1
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Mazeaud C, Bernard JA, Salazar BH, Su J, Karmonik C, Khavari R. Cerebellar functional connectivity relates to lower urinary tract function: A 7 Tesla study. Neurourol Urodyn 2024; 43:2147-2156. [PMID: 38962955 DOI: 10.1002/nau.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES The objective of this study is to explore the functional connectivity (FC) of the cerebellum during the storage phase of micturition, through detecting spontaneous blood-oxygen-level dependent signal between the cerebellum and different brain regions using a high-resolution 7 Tesla magnetic resonance imaging (MRI) scanner. MATERIALS AND METHODS We recruited healthy individuals with no reported history of neurological disease or lower urinary tract (LUT) symptoms. Participants were asked to drink 500 mL of water and then empty their bladders before entering the MRI scanner. They underwent a T1-weighted anatomical scan, followed by an initial (8 min) empty bladder resting state functional MRI (rs-fMRI) acquisition. Once subjects felt the desire to void, a second rs-fMRI scan was obtained, this time with a full bladder state. We established a priori cerebellar regions of interest from the literature to perform seed-to-voxel analysis using nonparametric statistics based on the Threshold Free Cluster Enhancement method and utilized a voxel threshold of p < 0.05. RESULTS Twenty individuals (10 male and 10 female) with a median age of 25 years (IQR [3.5]) participated in the study. We placed 31 different 4-mm spherical seeds throughout the cerebellum and assessed their FC with the remainder of the brain. Three of these (left cerebellar tonsil, right posterolateral lobe, right posterior lobe) showed significant differences in connectivity when comparing scans conducted with a full bladder to those with an empty bladder. Additionally, we observed sex differences in FC, with connectivity being higher in women during the empty bladder condition. CONCLUSION Our initial findings reveal, for the first time, that the connectivity of the cerebellar network is modulated by bladder filling and is associated with LUT function. Unraveling the cerebellum's role in bladder function lays the foundation for a more comprehensive understanding of urinary pathologies affecting this area.
Collapse
Affiliation(s)
- Charles Mazeaud
- Department of Urology, Houston Methodist Hospital, Houston, Texas, USA
- Department of Urology, Nancy University Hospital, IADI-UL-INSERM (U1254), Nancy, France
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Betsy H Salazar
- Department of Urology, Houston Methodist Hospital, Houston, Texas, USA
| | - Johnny Su
- Department of Urology, Houston Methodist Hospital, Houston, Texas, USA
| | - Christof Karmonik
- Houston Methodist Research Institute, Translational Imaging Center, Houston, Texas, USA
| | - Rose Khavari
- Department of Urology, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison KE, Bustillo J, Du Y, Pearlson G, Calhoun VD. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophr Res 2024; 270:392-402. [PMID: 38986386 DOI: 10.1016/j.schres.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
Collapse
Affiliation(s)
- Dongdong Lin
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America.
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Nora Perrone-Bizzozero
- Department of neuroscience, University of New Mexico, Albuquerque, NM, 87109, United States of America
| | - Kent E Hutchison
- Department of psychology and neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juan Bustillo
- Department of psychiatry, University of New Mexico, Albuquerque, NM 87109, United States of America
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Godfrey Pearlson
- Olin Research Center, Institute of Living Hartford, CT 06102, United States of America; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, United States of America
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| |
Collapse
|
5
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
6
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Petrosini L, Picerni E, Termine A, Fabrizio C, Laricchiuta D, Cutuli D. The Cerebellum as an Embodying Machine. Neuroscientist 2024; 30:229-246. [PMID: 36052895 DOI: 10.1177/10738584221120187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas emotion theorists often keep their distance from the embodied approach, theorists of embodiment tend to treat emotion as a mainly physiologic process. However, intimate links between emotions and the body suggest that emotions are privileged phenomena to attempt to reintegrate mind and body and that the body helps the mind in shaping emotional responses. To date, research has favored the cerebrum over other parts of the brain as a substrate of embodied emotions. However, given the widely demonstrated contribution of the cerebellum to emotional processing, research in affective neuroscience should consider embodiment theory as a useful approach for evaluating the cerebellar role in emotion and affect. The aim of this review is to insert the cerebellum among the structures needed to embody emotions, providing illustrative examples of cerebellar involvement in embodied emotions (as occurring in empathic abilities) and in impaired identification and expression of embodied emotions (as occurring in alexithymia).
