detailed prescription information. We employed multi-shell diffusion weighted imaging scans and the three-compartment neurite orientation dispersion and density imaging model to assess white and gray matter microstructure. We used cerebrospinal fluid biomarkers to examine evidence of Alzheimer's disease pathology, glial activation, neuroinflammation and neurodegeneration. We evaluated cognitive changes over time using a preclinical Alzheimer cognitive composite. Using permutation analysis of linear models, we examined the moderating influence of asthma on relationships between diffusion imaging metrics, CSF biomarkers, and cognitive decline, controlling for age, sex, and cognitive status. We ran additional models controlling for cardiovascular risk and genetic risk of Alzheimer's disease, defined as a carrier of at least one apolipoprotein E (APOE) ε4 allele. Relative to controls, greater Alzheimer's disease pathology (lower amyloid-β42/amyloid-β40, higher phosphorylated-tau-181) and synaptic degeneration (neurogranin) biomarker concentrations were associated with more adverse white matter metrics (e.g. lower neurite density, higher mean diffusivity) in patients with asthma. Higher concentrations of the pleiotropic cytokine IL-6 and the glial marker S100B were associated with more salubrious white matter metrics in asthma, but not in controls. The adverse effects of age on white matter integrity were accelerated in asthma. Finally, we found evidence that in asthma, relative to controls, deterioration in white and gray matter microstructure was associated with accelerated cognitive decline. Taken together, our findings suggest that asthma accelerates white and gray matter microstructural changes associated with aging and increasing neuropathology, that in turn, are associated with more rapid cognitive decline. Effective asthma control, on the other hand, may be protective and slow progression of cognitive symptoms.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Carol A Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 30 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WCIE 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Clear Water Bay, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 30 Mölndal, Sweden
| | - Norbert Wild
- Roche Diagnostics GmbH, Core Lab RED, 82377 Penzberg, Germany
| | | | - Ivonne Suridjan
- CDMA Clinical Development, Roche Diagnostics International Ltd, CH-6346, Rotkreuz, Switzerland
| | - William W Busse
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI 53703, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
8
|
Kubysheva NI, Eliseeva TI, Postnikova LB, Boldina MV, Gorobets EA, Novikov VV, Khramova RN, Karaulov AV. Cognitive Impairments in Patients with Bronchial Asthma. Bull Exp Biol Med 2023; 174:585-588. [PMID: 37040035 DOI: 10.1007/s10517-023-05751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 04/12/2023]
Abstract
The course of bronchial asthma can be accompanied by cognitive impairments. However, the relationship between cognitive dysfunction and asthma has not been fully revealed, nor has it been fully established what causes cognitive impairments in patients with asthma. There is an opinion that transient hypoxia and persistent systemic inflammation with insufficient control of bronchial asthma can be accompanied by neurotoxicity in relation to the hippocampus and indirectly lead to deterioration of cognitive functions. Comorbid conditions, such as obesity, allergic rhinitis, and depressive states can increase cognitive dysfunction in asthmatics. The review considers the pathophysiology of cognitive dysfunction in patients with bronchial asthma, as well as the impact of comorbid conditions on the cognitive status. This information will allow systematizing the available knowledge about the state of cognitive functions in asthma for timely detection and correction of their impairments and, ultimately, optimization of the management of these patients.
Collapse
Affiliation(s)
- N I Kubysheva
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia.
