1
|
Jobin K, Campbell C, Schabrun S, Schneider K, Smith A, Debert C. The safety and feasibility of transcranial direct current stimulation combined with conservative treatment for patients with cervicogenic headaches: A double-blinded randomized control study protocol. Contemp Clin Trials Commun 2024; 42:101370. [PMID: 39391228 PMCID: PMC11464253 DOI: 10.1016/j.conctc.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cervicogenic headaches (CGH) are common following concussion and whiplash injuries and significantly reduce patient quality of life. Conservative therapies such as ET (ET) and physiotherapy combined with injection-based therapies are cornerstones of treatment for CGH but have shown limited efficacy. Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has shown promise in treating other chronic pain conditions. The primary aim of this trial is to evaluate the feasibility and safety of tDCS when combined with ET for the treatment of CGH. Methods Adults (aged 18-65), blinded to treatment arm, will be randomized into one of two groups: active tDCS followed by ET or sham tDCS followed by ET. Transcranial direct current stimulation will be applied over M1 three times per week for 6-weeks and ET will be performed daily. The primary outcomes of this trial will be the feasibility and safety of the intervention. Feasibility will be defined as greater than 30 % recruitment, 70 % protocol adherence, and 80 % retention rate. Safety will be defined as no severe adverse events. Secondary exploratory outcomes will assess improvement in pain, strength, function, and quality of life. Conclusions This trial aims to demonstrate the safety and feasibility of tDCS in combination with ET for the treatment of CGH. Cervicogenic headaches can be difficult to treat contributing to significant impairments function and quality of life. Transcranial direct current stimulation is a potential novel treatment to improve health outcomes in these patients. Registration ClinicalTrials.gov-NCT05582616.
Collapse
Affiliation(s)
- K. Jobin
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - C. Campbell
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - S.M. Schabrun
- Department of Physiotherapy, University of Western Ontario, London, Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
| | - K.J. Schneider
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - A. Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - C.T. Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Sansevere KS, Ward N. Neuromodulation on the ground and in the clouds: a mini review of transcranial direct current stimulation for altering performance in interactive driving and flight simulators. Front Psychol 2024; 15:1479887. [PMID: 39669679 PMCID: PMC11634617 DOI: 10.3389/fpsyg.2024.1479887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as a promising tool for cognitive enhancement, especially within simulated virtual environments that provide realistic yet controlled methods for studying human behavior. This mini review synthesizes current research on the application of tDCS to improve performance in interactive driving and flight simulators. The existing literature indicates that tDCS can enhance acute performance for specific tasks, such as maintaining a safe distance from another car or executing a successful plane landing. However, the effects of tDCS may be context-dependent, indicating a need for a broader range of simulated scenarios. Various factors, including participant expertise, task difficulty, and the targeted brain region, can also influence tDCS outcomes. To further strengthen the rigor of this research area, it is essential to address and minimize different forms of research bias to achieve true generalizability. This comprehensive analysis aims to bridge the gap between theoretical understanding and practical application of neurotechnology to study the relationship between the brain and behavior, ultimately providing insights into the effectiveness of tDCS in transportation settings.
Collapse
Affiliation(s)
- Kayla S. Sansevere
- Tufts Applied Cognition Laboratory, Department of Psychology, Tufts University, Medford, MA, United States
| | | |
Collapse
|
3
|
Chang C, Piao Y, Zhang M, Liu Y, Du M, Yang M, Mei T, Wu C, Wang Y, Chen X, Zeng GQ, Zhang X. Evaluation of tolerability and safety of transcranial electrical stimulation with gel particle electrodes in healthy subjects. Front Psychiatry 2024; 15:1441533. [PMID: 39606007 PMCID: PMC11599605 DOI: 10.3389/fpsyt.2024.1441533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background With the advancement of transcranial electrical stimulation (tES) technology, an increasing number of stimulation devices and treatment protocols have emerged. However, safety and tolerability remain critical concerns before new strategies can be implemented. Particularly, the use of gel particle electrodes brings new challenges to the safety and tolerability of tES, which hinders its widespread adoption and further research. Objective Our study utilized a specially designed and validated transcranial electrical stimulation stimulator along with preconfigured gel particle electrodes placed at F3 and F4 in the prefrontal lobes. We aimed to assess the tolerance and safety of these electrodes in healthy subjects by administering different durations and types of tES. Methods Each participant underwent ten sessions of either transcranial direct current stimulation (tDCS) or transcranial alternating current stimulation (tACS), with session durations varying. In the experiment, we collected various measurement data from participants, including self-report questionnaire data and behavioral keystroke data. Tolerability was evaluated through adverse events (AEs), the relationship of adverse events with tES (AEs-rela), the Self-Rating Anxiety Scale (SAS), and the Visual Analog Mood Scale-Revised (VAMS-R). Safety was assessed using the Visual Analog Scale (VAS), the Skin Sensation Rating (SSR), Montreal Cognitive Assessment (MoCA), and Stroop task. These data were analyzed to determine the impact of different parameters on the tolerability and safety of tES. Results There were no significant changes in the results of the MoCA and SAS scales before and after the experiment. However, significant differences were observed in VAS, SSR, AEs, and AEs-rela between tDCS and tACS. Additionally, fatigue increased, and energy levels decreased on VAMS-R with longer durations. No significant differences were found in other neuropsychological tests. Conclusion Our study revealed significant differences in tolerability and safety between tDCS and tACS, underscoring the importance of considering the stimulation type when evaluating these factors. Although tolerance and safety did not vary significantly across different stimulation durations in this study, future research may benefit from exploring shorter durations to further assess tolerability and safety efficiently.