Collapse
Affiliation(s)
| | | | | | | | | | - Debora Cutuli
- Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| |
Collapse
|
8
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
9
|
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison KE, Bustillo J, Du Y, Pearlson G, Calhoun VD. Association between the oral microbiome and brain resting state connectivity in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573165. [PMID: 38234846 PMCID: PMC10793457 DOI: 10.1101/2023.12.22.573165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N=213 SZ and healthy control (HC) subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p= 6×10 -3 ; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H 2 S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8% of brain functional network connectivity from each component also showed significant differences between SZ and HC with strong performance in classifying SZ from HC, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
Collapse
|
10
|
Zhou X, Zhou J, Zhang F, Shu Q, Wang QY, Wu Y, Chang HM, Zhang B, Yu Q, Cai RL. A New Target of Electroacupuncture Pretreatment Mediated Sympathetic Nervous to Improve MIRI: Glutamatergic Neurons in Fastigial Nucleus of the Cerebellum. Neuroscience 2023; 535:124-141. [PMID: 37923164 DOI: 10.1016/j.neuroscience.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Ischemic heart disease is a fatal cardiovascular disease that irreversibly impairs the function of the heart, followed by reperfusion leading to a further increase in infarct size. Clinically, we call it myocardial ischemia-reperfusion injury (MIRI). A growing number of clinical observations and experimental studies have found electroacupuncture (EA) to be effective in alleviating MIRI. This study attempts to investigate whether glutamatergic neurons in fastigial nucleus (FN) of the cerebellum are involved in EA pretreatment to alleviate MIRI via sympathetic nerves, and the potential mechanisms of EA pretreatment process. A MIRI model was established by ligating the coronary artery of the left anterior descending branch of the heart for 30 minutes, followed by 2 hours of reperfusion. Multichannel physiological recordings, electrocardiogram, cardiac ultrasound, chemical genetics, enzyme-linked immunosorbent assay and immunofluorescence staining methods were combined to demonstrate that EA pretreatment inhibited neuronal firing and c-Fos expression in FN of the cerebellum and reduced cardiac sympathetic firing. Meanwhile, EA pretreatment significantly reduced cardiac ejection fraction (EF), shortening fraction (SF), percentage infarct area, decreased myocardial norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) concentrations, and improved MIRI-induced myocardial tissue morphology. The results were similar to the inhibition of glutamatergic neurons in FN. However, the activation of glutamatergic neurons in FN diminished the aforementioned effects of EA pretreatment. This study revealed that glutamatergic neurons in FN of the cerebellum is involved in EA pretreatment mediated sympathetic nervous and may be a potential mediator for improving MIRI.
Collapse
Affiliation(s)
- Xiang Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China; Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu 241000, Anhui Province, China
| | - Jie Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Fan Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Qi Shu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Qian-Yi Wang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Yan Wu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Hui-Min Chang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Bin Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei 230038, Anhui Province, China
| | - Qing Yu
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei 230038, Anhui Province, China; Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei 230038, China.
| | - Rong-Lin Cai
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei 230038, Anhui Province, China; Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230038, China.
| |
Collapse
|
11
|
Brizzi G, Sansoni M, Di Lernia D, Frisone F, Tuena C, Riva G. The multisensory mind: a systematic review of multisensory integration processing in Anorexia and Bulimia Nervosa. J Eat Disord 2023; 11:204. [PMID: 37974266 PMCID: PMC10655389 DOI: 10.1186/s40337-023-00930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Individuals with Anorexia Nervosa and Bulimia Nervosa present alterations in the way they experience their bodies. Body experience results from a multisensory integration process in which information from different sensory domains and spatial reference frames is combined into a coherent percept. Given the critical role of the body in the onset and maintenance of both Anorexia Nervosa and Bulimia Nervosa, we conducted a systematic review to examine multisensory integration abilities of individuals affected by these two conditions and investigate whether they exhibit impairments in crossmodal integration. We searched for studies evaluating crossmodal integration in individuals with a current diagnosis of Anorexia Nervosa and Bulimia Nervosa as compared to healthy individuals from both behavioral and neurobiological perspectives. A search of PubMed, PsycINFO, and Web of Sciences databases was performed to extract relevant articles. Of the 2348 studies retrieved, 911 were unique articles. After the screening, 13 articles were included. Studies revealed multisensory integration abnormalities in patients affected by Anorexia Nervosa; only one included individuals with Bulimia Nervosa and observed less severe impairments compared to healthy controls. Overall, results seemed to support the presence of multisensory deficits in Anorexia Nervosa, especially when integrating interoceptive and exteroceptive information. We proposed the Predictive Coding framework for understanding our findings and suggested future lines of investigation.
Collapse
Affiliation(s)
- Giulia Brizzi
- Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Via Magnasco 2, 20149, Milan, Italy.
| | - Maria Sansoni
- Humane Technology Laboratory, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20121, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20121, Milan, Italy
| | - Daniele Di Lernia
- Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Via Magnasco 2, 20149, Milan, Italy
| | - Fabio Frisone
- Humane Technology Laboratory, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20121, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20121, Milan, Italy
| | - Cosimo Tuena
- Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Via Magnasco 2, 20149, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Via Magnasco 2, 20149, Milan, Italy
- Humane Technology Laboratory, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20121, Milan, Italy
| |
Collapse
|
12
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
14
|
Chao OY, Pathak SS, Zhang H, Augustine GJ, Christie JM, Kikuchi C, Taniguchi H, Yang YM. Social memory deficit caused by dysregulation of the cerebellar vermis. Nat Commun 2023; 14:6007. [PMID: 37752149 PMCID: PMC10522595 DOI: 10.1038/s41467-023-41744-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Jason M Christie
- University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chikako Kikuchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hiroki Taniguchi
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Chronic Brain Injury, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Martínez-Mendoza ML, Rodríguez-Arzate CA, Gómez-González GB, Rosas-Arellano A, Martínez-Torres A. Morphological characteristics of astrocytes of the fastigial nucleus. Heliyon 2023; 9:e18006. [PMID: 37483700 PMCID: PMC10362242 DOI: 10.1016/j.heliyon.2023.e18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Astrocytes are a diverse and morphologically complex class of glial cells restricted to the central nervous system which have been implicated in the modulation of neuronal activity. The cerebellum is involved in planning movements and motor learning. Within the cerebellum three deep cerebellar nuclei (dentate, interposed and fastigial) provide the sole neuronal output. The fastigial nucleus participates in saccadic and vestibular function, and recent evidence disclosed neuronal projections to cognitive, affective, and motor areas. However, thus far there are no reliable descriptions of the distribution and morphological classifications of astrocytes in this nucleus. This work aims to describe the characteristics of astrocytes of the fastigial nucleus based on the expression of GFP in a transgenic mouse model.
