1
|
Li X, Tian M, Yu L, Qian J, Yang J, Wang X, Lu C, Xiao C, Liu Y. The role of ferroptosis resistance in lymph-associated tumour metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189200. [PMID: 39426689 DOI: 10.1016/j.bbcan.2024.189200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Tumour metastasis is a crucial factor in determining clinically challenging tumours. In this respect, the lymphatic system may act as potential entry portals for tumour metastasis, whilst, clinical detection of tumour-infiltrated lymph nodes also indicates poorer prognosis and higher metastatic risk. Whether tumour cells gain ferroptosis resistance in lymph that make them exhibit a stronger propensity for lymphatic dissemination compared to hematogenous spread might be a breakthrough for elucidating lymph-associated tumour metastasis. This review discusses how the lymphatic system endows tumour cells with ferroptosis resistance character, which makes them more propensity for lymph node pre-metastasis and distant metastasis through lymphatic circulation. Comprehensively considering the distinct structure and property of lymph and the unique metabolic characteristics of tumours, all of the lymphatic vessels, intestinal lymph and lymph nodes collectively manipulate an intricate interaction with the hematogenous system and afford substances exchange with tumour cells and extracellular vesicles, upon which make a ferroptosis resistant microenvironment for subsequent metastasis in distant organs and lymph nodes.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - JinXiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Dudek AZ, Xi MX, Scilla KA, Mamdani H, Creelan BC, Saltos A, Tanvetyanon T, Chiappori A. Phase 2 Trial of Nivolumab and Ramucirumab for Relapsed Mesothelioma: HCRN-LUN15-299. JTO Clin Res Rep 2023; 4:100584. [PMID: 38046376 PMCID: PMC10689266 DOI: 10.1016/j.jtocrr.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction We hypothesized that ramucirumab could increase previously reported objective response rate (ORR) of 11% of single-agent nivolumab in the second-line therapy of unresectable mesothelioma. Methods This was a cooperative group, single-arm, phase 2 trial enrolling patients with unresectable mesothelioma after progression on more than or equal to one pemetrexed-containing regimen. Ramucirumab and nivolumab were given intravenously every 14 days for up to 24 months. The primary end point was ORR; secondary end points were progression-free survival (PFS) rate at 24 weeks and overall survival (OS). Results Between April 2018 and October 2021, 34 patients were recruited. Median age was 72 (range: 40-89) years, 12% were women, and 79% of tumors had epithelial histology. Median follow-up was 10.2 months (interquartile range 19.6 mo [4.3-23.8]). ORR was 22.6% (95% confidence interval [CI]: 9.6%-41.1%) in all population and 43% (95% CI: 10%-82%) in patients with nonepithelioid histology. Of all patients, 45.2% (95% CI: 27.3%-64.0%) had stable disease. PFS rate at 24 weeks was 32% (95% CI: 17%-51%). Median PFS was 4.2 months (95% CI: 1.9-6.4 mo). Median OS was 12.5 months (95% CI: 6.3-23.5 mo). There was no grade greater than or equal to four toxicity. Programmed death-ligand 1 expression in the tumor did not correlate with benefit from treatment. Activation of tumor-infiltrating lymphocytes in response to treatment was associated with a trend toward improvement in PFS. Conclusions Nivolumab and ramucirumab combination was safe and generated PFS and OS rates and ORR that compare favorably with single-agent nivolumab in a similar patient population. The primary end point of 40% ORR was not reached. Further investigation of this regimen in mesothelioma with nonepithelioid histology may be warranted. Clinical Trial Information: NCT03502746.
Collapse
Affiliation(s)
- Arkadiusz Z. Dudek
- HealthPartners Institute, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Min X. Xi
- HealthPartners Institute, Minneapolis, Minnesota
| | - Katherine A. Scilla
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Hirva Mamdani
- Karmanos Cancer Center, Wayne State University, Detroit, Michigan
| | | | | | | | | |
Collapse
|
3
|
Khosropoor S, Alavi MS, Etemad L, Roohbakhsh A. Cannabidiol goes nuclear: The role of PPARγ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154771. [PMID: 36965374 DOI: 10.1016/j.phymed.2023.154771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main phytocannabinoids found in Cannabis sativa. In contrast to Δ9-tetrahydrocannabinol, it has a low affinity for cannabinoid receptors CB1 and CB2, thereby it does not induce significant psychoactive effects. However, CBD may interact with other receptors, including peroxisome proliferator-activated receptor gamma (PPARγ). CBD is a PPARγ agonist and changes its expression. There is considerable evidence that CBD's effects are mediated by its interaction with PPARγ. So, we reviewed studies related to the interaction of CBD and PPARγ. METHODS In this comprehensive literature review, the term 'cannabidiol' was used in combination with the following keywords including 'PPARγ', 'Alzheimer's disease', 'Parkinson's disease', 'seizure', 'multiple sclerosis', 'immune system', 'cardiovascular system', 'cancer', and 'adipogenesis'. PubMed, Web of Science, and Google Scholar were searched until December 20, 2022. A total of 78 articles were used for the reviewing process. RESULTS CBD, via activation of PPARγ, promotes significant pharmacological effects. The present review shows that the effects of CBD on Alzheimer's disease and memory, Parkinson's disease and movement disorders, multiple sclerosis, anxiety and depression, cardiovascular system, immune system, cancer, and adipogenesis are mediated, at least in part, via PPARγ. CONCLUSION CBD not only activates PPARγ but also affects its expression in the body. It was suggested that the late effects of CBD are mediated via PPARγ activation. We suggested that CBD's chemical structure is a good backbone for developing new dual agonists. Combining it with other chemicals enhances their biological effectiveness while reducing their dosage. The present study indicated that PPARγ is a key target for CBD, and its activation by CBD should be considered in all future studies.
Collapse
Affiliation(s)
- Sara Khosropoor
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
5
|
Patil N, Allgayer H, Leupold JH. MicroRNAs in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:1-31. [PMID: 33119862 DOI: 10.1007/978-3-030-50224-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is decisive for the eradication or survival of any tumor mass. Moreover, it plays a pivotal role for metastasis and for providing the metastatic niche. The TME offers special physiological conditions and is composed of, for example, surrounding blood vessels, the extracellular matrix (ECM), diverse signaling molecules, exosomes and several cell types including, but not being limited to, infiltrated immune cells, cancer-associated endothelial cells (CAEs), and cancer-associated fibroblasts (CAFs). These cells can additionally and significantly contribute to tumor and metastasis progression, especially also by acting via their own deregulated micro (mi) RNA expression or activity. Thus, miRNAs are essential players in the crosstalk between cancer cells and the TME. MiRNAs are small non-coding (nc) RNAs that typically inhibit translation and stability of messenger (m) RNAs, thus being able to regulate several cell functions including proliferation, migration, differentiation, survival, invasion, and several steps of the metastatic cascade. The dynamic interplay between miRNAs in different cell types or organelles such as exosomes, ECM macromolecules, and the TME plays critical roles in many aspects of cancer development. This chapter aims to give an overview on the multiple contributions of miRNAs as players within the TME, to summarize the role of miRNAs in the crosstalk between different cell populations found within the TME, and to illustrate how they act on tumorigenesis and the behavior of cells in the TME context. Lastly, the potential clinical utility of miRNAs for cancer therapy is discussed.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
6
|
Specific inhibition of SHP2 suppressed abdominal aortic aneurysm formation in mice by augmenting the immunosuppressive function of MDSCs. Life Sci 2020; 265:118751. [PMID: 33189823 DOI: 10.1016/j.lfs.2020.118751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
AIMS To address the roles of SHP2 in regulating angiotensin II (Ang II) induced abdominal aortic aneurysm (AAA) and the potential molecular mechanisms. MAIN METHODS AAA model was established in apolipoprotein E-deficient (apoE-/-) mice infused with Ang II. Suprarenal aortic luminal diameters were ultrasonically measured to determine the presentation of AAA in mice. The inflammatory and immunosuppressive factors in serum were detected by ELISA. AAA lesion size, positive macrophages and elastic laminae degradation were examined by histological analysis. Myeloid-derived suppressor cells (MDSCs) were measured by flow cytometry after magnetic bead sorting. Bioinformatics analysis was applied to screen the crucial genes related the progression of AAA. KEY FINDINGS Treatment with PHPS1 (SHP2 inhibitor) significantly decreased the vascular diameter of AAA. Histological analysis showed that PHPS1 obviously reduced the Masson positive area, macrophages positive area, as well as the damage rate of elastic laminae. Moreover, PHPS1 suppressed the expression of INF-γ, TNF-α and MMPs, as well as elevated IL-10 and arginase-1 expression. Additionally, PHPS1 enhanced the expression of granulocytic MDSCs (G-MDSCs). By consulting with bioinformatics, STAT3 was selected. In G-MDSCs, PHPS1 stimulation obviously increased the phosphorylation level of STAT3, as well as elevated the protein expression of C/EBPβ and arginase-1. However, the above phenomena can be blocked after Stattic (STAT3 inhibitor) treatment. SIGNIFICANCE SHP2 may affect the AAA progression by interfering with expansion and function of MDSCs to regulate the body immunity, which might afford a novel direction for the treatment of patients with AAA.