Collapse
Affiliation(s)
- Chuangchuang Chang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yi Piao
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Mingsong Zhang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yan Liu
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Minglei Du
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Miao Yang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Tianyuan Mei
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Chengkai Wu
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Yan Wang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xueli Chen
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China (USTC), Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Xiaochu Zhang
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
- Institute of Health and Medicine, Hefei Comprehensive Science Center, Hefei, China
- Business School, Guizhou Education University, Guiyang, China
| |
Collapse
|
4
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Pilloni G, Lustberg M, Malik M, Feinberg C, Datta A, Bikson M, Gutman J, Krupp L, Charvet L. Hand functioning in progressive multiple sclerosis improves with tDCS added to daily exercises: A home-based randomized, double-blinded, sham-controlled clinical trial. Mult Scler 2024; 30:1490-1502. [PMID: 39268655 DOI: 10.1177/13524585241275013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
BACKGROUND Many individuals with progressive multiple sclerosis (PMS) are challenged by reduced manual dexterity and limited rehabilitation options. Transcranial direct current stimulation (tDCS) during motor training can improve rehabilitation outcomes. We developed a protocol for remotely supervising tDCS to deliver sessions of stimulation paired with training at home. OBJECTIVE This study evaluated the effectiveness of at-home tDCS paired with manual dexterity training for individuals with PMS. METHODS Sixty-five right-hand dominant participants with PMS and hand impairment were randomized to receive either active or sham M1-SO tDCS paired with manual dexterity training over 4 weeks. Clinical outcomes were measured by the changes in Nine-Hole Peg Test (9-HPT) and Dellon-Modified-Moberg-Pick-Up Test (DMMPUT). RESULTS The intervention had high rates of adherence and completion (98% of participants completed at least 18 of 20 sessions). The active tDCS group demonstrated significant improvement for the left hand compared with baseline in 9-HPT (-5.85 ± 6.19 vs -4.23 ± 4.34, p = 0.049) and DMMPUT (-10.62 ± 8.46 vs -8.97 ± 6.18, p = 0.049). The active tDCS group reported improvements in multiple sclerosis (MS)-related quality of life (mean increase: 5.93 ± 13.04 vs -0.05 ± -8.27; p = 0.04). CONCLUSION At-home tDCS paired with manual dexterity training is effective for individuals with PMS, with M1-SO tDCS enhancing training outcomes and offering a promising intervention for improving and preserving hand dexterity.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York Unversity Grossman School of Medicine, New York, NY, USA
| | - Matthew Lustberg
- Department of Neurology, New York Unversity Grossman School of Medicine, New York, NY, USA
| | - Martin Malik
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Charles Feinberg
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical Inc., Woodbridge Township, New Jersey, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Josef Gutman
- Department of Neurology, New York Unversity Grossman School of Medicine, New York, NY, USA
| | - Lauren Krupp
- Department of Neurology, New York Unversity Grossman School of Medicine, New York, NY, USA
| | - Leigh Charvet
- Department of Neurology, New York Unversity Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Vogelmann U, Pilloni G, Brunoni AR, Charvet L. How can we develop transcranial direct current stimulation into an effective at-home treatment tool for depression? Expert Rev Med Devices 2024; 21:883-886. [PMID: 39327744 DOI: 10.1080/17434440.2024.2409767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Ulrike Vogelmann
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Giuseppina Pilloni
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Andre R Brunoni
- Departmento de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, Brasil
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Zakibakhsh N, Basharpoor S, Ghalyanchi Langroodi H, Narimani M, Nitsche MA, Salehinejad MA. Repeated prefrontal tDCS for improving mental health and cognitive deficits in multiple sclerosis: a randomized, double-blind, parallel-group study. J Transl Med 2024; 22:843. [PMID: 39272101 PMCID: PMC11397099 DOI: 10.1186/s12967-024-05638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune disease associated with physical disability, psychological impairment, and cognitive dysfunctions. Consequently, the disease burden is substantial, and treatment choices are limited. In this randomized, double-blind study, we conducted repeated prefrontal electrical stimulation in 40 patients with MS to evaluate mental health variables (quality of life, sleep difficulties, psychological distress) and cognitive dysfunctions (psychomotor speed, working memory, attention/vigilance), marking it as the third largest sample size tDCS research conducted in MS to date. METHODS The patients were randomly assigned (block randomization method) to two groups of sham (n = 20), or 1.5-mA (n = 20) transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (F3) and right frontopolar cortex (Fp2) with anodal and cathodal stimulation respectively (electrode size: 25 cm2). The treatment included 10 sessions of 20 min of stimulation delivered every other day. Outcome measures were MS quality of life, sleep quality, psychological distress, and performance on a neuropsychological test battery dedicated to cognitive dysfunctions in MS (psychomotor speed, working memory, and attention). All outcome measures were evaluated at the pre-intervention and post-intervention assessments. Both patients and technicians delivering the stimulation were unaware of the type of stimulation being used. RESULTS Repeated prefrontal real tDCS significantly improved quality of life and reduced sleep difficulties and psychological distress compared to the sham group. It, furthermore, improved psychomotor speed, attention, and vigilance compared to the sham protocol. Improvement in mental health outcome variables and cognitive outperformance were interrelated and could predict each other. CONCLUSIONS Repeated prefrontal and frontopolar tDCS ameliorates secondary clinical symptoms related to mental health and results in beneficial cognitive effects in patients with MS. These results support applying prefrontal tDCS in larger trials for improving mental health and cognitive dysfunctions in MS. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06401928.