Collapse
Affiliation(s)
- Marianne Lizeth Martínez-Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Juriquilla, Querétaro, 76230, Mexico
| | - Cynthia Alejandra Rodríguez-Arzate
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Juriquilla, Querétaro, 76230, Mexico
| | - Gabriela B. Gómez-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Juriquilla, Querétaro, 76230, Mexico
| | - Abraham Rosas-Arellano
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510. Ciudad de México, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Juriquilla, Querétaro, 76230, Mexico
| |
Collapse
|
16
|
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and reward outcome processing: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 149:105171. [PMID: 37060968 DOI: 10.1016/j.neubiorev.2023.105171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The cerebellum generates internal prediction models and actively compares anticipated and actual outcomes in order to reach a desired end state. In this process, reward can serve as a reinforcer that shapes internal prediction models, enabling context-appropriate behavior. While the involvement of the cerebellum in reward processing has been established in animals, there is no detailed account of which cerebellar regions are involved in reward anticipation and reward outcome processing in humans. To this end, an activation likelihood estimation meta-analysis of functional neuroimaging studies was performed to investigate cerebellar functional activity patterns associated with reward anticipation and reward outcome processing in healthy adults. Results showed that reward anticipation (k=31) was associated with regional activity in the bilateral anterior lobe, bilateral lobule VI, left Crus I and the posterior vermis, while reward outcome (k=16) was associated with regional activity in the declive and left lobule VI. The findings of this meta-analysis show distinct involvement of the cerebellum in reward anticipation and reward outcome processing as part of a predictive coding routine.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
17
|
Katsumi Y, Zhang J, Chen D, Kamona N, Bunce JG, Hutchinson JB, Yarossi M, Tunik E, Dickerson BC, Quigley KS, Barrett LF. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun Biol 2023; 6:401. [PMID: 37046050 PMCID: PMC10097701 DOI: 10.1038/s42003-023-04796-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Nada Kamona
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Jamie G Bunce
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Mathew Yarossi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Karen S Quigley
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
18
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
19
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Alharbi S, Bawazir M, Altweijri I. A case of postoperative cerebellar mutism with hyperphagia in a child following gross total resection of medulloblastoma occupying the cerebellar vermis. Childs Nerv Syst 2022; 38:2189-2198. [PMID: 35536349 DOI: 10.1007/s00381-022-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Cerebellar mutism syndrome is a well-known complication following posterior fossa tumor resection. Its incidence is markedly increased among patients with medulloblastoma. Patients typically present with an inability to communicate verbally due to disruption of the dentato-thalamocortical pathway. CASE DESCRIPTION We present a unique case of cerebellar mutism in a three-year-old girl who underwent gross total resection of medulloblastoma occupying the cerebellar vermis. In addition to mutism, the patient developed hyperphagia. DISCUSSION This case report aims to contribute to current understanding of the role of cerebello-hypothalamic connections in cerebellar mutism and their clinical significance.
Collapse
Affiliation(s)
- Shatha Alharbi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Makkah Al Mukarramah Branch Rd, Al Mathar Ash Shamali, Riyadh, Riyadh Province, 11564, Saudi Arabia.
| | - Minyal Bawazir
- College of Medicine, King Saud University Medical City, Alshaikh Hassan A. Alshaikh St., Riyadh, Riyadh Province, 12372, Saudi Arabia
| | - Ikhlass Altweijri
- Surgery, King Saud University Medical City, Alshaikh Hassan A. Alshaikh St., Riyadh, Riyadh Province, 12372, Saudi Arabia
| |
Collapse
|
21
|
Siciliano L, Olivito G, Leggio M. The cerebellum gains weight: A systematic review of alterations in cerebellar volume and cerebro-cerebellar functional alterations in individuals with eating disorders. Neurosci Biobehav Rev 2022; 141:104863. [PMID: 36089105 DOI: 10.1016/j.neubiorev.2022.104863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain imaging studies on eating disorders (EDs) often reported volumetric and functional changes involving the cerebellum. Nevertheless, few studies performed in-depth examinations and suggested a cerebellar role in the EDs' pathophysiology. METHODS A systematic literature search on volumetric changes and functional alterations involving the cerebellum in individuals with EDs was conducted using PubMed, PsychInfo and Web of Science. This review was conducted according to the Preferred Reporting Items for Systematic Reviews (PRISMA) statement and Rayyan web application for screening studies. RESULTS Twenty-four papers reporting cerebellar alterations in individuals with EDs were included in the study: 9 assessing brain volumetric changes, 9 investigating task-based functional brain activation and 6 investigating brain functional connectivity at rest. Most studies focused on anorectic-type EDs (n.22), while fewer involved bulimic-type EDs (n.9) and eating disorders not otherwise specified (n.2), revealing subtypes-specific patterns of altered cerebellar volume and functionality. CONCLUSIONS This review proposes critical arguments to consider the cerebellum as a key structure in the pathophysiology of EDs that requires further forthcoming exploration.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy.
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy.