| | - T I Eliseeva
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | | | - M V Boldina
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - E A Gorobets
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - V V Novikov
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Nizhny Novgorod, Russia
| | - R N Khramova
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - A V Karaulov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Jin H, Zhou Y, Ye J, Qiu C, Jin W, Wang L. Icariin Improves Glucocorticoid Resistance in a Murine Model of Asthma with Depression Associated with Enhancement of GR Expression and Function. PLANTA MEDICA 2023; 89:262-272. [PMID: 35850481 PMCID: PMC9940992 DOI: 10.1055/a-1902-4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Icariin, a flavonoid glycoside isolated from Epimedium brevicornum, exerts a variety of biological activities. However, its effects on depression-induced glucocorticoid resistance in asthma and the underlying mechanisms have not been elucidated. In this study, a murine model of asthma with depression was established by exposure to ovalbumin combined with chronic unpredictable mild stress, and icariin was given orally during ovalbumin challenge and chronic unpredictable mild stress exposure. Depression-like behaviors were assessed by the open field test, forced swim test, and tail suspension test. The characteristic features of allergic asthma, including airway hyperreactivity, histopathology, inflammatory cytokine levels in bronchoalveolar lavage fluid, and immunoglobulin E and corticosterone levels in serum, were examined. Following splenocyte isolation in vitro, the inhibitory effects of corticosterone on the proliferation and cytokine secretion of splenocytes, glucocorticoid receptor DNA-binding activity, and expression of p-glucocorticoid receptor s226, glucocorticoid receptor α, and p-p38 mitogen-activated protein kinase in splenocytes were determined. We found that icariin had limited effects on depression-like behaviors, however, it markedly suppressed airway hyperresponsiveness, inflammatory infiltration in lung tissues, levels of interleukin-4, interleukin-5, and interleukin-6 in bronchoalveolar lavage fluid, and immunoglobulin E in serum. Furthermore, icariin improved the inhibitory effects of corticosterone on lipopolysaccharide-stimulated splenocytes, increased the glucocorticoid receptor expression and glucocorticoid receptor DNA-binding activity, and inhibited the phosphorylation of glucocorticoid receptors S226 and p38 mitogen-activated protein kinase. Taken together, icariin improved glucocorticoid resistance in a murine model of asthma with depression associated with enhancement of glucocorticoid receptor function and glucocorticoid receptor expression, and its effects on the glucocorticoid receptor function were related to decreased phosphorylation of glucocorticoid receptors S226 and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Hualiang Jin
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhou
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ye
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenhui Qiu
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Jin
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limin Wang
- Department of Respiratory Diseases, Affiliated Hangzhou First Peopleʼs Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Wang T, Huang X, Wang J. Asthma's effect on brain connectivity and cognitive decline. Front Neurol 2023; 13:1065942. [PMID: 36818725 PMCID: PMC9936195 DOI: 10.3389/fneur.2022.1065942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the changes in dynamic voxel mirror homotopy connection (dVMHC) between cerebral hemispheres in patients with asthma. Methods Our study was designed using a case-control method. A total of 31 subjects with BA and 31 healthy subjects with matching basic information were examined using rsfMRI. We also calculated and obtained the dVMHC value between the cerebral cortexes. Results Compared with the normal control group, the dVMHC of the lingual gyrus (Ling) and the calcarine sulcus (CAL), which represented the visual network (VN), increased significantly in the asthma group, while the dVMHC of the medial superior frontal gyrus (MSFG), the anterior/middle/posterior cingulate gyrus (A/M/PCG), and the supplementary motor area (SMA) of the sensorimotor network decreased significantly in the asthma group. Conclusion This study showed that the ability of emotion regulation and the efficiency of visual and cognitive information processing in patients with BA was lower than in those in the HC group. The dVMHC analysis can be used to sensitively evaluate oxygen saturation, visual function changes, and attention bias caused by emotional disorders in patients with asthma, as well as to predict airway hyperresponsiveness, inflammatory progression, and dyspnea.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China,The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China,*Correspondence: Jun Wang ✉