Collapse
Affiliation(s)
- Nasim Zakibakhsh
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sajjad Basharpoor
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | | - Mohammad Narimani
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ruffini G, Salvador R, Castaldo F, Baleeiro T, Camprodon JA, Chopra M, Cappon D, Pascual-Leone A. Multichannel tDCS with advanced targeting for major depressive disorder: a tele-supervised at-home pilot study. Front Psychiatry 2024; 15:1427365. [PMID: 39211540 PMCID: PMC11358063 DOI: 10.3389/fpsyt.2024.1427365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Proof-of-principle human studies suggest that transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) may improve depression severity. This open-label multicenter study tested remotely supervised multichannel tDCS delivered at home in patients (N=35) with major depressive disorder (MDD). The primary aim was to assess the feasibility and safety of our protocol. As an exploratory aim, we evaluated therapeutic efficacy: the primary efficacy measure was the median percent change from baseline to the end of the 4-week post-treatment follow-up period in the observer-rated Montgomery-Asberg Depression Mood Rating Scale (MADRS). Methods Participants received 37 at-home stimulation sessions (30 minutes each) of specifically designed multichannel tDCS targeting the left DLPFC administered over eight weeks (4 weeks of daily treatments plus 4 weeks of taper), with a follow-up period of 4 weeks following the final stimulation session. The stimulation montage (electrode positions and currents) was optimized by employing computational models of the electric field generated by multichannel tDCS using available structural data from a similar population (group optimization). Conducted entirely remotely, the study employed the MADRS for assessment at baseline, at weeks 4 and 8 during treatment, and at 4-week follow-up visits. Results 34 patients (85.3% women) with a mean age of 59 years, a diagnosis of MDD according to DSM-5 criteria, and a MADRS score ≥20 at the time of study enrolment completed all study visits. At baseline, the mean time since MDD diagnosis was 24.0 (SD 19.1) months. Concerning compliance, 85% of the participants (n=29) completed the complete course of 37 stimulation sessions at home, while 97% completed at least 36 sessions. No detrimental effects were observed, including suicidal ideation and/or behavior. The study observed a median MADRS score reduction of 64.5% (48.6, 72.4) 4 weeks post-treatment (Hedge's g = -3.1). We observed a response rate (≥ 50% improvement in MADRS scores) of 72.7% (n=24) from baseline to the last visit 4 weeks post-treatment. Secondary measures reflected similar improvements. Conclusions These results suggest that remotely supervised and supported multichannel home-based tDCS is safe and feasible, and antidepressant efficacy motivates further appropriately controlled clinical studies. Clinical Trial Registration https://clinicaltrials.gov/study/NCT05205915?tab=results, identifier NCT05205915.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Ricardo Salvador
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | | | - Thais Baleeiro
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Joan A. Camprodon
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mohit Chopra
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
| | - Davide Cappon
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Ramasawmy P, Gamboa Arana OL, Mai TT, Heim LC, Schumann SE, Fechner E, Jiang Y, Moschner O, Chakalov I, Bähr M, Petzke F, Antal A. No add-on therapeutic benefit of at-home anodal tDCS of the primary motor cortex to mindfulness meditation in patients with fibromyalgia. Clin Neurophysiol 2024; 164:168-179. [PMID: 38901112 DOI: 10.1016/j.clinph.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE This study investigated the efficacy of combining at-home anodal transcranial direct current stimulation (tDCS) of the left primary motor cortex (M1) with mindfulness meditation (MM) in fibromyalgia patients trained in mindfulness. METHODS Thirty-seven patients were allocated to receive ten daily sessions of MM paired with either anodal or sham tDCS over the primary motor cortex. Primary outcomes were pain intensity and quality of life. Secondary outcomes were psychological impairment, sleep quality, mood, affective pain, mindfulness level, and transcranial magnetic stimulation (TMS) measures of cortical excitability. Outcomes were analyzed pre- and post-treatment, with a one-month follow-up. RESULTS We found post-tDCS improvement in all clinical outcomes, including mindfulness level, except for positive affect and stress, in both groups without significant difference between active and sham conditions. No significant group*time interaction was found for all clinical and TMS outcomes. CONCLUSIONS Our findings demonstrate no synergistic or add-on efffect of anodal tDCS of the left M1 compared to the proper effect of MM in patients with fibromyalgia. SIGNIFICANCE Our findings challenge the potential of combining anodal tDCS of the left M1 and MM in fibromyalgia.
Collapse
Affiliation(s)
- Perianen Ramasawmy
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.
| | | | - Thuy Tien Mai
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Luise Charlotte Heim
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Samuel Enrico Schumann
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Elisabeth Fechner
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Yong Jiang
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Oscar Moschner
- Institute of Computer and Communication Technology, Technische Hochschule Köln, Köln, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany; Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Frank Petzke
- Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
10
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
11
|
Lyra de Brito Aranha RE, Nascimento JDSD, Sampaio DDA, Torro-Alves N. Combining Transcranial Direct Current Stimulation With Non-Invasive Interventions for Chronic Primary Pain: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2024; 38:616-632. [PMID: 39075920 DOI: 10.1177/15459683241265906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND A growing number of studies has combined transcranial direct current stimulation (tDCS) with other non-invasive non-pharmacological therapies (NINPT) to enhance effects in pain reduction. However, the efficacy of these combined approaches in treating chronic primary pain (CPP) warrants thorough investigation. OBJECTIVE This study aims to evaluate the efficacy of tDCS in conjunction with other NINPT in alleviating pain severity among CPP patients. METHODS We conducted a systematic search for randomized controlled trials (RCTs) comparing the efficacy of tDCS combined with NINPT against control treatments in adult CPP patients. The search spanned multiple databases, including PubMed, EMBASE, LILACS, Scopus, Web of Science, and CENTRAL. RESULTS Our systematic review included 11 RCTs with a total of 449 participants. In our meta-analysis, which comprised 228 participants receiving active-tDCS and 221 receiving sham-tDCS, we found a significant reduction in pain intensity (Standard Mean Difference = -0.73; 95% Confidence Interval (CI) = -1.18 to -0.27; P = .002) with the use of active-tDCS combined with NINPT. CONCLUSION These findings substantiate the therapeutic potential of combining tDCS with other NINPT, highlighting it as an effective treatment modality for reducing pain intensity in CPP patients.
Collapse
Affiliation(s)
| | | | | | - Nelson Torro-Alves
- Cognitive Neuroscience and Behavior Program, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
12
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Manenti R, Baglio F, Pagnoni I, Gobbi E, Campana E, Alaimo C, Rossetto F, Di Tella S, Pagliari C, Geviti A, Bonfiglio NS, Calabrò RS, Cimino V, Binetti G, Quartarone A, Bramanti P, Cappa SF, Rossini PM, Cotelli M. Long-lasting improvements in episodic memory among subjects with mild cognitive impairment who received transcranial direct current stimulation combined with cognitive treatment and telerehabilitation: a multicentre, randomized, active-controlled study. Front Aging Neurosci 2024; 16:1414593. [PMID: 38966802 PMCID: PMC11223647 DOI: 10.3389/fnagi.2024.1414593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Background In recent years, an increasing number of studies have examined the potential efficacy of cognitive training procedures in individuals with normal ageing and mild cognitive impairment (MCI). Objective The aims of this study were to (i) evaluate the efficacy of the cognitive Virtual Reality Rehabilitation System (VRRS) combined with anodal transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex compared to placebo tDCS stimulation combined with VRRS and (ii) to determine how to prolong the beneficial effects of the treatment. A total of 109 subjects with MCI were assigned to 1 of 5 study groups in a randomized controlled trial design: (a) face-to-face (FTF) VRRS during anodal tDCS followed by cognitive telerehabilitation (TR) (clinic-atDCS-VRRS+Tele@H-VRRS); (b) FTF VRRS during placebo tDCS followed by TR (clinic-ptDCS-VRRS+Tele@H-VRRS); (c) FTF VRRS followed by cognitive TR (clinic-VRRS+Tele@H-VRRS); (d) FTF VRRS followed by at-home unstructured cognitive stimulation (clinic-VRRS+@H-UCS); and (e) FTF cognitive treatment as usual (clinic-TAU). Results An improvement in episodic memory was observed after the end of clinic-atDCS-VRRS (p < 0.001). We found no enhancement in episodic memory after clinic-ptDCS-VRRS or after clinic-TAU.Moreover, the combined treatment led to prolonged beneficial effects (clinic-atDCS-VRRS+Tele@H-VRRS vs. clinic-ptDCS-VRRS+Tele@H-VRRS: p = 0.047; clinic-atDCS-VRRS+Tele@H-VRRS vs. clinic-VRRS+Tele@H-VRRS: p = 0.06). Discussion The present study provides preliminary evidence supporting the use of individualized VRRS combined with anodal tDCS and cognitive telerehabilitation for cognitive rehabilitation. Clinical trial registration https://clinicaltrials.gov/study/NCT03486704?term=NCT03486704&rank=1, NCT03486704.