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy.
| |
Collapse
|
22
|
Katsumi Y, Theriault JE, Quigley KS, Barrett LF. Allostasis as a core feature of hierarchical gradients in the human brain. Netw Neurosci 2022; 6:1010-1031. [PMID: 38800458 PMCID: PMC11117115 DOI: 10.1162/netn_a_00240] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 05/29/2024] Open
Abstract
This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called allostasis (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
24
|
Wu J, Li T, Mao G, Cha X, Fei S, Miao B. The involvement of Pellino-1 downregulation in the modulation of visceral hypersensitivity via the TLR4/NF-κB pathway in the rat fastigial nucleus. Neurosci Lett 2022; 787:136815. [PMID: 35901910 DOI: 10.1016/j.neulet.2022.136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Irritable bowel syndrome (IBS) is a common functional bowel disorder whose key characteristics include chronic visceral hypersensitivity (CVH) and abnormal brain-gut interactions. Pellino-1 is an E3 ubiquitin ligase, mediating the degradation or modification of targeted proteins. Some brain regions, such as the fastigial nucleus (FN), may play important roles in CVH; however, the molecular mechanism underlying this phenomenon is not clear. In this study, we assessed the roles of Pellino-1 within the FN in modulating VH by generating a colorectal distention (CRD) model in male Sprague-Dawley rats. Our results showed that the downregulation of Pellino-1 in the fastigial nucleus (FN) was involved in the modulation of visceral hypersensitivity. The expression of Pellino-1 was downregulated in the FN of adult CRD rats compared with control rats, whereas TLR4 and NF-κB were upregulated in the CRD model. To overexpress Pellino-1, a lentivirus specifically expressing Pellino-1 and green fluorescent protein was administered into the FN. The overexpression of Pellino-1 increased the visceral sensitivity of CRD rats, and the expression of TLR4 and NF-κB increased further. After administration of TAK-242 (a specific TLR4 inhibitor), the visceral response to overexpression of Pellino-1 was reversed. Overall, the findings indicated the involvement of the FN in the development of CVH; the downregulation of Pellino-1 in the FN acted through the TLR4/NF-κB pathway to protect against CVH in a CRD rat model.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Tao Li
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Xiuli Cha
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Bei Miao
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
25
|
A review of the neural control of micturition in dogs and cats: neuroanatomy, neurophysiology and neuroplasticity. Vet Res Commun 2022; 46:991-998. [PMID: 35802232 DOI: 10.1007/s11259-022-09966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
This article discusses the current knowledge on the role of the neurological structures, especially the cerebellum and the hypothalamus, and compares the information with human medicine. Micturition is a complex voluntary and involuntarily mechanism. Its physiological completion strictly depends on the hierarchical organisation of the central nervous system pathways in the peripheral nervous system. Although the role of the peripheral nervous system and subcortical areas, such as brainstem centres, are well established in veterinary medicine, the role of the cerebellum and hypothalamus have been poorly investigated and understood. Lower urinary tract dysfunction is often associated with neurological diseases that cause neurogenic bladder (NB). The neuroplasticity of the nervous system in the developmental changes of the mechanism of micturition during the prenatal and postnatal periods is also analysed.
Collapse
|
26
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
27
|
Cerebellar neurons that curb food consumption. Nature 2021; 600:229-230. [PMID: 34789886 DOI: 10.1038/d41586-021-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Iliou A, Vlaikou AM, Nussbaumer M, Benaki D, Mikros E, Gikas E, Filiou MD. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress 2021; 24:952-964. [PMID: 34553679 DOI: 10.1080/10253890.2021.1973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Angeliki-Maria Vlaikou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Dimitra Benaki
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Chemistry, Section of Analytical Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michaela D Filiou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
29
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
30
|
Yamada K, Watanabe M, Suzuki K, Suzuki Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. THE CEREBELLUM 2021; 19:778-787. [PMID: 32661798 PMCID: PMC7588377 DOI: 10.1007/s12311-020-01163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate lobule-specific cerebellar structural alterations relevant to clinical behavioral characteristics of Prader-Willi syndrome (PWS). We performed a case-control study of 21 Japanese individuals with PWS (age; median 21.0, range 13–50 years, 14 males, 7 females) and 40 age- and sex-matched healthy controls with typical development. Participants underwent 3-Tesla magnetic resonance imaging. Three-dimensional T1-weighted images were assessed for cerebellar lobular volume and adjusted for total intracerebellar volume (TIV) using a spatially unbiased atlas template to give a relative volume ratio. A region of interest analysis included the deep cerebellar nuclei. A correlation analysis was performed between the volumetric data and the clinical behavioral scores derived from the standard questionnaires (hyperphagia, autism, obsession, and maladaptive index) for global intelligence assessment in paired subgroups. In individuals with PWS, TIV was significantly reduced compared with that of controls (p < 0.05, family-wise error corrected; mean [standard deviation], 1014.1 [93.0] mm3). Decreased relative lobular volume ratios were observed in posterior inferior lobules with age, sex, and TIV as covariates (Crus I, Crus II, lobules VIIb, VIIIa, VIIIb, and IX). However, increased ratios were found in the dentate nuclei bilaterally in individuals with PWS (p < 0.01); the mean (standard deviation) × 10−3 was as follows: left, 1.58 (0.26); right, 1.67 (0.30). The altered lobular volume ratios showed negative correlations with hyperphagic and autistic characteristics and positive correlations with obsessive and intellectual characteristics. This study provides the first objective evidence of topographic patterns of volume differences in cerebellar structures consistent with clinical behavioral characteristics in individuals with PWS and strongly suggests a cerebellar contribution to altered functional brain connectivity in PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
31
|
Browning KN, Carson KE. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence. Nutrients 2021; 13:nu13030908. [PMID: 33799575 PMCID: PMC7998662 DOI: 10.3390/nu13030908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.