Collapse
|
7
|
Lu Y, Fu C, Xia C, Ma S. A method for separation and purification of mouse splenocytes by density gradient centrifugation. Prep Biochem Biotechnol 2020; 51:415-421. [PMID: 32985918 DOI: 10.1080/10826068.2020.1821712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spleen is an information-rich and easy-accessible peripheral lymphoid organ. It has complex cell composition because of the immunocytes maturity and settle down. Changes of the composition and function of these immunocytes are critical to body immune response. To understand the cell behaviors, specific cell subpopulations are required to be separated without heterogeneity. Density gradient centrifugation is one of the cell separation methods with high throughput. However, the greatest defect of this method is its low cell purity. In this study, the separation conditions of tumor-bearing mouse splenocytes were optimized by separation solutions with different density gradients. After separation, lymphocytes were located at the second layer with the proportion of 84.9%, monocytic-like myeloid-derived suppressor cells (Mo-MDSCs) were located at the fourth layer with the proportion of 54.2% and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were located at the sixth layer with the proportion of 85.5%. Cells in different layers were further determined by verifying the gene expression pattern of some chemokine receptors on cell surfaces. Furthermore, this method was also used to separate healthy mouse splenocytes. Therefore, this method will be highly useful to separate mouse splenocytes and has laid a foundation for further research on the changes and roles of immunocytes during the development of cancer.
Collapse
Affiliation(s)
- Yao Lu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - Chenghao Fu
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - Chao Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - Shiliang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
8
|
Investigation of Changes in Exosomes Profile During Storage Period of Erythrocyte Suspensions. Indian J Hematol Blood Transfus 2020. [DOI: 10.1007/s12288-020-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
10
|
Hao H, Zhang Q, Zhu H, Wen Y, Qiu D, Xiong J, Fu X, Wu Y, Meng K, Li J. Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice. Eur J Immunol 2019; 49:2235-2244. [PMID: 31465113 DOI: 10.1002/eji.201948225] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023]
Abstract
Icaritin, a hydrolytic product of icariin isolated from traditional Chinese herbal medicine genus Epimedium, has many pharmacological and biological activities. Here, we show that icaritin can effectively decrease tumor burden of murine B16F10 melanoma and MC38 colorectal tumors in a T-cell dependent manner. The treatment effects are associated with increased CD8 T-cell infiltration and increased effector memory T-cell frequency. In vivo depletion of CD8 T cell using an anti-CD8 monoclonal antibody abolished the antitumor effect, which supports the critical role of CD8 T cells during icaritin treatment. By analyzing immune cells in the tumor tissue, we found reduced frequency of CD11b+ Gr1+ myeloid-derived suppression cells (MDSCs) infiltration and downregulation of PD-L1 expression on MDSCs after icaritin treatment. This was not limited to MDSCs, as icaritin also decreased the expression of PD-L1 on neutrophils. Importantly, the combination of anti-PD-1/CTLA-4 and icaritin significantly enhances antitumor ability and increases the efficacy of either treatment alone. Our findings reveal that icaritin induces antitumor immunity in a CD8 T-cell-dependent way and justify further investigation of combining immune checkpoint therapy to icaritin-based antitumor therapy.
Collapse
Affiliation(s)
- Haibang Hao
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.,Beijing Shenogen Pharma Group Ltd, Beijing, China
| | - Qi Zhang
- Beijing Shenogen Pharma Group Ltd, Beijing, China
| | - Hai Zhu
- Beijing Shenogen Pharma Group Ltd, Beijing, China
| | - Yuxiang Wen
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ding Qiu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Xiong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaolan Fu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kun Meng
- Beijing Shenogen Pharma Group Ltd, Beijing, China
| | - Jian Li
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, Nagarkatti M, Nagarkatti P. AhR Activation Leads to Massive Mobilization of Myeloid-Derived Suppressor Cells with Immunosuppressive Activity through Regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p That Target Anti-Inflammatory Genes. THE JOURNAL OF IMMUNOLOGY 2019; 203:1830-1844. [PMID: 31492743 DOI: 10.4049/jimmunol.1900291] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, is a potent ligand for aryl hydrocarbon receptor (AhR). In the current study, we made an exciting observation that naive C57BL/6 mice that were exposed i.p. to TCDD showed massive mobilization of myeloid-derived suppressor cells (MDSCs) in the peritoneal cavity. These MDSCs were highly immunosuppressive and attenuated Con A-induced hepatitis upon adoptive transfer. TCDD administration in naive mice also led to induction of several chemokines and cytokines in the peritoneal cavity and serum (CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL5, CXCL9, G-CSF, GM-CSF, VEGF, and M-CSF) and chemokine receptors on MDSCs (CCR1, CCR5, and CXCR2). Treatment with CXCR2 or AhR antagonist in mice led to marked reduction in TCDD-induced MDSCs. TCDD-induced MDSCs had high mitochondrial respiration and glycolytic rate and exhibited differential microRNA (miRNA) expression profile. Specifically, there was significant downregulation of miR-150-5p and miR-543-3p. These two miRNAs targeted and enhanced anti-inflammatory and MDSC-regulatory genes, including IL-10, PIM1, ARG2, STAT3, CCL11 and its receptors CCR3 and CCR5 as well as CXCR2. The role of miRs in MDSC activation was confirmed by transfection studies. Together, the current study demonstrates that activation of AhR in naive mice triggers robust mobilization of MDSCs through induction of chemokines and their receptors and MDSC activation through regulation of miRNA expression. AhR ligands include diverse compounds from environmental toxicants, such as TCDD, that are carcinogenic to dietary indoles that are anti-inflammatory. Our studies provide new insights on how such ligands may regulate health and disease through induction of MDSCs.
Collapse
Affiliation(s)
- Wurood Hantoosh Neamah
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Osama A Abdulla
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| |
Collapse
|
12
|
Park SM, Youn JI. Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch Pharm Res 2019; 42:560-566. [PMID: 31147902 DOI: 10.1007/s12272-019-01165-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has demonstrated improved therapeutic efficacy in a wide range of cancers. However, the benefits are restricted to a small population of patients. Therefore, studies on understanding the mechanisms resistant to ICI therapy and for finding predictive biomarkers for ICI therapy are being actively conducted. Recent studies have demonstrated that myeloid-derived suppressor cells (MDSC) inhibit ICI therapy by various mechanisms, and that the response to ICI therapy can be improved by blocking MDSC activity. Moreover, low level of MDSC in patients with cancer has been shown to be correlated with their good prognosis after ICI treatment, thereby suggesting MDSC as a predictive biomarker in this regard. This review focuses on the roles of MDSC in ICI therapy and their relevant applications.