Collapse
Affiliation(s)
- Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Ilaria Pagnoni
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elena Campana
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Alaimo
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Sonia Di Tella
- IRCCS Fondazione Don Carlo Gnocchi – ONLUS, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | | | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | | | | | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
- Università Degli Studi eCAMPUS, Novedrate, Italy
| | - Stefano F. Cappa
- Istituto Universitario Studi Superiori IUSS, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Paolo Maria Rossini
- Department Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
15
|
Pilloni G, Cho H, Tian TE, Beringer J, Bikson M, Charvet L. Immediate and Differential Response to Emotional Stimuli Associated With Transcranial Direct Current Stimulation for Depression: A Visual-Search Task Pilot Study. Neuromodulation 2024; 27:759-765. [PMID: 37598327 DOI: 10.1016/j.neurom.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES When administered in repeated daily doses, transcranial direct current stimulation (tDCS) directed to the prefrontal cortex has cumulative efficacy for the treatment of depression. Depression can be marked by altered processing of emotionally salient information. An acute marker of response to tDCS may be measured as an immediate change in emotional information processing. Using an easily administered web-based task, we tested immediate changes in emotional information processing in acute response to tDCS in participants with and without depression. MATERIALS AND METHODS We enrolled n = 21 women with mild-to-moderate depression and n = 20 controls without depression to complete a web-based visual search task before and after 30 minutes of tDCS directed to the prefrontal cortex. The timed task required participants to identify a target face among arrays showing sad, neutral, or mixed (distractor) expressions. RESULTS At baseline, as predicted, the participants with depression differed from those without in emotional processing speed (mean z score difference -0.66 ± 0.27, p = 0.022) and accuracy in identifying sad stimuli (error rate: 4.4% vs 1.8%, p = 0.039). In response to tDCS, the participants with depression became significantly faster on the distractor condition (pre- vs post-tDCS z scores: -0.45 ± 0.65 vs -0.85 ± 0.65, p = 0.009), suggesting a specific reduction in bias toward negative emotional information. In response to tDCS, the depressed group also had significant improvements in self-reported mood (increased happy, decreased sad and anxious mood). CONCLUSIONS Participants with depression vs those without were differentiated by their performance of the visual search task at baseline and in response to tDCS. Given that measurable effects on depression scales may require weeks of tDCS treatments, acute change in emotional information processing can serve as an easily obtainable marker of depression and its response to tDCS. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT05188248.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyein Cho
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tian Esme Tian
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Leigh Charvet
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Knopman DS, Laskowitz DT, Koltai DC, Charvet LE, Becker JH, Federman AD, Wisnivesky J, Mahncke H, Van Vleet TM, Bateman L, Kim DY, O'Steen A, James M, Silverstein A, Lokhnygina Y, Rich J, Feger BJ, Zimmerman KO. RECOVER-NEURO: study protocol for a multi-center, multi-arm, phase 2, randomized, active comparator trial evaluating three interventions for cognitive dysfunction in post-acute sequelae of SARS-CoV-2 infection (PASC). Trials 2024; 25:326. [PMID: 38755688 PMCID: PMC11098733 DOI: 10.1186/s13063-024-08156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 infection (PASC) symptoms have broad impact, and may affect individuals regardless of COVID-19 severity, socioeconomic status, race, ethnicity, or age. A prominent PASC symptom is cognitive dysfunction, colloquially referred to as "brain fog" and characterized by declines in short-term memory, attention, and concentration. Cognitive dysfunction can severely impair quality of life by impairing daily functional skills and preventing timely return to work. METHODS RECOVER-NEURO is a prospective, multi-center, multi-arm, phase 2, randomized, active-comparator design investigating 3 interventions: (1) BrainHQ is an interactive, online cognitive training program; (2) PASC-Cognitive Recovery is a cognitive rehabilitation program specifically designed to target frequently reported challenges among individuals with brain fog; (3) transcranial direct current stimulation (tDCS) is a noninvasive form of mild electrical brain stimulation. The interventions will be combined to establish 5 arms: (1) BrainHQ; (2) BrainHQ + PASC-Cognitive Recovery; (3) BrainHQ + tDCS-active; (4) BrainHQ + tDCS-sham; and (5) Active Comparator. The interventions will occur for 10 weeks. Assessments will be completed at baseline and at the end of intervention and will include cognitive testing and patient-reported surveys. All study activities can be delivered in Spanish and English. DISCUSSION This study is designed to test whether cognitive dysfunction symptoms can be alleviated by the use of pragmatic and established interventions with different mechanisms of action and with prior evidence of improving cognitive function in patients with neurocognitive disorder. If successful, results will provide beneficial treatments for PASC-related cognitive dysfunction. TRIAL REGISTRATION ClinicalTrials.gov NCT05965739. Registered on July 25, 2023.
Collapse
Affiliation(s)
| | - Daniel T Laskowitz
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | | | - Leigh E Charvet
- New York University Grossman School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | - Dong-Yun Kim
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Ren B, Kang J, Wang Y, Meng X, Huang Y, Bai Y, Feng Z. Transcranial direct current stimulation promotes angiogenesis and improves neurological function via the OXA-TF-AKT/ERK signaling pathway in traumatic brain injury. Aging (Albany NY) 2024; 16:6566-6587. [PMID: 38604164 PMCID: PMC11042948 DOI: 10.18632/aging.205724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.