Collapse
|
32
|
Gómez-González GB, Martínez-Torres A. Inter-fastigial projections along the roof of the fourth ventricle. Brain Struct Funct 2021; 226:901-917. [PMID: 33511462 DOI: 10.1007/s00429-021-02217-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The fastigial nucleus (FN) is a bilateral cerebellar integrative center for saccadic and vestibular control associated with non-motor functions such as feeding and cardiovascular regulation. In a previous study, we identified a tract of myelinated axons embedded in the subventricular zone (SVZ) that is located between the ependymal cells that form the dorsal wall of the ventricle and the glia limitans at the roof of the fourth ventricle González-González (Sci Rep 2017, 7:40768). Here, we show that this tract of axons, named subventricular axons or SVa, contains projection neurons that bilaterally interconnect both FNs. The approach consisted of the use of a battery of fluorescent neuronal tracers, transgenic mouse lines, and immunohistofluorescence. Our observations show that the SVa belong to a wide network of GABAergic projection neurons mainly located in the medial and caudal region of the FN. The SVa should be considered a part of a continuum of the cerebellar white matter that follows an alternative pathway through the SVZ, a region closely associated with the physiology of the fourth ventricle. This finding adds to our understanding of the complex organization of the FN; however, the function of the interconnection remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela B Gómez-González
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México
| | - Ataúlfo Martínez-Torres
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
33
|
Zhang L, Hernandez VS, Gerfen CR, Jiang SZ, Zavala L, Barrio RA, Eiden LE. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. eLife 2021; 10:61718. [PMID: 33463524 PMCID: PMC7875564 DOI: 10.7554/elife.61718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Vito S Hernandez
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Lilian Zavala
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rafael A Barrio
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States.,Department of Complex Systems, Institute of Physics, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| |
Collapse
|
34
|
Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neuropsychiatry, and therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:109-154. [PMID: 34389114 DOI: 10.1016/b978-0-12-822290-4.00016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative, and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher-order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies have demonstrated the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of cerebellar incorporation into circuits that subserve cognition and emotion mandates a deeper understanding of the cerebellum by practitioners in behavioral neurology and neuropsychiatry because it impacts the understanding and diagnosis of disorders of emotion and intellect and has potential for novel cerebellar-based approaches to therapy.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
35
|
Angelova G, Skodova T, Prokopiusova T, Markova M, Hruskova N, Prochazkova M, Pavlikova M, Spanhelova S, Stetkarova I, Bicikova M, Kolatorova L, Rasova K. Ambulatory Neuroproprioceptive Facilitation and Inhibition Physical Therapy Improves Clinical Outcomes in Multiple Sclerosis and Modulates Serum Level of Neuroactive Steroids: A Two-Arm Parallel-Group Exploratory Trial. Life (Basel) 2020; 10:life10110267. [PMID: 33142850 PMCID: PMC7693100 DOI: 10.3390/life10110267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Only few studies have monitored the potential of physical activity training and physical therapy to modulate the reaction of the endocrine system. In this study, the effect of neuroproprioceptive facilitation and inhibition physical therapy on clinical outcomes and neuroactive steroids production in people with multiple sclerosis was evaluated. Moreover, we were interested in the factors that influence the treatment effect. Methods: In total, 44 patients with multiple sclerosis were randomly divided into two groups. Each group underwent a different kind of two months ambulatory therapy (Motor program activating therapy and Vojta’s reflex locomotion). During the following two months, participants were asked to continue the autotherapy. Primary (serum level of cortisol, cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, DHEA) and secondary (balance, cognition and patient-reported outcomes) outcomes were examined three times (pre, post, and washout assessments). Results: In both groups, there is a decreasing trend of 7-oxo-DHEA concentration in post-assessment and 7β-OH-DHEA in washout versus pre-assessment. A higher impact on neuroactive steroids is visible after Vojta’s reflex locomotion. As for clinical outcomes, the Paced Auditory Serial Addition Test and Multiple Sclerosis Impact Scale significantly improved between post-assessment and washout assessment. The improvement was similar for both treatments. Conclusions: Neuroproprioceptive facilitation and inhibition improved the clinical outcomes and led to non-significant changes in neuroactive steroids. Trial registration (NCT04379193).
Collapse
Affiliation(s)
- Gabriela Angelova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Tereza Skodova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Terezie Prokopiusova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Magdalena Markova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Natalia Hruskova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Marie Prochazkova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Marketa Pavlikova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Sarka Spanhelova
- Department of Rehabilitation and Sport Medicine, Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic;
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic;
| | - Marie Bicikova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Kamila Rasova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
- Correspondence: or
| |
Collapse
|
36
|
Gatti D, Van Vugt F, Vecchi T. A causal role for the cerebellum in semantic integration: a transcranial magnetic stimulation study. Sci Rep 2020; 10:18139. [PMID: 33097802 PMCID: PMC7584601 DOI: 10.1038/s41598-020-75287-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that the cerebellum, a structure previously linked to motor function, is also involved in a wide range of non-motor processes. It has been proposed that the cerebellum performs the same computational processes in both motor and non-motor domains. Within motor functions, the cerebellum is involved in the integration of signals from multiple systems. Here we hypothesized that cerebellum may be involved in integration within semantic memory as well. Specifically, understanding a noun-adjective combination (e.g. red apple) requires combining the meaning of the adjective (red) with the meaning of the noun (apple). In two experiments, participants were asked to judge whether noun-adjective word-pairs were semantically related (e.g., red apple) or not (e.g., lucky milk) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site (vertex in Experiment 1 and visual cortex in Experiment 2). Cerebellar TMS caused a decrease in participants’ accuracy for related word-pairs while accuracy for unrelated stimuli was not affected. A third experiment using a control task where subjects compared pairs of random letters showed no effect of TMS. Taken together these results indicate that the right cerebellum is involved specifically in the processing of semantically related stimuli. These results are consistent with theories that proposed the existence of a unified cerebellar function within motor and non-motor domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive cognition.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy
| | - Floris Van Vugt
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy.,Psychology Department, University of Montreal, Montreal, H3A1G1, Canada
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy. .,IRCCS Mondino Foundation, 27100, Pavia, Italy.