Collapse
Affiliation(s)
- Su-Myeong Park
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je-In Youn
- Research Institute, ProGen Inc, Seongnam, Gyeonggi-do, 13488, Republic of Korea. .,Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Chu X, Li Y, Huang W, Feng X, Sun P, Yao Y, Yang X, Sun W, Bai H, Liu C, Ma Y. Combined immunization against TGF-β1 enhances HPV16 E7-specific vaccine-elicited antitumour immunity in mice with grafted TC-1 tumours. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1199-1209. [PMID: 29929402 DOI: 10.1080/21691401.2018.1482306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Therapeutic vaccine appears to be a potential approach for the treatment of human papillomavirus (HPV)-associated tumours, but its efficacy can be dampened by immunosuppressive factors such as transforming growth factor (TGF)-β1. We sought to investigate whether active immunity against TGF-β1 enhances the anti-tumour immunity elicited by an HPV16 E7-specific vaccine that we developed previously. In this study, virus-like particles of hepatitis B virus core antigen were used as vaccine carriers to deliver either TGF-β1 B cell epitopes or E7 cytotoxic T-lymphocyte epitope. The combination of preventive immunization against TGF-β1 and therapeutic immunization with the E7 vaccine significantly reduced the growth of grafted TC-1 tumours in C57 mice, showing better efficacy than immunization with only one of the vaccines. The improved efficacy of combined immunization is evidenced by elevated IFN-γ and decreased IL-4 and TGF-β1 levels in cultured splenocytes, increased E7-specific IFN-γ-expressing splenocytes, and increased numbers of CD4+IFN-γ+ and CD8+IFN-γ+ cells and decreased numbers of Treg (CD4+Foxp3+) cells in the spleen and tumours. The results strongly indicate that targeting TGF-β1 through active immunization might be a potent approach to enhancing antigen-specific therapeutic vaccine-induced anti-tumour immune efficacy and providing a combined strategy for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojie Chu
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yang Li
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Weiwei Huang
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Xuejun Feng
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Pengyan Sun
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yufeng Yao
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Xu Yang
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Wenjia Sun
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Hongmei Bai
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Cunbao Liu
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yanbing Ma
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| |
Collapse
|
15
|
Onyilagha C, Kuriakose S, Ikeogu N, Jia P, Uzonna J. Myeloid-Derived Suppressor Cells Contribute to Susceptibility to Trypanosoma congolense Infection by Suppressing CD4 + T Cell Proliferation and IFN-γ Production. THE JOURNAL OF IMMUNOLOGY 2018; 201:507-515. [PMID: 29898961 DOI: 10.4049/jimmunol.1800180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow-derived myeloid cells that have immune-suppressive activities. These cells have been reported to suppress T cell immunity against tumors as well as in some parasitic and bacterial infections. However, their role during Trypanosoma congolense infection has not been studied. Given that immunosuppression is a hallmark of African trypanosomiasis, we investigated the role of MDSCs in immunity to T. congolense infection. We found increased numbers of MDSCs in the spleen and liver of infected mice, which correlated with increased parasitemia. Depletion of MDSCs significantly increased the percentage of proliferating and IFN-γ-producing CD4+ T cells from the spleen of T. congolense-infected mice. Furthermore, MDSCs from T. congolense-infected mice directly suppressed CD4+ T cell proliferation in a coculture setting. This suppressive effect was abolished by the arginase-1 inhibitor, Nω-hydroxy-nor-l-arginine (nor-NOHA), indicating that MDSCs suppress CD4+ T cell proliferation and function in an arginase-1-dependent manner. Indeed, depletion of MDSCs during infection led to control of the first wave of parasitemia and prolonged survival of infected mice. This was also associated with increased CD4+ T cell proliferation and IFN-γ production. Taken together, our findings identify an important role of MDSCs in the pathogenesis of experimental T. congolense infection via suppression of T cell proliferative and effector cytokine responses in an arginase-1-dependent manner.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Shiby Kuriakose
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Nnamdi Ikeogu
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Jude Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and .,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
16
|
Namdar A, Mirzaei R, Memarnejadian A, Boghosian R, Samadi M, Mirzaei HR, Farajifard H, Zavar M, Azadmanesh K, Elahi S, Noorbakhsh F, Rezaei A, Hadjati J. Prophylactic DNA vaccine targeting Foxp3 + regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model. Cancer Immunol Immunother 2018; 67:367-379. [PMID: 29124314 PMCID: PMC11028379 DOI: 10.1007/s00262-017-2088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/05/2017] [Indexed: 01/04/2023]
Abstract
Regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) are the two important and interactive immunosuppressive components of the tumor microenvironment that hamper anti-tumor immune responses. Therefore, targeting these two populations together might be beneficial for overcoming immune suppression in the tumor microenvironment. We have recently shown that prophylactic Foxp3 DNA/recombinant protein vaccine (Foxp3 vaccine) promotes immunity against Treg in tumor-free conditions. In the present study, we investigated the immune modulatory effects of a prophylactic regimen of the redesigned Foxp3 vaccine in the B16F10 melanoma model. Our results indicate that Foxp3 vaccination continuously reduces Treg population in both the tumor site and the spleen. Surprisingly, Treg reduction was associated with a significant decrease in the frequency of MDSC, both in the spleen and in the tumor environment. Furthermore, Foxp3 vaccination resulted in a significant reduction of arginase-1(Arg-1)-induced nitric oxide synthase (iNOS), reactive oxygen species (ROS) and suppressed MDSC activity. Moreover, this concurrent depletion restored production of inflammatory cytokine IFN-γ and enhanced tumor-specific CTL response, which subsequently resulted in the reduction of tumor growth and the improved survival rate of vaccinated mice. In conclusion, our results revealed that Foxp3 vaccine promotes an immune response against tumor by targeting both Treg and MDSC, which could be exploited as a potential immunotherapy approach.
Collapse
Affiliation(s)
- Afshin Namdar
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Reza Mirzaei
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
| | | | - Roobina Boghosian
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
| | - Morteza Samadi
- Recurrent Abortion Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hamid Farajifard
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
| | - Mehdi Zavar
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
| | | | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Hadjati
- Department of Immunology, Building No. 7, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, 14155-6447, Iran.
| |
Collapse
|
17
|
Saligan LN, Lukkahatai N, Zhang ZJ, Cheung CW, Wang XM. Altered Cd8+ T lymphocyte Response Triggered by Arginase 1: Implication for Fatigue Intensification during Localized Radiation Therapy in Prostate Cancer Patients. ACTA ACUST UNITED AC 2018; 8:1249-1262. [PMID: 30364895 DOI: 10.4172/neuropsychiatry.1000454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fatigue, the most common side effect of cancer treatments, is observed to intensify during external-beam radiation therapy (EBRT). The underlying molecular mechanisms remain unclear. This study investigated the differentially expressed genes/proteins and their association with fatigue intensification during EBRT. Fatigue scores measured by FACT-F and peripheral blood were collected prior to treatment (baseline D0), at midpoint (days 19-21, D21) and endpoint (days 38-42, D42) from men (n=30) with non-metastatic prostate cancer undergoing EBRT. RNA extracted from peripheral blood was used for gene expression analysis. Plasma arginase I and arginine were examined using ELISA and liquid chromatography-tandem mass spectrometry. Differences in fatigue scores, gene and protein expression between times points following EBRT were analyzed by one way ANOVA followed by Post Hoc t-test. Fatigue scores decreased significantly from baseline (44.6 ± 8.1) to midpoint (37.3 ± 10.6, p=0.000, low scores indicating high fatigue) and to endpoint (37.4 ± 10.1, p=0.001) during EBRT. ARG1 (encoding arginase type 1) was significantly up regulated from baseline to midpoint of EBRT (fold change =2.41, p<0.05) whereas genes associated with the adaptive immune functional pathway (CD28, CD27, CCR7, CD3D, CD8A and HLA-DOB) were significantly downregulated >2-fold between the study time points. The changes in gene expression were associated with patient reported fatigue intensity. Moreover, the upregulation of ARG1 was negatively correlated with the absolute lymphocyte count (R2=0.561, p=0.01) only in the high level of fatigue group (n=17) during EBRT. Increased ARG1 expression is known to result in arginine deficiency, which leads to immunosuppression by impairing lymphocyte proliferation and activation. EBRT-induced ARG1 upregulation may play an essential role in fatigue intensification via the arginine deficiency and suppression of T-cell proliferation pathways. These findings may provide novel insights into the molecular-genetic mechanisms underlying the development and intensification of cancer treatment-related fatigue.
Collapse
Affiliation(s)
- Leorey N Saligan
- Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nada Lukkahatai
- School of Nursing, Johns Hopkins University, 525 North Wolfe Street, Baltimore, MD 21205 USA
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chi Wai Cheung
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| | - Xiao-Min Wang
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Drabczyk-Pluta M, Werner T, Hoffmann D, Leng Q, Chen L, Dittmer U, Zelinskyy G. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8 + T cell responses during acute Friend retrovirus infection. Retrovirology 2017; 14:42. [PMID: 28835242 PMCID: PMC5569525 DOI: 10.1186/s12977-017-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) can suppress T cell responses in several different diseases. Previously these suppressive cells were observed to expand in HIV patients and in a mouse retrovirus model, yet their suppressive effect on virus-specific CD8+ T cells in vitro and in vivo has not been characterized thus far. RESULTS We used the Friend retrovirus (FV) model to demonstrate that MDSCs expand and become activated during the late phase of acute FV infection. Only the subpopulation of granulocytic MDSCs (gMDSCs) but not monocytic MDSC suppressed virus-specific CD8+ T cell proliferation and function in vitro. gMDSCs expressed arginase 1, high levels of the inhibitory ligand PD-L1 and the ATP dephosphorylating enzyme CD39 on the cell surface upon infection. All three molecules were involved in the suppressive effect of the gMDSCs in vitro. MDSC depletion experiments in FV-infected mice revealed that they restrict virus-specific CD8+ T cell responses and thus affect the immune control of chronic retroviruses in vivo. CONCLUSIONS Our study demonstrates that MDSCs become activated and expand during the acute phase of retrovirus infection. Their suppressive activity on virus-specific CD8+ T cells may contribute to T cell dysfunction and the development of chronic infection.