Collapse
Affiliation(s)
- Bingkai Ren
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Junwei Kang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yan Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Xiangqiang Meng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Ying Huang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zhen Feng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| |
Collapse
|
19
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
20
|
Dragon K, Abdelnaim MA, Weber FC, Heuschert M, Englert L, Langguth B, Hebel T, Schecklmann M. Treating depression at home with transcranial direct current stimulation: a feasibility study. Front Psychiatry 2024; 15:1335243. [PMID: 38501089 PMCID: PMC10944921 DOI: 10.3389/fpsyt.2024.1335243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Treating major depressive disorder (MDD) with transcranial direct current stimulation (tDCS) devices at home has various logistic advantages compared to tDCS treatment in the clinic. However, preliminary (controlled) studies showed side effects such as skin lesions and difficulties in the implementation of home-based tDCS. Thus, more data are needed regarding the feasibility and possible disadvantages of home-based tDCS. Methods Ten outpatients (23-69 years) with an acute depressive episode were included for this one-arm feasibility study testing home-based tDCS. All patients self-administered prefrontal tDCS (2 mA, 20 min, anodal left, cathodal right) at home on 30 consecutive working days supported by video consultations. Correct implementation of the home-based treatment was analyzed with tDCS recordings. Feasibility was examined by treatment compliance. For additional analyses of effectiveness, three depression scores were used: Hamilton depression rating scale (HDRS-21), Major Depression Inventory (MDI), and the subscale depression of the Depression-Anxiety-Stress Scale (DASS). Furthermore, usability was measured with the user experience questionnaire (UEQ). Tolerability was analyzed by the number of reported adverse events (AEs). Results Eight patients did not stick to the protocol. AEs were minimal. Four patients responded to the home treatment according to the MDI. Usability was judged positive by the patients. Conclusions Regular video consultations or other safety concepts are recommended regardless of the number of video sessions actually conducted. Home-based tDCS seems to be safe and handy in our feasibility study, warranting further investigation.
Collapse
Affiliation(s)
- Katharina Dragon
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed A. Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Franziska C. Weber
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Markus Heuschert
- University Medical Center, University of Regensburg, Regensburg, Germany
| | - Leon Englert
- University Medical Center, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Benussi A, Borroni B. Brain Stimulation in Alzheimer's Disease Trials. J Alzheimers Dis 2024; 101:S545-S565. [PMID: 39422933 DOI: 10.3233/jad-230535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) continues to lack definitive curative therapies, necessitating an urgent exploration of innovative approaches. This review provides a comprehensive analysis of recent clinical trials focusing on invasive and non-invasive brain stimulation techniques as potential interventions for AD. Deep brain stimulation (DBS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are evaluated for their therapeutic efficacy, safety, and applicability. DBS, though invasive, has shown promising results in mitigating cognitive decline, but concerns over surgical risks and long-term effects persist. On the other hand, non-invasive methods like rTMS, tDCS, and tACS have demonstrated potential in enhancing cognitive performance and delaying disease progression, with minimal side effects, but with varied consistency. The evidence hints towards an individualized, patient-centric approach to brain stimulation, considering factors such as disease stage, genetic traits, and stimulation parameters. The review also highlights emerging technologies and potential future directions, emphasizing the need for larger, multi-center trials to confirm preliminary findings and establish robust clinical guidelines. In conclusion, while brain stimulation techniques present a promising avenue in AD therapy, further research is imperative for more comprehensive understanding and successful clinical implementation. Through this review, we aim to catalyze the scientific discourse and stimulate further investigation into these novel interventions for AD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
22
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Feltman KA, Kelley AM. Transcranial Direct Current Stimulation and Aviator Performance During Simulated Flight. Aerosp Med Hum Perform 2024; 95:5-15. [PMID: 38158568 DOI: 10.3357/amhp.6243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION: Transcranial direct current stimulation (tDCS) is a promising method for maintaining cognitive performance. Anticipated changes in rotary-wing aircraft are expected to alter aviator performance.METHODS: A single-blind, randomized, sham-controlled study evaluated effects of 2-mA anodal tDCS to the right posterior parietal cortex on aviator performance within a Black Hawk simulator. A mixed design with one between-subjects factor was assessed: stimulation prior to flight (20 constant min) and during flight (two timepoints for 10 min each). The within-subjects factor included active vs. sham stimulation. Randomly assigned to each stimulation group were 22 aviators. Aircraft state metrics derived from the simulator were used to evaluate performance. Subjects completed two flights (active stimulation and sham stimulation) with an in-flight emergency introduced at the end to assess whether the timing of tDCS application (prior or during flight) affected the ability to maintain attention and respond to an unexpected event.RESULTS: Results found active stimulation during flight produced statistically significant improvements in performance during the approach following the in-flight emergency. Subjects maintained a more precise approach path with glideslope values closer to zero (M = 0.05) compared to the prior-to-flight group (M = 0.15). The same was found for localizer values (during flight, M = 0.07; prior to flight, M = 0.17). There were no statistically significant differences between groups on secondary outcome measures.DISCUSSION: These findings suggest stimulation during flight may assist in maintaining cognitive resources necessary to respond to an unexpected in-flight emergency. Moreover, blinding efficacy was supported with 32% of subjects correctly guessing when active stimulation was being delivered (52% correctly guessed the sham condition).Feltman KA, Kelley AM. Transcranial direct current stimulation and aviator performance during simulated flight. Aerosp Med Hum Perform. 2024; 95(1):5-15.