| |
Collapse
|
11
|
Nair AK, Van Hulle CA, Bendlin BB, Zetterberg H, Blennow K, Wild N, Kollmorgen G, Suridjan I, Busse WW, Rosenkranz MA. Asthma amplifies dementia risk: Evidence from CSF biomarkers and cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12315. [PMID: 35846157 PMCID: PMC9270636 DOI: 10.1002/trc2.12315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Introduction Evidence from epidemiology, neuroimaging, and animal models indicates that asthma adversely affects the brain, but the nature and extent of neuropathophysiological impact remain unclear. Methods We tested the hypothesis that asthma is a risk factor for dementia by comparing cognitive performance and cerebrospinal fluid biomarkers of glial activation/neuroinflammation, neurodegeneration, and Alzheimer's disease (AD) pathology in 60 participants with asthma to 315 non-asthma age-matched control participants (45-93 years), in a sample enriched for AD risk. Results Participants with severe asthma had higher neurogranin concentrations compared to controls and those with mild asthma. Positive relationships between cardiovascular risk and concentrations of neurogranin and α-synuclein were amplified in severe asthma. Severe asthma also amplified the deleterious associations that apolipoprotein E ε4 carrier status, cardiovascular risk, and phosphorylated tau181/amyloid beta42 have with rate of cognitive decline. Discussion Our data suggest that severe asthma is associated with synaptic degeneration and may compound risk for dementia posed by cardiovascular disease and genetic predisposition. Highlights Those with severe asthma showed evidence of higher dementia risk than controls evidenced by: higher levels of the synaptic degeneration biomarker neurogranin regardless of cognitive status, cardiovascular or genetic risk, and controlling for demographics.steeper increase in levels of synaptic degeneration biomarkers neurogranin and α-synuclein with increasing cardiovascular risk.accelerated cognitive decline with higher cardiovascular risk, genetic predisposition, or pathological tau.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Carol A. Van Hulle
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongPeople's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | | | | | | | - William W. Busse
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Melissa A. Rosenkranz
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
12
|
Ebrahim Soltani Z, Badripour A, Haddadi NS, Elahi M, Kazemi K, Afshari K, Dehpour A. Allergic rhinitis in BALB/c mice is associated with behavioral and hippocampus changes and neuroinflammation via the TLR4/ NF-κB signaling pathway. Int Immunopharmacol 2022; 108:108725. [DOI: 10.1016/j.intimp.2022.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
|
13
|
Rosenkranz MA, Dean DC, Bendlin BB, Jarjour NN, Esnault S, Zetterberg H, Heslegrave A, Evans MD, Davidson RJ, Busse WW. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J Allergy Clin Immunol 2022; 149:589-598.e6. [PMID: 34536414 PMCID: PMC8821112 DOI: 10.1016/j.jaci.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epidemiologic studies have shown that Alzheimer's disease (AD) and related dementias (ADRD) are seen more frequently with asthma, especially with greater asthma severity or exacerbation frequency. OBJECTIVE To examine the changes in brain structure that may underlie this phenomenon, we examined diffusion-weighted magnetic resonance imaging (dMRI) and blood-based biomarkers of AD (phosphorylated tau 181, p-Tau181), neurodegeneration (neurofilament light chain, NfL), and glial activation (glial fibrillary acidic protein, GFAP). METHODS dMRI data were obtained in 111 individuals with asthma, ranging in disease severity from mild to severe, and 135 healthy controls. Regression analyses were used to test the relationships between asthma severity and neuroimaging measures, as well as AD pathology, neurodegeneration, and glial activation, indexed by plasma p-Tau181, NfL, and GFAP, respectively. Additional relationships were tested with cognitive function. RESULTS Asthma participants had widespread and large-magnitude differences in several dMRI metrics, which were indicative of neuroinflammation and neurodegeneration, and which were robustly associated with GFAP and, to a lesser extent, NfL. The AD biomarker p-Tau181 was only minimally associated with neuroimaging outcomes. Further, asthma severity was associated with deleterious changes in neuroimaging outcomes, which in turn were associated with slower processing speed, a test of cognitive performance. CONCLUSIONS Asthma, particularly when severe, is associated with characteristics of neuroinflammation and neurodegeneration, and may be a potential risk factor for neural injury and cognitive dysfunction. There is a need to determine how asthma may affect brain health and whether treatment directed toward characteristics of asthma associated with these risks can mitigate these effects.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc.