Collapse
Affiliation(s)
- Malgorzata Drabczyk-Pluta
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tanja Werner
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Qibin Leng
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
19
|
Salem ML, Zidan AAA, Attia M, El-Naggar RE, Nassef M, Abou El-Azm AR, El-Bate H, Yussif M, Galal S, Abo Senna M, El Demellawy M. IFN-α-based treatment of patients with chronic HCV show increased levels of cells with myeloid-derived suppressor cell phenotype and of IDO and NOS. Immunopharmacol Immunotoxicol 2017; 39:188-198. [PMID: 28472907 DOI: 10.1080/08923973.2017.1320670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection causes chronic hepatitis, which is often associated with suppressed anti-HCV immune responses. We have recently reported accumulation of myeloid-derived suppressor cells (MDSCs) and suppressed immunity in cancer patients. AIM The main aim of this study was to determine whether chronic HCV patients harbor high of MDSCs in general and in nonresponders to IFN-based therapy in particular as well as to analyze the immune suppressive molecules. METHODS Peripheral blood samples withdrawn from 154 patients with chronic HCV infection and were categorized into responders and nonresponders based on viral titer upon IFN-α treatment. RESULTS The relative and absolute numbers of MDSCs defined as Lin-/HLA-DR-/CD33+/CD11b+ increased in all HCV patients, where they were higher in nonresponders than in responders. Additionally, the levels of MDSCs after 4-6 months of treatment in responders were lower than during the course of treatment. The responders also showed higher levels of IL-2 coincided with increased numbers of dendritic cells (DCs), CD4+ and CD8+ T cells. The levels of total NOS and IDO were also higher in nonresponders as compared to responders and healthy controls, while the expression levels of CD3ζ was lower in responders as compared to nonresponders and healthy volunteers. CONCLUSION Chronic HCV patients harbor high numbers of MDSCs, which are higher in nonresponders than in responders. The higher numbers of MDSCs associated with increases in the suppressing factors.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Abdel-Aziz A Zidan
- b Zoology Department, Faculty of Science , Damanhour University , Damanhour , Egypt
| | - Mohamed Attia
- c Department of Clinical Pathology, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Randa E El-Naggar
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Mohamed Nassef
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Abdel Raouf Abou El-Azm
- d Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Hasan El-Bate
- e Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Kafrelshheikh University , Kafr Elshheikh , Egypt
| | - Mohamed Yussif
- d Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine , Tanta University , Tanta , Egypt
| | - Sohaila Galal
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Mohamed Abo Senna
- a Zoology Department, Immunology and Biotechnology Unit, Faculty of Science , Tanta University , Tanta , Egypt
| | - Maha El Demellawy
- f City of Scientific Research and Technological Applications , Pharmaceutical and Fermentation Industries Development Center , New Burg El Arab , Egypt
| |
Collapse
|
20
|
Lidický O, Šírová M, Etrych T. HPMA copolymer-based polymer conjugates for the delivery and controlled release of retinoids. Physiol Res 2017; 65:S233-S241. [PMID: 27762589 DOI: 10.33549/physiolres.933425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this paper, we describe the synthesis, physicochemical characterization, drug release kinetics and preliminary biological evaluation of several N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer-retinoid conjugates designed for solid tumor immunotherapy. The conjugates are supposed to inhibit the immunosuppressive activity of myeloid-derived suppressor cells (MDSC) accumulated in the solid tumor microenvironment. All-trans retinoic acid (ATRA) was derivatized to hydrazide (AtrHy) and then attached to the polymer backbone via a spacer that is stable at the normal pH of blood (7.4) and hydrolytically degradable in mildly acidic environments (e.g. in endosomes or lysosomes, pH~5.0-6.5). Polymer-AtrHy conjugates were designed to achieve prolonged blood circulation and release of the immunomodulator intracellularly or extracellularly in solid tumor tissue. Three types of polymer precursors, differing in the structure of the keto acid-containing side chains, were synthesized. A linkage susceptible to hydrolytic cleavage was formed by the conjugation reaction of the carbonyl group-terminated side chains of the polymer precursors with the hydrazide group of a drug derivative. In vitro incubation of the conjugates in buffers resulted in much faster release of the drugs or their derivatives from the polymer at pH 5.0 than at pH 7.4, with the rate depending on the detailed structure of the spacer. Both the AtrHy derivative and its polymer conjugates showed the ability to induce the differentiation of retinoid-responsive HL-60 cells, thus demonstrating the required biological activity.
Collapse
Affiliation(s)
- O Lidický
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
21
|
The mTOR signal regulates myeloid-derived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death Dis 2017; 8:e2695. [PMID: 28333137 PMCID: PMC5386577 DOI: 10.1038/cddis.2017.86] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) signal controls innate and adaptive immune response in multiple immunoregulatory contexts. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells of potent immunosuppressive capacity. In this study, we aimed to investigate the role of MDSCs in the protection of acute kidney injury (AKI) and the regulation of mTOR signal on MDSC's protective role in this context. In mice AKI model, rapamycin administration was associated with improved renal function, restored histological damage and decreased CD4+ and CD8+ T-cell infiltration in kidney tissue. MDSCs, especially CD11b+Ly6G+Ly6Clow G-MDSCs were recruited to the injured kidney following the interaction of CXCL1, CXCL2 and their receptor CXCR2 after inhibiting mTOR signal with rapamycin treatment. The adoptive transfer of rapamycin-treated MDSCs into the mice with AKI significantly improved the renal function, ameliorated histologic damages and limited the infiltration of T cells in kidney tissue. In addition, the expression of pro-inflammatory cytokines IL-1β and IFN-γ mRNA was downregulated while the expression of TGF-β1 and Foxp3 mRNA was upregulated in kidney tissue after transferring rapamycin-treated MDSCs. Adoptive transfer of rapamycin-treated MDSCs also downregulated the serum levels of IL-1β, IL-6 and IFN-γ and upregulated the serum levels of TGF-β1 compared with the IR group and PBS-treated MDSC group. In in vitro study, inhibiting mTOR signal regulated the induction of MDSC towards the CD11b+Ly6G+Ly6Clow G-MDSC subset. The ability to suppress T-cell proliferation of both bone marrow–derived CD11b+Ly6G+Ly6Clow G-MDSCs and CD11b+Ly6G-Ly6Chigh M-MDSCs was enhanced by mTOR signal inhibition via upregulating the expression of Arginase-1 and iNOS. Accordingly, both G-MDSCs and M-MDSCs presented downregulated runx1 gene expression after rapamycin treatment. Taken together, our results demonstrated that MDSCs ameliorated AKI and the protective effect was enhanced by mTOR signal inhibition via promoting MDSCs recruitment, regulating the induction of MDSCs and strengthening their immunosuppressive activity.
Collapse
|
22
|
Elimova E, Song S, Shimodaira Y, Lin Q, Ajani JA. Exploiting Molecular and Immune Biology of Gastric and Gastroesophageal Adenocarcinomas to Discover Novel Therapeutic Targets. Ann Surg Oncol 2016; 23:3786-3791. [PMID: 27503493 DOI: 10.1245/s10434-016-5428-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 12/16/2023]
Abstract
Gastroesophageal carcinomas (GACs) are a significant problem worldwide, and despite many attempts to improve the outcomes of patients with these tumors, little progress has been made over the last several decades. In the past decade, only transtuzumab and ramucirumab, two drugs with marginal clinical benefit, have been approved for the treatment of patients with GACs. After second-line therapy, most treatment options are generally ineffective. Prior studies in this disease have been largely empiric, using unselected patient populations. More recently, detailed somatic genotyping, enrichment of patients based on biomarkers, and pharmacokinetic studies have opened new avenues for developing treatment options in patients with GAC.