Collapse
|
24
|
Kumpf U, Ezim H, Stadler M, Burkhardt G, Palm U, Dechantsreiter E, Padberg F. Transcranial direct current stimulation as treatment for major depression in a home treatment setting (HomeDC trial): study protocol and methodology of a double-blind, placebo-controlled pilot study. Pilot Feasibility Stud 2023; 9:197. [PMID: 38102647 PMCID: PMC10722795 DOI: 10.1186/s40814-023-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) of prefrontal cortex regions has been reported to exert therapeutic effects in patients with major depressive disorder (MDD). Due to its beneficial safety profile, its easy mode of application, and its cost-effectiveness, tDCS has recently been proposed for treatment at home. This would offer new chances for regionally widespread and long-term application. However, tDCS at home must meet the new methodological challenges of handling and adherence. At the same time, data from randomized controlled trials (RCT) investigating this mode of application are still lacking. In this pilot RCT, we therefore investigate the feasibility, safety, and effectiveness of a new antidepressant tDCS application set-up. METHODS AND ANALYSIS The HomeDC trial will be conducted as a double-blind, placebo-controlled, parallel-group design trial. Thirty-two study participants with MDD will be randomly assigned to active or sham tDCS groups. Participants will self-administer prefrontal tDCS for 6 weeks. Active tDCS will be conducted with anode over F3, cathode over F4, for 5 sessions/week, with a duration of 30 min/day, and 2 mA stimulation intensity. Sham tDCS, conversely, follows an identical protocol in regard to electrode montage and timing, but with no electric stimulation between the ramp-in and ramp-out periods. Both conditions will be administered either as a monotherapy or an adjunctive treatment to a stable dose of antidepressant medication. Adjunctive magnetic resonance imaging (MRI) and electric field (E-field) modelling will be conducted at baseline. Primary outcome is feasibility based on successfully completed stimulations and drop-out rates. The intervention is considered feasible when 20 out of 30 sessions have been fully conducted by at least 75% of the participants. Effectiveness and safety will be assessed as secondary outcomes. DISCUSSION In the HomeDC trial, the technical requirements for a placebo-controlled tDCS study in a home-based treatment setting have been established. The trial addresses the crucial points of the home-based tDCS treatment approach: uniform electrode positioning, frequent monitoring of stimulation parameters, adherence, and ensuring an appropriate home treatment environment. This study will further identify constraints and drawbacks of this novel mode of treatment. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences, Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
25
|
Black B, Hunter S, Cottrell H, Dar R, Takahashi N, Ferguson BJ, Valter Y, Porges E, Datta A, Beversdorf DQ. Remotely supervised at-home delivery of taVNS for autism spectrum disorder: feasibility and initial efficacy. Front Psychiatry 2023; 14:1238328. [PMID: 37840787 PMCID: PMC10568329 DOI: 10.3389/fpsyt.2023.1238328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has potential clinical application for autism spectrum disorder (ASD). At-home sessions are necessary to allow delivery of repeated sessions, and remove burden on patients for daily visits, and reduce costs of clinic delivery. Our objective was to validate a protocol for remote supervised administration for home delivery of taVNS using specially designed equipment and platform. Methods An open-label design was followed involving administration by caretakers to 12 patients with ASD (ages:7-16). Daily 1-h sessions over 2 weeks were administered under remote supervision. The primary outcome was feasibility, which was assessed by completion rate, stimulation tolerability, and confirmation of programmed stimulation delivery. The secondary measures were initial efficacy assessed by Childhood Anxiety Sensitivity Index-Revised (CASI-R), Parent Rated Anxiety Scale for Youth with ASD (PRAS-ASD), and Clinician Global Impression (CGI) scales. Sleep measures were also tracked using Cleveland Adolescent Sleep Questionnaire (CASQ). Results Across 132 sessions, we obtained an 88.5% completion rate. A total of 22 expected adverse events were reported with headache being the most common followed by transient pain, itchiness, and stinging at the electrode site. One subject dropped out of the study unrelated to the stimulation or the study. Average scores of anxiety (CASI-R, PRAS-ASD, and CGI) and sleepiness (CASQ) were all improved at the 2 week time point. While not powered to determine efficacy, benefits were suggested in this open label pilot. Conclusion Remotely supervised, proxy-administered, at-home delivery of taVNS is feasible in patients with ASD. Initial efficacy supports pursuing larger scale trials.
Collapse
Affiliation(s)
- Benjamin Black
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Samantha Hunter
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Hannah Cottrell
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Roee Dar
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Nicole Takahashi
- Department of Pediatrics, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Bradley J. Ferguson
- Department of Neurology, Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, United States
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - David Q. Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center for Autism and Neurodevelopment, University of Missouri-Columbia, Columbia, MO, United States
| |
Collapse
|
26
|
Cho JY, Van Hoornweder S, Sege CT, Antonucci MU, McTeague LM, Caulfield KA. Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. Front Neural Circuits 2023; 17:1214959. [PMID: 37736398 PMCID: PMC10510202 DOI: 10.3389/fncir.2023.1214959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Background Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL–Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Christopher T. Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Michael U. Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kevin A. Caulfield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
27
|
Windel F, Gardier RMM, Fourchard G, Viñals R, Bavelier D, Padberg FJ, Rancans E, Bonne O, Nahum M, Thiran JP, Morishita T, Hummel FC. Computer vision-based algorithm to sUppoRt coRrect electrode placemeNT (CURRENT) for home-based electric non-invasive brain stimulation. Clin Neurophysiol 2023; 153:57-67. [PMID: 37454564 DOI: 10.1016/j.clinph.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/29/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Home-based non-invasive brain stimulation (NIBS) has been suggested as an adjunct treatment strategy for neuro-psychiatric disorders. There are currently no available solutions to direct and monitor correct placement of the stimulation electrodes. To address this issue, we propose an easy-to-use digital tool to support patients for self-application. METHODS We recruited 36 healthy participants and compared their cap placement performance with the one of a NIBS-expert investigator. We tested participants' placement accuracy with instructions before (Pre) and after the investigator's placement (Post), as well as participants using the support tool (CURRENT). User experience (UX) and confidence were further evaluated. RESULTS Permutation tests demonstrated a smaller deviation within the CURRENT compared with Pre cap placement (p = 0.02). Subjective evaluation of ease of use and usefulness of the tool were vastly positive (8.04 out of 10). CURRENT decreased the variability of performance, ensured placement within the suggested maximum of deviation (10 mm) and supported confidence of correct placement. CONCLUSIONS This study supports the usability of this novel technology for correct electrode placement during self-application in home-based settings. SIGNIFICANCE CURRENT provides an exciting opportunity to promote home-based, self-applied NIBS as a safe, high-frequency treatment strategy that can be well integrated in patients' daily lives.
Collapse
Affiliation(s)
- Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL Valais, Sion, Switzerland
| | - Rémy Marc M Gardier
- Signal Processing Laboratory 5 (LTS5), School of Engineering, EPFL, Lausanne, Switzerland
| | - Gaspard Fourchard
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL Valais, Sion, Switzerland
| | - Roser Viñals
- Signal Processing Laboratory 5 (LTS5), School of Engineering, EPFL, Lausanne, Switzerland
| | - Daphne Bavelier
- Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Frank Johannes Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Germany
| | - Elmars Rancans
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia; Riga Centre of Psychiatry and Addiction Disorders, Riga, Latvia
| | - Omer Bonne
- Hadassah Medical Center, Jerusalem, Israel
| | - Mor Nahum
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), School of Engineering, EPFL, Lausanne, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL Valais, Sion, Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL Valais, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
28
|
Christopher P, Sutter EN, Gavioli M, Lench DH, Nytes G, Mak V, Simpson EA, Ikonomidou C, Villegas MA, Saiote C, Gillick BT. Safety, tolerability and feasibility of remotely-instructed home-based transcranial direct current stimulation in children with cerebral palsy. Brain Stimul 2023; 16:1325-1327. [PMID: 37652136 PMCID: PMC10986357 DOI: 10.1016/j.brs.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Preston Christopher
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Ellen N Sutter
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA; Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Marissa Gavioli
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Daniel H Lench
- Department of Neurology, Medical University of South Carolina, 208B Rutledge Ave, Charleston, SC, 29403, USA
| | - Gwendolyn Nytes
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Veronika Mak
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Emma A Simpson
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA; Des Moines University-College of Osteopathic Medicine, Munroe, 3200 Grand Ave, Des Moines, IA, 50312, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, 53705, USA
| | - Melissa A Villegas
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave, Mail Code 4108, Madison, WI, 53792, USA
| | - Catarina Saiote
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Bernadette T Gillick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave, Mail Code 4108, Madison, WI, 53792, USA.