| |
Collapse
|
37
|
Bastide L, Herbaut AG. Cerebellum and micturition: what do we know? A systematic review. CEREBELLUM & ATAXIAS 2020; 7:9. [PMID: 32699638 PMCID: PMC7368785 DOI: 10.1186/s40673-020-00119-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
Aims Micturition depends on a complex voluntary and involuntarily neuronal network located at various levels of the nervous system. The mechanism is highly dependent on the hierarchical organization of central nervous system pathways. If the role of the cortex and brainstem centres is well established, the role of other subcortical areas structures, such as the cerebellum is poorly understood. We are interested in discussing the current knowledge on the role of cerebellum in micturition. Methods A systematic search is performed in the medical literature, using the PubMed database with the keyword « cerebellum ». The latter is combined with «urination » OR « micturition » OR « urinary bladder ». Results Thirty-one articles were selected, focussing on micturition and describing the role of the cerebellum. They were grouped in 6 animal experimental studies, 20 functional brain imaging in micturition and 5 clinical studies. Conclusions Although very heterogeneous, experimental and clinical data clearly indicate the cerebellum role in the micturition control. Cerebellum modulates the micturition reflex and participates to the bladder sensory-motor information processing. The cerebellum is involved in the reflex micturition modulation through direct or indirect pathways to major brainstem or forebrain centres.
Collapse
Affiliation(s)
- Laure Bastide
- Service de Neurologie, Université Libre de Bruxelles-Hôpital Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Anne-Geneviève Herbaut
- Service de Neurologie, Université Libre de Bruxelles-Hôpital Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium
| |
Collapse
|
38
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
39
|
Helgers SOA, Al Krinawe Y, Alam M, Krauss JK, Schwabe K, Hermann EJ, Al-Afif S. Lesion of the Fastigial Nucleus in Juvenile Rats Deteriorates Rat Behavior in Adulthood, Accompanied by Altered Neuronal Activity in the Medial Prefrontal Cortex. Neuroscience 2020; 442:29-40. [PMID: 32621846 DOI: 10.1016/j.neuroscience.2020.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although it is not exactly known which anatomical structures are involved, the fastigial nucleus has been thought to play a pivotal role according to recent studies. Here we investigate whether bilateral fastigial nucleus lesions in juvenile rats affect cognitive-associative and limbic related functions in adulthood. Furthermore, potential effects on the neuronal activity in the medial prefrontal cortex (mPFC) and local field coherence with the sensorimotor cortex (SMCtx) were evaluated. The fastigial nucleus was lesioned bilaterally by thermocoagulation via stereotaxically inserted electrodes in 23-day old male Sprague Dawley rats. Naïve and sham-lesioned rats (electrodes inserted above the nucleus and no electrical current applied) served as controls. As adults, all groups were tested for cognitive-associative function, social behavior, and anxiety. Thereafter, electrophysiological recordings were obtained under urethane anesthesia. Finally, lesions and recording sites were histologically verified. Spatial learning in a radial maze test and learning in an operant learning paradigm was disturbed in rats with fastigial lesions. Furthermore, in the elevated plus maze anxiety was enhanced, whereas social behavior was not affected. Electrophysiological recordings showed enhanced local field coherence between mPFC and SMCtx across all frequency bands. Impaired cognitive and affective functions together with enhanced coherence between mPFC and SMCtx after bilateral fastigial nucleus lesions indicate that the fastigial nucleus contribute to the development of the cerebellar cognitive affective syndrome and associated motor behavior.
Collapse
Affiliation(s)
- Simeon O A Helgers
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany; DFG Cluster of Excellence, Hearing4all, Germany
| | - Yazeed Al Krinawe
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany; DFG Cluster of Excellence, Hearing4all, Germany
| | - Elvis J Hermann
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Shadi Al-Afif
- Department of Neurosurgery, Hannover Medical School, Hannover, Lower Saxony, Germany.
| |
Collapse
|
40
|
Verger A, Rousseau PF, Malbos E, Chawki MB, Nicolas F, Lançon C, Khalfa S, Guedj E. Involvement of the cerebellum in EMDR efficiency: a metabolic connectivity PET study in PTSD. Eur J Psychotraumatol 2020; 11:1767986. [PMID: 33029312 PMCID: PMC7473141 DOI: 10.1080/20008198.2020.1767986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We recently reported an improvement of precuneus PET metabolism after EMDR therapy in military participants suffering from PTSD. OBJECTIVE The aim of the present study was to investigate the metabolic changes of precuneus connectivity in these participants after such treatment. METHOD Fifteen participants with PTSD performed a brain 18F-FDG-PET sensitized by virtual reality exposure to war scenes, before and after EMDR treatment. Inter-regional correlation analysis was performed to study metabolic changes of precuneus connectivity through SPMT maps at whole-brain level (p < 0.005 for the voxel, p < 0.05 for the cluster). RESULTS A decrease of connectivity was observed after EMDR between the precuneus and two significant bilateral clusters of the cerebellum (bilateral Crus I and VI cerebellar lobules, Tmax voxel of 5.8 and 5.3, and cluster size of 343 and 314 voxels, respectively). Moreover, higher cerebellar metabolism before treatment was associated with reduced clinical PTSD scores after EMDR (p = 0.03). CONCLUSIONS The posterior cerebellum and its metabolic connectivity with the precuneus are involved in the clinical efficiency of EMDR in PTSD.