Collapse
Affiliation(s)
- Elena Elimova
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yusuke Shimodaira
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quan Lin
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Chen WC, Lai CH, Chuang HC, Lin PY, Chen MF. Inflammation-induced myeloid-derived suppressor cells associated with squamous cell carcinoma of the head and neck. Head Neck 2016; 39:347-355. [PMID: 27696591 DOI: 10.1002/hed.24595] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to present our assessment of the significance of myeloid-derived suppressor cells (MDSCs) in head and neck squamous cell carcinoma (HNSCC). METHODS We examined the percentage of MDSCs in the peripheral blood of patients with HNSCC. The relationship among MDSC recruitment, tumor progression, and cyclooxygenase (COX)-2 inhibition was also evaluated by animal models. RESULTS Circulating MDSCs were significantly increased in patients with HNSCC compared with healthy people, and this was associated with the clinical tumor burden. In immunocompetent 4-nitroquinoline-1-oxide (4-NQO)-induced oral tumor and immunocompromised tumor implantation animal models, MDSC recruitment was associated with the duration of 4-NQO treatment and tumor progression. The responsible mechanisms included the suppressive ability of T-cell proliferation and augmenting angiogenesis by MDSC. Blockade of COX-2 attenuated the induction and function of MDSCs and subsequently inhibited tumor growth. CONCLUSION The levels of MDSC are linked with tumor progression in HNSCC. Moreover, targeting COX-2 could be a promising strategy for the treatment of HNSCC. © 2016 Wiley Periodicals, Inc. Head Neck 39: 347-355, 2017.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Taiwan.,Chang Gung University, College of Medicine, Taiwan
| | - Chia-Hsuan Lai
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Huei-Chieh Chuang
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Paul-Yang Lin
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Taiwan.,Chang Gung University, College of Medicine, Taiwan
| |
Collapse
|
24
|
Chiu DKC, Xu IMJ, Lai RKH, Tse APW, Wei LL, Koh HY, Li LL, Lee D, Lo RCL, Wong CM, Ng IOL, Wong CCL. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 2016; 64:797-813. [PMID: 27228567 DOI: 10.1002/hep.28655] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/02/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED A population of stromal cells, myeloid-derived suppressor cells (MDSCs), is present in tumors. Though studies have gradually revealed the protumorigenic functions of MDSCs, the molecular mechanisms guiding MDSC recruitment remain largely elusive. Hypoxia, O2 deprivation, is an important factor in the tumor microenvironment of solid cancers, whose growth often exceeds the growth of functional blood vessels. Here, using hepatocellular carcinoma as the cancer model, we show that hypoxia is an important driver of MDSC recruitment. We observed that MDSCs preferentially infiltrate into hypoxic regions in human hepatocellular carcinoma tissues and that hypoxia-induced MDSC infiltration is dependent on hypoxia-inducible factors. We further found that hypoxia-inducible factors activate the transcription of chemokine (C-C motif) ligand 26 in cancer cells to recruit chemokine (C-X3-C motif) receptor 1-expressing MDSCs to the primary tumor. Knockdown of chemokine (C-C motif) ligand 26 in cancer cells profoundly reduces MDSC recruitment, angiogenesis, and tumor growth. Therapeutically, blockade of chemokine (C-C motif) ligand 26 production in cancer cells by the hypoxia-inducible factor inhibitor digoxin or blockade of chemokine (C-X3-C motif) receptor 1 in MDSCs by chemokine (C-X3-C motif) receptor 1 neutralizing antibody could substantially suppress MDSC recruitment and tumor growth. CONCLUSION This study unprecedentedly reveals a novel molecular mechanism by which cancer cells direct MDSC homing to primary tumor and suggests that targeting MDSC recruitment represents an attractive therapeutic approach against solid cancers. (Hepatology 2016;64:797-813).
Collapse
Affiliation(s)
| | | | | | - Aki Pui-Wah Tse
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Larry Lai Wei
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Hui-Yu Koh
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Lynna Lan Li
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Derek Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Chun-Ming Wong
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
Dhar P, Ng GZ, Sutton P. How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer. Am J Physiol Gastrointest Liver Physiol 2016; 311:G514-20. [PMID: 27469367 DOI: 10.1152/ajpgi.00146.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/26/2016] [Indexed: 01/31/2023]
Abstract
The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies.
Collapse
Affiliation(s)
- Poshmaal Dhar
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and
| | - Garrett Z Ng
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and
| | - Philip Sutton
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Younis RH, Han KL, Webb TJ. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1419-29. [PMID: 26740106 DOI: 10.4049/jimmunol.1501293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
Abstract
One of the mechanisms by which malignancies can induce immune suppression is through the production of cytokines that affect the maturation and differentiation of inflammatory cells in the tumor microenvironment. Semaphorin 4D (Sema4D) is a proangiogenic cytokine produced by several malignancies, which has been described in the regulation of the immune system. In the present study, we examined the role of human head and neck squamous cell carcinoma (HNSCC)-secreted Sema4D on myeloid cell differentiation. CD33(+) cells cultured in HNSCC cell line-derived conditioned medium differentiated into myeloid derived suppressor cells (MDSC) (CD33(+)CD11b(+)HLA-DR(-/low)). The addition of anti-Sema4D Ab to HNSCC conditioned medium significantly reduced the expansion of the MDSC population. Similarly, knockdown of Sema4D in an HNSCC cell line resulted in a loss of MDSC function as shown by a decrease in the production of the immune-suppressive cytokines arginase-1, TGF-β, and IL-10 by MDSC, concomitant with recovery of T cell proliferation and IFN-γ production following stimulation of CD3/CD28. Importantly, CD33(+) myeloid and T cells cultured in conditioned medium of HNSCC cells in which Sema4D was knocked down promoted antitumor inflammatory profile, through recovery of the effector T cells (CD4(+)T-bet(+) and CD8(+)T-bet(+)), as well as a decrease in regulatory T cells (CD4(+)CD25(+)FOXP3(+)). We also showed that Sema4D was comparable to GM-CSF in its induction of MDSC. Collectively, this study describes a novel immunosuppressive role for Sema4D in HNSCC through induction of MDSC, and it highlights Sema4D as a therapeutic target for future studies to enhance the antitumorigenic inflammatory response in HNSCC and other epithelial malignancies.
Collapse
Affiliation(s)
- Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Kyu Lee Han
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD 21201
| | - Tonya J Webb
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201
| |
Collapse
|
27
|
Qu P, Wang LZ, Lin PC. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett 2015; 380:253-6. [PMID: 26519756 DOI: 10.1016/j.canlet.2015.10.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023]
Abstract
Myeloid derived suppressor cells (MDSCs) are a group of immature myeloid cells accumulated in most cancer patients and mouse tumor models. MDSCs suppress host immune response and concurrently promote tumor angiogenesis, thereby promote tumor growth and progression. In this review, we discuss recent progresses in expansion and activity of tumor MDSCs, and describe new findings about immunosuppressive function of different subtypes of MDSCs in cancer. We also discussed tumor angiogenic activities and pro-tumor invasion/metastatic roles of MDSCs in tumor progression.
Collapse
Affiliation(s)
- Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Li-Zhen Wang
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - P Charles Lin
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
28
|
Hegde VL, Singh UP, Nagarkatti PS, Nagarkatti M. Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:5211-22. [PMID: 25917103 DOI: 10.4049/jimmunol.1401844] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/23/2015] [Indexed: 12/26/2022]
Abstract
Cannabidiol (CBD) is a natural nonpsychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naive immune system is not precisely understood. In this study, we observed that administering CBD into naive mice triggers robust induction of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) in the peritoneum, which expressed functional arginase 1, and potently suppressed T cell proliferation ex vivo. Furthermore, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b(+)Ly6-G(+)Ly6-C(+) granulocytic and CD11b(+)Ly6-G(-)Ly6-C(+) monocytic subtypes, with monocytic MDSC exhibiting higher T cell-suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (Kit(W/W-v)) mast cell-deficient mice. MDSC response was reconstituted upon transfer of wild-type bone marrow-derived mast cells in Kit(W/W-v) mice, suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1, and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of peroxisome proliferator-activated receptor γ in luciferase reporter assay, and PPAR-γ selective antagonist completely inhibited MDSC induction in vivo, suggesting its critical role. Together, the results suggest that CBD may induce activation of PPAR-γ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC.