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisc; Waisman Center, University of Wisconsin-Madison, Madison, Wisc
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, Madison, Wisc
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Michael D Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minn
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc; Department of Psychology, University of Wisconsin-Madison, Madison, Wisc
| | - William W Busse
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| |
Collapse
|
14
|
Caulfield JI. Anxiety, depression, and asthma: New perspectives and approaches for psychoneuroimmunology research. Brain Behav Immun Health 2021; 18:100360. [PMID: 34661176 PMCID: PMC8502834 DOI: 10.1016/j.bbih.2021.100360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
The field of psychoneuroimmunology has advanced the understanding of the relationship between immunology and mental health. More work can be done to advance the field by investigating the connection between internalizing disorders and persistent airway inflammation from asthma and air pollution exposure. Asthma is a prominent airway condition that affects about 10% of developing youth and 7.7% of adults in the United States. People who develop with asthma are at three times increased risk to develop internalizing disorders, namely anxiety and depression, compared to people who do not have asthma while developing. Interestingly, sex differences also exist in asthma prevalence and internalizing disorder development that differ based on age. Exposure to air pollution also is associated with increased asthma and internalizing disorder diagnoses. New perspectives of how chronic inflammation affects the brain could provide more understanding into internalizing disorder development. This review on how asthma and air pollution cause chronic airway inflammation details recent preclinical and clinical research that begins to highlight potential mechanisms that drive comorbidity with internalizing disorder symptoms. These findings provide a foundation for future studies to identify therapies that can simultaneously treat asthma and internalizing disorders, thus potentially decreasing mental health diagnoses in asthma patients.
Collapse
Affiliation(s)
- Jasmine I Caulfield
- Yale Cancer Center, Yale School of Medicine, 333Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
15
|
Xu H, Yu ZH, Ge MJ, Shen JX, Han F, Pan C, Chen JJ, Zhu XL, Hou WY, Hou YQ, Lu YP. Estradiol attenuates chronic restraint stress-induced dendrite and dendritic spine loss and cofilin1 activation in ovariectomized mice. Horm Behav 2021; 135:105040. [PMID: 34358948 DOI: 10.1016/j.yhbeh.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Ovarian hormone deprivation is associated with mood disorders, such as depression, and estradiol therapy is significantly more effective than placebos in treating major depression associated with menopause onset. However, the effect of estradiol on neuronal plasticity and its mechanisms remain to be further elucidated. In this study, behavioral assessments were used to examine the antidepressant effect of estradiol in ovariectomized (OVX) B6.Cg-TgN (Thy-YFP-H)-2Jrs transgenic mice on chronic restraint stress (CRS)-induced dendrite and dendritic spine loss; Yellow fluorescent protein (YFP) is characteristically expressed in excitatory neurons in transgenic mice, and its three-dimensional images were used to evaluate the effect of estradiol on the density of different types of dendritic spines. Quantification and distribution of cofilin1 and p-cofilin1 were determined by qPCR, Western blots, and immunohistochemistry, respectively. The results revealed that treatment with estradiol or clomipramine significantly improved depression-like behaviors. Estradiol treatment also significantly upregulated the dendritic density in all areas examined and increased the density of filopodia-type, thin-type and mushroom-type spines in the hippocampal CA1 and elevated the thin-type and mushroom-type spine density in the PFC. Consistent with these changes, estradiol treatment significantly increased the density of p-cofilin1 immunopositive dendritic spines. Thus, these data reveal a possible estradiol antidepressant mechanism, in that estradiol promoted the phosphorylation of cofilin1 and reduced the loss of dendrites and dendritic spines, which of these dendritic spines include not only immature spines such as filopodia-type, but also mature spines such as mushroom-type, and attenuated the depression-like behavior.