Collapse
Affiliation(s)
- A Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy, Lorraine University, Nancy, France.,Iadi, Inserm, Umr 1254, Lorraine University, Nancy, France
| | - P F Rousseau
- Laboratoire de Neurosciences Sensorielles et Cognitives, Aix-Marseille Université CNRS, Marseille, France
| | - E Malbos
- Department of Psychiatry, La Conception University Hospital, Marseille, France.,Service de Psychiatrie, Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France
| | - M B Chawki
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy, Lorraine University, Nancy, France
| | - F Nicolas
- CNRS, Ecole Centrale de Marseille, UMR 7249, Institut Fresnel, Aix-Marseille Université, Marseille, France
| | - C Lançon
- Department of Psychiatry, La Conception University Hospital, Marseille, France
| | - S Khalfa
- Laboratoire de Neurosciences Sensorielles et Cognitives, Aix-Marseille Université CNRS, Marseille, France
| | - E Guedj
- Service de Psychiatrie, Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France.,Department of Nuclear Medicine, Assistance Publique Hôpitaux de Marseille, Timone University Hospital, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
41
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
42
|
Zhang LB, Zhang J, Sun MJ, Chen H, Yan J, Luo FL, Yao ZX, Wu YM, Hu B. Neuronal Activity in the Cerebellum During the Sleep-Wakefulness Transition in Mice. Neurosci Bull 2020; 36:919-931. [PMID: 32430873 DOI: 10.1007/s12264-020-00511-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebellar malfunction can lead to sleep disturbance such as excessive daytime sleepiness, suggesting that the cerebellum may be involved in regulating sleep and/or wakefulness. However, understanding the features of cerebellar regulation in sleep and wakefulness states requires a detailed characterization of neuronal activity within this area. By performing multiple-unit recordings in mice, we showed that Purkinje cells (PCs) in the cerebellar cortex exhibited increased firing activity prior to the transition from sleep to wakefulness. Notably, the increased PC activity resulted from the inputs of low-frequency non-PC units in the cerebellar cortex. Moreover, the increased PC activity was accompanied by decreased activity in neurons of the deep cerebellar nuclei at the non-rapid eye-movement sleep-wakefulness transition. Our results provide in vivo electrophysiological evidence that the cerebellum has the potential to actively regulate the sleep-wakefulness transition.
Collapse
Affiliation(s)
- Li-Bin Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital/Research Institute of Surgery, Army Medical University, Chongqing, 400042, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Jia Sun
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.,Squadron 10, Battalion 3, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Fen-Lan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ya-Min Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital/Research Institute of Surgery, Army Medical University, Chongqing, 400042, China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
44
|
Wang Y, Chen ZP, Yang ZQ, Zhang XY, Li JM, Wang JJ, Zhu JN. Corticotropin-releasing factor depolarizes rat lateral vestibular nuclear neurons through activation of CRF receptors 1 and 2. Neuropeptides 2019; 76:101934. [PMID: 31130301 DOI: 10.1016/j.npep.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide mainly synthesized in the hypothalamic paraventricular nucleus and has been traditionally implicated in stress and anxiety. Intriguingly, genetic or pharmacological manipulation of CRF receptors affects locomotor activity as well as motor coordination and balance in rodents, suggesting an active involvement of the central CRFergic system in motor control. Yet little is known about the exact role of CRF in central motor structures and the underlying mechanisms. Therefore, in the present study, we focused on the effect of CRF on the lateral vestibular nucleus (LVN) in the brainstem vestibular nuclear complex, an important center directly contributing to adjustment of muscle tone for both postural maintenance and the alternative change from the extensor to the flexor phase during locomotion. The results show that CRF depolarizes and increases the firing rate of neurons in the LVN. Tetrodotoxin does not block the CRF-induced depolarization and inward current on LVN neurons, suggesting a direct postsynaptic action of the neuropeptide. The CRF-induced depolarization on LVN neurons was partly blocked by antalarmin or antisauvagine-30, selective antagonists for CRF receptors 1 (CRFR1) and 2 (CRFR2), respectively. Furthermore, combined application of antalarmin and antisauvagine-30 totally abolished the CRF-induced depolarization. Immunofluorescence results show that CRFR1 and CRFR2 are co-localized in the rat LVN. These results demonstrate that CRF excites the LVN neurons by co-activation of both CRFR1 and CRFR2, suggesting that via the direct modulation on the LVN, the central CRFergic system may actively participate in the central vestibular-mediated postural and motor control.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhong-Qin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
45
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
46
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
47
|
Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J, Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:310-321. [PMID: 30292730 DOI: 10.1016/j.pnpbp.2018.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
The discipline of affective neuroscience is concerned with the neural bases of emotion and mood. The past decades have witnessed an explosion of research in affective neuroscience, increasing our knowledge of the brain areas involved in fear and anxiety. Besides the brain areas that are classically associated with emotional reactivity, accumulating evidence indicates that both the vestibular and cerebellar systems are involved not only in motor coordination but also influence both cognition and emotional regulation in humans and animal models. The cerebellar and the vestibular systems show the reciprocal connection with a myriad of anxiety and fear brain areas. Perception anticipation and action are also major centers of interest in cognitive neurosciences. The cerebellum is crucial for the development of an internal model of action and the vestibular system is relevant for perception, gravity-related balance, navigation and motor decision-making. Furthermore, there are close relationships between these two systems. With regard to the cooperation between the vestibular and cerebellar systems for the elaboration and the coordination of emotional cognitive and visceral responses, we propose that altering the function of one of the systems could provoke internal model disturbances and, as a result, anxiety disorders followed potentially with depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- Centre de Recherche sur les Fonctionnements et Dysfonctionnements Psychologigues, CRFDP EA 7475, Rouen Normandie University, Bat Blondel, Place E. Blondel 76821, Mont Saint Aignan cedex, France.