Collapse
Affiliation(s)
- Venkatesh L Hegde
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Udai P Singh
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC 29208
| |
Collapse
|
29
|
Tissue resident regulatory T cells: novel therapeutic targets for human disease. Cell Mol Immunol 2015; 12:543-52. [PMID: 25891216 PMCID: PMC4579654 DOI: 10.1038/cmi.2015.23] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, the ability of regulatory T cells (Tregs) to suppress multiple types of immune cells has received tremendous attention. Mounting evidence has revealed that tissue resident Tregs control non-immunological processes of their target tissues and contribute to a plethora of human diseases. The identification of novel tissue-specific Tregs has highlighted their heterogeneity and complexity. This review summarizes the recent findings for visceral adipose tissue CD4+Foxp3+ regulatory T cells (VAT Tregs), muscle Tregs, bone Tregs and skin memory Tregs, with a focus on their unique functions in local tissues. This interpretation of the roles of tissue-specific Tregs and of their involvement in disease progression provides new insight into the discovery of potential therapeutic targets of human diseases.
Collapse
|
30
|
Pan W, Sun Q, Wang Y, Wang J, Cao S, Ren X. Highlights on mechanisms of drugs targeting MDSCs: providing a novel perspective on cancer treatment. Tumour Biol 2015; 36:3159-69. [DOI: 10.1007/s13277-015-3363-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
|
31
|
Julier Z, Martino MM, de Titta A, Jeanbart L, Hubbell JA. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine. Sci Rep 2015; 5:8569. [PMID: 25708982 PMCID: PMC4338432 DOI: 10.1038/srep08569] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 11/09/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with its neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. In addition, we reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8+ T cell responses in two murine cancer models.
Collapse
Affiliation(s)
- Ziad Julier
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Mikaël M Martino
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [2] World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexandre de Titta
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Laura Jeanbart
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [2] Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [3] Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA [4] Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
32
|
Fujii H, Shin-Ya M, Takeda S, Hashimoto Y, Mukai SA, Sawada SI, Adachi T, Akiyoshi K, Miki T, Mazda O. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Sci 2015; 105:1616-25. [PMID: 25283373 PMCID: PMC4317968 DOI: 10.1111/cas.12547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/17/2014] [Accepted: 09/28/2014] [Indexed: 11/27/2022] Open
Abstract
RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies.
Collapse
Affiliation(s)
- Hidetaka Fujii
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, Sampson JH. Immunotherapy for malignant glioma. Surg Neurol Int 2015; 6:S68-77. [PMID: 25722935 PMCID: PMC4338494 DOI: 10.4103/2152-7806.151341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas (MG) are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM), the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS)-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs) is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.
Collapse
Affiliation(s)
- Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Terence Verla
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
Deshane JS, Redden DT, Zeng M, Spell ML, Zmijewski JW, Anderson JT, Deshane RJ, Gaggar A, Siegal GP, Abraham E, Dransfield MT, Chaplin DD. Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015; 135:413-424.e15. [PMID: 25420684 PMCID: PMC4323991 DOI: 10.1016/j.jaci.2014.08.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Subsets of myeloid-derived regulatory cells (MDRCs), which are phenotypically similar to the myeloid-derived suppressor cells found in patients with cancer, have recently been appreciated as critical regulators of airway inflammation in mouse models of asthma. OBJECTIVE We test the hypothesis that subsets of airway MDRCs contribute differentially to the inflammatory milieu in human asthma and chronic obstructive pulmonary disease (COPD). METHODS We used bronchoalveolar lavage to identify and characterize human airway MDRCs from 10 healthy subjects, 9 patients with mild asthma, and 8 patients with COPD, none of whom were treated with inhaled or systemic corticosteroids. We defined subsets of airway MDRCs using flow cytometry, the molecular mediators they produce, and their abilities to regulate proliferation of polyclonally activated autologous T lymphocytes. RESULTS We found substantial differences in the functional potential of MDRC subsets in healthy subjects, patients with asthma, and patients with COPD, with these differences regulated by the nitrosative and oxidative free radicals and cytokines they produced. Nitric oxide-producing MDRCs suppressed and superoxide-producing MDRCs enhanced proliferation of polyclonally activated autologous CD4 T cells. HLA-DR(+)CD11b(+)CD11c(+)CD163(-) superoxide-producing MDRCs, which stimulated proliferation of autologous T cells, comprised a high fraction of MDRCs in the airways of patients with mild asthma or COPD but not those of healthy control subjects. CD11b(+)CD14(+)CD16(-)HLA-DR(-) nitric oxide-producing MDRCs, which suppressed T-cell proliferation, were present in high numbers in airways of patients with mild asthma but not patients with COPD or healthy control subjects. CONCLUSION Subsets of airway MDRCs conclusively discriminate patients with mild asthma, patients with COPD, and healthy subjects from each other. The distinctive activities of these MDRCs in patients with asthma or COPD might provide novel targets for new therapeutics for these common disorders. [Corrected]
Collapse
Affiliation(s)
- Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Ala; Comprehensive Arthritis, Musculoskeletal and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, Ala.
| | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Ala; Comprehensive Arthritis, Musculoskeletal and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, Ala
| | - Meiqin Zeng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Marion L Spell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Ala
| | - John T Anderson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Rohit J Deshane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Ala
| | - Gene P Siegal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Ala; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Ala; Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala
| | - Edward Abraham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Ala
| | - Mark T Dransfield
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Ala; Comprehensive Arthritis, Musculoskeletal and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
35
|
Mahauad-Fernandez WD, DeMali KA, Olivier AK, Okeoma CM. Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis. Breast Cancer Res 2014; 16:493. [PMID: 25499888 PMCID: PMC4308845 DOI: 10.1186/s13058-014-0493-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/01/2023] Open
Abstract
Introduction Several innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers. Methods Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion. Results BST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion. Conclusions BST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242-1109, USA. .,Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB), University of Iowa, 500 Newton Road, Iowa City, IA, 52242-1109, USA.
| | - Kris A DeMali
- Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB), University of Iowa, 500 Newton Road, Iowa City, IA, 52242-1109, USA. .,Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242-1109, USA.
| | - Alicia K Olivier
- Department of Pathology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242-1109, USA. .,Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Starkville, MS, 39762-6100, USA.
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242-1109, USA. .,Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB), University of Iowa, 500 Newton Road, Iowa City, IA, 52242-1109, USA.
| |
Collapse
|
36
|
Stockmann C, Schadendorf D, Klose R, Helfrich I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 2014; 4:69. [PMID: 24782982 PMCID: PMC3986554 DOI: 10.3389/fonc.2014.00069] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, as well as inflammation with massive infiltration of leukocytes are hallmarks of various tumor entities. Various epidemiological, clinical, and experimental studies have not only demonstrated a link between chronic inflammation and cancer onset but also shown that immune cells from the bone marrow such as tumor-infiltrating macrophages significantly influence tumor progression. Tumor angiogenesis is critical for tumor development as tumors have to establish a blood supply in order to progress. Although tumor cells were first believed to fuel tumor angiogenesis, numerous studies have shown that the tumor microenvironment and infiltrating immune cell subsets are important for regulating the process of tumor angiogenesis. These infiltrates involve the adaptive immune system including several types of lymphocytes as well as cells of the innate immunity such as macrophages, neutrophils, eosinophils, mast cells, dendritic cells, and natural killer cells. Besides their known immune function, these cells are now recognized for their crucial role in regulating the formation and the remodeling of blood vessels in the tumor. In this review, we will discuss for each cell type the mechanisms that regulate the vascular phenotype and its impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Stockmann
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Dirk Schadendorf
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| | - Ralph Klose
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Iris Helfrich
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| |
Collapse
|
37
|
Biomarkers in Exhaled Breath Condensate and Serum of Chronic Obstructive Pulmonary Disease and Non-Small-Cell Lung Cancer. Int J Chronic Dis 2013; 2013:578613. [PMID: 26464846 PMCID: PMC4590922 DOI: 10.1155/2013/578613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of deaths worldwide which are associated with chronic inflammation and oxidative stress. Lung cancer, in particular, has a very high mortality rate due to the characteristically late diagnosis. As such, identification of novel biomarkers which allow for early diagnosis of these diseases could improve outcome and survival rate. Markers of oxidative stress in exhaled breath condensate (EBC) are examples of potential diagnostic markers for both COPD and non-small-cell lung cancer (NSCLC). They may even be useful in monitoring treatment response. In the serum, S100A8, S100A9, and S100A12 of the S100 proteins are proinflammatory markers. They have been indicated in several inflammatory diseases and cancers including secondary metastasis into the lung. It is highly likely that they not only have the potential to be diagnostic biomarkers for NSCLC but also prognostic indicators and therapeutic targets.