Collapse
Affiliation(s)
- Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Wen-Yu Hou
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Yu-Qiao Hou
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
16
|
Peng C, Chen XT, Xu H, Chen LP, Shen W. Role of the CXCR4/ALK5/Smad3 Signaling Pathway in Cancer-Induced Bone Pain. J Pain Res 2020; 13:2567-2576. [PMID: 33116799 PMCID: PMC7569080 DOI: 10.2147/jpr.s260508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The chemokine receptor, CXCR4, and the transforming growth factor-beta receptor, ALK5, both contribute to various processes associated with the sensation of pain. However, the relationship between CXCR4 and ALK5 and the possible mechanisms promoted by ALK5 in the development of pain have not been evaluated. Materials and Methods Tumor cell implantation (TCI) technology was used to generate a model of cancer-induced bone pain (CIBP) in rats; intrathecal (i.t.) injections of small interfering (si) RNAs targeting CXCR4 and the ALK5-specific inhibitor, RepSox, were performed. Behavioral outcomes, Western blotting, and immunofluorescence techniques were used to evaluate the expression of the aforementioned specific target proteins in the CIBP model. Results The results revealed that i.t. administration of siRNAs targeting CXCR4 resulted in significant reductions in both mechanical and thermal hyperalgesia in rats with CIBP and likewise significantly reduced the expression of ALK5 in the spinal cord. Similarly, i.t. administration of RepSox also resulted in significant reductions in mechanical and thermal hyperalgesia in rats with CIBP together with diminished levels of spinal p-Smad3. Conclusion Taken together, our results suggest that CXCR4 expression in the spinal cord may be a critical mediator of CIBP via its capacity to activate ALK5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
17
|
Treadmill exercise restores memory and hippocampal synaptic plasticity impairments in ovalbumin-sensitized juvenile rats: Involvement of brain-derived neurotrophic factor (BDNF). Neurochem Int 2020; 135:104691. [PMID: 31982414 DOI: 10.1016/j.neuint.2020.104691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023]
Abstract
Studies demonstrate that asthma, especially during childhood, affects the functions of the brain including learning and memory. Exercise is well known for its neuroprotective functions and for its beneficial effects on asthma. We aimed to assess the effects of exercise on cognitive function, synaptic plasticity, and hippocampal brain-derived neurotrophic factor (BDNF) levels in ovalbumin (OVA) sensitized juvenile rats. Rats were sensitized by intraperitoneal administration and inhaled OVA. Animals were subjected to treadmill running exercise during the OVA-challenged period. T-helper type 2 (Th2) cytokine [interleukin (IL)-4], Th1 cytokine (INF-γ) levels, and INF-γ/IL-4 (Th1/Th2) ratio in bronchoalveolar lavage fluid (BALF), and tracheal response to methacholine and OVA were measured. Further, memory behaviors and BDNF levels were measured in the hippocampus as well as long-term potentiation (LTP) was assessed by recording field excitatory postsynaptic potentials (fEPSPs) in the hippocampus. The levels of IL-4 and TGF-β were decreased but INF-γ level and INF-γ/IL-4 ratio increased in the BALF due to exercise in the OVA-sensitized animals. In addition, exercise improved OVA-sensitization induced cognitive impairments, increased BDNF levels, and enhanced hippocampal LTP in OVA-sensitized rats. Exercise is not only effective in the alleviation of airway inflammation by restoring Th1/Th2 cytokines balance, but also is a candidate for improvement of memory and synaptic plasticity deficits partially through increasing the levels of hippocampal BDNF in OVA-sensitized rats.
Collapse
|
18
|
Wang Y, Du X, Wang D, Wang J, Du J. Effects of Bisphenol A Exposure during Pregnancy and lactation on Hippocampal Function in Newborn Rats. Int J Med Sci 2020; 17:1751-1762. [PMID: 32714078 PMCID: PMC7378672 DOI: 10.7150/ijms.47300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is widely used in industrial production. It is closely related to the growth and development of the nervous system, and can enter the fetal circulation through the placental barrier, and can be secreted through breast milk. The development of nervous system is very important in fetus and neonatal period. The purpose of this study is to investigate the effects of different doses of BPA on learning and memory function of nervous system in rats. Pregnant rats were randomly divided into three treatment groups (control group, 5 mg/kg/d, 50 mg/kg/d). All animals received BPA from the discovery of pregnancy to 21 days after birth. Results had shown that after high concentration BPA exposure, the increase of PS amplitude and f-EPSP slope in hippocampal CA1 area of male offspring was lower than that of control group. High concentration of BPA could inhibit Nestin, Cyclin D1, bcl-2 and Rac1 in male offspring rats and the expression of bax and RhoA was promoted by BPA. In summary, our study indicated that BPA exposure during pregnancy and lactation could impair the hippocampal function of male offspring by affecting the growth and apoptosis of hippocampal neurons, which might be due to the abnormal regulation of RhoA and Rac1.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaomin Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Juan Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|