| |
Collapse
|
29
|
Charvet L, George A, Charlson E, Lustberg M, Vogel-Eyny A, Eilam-Stock T, Cho H, Best P, Fernandez L, Datta A, Bikson M, Nazim K, Pilloni G. Home-administered transcranial direct current stimulation is a feasible intervention for depression: an observational cohort study. Front Psychiatry 2023; 14:1199773. [PMID: 37674552 PMCID: PMC10477781 DOI: 10.3389/fpsyt.2023.1199773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging treatment for major depression. We recruited participants with moderate-to-severe major depressive episodes for an observational clinical trial using Soterix Medical's tDCS telehealth platform as a standard of care. The acute intervention consisted of 28 sessions (5 sessions/week, 6 weeks) of the left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA × 30 min) followed by a tapering phase of weekly sessions for 4 weeks (weeks 7-10). The n = 16 completing participants had a significant reduction in depressive symptoms by week 2 of treatment [Montgomery-Åsberg Depression Rating Scale (MADRS), Baseline: 28.00 ± 4.35 vs. Week 2: 17.12 ± 5.32, p < 0.001] with continual improvement across each biweekly timepoint. Acute intervention responder and remission rates were 75 and 63% and 88 and 81% following the taper period (week 10).
Collapse
Affiliation(s)
- Leigh Charvet
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Allan George
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Erik Charlson
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Matthew Lustberg
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy Vogel-Eyny
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tehila Eilam-Stock
- The Arthur S. Abramson Department of Rehabilitation Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Hyein Cho
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Pamela Best
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Luis Fernandez
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge Township, NJ, United States
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Kamran Nazim
- Research and Development, Soterix Medical, Inc., Woodbridge Township, NJ, United States
| | - Giuseppina Pilloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
30
|
Imperio CM, Chua EF. Differential effects of remotely supervised transcranial direct current stimulation on recognition memory depending on task order. Front Hum Neurosci 2023; 17:1239126. [PMID: 37635805 PMCID: PMC10450219 DOI: 10.3389/fnhum.2023.1239126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Prior work has shown positive effects of High Definition transcranial direct current stimulation (HD-tDCS) over the dorsolateral prefrontal cortex (DLPFC) on semantic memory performance and metamemory monitoring accuracy. However, HD-tDCS requires setup by a trained researcher, which is not always feasible. Few studies have used remotely supervised (rs) tDCS in healthy populations, and remote supervision has strong practical benefits. Objective/hypothesis The goal of the current study was to test if previously shown effects of HD-tDCS over the left DLPFC on semantic memory performance and metamemory monitoring accuracy extended to conventional rs-tDCS, which is less focal than HD-tDCS, and to episodic memory and metamemory tasks. Materials and methods A total of 36 healthy participants completed 6 weeks of rs-tDCS sessions, with either active left or right anodal DLPFC stimulation, or sham. Participants completed semantic and episodic memory and metamemory tasks, which each lasted for three consecutive sessions, and session order was counterbalanced across participants. Results Overall, there were no main effects of rs-tDCS on metamemory monitoring accuracy or memory performance for either the semantic or the episodic tasks. However, there were effects of rs-tDCS that depended on the order of completing the episodic and semantic task sessions. When participants completed the semantic task sessions after the episodic task sessions, semantic recognition was greater in the left anodal DLPFC condition. In a parallel effect, when participants completed the episodic task sessions after the semantic task sessions, episodic recognition was greater in the right anodal DLPFC condition. Conclusion Prior experience with tDCS is a factor for effects of rs-tDCS on cognition. Additionally, the current experiment provides evidence for the feasibility of fully remotely supervised tDCS in healthy participants.
Collapse
Affiliation(s)
- Casey M. Imperio
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| | - Elizabeth F. Chua
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
31
|
Charvet L, Harrison AT, Mangold K, Moore RD, Guo S, Zhang J, Datta A, Androulakis XM. Remotely supervised at-home tDCS for veterans with persistent post-traumatic headache: a double-blind, sham-controlled randomized pilot clinical trial. Front Neurol 2023; 14:1184056. [PMID: 37213913 PMCID: PMC10196360 DOI: 10.3389/fneur.2023.1184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Background Currently, there are no FDA approved therapies for persistent post-traumatic headache (PPTH) secondary to traumatic brain injury (TBI). As such neither headache nor TBI specialists have an effective means to manage PPTH. Thus, the objective of the present pilot trial was to evaluate the feasibility and preliminary efficacy of a four-week at-home remotely supervised transcranial direct current stimulation (RS-tDCS) intervention for veterans with PPTH. Methods Twenty-five (m = 46.6 ± 8.7 years) veterans with PPTH were randomized into two groups and received either active (n = 12) or sham (n = 13) RS-tDCS, with anodal stimulation over left dlPFC and cathodal over occipital pole. Following a four-week baseline, participants completed 20-sessions of active or sham RS-tDCS with real-time video monitoring over a period of four-weeks. Participants were assessed again at the end of the intervention and at four-weeks post-intervention. Primary outcomes were overall adherence rate (feasibility) and change in moderate-to-severe headache days per month (efficacy). Secondary outcomes were changes in total number of headache days, and PPTH-related functional outcomes. Results Adherence rate was high with 88% of participants (active = 10/12; sham = 12/13) fully completing tDCS interventions. Importantly, there was no significant difference in adherence between active and sham groups (p = 0.59). Moderate-to-severe headache days were significantly reduced within the active RS-tDCS group (p = 0.004), compared to sham during treatment (-2.5 ± 3.5 vs. 2.3 ± 3.4), and 4-week follow-up (-3.9 ± 6.4 vs. 1.2 ± 6.5). Total number of headache days was significantly reduced within the active RS-tDCS (p = 0.03), compared to sham during-treatment (-4.0 ± 5.2 vs. 1.5 ± 3.8), and 4-week follow-up (-2.1 ± 7.2 vs. -0.2 ± 4.4). Conclusion The current results indicate our RS-tDCS paradigm provides a safe and effective means for reducing the severity and number of headache days in veterans with PPTH. High treatment adherence rate and the remote nature of our paradigm indicate RS-tDCS may be a feasible means to reduce PPTH, especially for veterans with limited access to medical facilities.Clinical Trial Registration: ClinicalTrials.gov, identifier [NCT04012853].