Collapse
|
38
|
Forghani P, Harris W, Giver CR, Mirshafiey A, Galipeau J, Waller EK. Properties of immature myeloid progenitors with nitric-oxide-dependent immunosuppressive activity isolated from bone marrow of tumor-free mice. PLoS One 2013; 8:e64837. [PMID: 23843936 PMCID: PMC3699563 DOI: 10.1371/journal.pone.0064837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Myeloid derived suppressor cells (MDSCs) from tumor-bearing mice are important negative regulators of anti-cancer immune responses, but the role for immature myeloid cells (IMCs) in non-tumor-bearing mice in the regulation of immune responses are poorly described. We studied the immune-suppressive activity of IMCs from the bone marrow (BM) of C57Bl/6 mice and the mechanism(s) by which they inhibit T-cell activation and proliferation. IMCs, isolated from BM by high-speed FACS, inhibited mitogen-induced proliferation of CD4(+) and CD8(+) T-cells in vitro. Cell-to-cell contact of T-cells with viable IMCs was required for suppression. Neither neutralizing antibodies to TGFβ1, nor genetic disruption of indolamine 2,3-dioxygenase, abrogated IMC-mediated suppressive activity. In contrast, suppression of T-cell proliferation was absent in cultures containing IMCs from interferon-γ (IFN-γ) receptor KO mice or T-cells from IFN-γ KO mice (on the C57Bl/6 background). The addition of NO inhibitors to co-cultures of T-cells and IMC significantly reduced the suppressive activity of IMCs. IFN-γ signaling between T-cells and IMCs induced paracrine Nitric Oxide (NO) release in culture, and the degree of inhibition of T-cell proliferation was proportional to NO levels. The suppressive activity of IMCs from the bone marrow of tumor-free mice was comparable with MDSCs from BALB/c bearing mice 4T1 mammary tumors. These results indicate that IMCs have a role in regulating T-cell activation and proliferation in the BM microenvironment.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Communication/drug effects
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Coculture Techniques
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/cytology
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/immunology
- Nitric Oxide/metabolism
- Signal Transduction
- Transforming Growth Factor beta1/antagonists & inhibitors
- Transforming Growth Factor beta1/biosynthesis
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Wayne Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia R. Giver
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Abbas Mirshafiey
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Su H, Cong X, Liu YL. Transplantation of granulocytic myeloid-derived suppressor cells (G-MDSCs) could reduce colitis in experimental murine models. J Dig Dis 2013; 14:251-8. [PMID: 23279711 DOI: 10.1111/1751-2980.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) are a group of myeloid cells expressing CD11b and Gr-1 marker in mice and comprise at least two subsets: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). This study aimed to evaluate the therapeutic efficacy of transplantation of G-MDSC subsets from normal mice to colitis mice. METHODS Murine colitis model was induced by the intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS). The mice were divided into four groups: control group, TNBS-induced colitis, TNBS-induced colitis plus normal saline injection and TNBS-induced colitis plus bone marrow-derived G-MDSCs injection (transplantation group). G-MDSCs were sorted and enriched via magnetic-activated cell sorting (MACS) program, the purity of the sorted cells was then identified using flow cytometry analysis. Sex cross-transplantation of dominant G-MDSCs was applied from normal mice to colitis models using i.v. injection. Changes of body weight, survival rate, myeloperoxidase (MPO) activity were monitored and macroscopic and microscopic injury scores are calculated. Donor cell Y chromosomes were assessed by in situ hybridization to assess reconstitutions. RESULTS After the transplantation of bone marrow-derived G-MDSCs from normal mice to colitis models, recipient mice showed increased survival rate, decreased macroscopic and microscopic injury scores and MPO activity, as well as lowered concentration of serum interleukin-6. Y chromosomes staining displayed colonization of donor cells of liver, spleen and colon tissues. CONCLUSION Bone marrow-derived G-MDSCs are effective in the improvement of murine colitis, but its effect in human needs further investigation.
Collapse
Affiliation(s)
- Hui Su
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | | | | |
Collapse
|
40
|
Basso D, Fogar P, Falconi M, Fadi E, Sperti C, Frasson C, Greco E, Tamburrino D, Teolato S, Moz S, Bozzato D, Pelloso M, Padoan A, De Franchis G, Gnatta E, Facco M, Zambon CF, Navaglia F, Pasquali C, Basso G, Semenzato G, Pedrazzoli S, Pederzoli P, Plebani M. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study. PLoS One 2013; 8:e54824. [PMID: 23359812 PMCID: PMC3554636 DOI: 10.1371/journal.pone.0054824] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Blood and spleen expansion of immature myeloid cells (IMCs) might compromise the immune response to cancer. We studied in vivo circulating and splenic T lymphocyte and IMC subsets in patients with benign and malignant pancreatic diseases. We ascertained in vitro whether pancreatic adenocarcinoma (PDAC)-associated IMC subsets are induced by tumor-derived soluble factors and whether they are immunosuppressive focusing on the inhibitory co-stimulatory molecules PDL1 and CTLA4. METHODOLOGY AND PRINCIPAL FINDINGS 103 pancreatic and/or splenic surgical patients were enrolled including 52 PDAC, 10 borderline and 10 neuroendocrine tumors (NETs). Lymphocytes and IMCs were analysed by flow cytometry in blood, in spleen and in three PDAC cell conditioned (CM) or non conditioned PBMC. PDL1 and CTLA4 were studied in 30 splenic samples, in control and conditioned PBMC. IMCs were FACS sorted and co-coltured with allogenic T lymphocytes. In PDAC a reduction was found in circulating CD8(+) lymphocytes (p = 0.004) and dendritic cells (p = 0.01), which were reduced in vitro by one PDAC CM (Capan1; p = 0.03). Blood myeloid derived suppressive cells (MDSCs) CD33(+)CD14(-)HLA-DR(-) were increased in PDAC (p = 0.022) and were induced in vitro by BxPC3 CM. Splenic dendritic cells had a higher PDL1 expression (p = 0.007), while CD33(+)CD14(+)HLA-DR(-) IMCs had a lower CTLA4 expression (p = 0.029) in PDAC patients. In vitro S100A8/A9 complex, one of the possible inflammatory mediators of immune suppression in PDAC, induced PDL1 (p = 0.018) and reduced CTLA4 expression (p = 0.028) among IMCs. IMCs not expressing CTLA4 were demonstrated to be immune suppressive. CONCLUSION In PDAC circulating dendritic and cytotoxic T cells are reduced, while MDSCs are increased and this might favour tumoral growth and progression. The reduced CTLA4 expression found among splenic IMCs of PDAC patients was demonstrated to characterize an immune suppressive phenotype and to be consequent to the direct exposure of myeloid cells to pancreatic cancer derived products, S100A8/A9 complex in particular.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121:2975-87. [PMID: 23321256 DOI: 10.1182/blood-2012-08-448548] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous, immature myeloid cell population with the ability to suppress immune responses. MDSCs have been characterized in infections, inflammatory diseases, and solid tumors; however, their presence and role in the tumor-promoting, immune-suppressive microenvironment in hematologic malignancies remains unclear. We assessed the presence, frequency, and functional characteristics of MDSCs in patients with newly diagnosed, relapsed, and relapsed/refractory multiple myeloma (MM) compared with healthy donors. Additionally, we evaluated the immunomodulatory effects of lenalidomide and bortezomib on MDSCs in MM. CD11b(+)CD14(-)HLA-DR(-/low)CD33(+)CD15(+) MDSCs were significantly increased in both the peripheral blood and the bone marrow of patients with active MM compared with healthy donors. Furthermore, MDSCs induced MM growth while suppressing T-cell-mediated immune responses. Conversely, MM cells induced the development of MDSCs from healthy donor peripheral blood mononuclear cells, confirming a bidirectional interaction between MDSCs and MM cells and immune effector cells. Our results further suggest that MDSCs may be associated with the activity of disease in MM. Importantly, our studies suggest that inhibition of the tumor-promoting and immune-suppressive functions of MDSCs in MM may represent a promising novel immune-based therapeutic strategy.