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Anne Le Gall
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Marie-Laure Machado
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Stephane Besnard
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| |
Collapse
|
48
|
Martín-Pérez C, Contreras-Rodríguez O, Vilar-López R, Verdejo-García A. Hypothalamic Networks in Adolescents With Excess Weight: Stress-Related Connectivity and Associations With Emotional Eating. J Am Acad Child Adolesc Psychiatry 2019; 58:211-220.e5. [PMID: 30738548 DOI: 10.1016/j.jaac.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Adolescents with excess weight are particularly sensitive to stress, which may contribute to the presence of emotional eating behaviors. It is proposed that this may be due to alterations in the connectivity between hypothalamic networks and regions of the "emotional nervous system," involved in the regulation of energy balance and stress processing. However, this remains to be clarified in adolescents with excess weight. METHOD We investigated whole-brain differences in the functional connectivity of the medial and lateral hypothalamus (MH and LH) between adolescents with excess weight (EW, n = 53; mean age = 14.64 years, SD = 1.78) and normal weight (NW, n = 51; mean age = 15.29 years, SD = 1.75) using seed-based resting-state analyses. Then, in a subset of 22 adolescents with EW (mean age = 15.75 years, SD = 1.70) and 32 with NW (mean age = 15.27, SD = 2.03), we explored for group interactions between the MH/LH networks and stress response in the Trier Social Stress Task (TSST) and emotional eating, assessed with the Dutch Eating Behavior Questionnaire (DEB-Q). RESULTS Compared to NW, EW showed higher functional connectivity in the LH-orbitofrontal cortex, ventral striatum, anterior insula, and in the MH-middle temporal cortex networks. EW also showed lower connectivity in the LH-cerebellum, and in the MH-middle prefrontal, pre-, and postcentral gyri networks. In EW, higher connectivity of the LH-nucleus accumbens and LH-midbrain networks were associated with stress response. Higher connectivity in the LH-midbrain was also associated with a greater presence of emotional eating behaviors in EW. CONCLUSION Adolescents with EW showed functional connectivity alterations within both MH/LH networks. Alterations in the LH network were linked with higher levels of stress response and emotional-driven eating patterns.
Collapse
Affiliation(s)
| | - Oren Contreras-Rodríguez
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM-17), Barcelona, Spain.
| | | | - Antonio Verdejo-García
- School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
49
|
Çavdar S, Özgür M, Kuvvet Y, Bay H, Aydogmus E. Cortical, subcortical and brain stem connections of the cerebellum via the superior and middle cerebellar peduncle in the rat. J Integr Neurosci 2018; 17:609-618. [PMID: 30056432 DOI: 10.3233/jin-180090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Hüsniye Bay
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Evren Aydogmus
- Department of Neurosurgery, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
50
|
Rodríguez AT, Vásquez-Celaya L, Coria-Avila GA, Pérez CA, Aranda-Abreu GE, Carrillo P, Manzo J, García LI. Changes in multiunit activity pattern in cerebellar cortex associated to olfactory cues during sexual learning in male rats. Neurosci Lett 2018; 687:241-247. [PMID: 30287305 DOI: 10.1016/j.neulet.2018.09.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
The cerebellum is a structure of the central nervous system which has been previously studied with different techniques and animal models and even humans, so it is associated with multiple functions such as cognition, memory, emotional processing, balance, control of movement, among others. Its relationship with sensory systems has already been explored, however, the role it plays in olfactory processing in the cerebellum is unclear. Several hypotheses have been proposed from work done in humans and animal models with neuroimaging and immunohistochemical techniques. Everything seems to indicate that the cerebellar function is of vital importance for the olfactory perception, being able to be controlling not only the olfactory aspect, but also the olfactory processing. In this study we analyzed the multiunit activity in the granular layer of the cerebellar vermis during olfactory stimulation: a session being sexually naive and during four sessions of sexual behavior learning. The amplitude was compared between male naive and sexual experts, as well as between olfactory stimuli. The amplitude of the sexually experienced rats showed the highest values compared to naive ones. Odor of receptive female causes the greatest amplitudes, however, in the control group the amplitude increased when they were sexually experts. The motor, sensory and associative learning generated by the acquisition of sexual experience modifies the activation pattern in the cerebellum by presenting neutral odors or associated with a reward.
Collapse
Affiliation(s)
| | - Lizbeth Vásquez-Celaya
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Genaro A Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - César A Pérez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Porfirio Carrillo
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Luis I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|