Collapse
Affiliation(s)
- Leigh Charvet
- Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Adam T. Harrison
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
| | - Kiersten Mangold
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
| | - Robert Davis Moore
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Siyuan Guo
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Jiajia Zhang
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - X. Michelle Androulakis
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
- Headache Centers of Excellence Program, US Department of Veterans Affairs, Columbia, SC, United States
| |
Collapse
|
32
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
33
|
Gebodh N, Miskovic V, Laszlo S, Datta A, Bikson M. A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524615. [PMID: 36712027 PMCID: PMC9882307 DOI: 10.1101/2023.01.18.524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| | | | | | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| |
Collapse
|
34
|
Santana K, França E, Sato J, Silva A, Queiroz M, de Farias J, Rodrigues D, Souza I, Ribeiro V, Caparelli-Dáquer E, Teixeira AL, Charvet L, Datta A, Bikson M, Andrade S. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul 2023; 16:100-107. [PMID: 36693536 PMCID: PMC9867562 DOI: 10.1016/j.brs.2023.01.1672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.
Collapse
Affiliation(s)
| | | | - João Sato
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Ana Silva
- Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | - Iara Souza
- Federal University of Paraíba, João Pessoa, Brazil
| | - Vanessa Ribeiro
- Department of Health, Government of Paraíba, João Pessoa, Brazil
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Antonio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States,Faculdade Santa Casa BH, Belo Horizonte, Brazil
| | - Leigh Charvet
- Department of Neurology, New York University Langone Health, New York, United States
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States,Research & Development, Soterix Medical, Inc., New York, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States
| | | |
Collapse
|
35
|
Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep 2022; 12:20116. [PMID: 36418438 PMCID: PMC9684449 DOI: 10.1038/s41598-022-24618-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used noninvasive brain stimulation technique with mixed results to date. A potential solution is to apply more efficient stimulation to ensure that each participant receives sufficient cortical activation. In this four-part study, we used electric field (E-field) modeling to systematically investigate the cortical effects of conventional and novel tDCS electrode montages, with the goal of creating a new easily adoptable form of tDCS that induces higher and more focal E-fields. We computed 3000 anatomically accurate, MRI-based E-field models using 2 mA tDCS to target the left primary motor cortex in 200 Human Connectome Project (HCP) participants and tested the effects of: 1. Novel Electrode Position, 2. Electrode Size, and 3. Inter-Electrode Distance on E-field magnitude and focality. In particular, we examined the effects of placing electrodes surrounding the corticomotor target in the anterior and posterior direction (anterior posterior pad surround tDCS; APPS-tDCS). We found that electrode position, electrode size, and inter-electrode distance all significantly impact the cortical E-field magnitude and focality of stimulation (all p < 0.0001). At the same 2 mA scalp stimulation intensity, APPS-tDCS with smaller than conventional 1 × 1 cm electrodes surrounding the neural target deliver more than double the on-target cortical E-field (APPS-tDCS: average of 0.55 V/m from 2 mA; M1-SO and bilateral M1: both 0.27 V/m from 2 mA) while stimulating only a fraction of the off-target brain regions; 2 mA optimized APPS-tDCS produces 4.08 mA-like cortical E-fields. In sum, this new optimized APPS-tDCS method produces much stronger cortical stimulation intensities at the same 2 mA scalp intensity. APPS-tDCS also more focally stimulates the cortex at the intended target, using simple EEG coordinate locations and without MRI scans. This APPS-tDCS method is adoptable to any existing, commercially available tDCS device and can be used to ensure sufficient cortical activation in each person. Future directions include testing whether APPS-tDCS produces larger and more consistent therapeutic tDCS effects.
Collapse
|
36
|
Affiliation(s)
- Janice J Eng
- Department of Physical Therapy, University of British Columbia and the Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, Canada (J.J.E.)
| | - Amy M Pastva
- Division of Physical Therapy, Duke University and Duke Health Center for Interprofessional Education and Care, Durham, NC (A.M.P.)
| |
Collapse
|
37
|
Hua JPY, Abram SV, Ford JM. Cerebellar stimulation in schizophrenia: A systematic review of the evidence and an overview of the methods. Front Psychiatry 2022; 13:1069488. [PMID: 36620688 PMCID: PMC9815121 DOI: 10.3389/fpsyt.2022.1069488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cerebellar structural and functional abnormalities underlie widespread deficits in clinical, cognitive, and motor functioning that are observed in schizophrenia. Consequently, the cerebellum is a promising target for novel schizophrenia treatments. Here we conducted an updated systematic review examining the literature on cerebellar stimulation efficacy and tolerability for mitigating symptoms of schizophrenia. We discuss the purported mechanisms of cerebellar stimulation, current methods for implementing stimulation, and future directions of cerebellar stimulation for intervention development with this population. METHODS Two independent authors identified 20 published studies (7 randomized controlled trials, 7 open-label studies, 1 pilot study, 4 case reports, 1 preclinical study) that describe the effects of cerebellar circuitry modulation in patients with schizophrenia or animal models of psychosis. Published studies up to October 11, 2022 were identified from a search within PubMed, Scopus, and PsycInfo. RESULTS Most studies stimulating the cerebellum used transcranial magnetic stimulation or transcranial direct-current stimulation, specifically targeting the cerebellar vermis/midline. Accounting for levels of methodological rigor across studies, these studies detected post-cerebellar modulation in schizophrenia as indicated by the alleviation of certain clinical symptoms (mainly negative and depressive symptoms), as well as increased frontal-cerebellar connectivity and augmentation of canonical neuro-oscillations known to be abnormal in schizophrenia. In contrast to a prior review, we did not find consistent evidence for cognitive improvements following cerebellar modulation stimulation. Modern cerebellar stimulation methods appear tolerable for individuals with schizophrenia, with only mild and temporary side effects. CONCLUSION Cerebellar stimulation is a promising intervention for individuals with schizophrenia that may be more relevant to some symptom domains than others. Initial results highlight the need for continued research using more methodologically rigorous designs, such as additional longitudinal and randomized controlled trials. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022346667].
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|