Collapse
|
42
|
Progressive growth of a murine T cell lymphoma alters population kinetics and cell viability of macrophages in a tumor-bearing host. Tumour Biol 2012; 34:827-36. [DOI: 10.1007/s13277-012-0613-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/19/2023] Open
|
43
|
Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. J Virol 2012; 86:13689-96. [PMID: 23055553 DOI: 10.1128/jvi.01595-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The attendant innate and adaptive immune responses to viral vectors have posed a significant hurdle for clinical application of viral vector-mediated gene therapy. Previous studies have shown that natural killer (NK) cells play a critical role in innate immune elimination of adenoviral vectors in the liver. However, it is not clear how the NK cell response to adenoviral vectors is regulated. In this study, we identified a role for granulocytic myeloid-derived suppressor cells (G-MDSCs) in this process. We show that in vivo administration of adenoviral vectors results in rapid accumulation of G-MDSCs early during adenoviral infection. In vivo depletion of both MDSC populations, but not monocytic MDSCs (M-MDSCs) alone, resulted in accelerated clearance of adenoviral vectors in the liver. This was accompanied by enhanced NK cell proliferation and activation, suggesting a role for MDSCs, probably G-MDSCs, in suppressing NK cell activation and function in vivo. We further demonstrate in vitro that G-MDSCs, but not M-MDSCs, are responsible for the suppression of NK cell activation. In addition, we show that adenoviral infection activated G-MDSCs to produce higher levels of reactive oxygen species (ROS) and that G-MDSC-mediated suppression of NK cells is mediated by ROS, specifically, H(2)O(2). This study demonstrates for the first time that the NK cell response to adenoviral vectors is negatively regulated by G-MDSCs and suggests that G-MDSC-based strategies could potentially improve the outcome of viral vector-mediated gene therapy.
Collapse
|
44
|
Arulselvan P, Wen CC, Lan CW, Chen YH, Wei WC, Yang NS. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice. PLoS One 2012; 7:e44658. [PMID: 23024755 PMCID: PMC3443092 DOI: 10.1371/journal.pone.0044658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/10/2012] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice). Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight)/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index), proliferation (cyclin D1 and c-Myc), angiogenesis (VEGF and HIF-1α), and tumor invasion (MMP-9 and ICAM-1) when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.
Collapse
Affiliation(s)
- Palanisamy Arulselvan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chih-Chun Wen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Wen Lan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yung-Hsiang Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wen-Chi Wei
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
45
|
Virtuoso LP, Harden JL, Sotomayor P, Sigurdson WJ, Yoshimura F, Egilmez NK, Minev B, Kilinc MO. Characterization of iNOS(+) Neutrophil-like ring cell in tumor-bearing mice. J Transl Med 2012; 10:152. [PMID: 22846631 PMCID: PMC3478162 DOI: 10.1186/1479-5876-10-152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background Myeloid-derived Suppressor Cells (MDSC) have been identified as tumor-induced immature myeloid cells (IMC) with potent immune suppressive activity in cancer. Whereas strict phenotypic classification of MDSC has been challenging due to the highly heterogeneous nature of cell surface marker expression, use of functional markers such as Arginase and inducible nitric oxide synthase (iNOS) may represent a better categorization strategy. In this study we investigated whether iNOS could be utilized as a specific marker for the identification of a more informative homogenous MDSC subset. Methods Single-cell suspensions from tumors and other organs were prepared essentially by enzymatic digestion. Flow cytometric analysis was performed on a four-color flow cytometer. Morphology, intracellular structure and localization of iNOS+ ring cells in the tumor were determined by cytospin analysis, immunofluorescence microscopy and immunohistochemistry, respectively. For functional analysis, iNOS+ ring subset were sorted and tested in vitro cell culture experiments. Pharmacologic inhibition of iNOS was performed both in vivo and in vitro. Results The results showed that intracellular iNOS staining distinguished a granular iNOS+ SSChi CD11b+ Gr-1dim F4/80+ subset with ring-shaped nuclei (ring cells) among the CD11b+ Gr-1+ cell populations found in tumors. The intensity of the ring cell infiltrate correlated with tumor size and these cells constituted the second major tumor-infiltrating leukocyte subset found in established tumors. Although phenotypic analysis demonstrated that ring cells shared characteristics with tumor-associated macrophages (TAM), morphological analysis revealed a neutrophil-like appearance as detected by cytospin and immunofluorescence microscopy analysis. The presence of distinct iNOS filled granule-like structures located next to the cell membrane suggested that iNOS was stored in pre-formed vesicles and available for rapid release upon activation. Tumor biopsies showed large areas with infiltrating ring cells primarily surrounding necrotic areas. Importantly, these cells significantly impaired CD8+ T-cell proliferation and induced apoptotic death. The intratumoral accumulation and suppressive activity of ring cells could be blocked through pharmacologic inhibition of iNOS, demonstrating the critical role of this enzyme in mediating both the differentiation and the activity of these cells. Conclusions In this study, iNOS expression was linked to a homogeneous subset; ring cells with a particular phenotype and immune suppressive function, in a common and well-established murine tumor model; 4T-1. Since the absence of a Gr-1 homolog in humans has made the identification of MDSC much more challenging, use of iNOS as a functional marker of MDSC may also have clinical importance.
Collapse
Affiliation(s)
- Lauren P Virtuoso
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fortin C, Huang X, Yang Y. NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:1843-9. [PMID: 22798671 DOI: 10.4049/jimmunol.1200584] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are critical for the innate immune control of poxviral infections. Previous studies have shown that NK cells are efficiently activated in response to infection with vaccinia virus (VV), the most studied member of the poxvirus family. However, it remains unknown whether the activation of NK cells in response to VV infection is tightly regulated. In this study, we showed that myeloid-derived suppressor cells (MDSCs) rapidly accumulated at the site of VV infection. In vivo depletion of MDSCs led to enhanced NK cell proliferation, activation, and function in response to VV infection. This was accompanied by an increase in mortality and systemic IFN-γ production. We further demonstrated that the granulocytic-MDSC (G-MDSC) subset was responsible for the suppression on NK cells and that this suppression was mediated by reactive oxygen species. These results indicate that G-MDSCs can negatively regulate NK cell activation and function in response to VV infection and suggest that manipulation of G-MDSCs could represent an attractive strategy for regulating NK cell activities for potential therapeutic benefits.
Collapse
Affiliation(s)
- Carl Fortin
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
47
|
Morgenstern DA, Anderson J. Inflammation: what role in pediatric cancer? Pediatr Blood Cancer 2012; 58:659-64. [PMID: 22162439 DOI: 10.1002/pbc.24008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
There is growing evidence for the importance of chronic inflammation in the pathogenesis of adult cancers and for an ongoing role of the inflammatory response in tumor growth and metastasis. Here, we examine how these processes relate to pediatric malignancies. While it is unlikely that chronic inflammation plays a significant role in driving malignant progression in childhood tumors that typically have developmental origins, the inflammatory response does appear to play an important role in the development and progression of many types of childhood cancer. An enhanced understanding of these processes will be of critical importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Daniel A Morgenstern
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, London, UK.
| | | |
Collapse
|
48
|
Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, Chen SH, Umansky VY, Sikora AG. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. THE JOURNAL OF IMMUNOLOGY 2012; 188:5365-76. [PMID: 22529296 DOI: 10.4049/jimmunol.1103553] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inducible NO synthase (iNOS) is a hallmark of chronic inflammation that is also overexpressed in melanoma and other cancers. Whereas iNOS is a known effector of myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, its pivotal position at the interface of inflammation and cancer also makes it an attractive candidate regulator of MDSC recruitment. We hypothesized that tumor-expressed iNOS controls MDSC accumulation and acquisition of suppressive activity in melanoma. CD11b(+)GR1(+) MDSC derived from mouse bone marrow cells cultured in the presence of MT-RET-1 mouse melanoma cells or conditioned supernatants expressed STAT3 and reactive oxygen species (ROS) and efficiently suppressed T cell proliferation. Inhibition of tumor-expressed iNOS with the small molecule inhibitor L-NIL blocked accumulation of STAT3/ROS-expressing MDSC, and abolished their suppressive function. Experiments with vascular endothelial growth factor (VEGF)-depleting Ab and recombinant VEGF identified a key role for VEGF in the iNOS-dependent induction of MDSC. These findings were further validated in mice bearing transplantable MT-RET-1 melanoma, in which L-NIL normalized elevated serum VEGF levels; downregulated activated STAT3 and ROS production in MDSC; and reversed tumor-mediated immunosuppression. These beneficial effects were not observed in iNOS knockout mice, suggesting L-NIL acts primarily on tumor- rather than host-expressed iNOS to regulate MDSC function. A significant decrease in tumor growth and a trend toward increased tumor-infiltrating CD8(+) T cells were also observed in MT-RET transgenic mice bearing spontaneous tumors. These data suggest a critical role for tumor-expressed iNOS in the recruitment and induction of functional MDSC by modulation of tumor VEGF secretion and upregulation of STAT3 and ROS in MDSC.
Collapse
Affiliation(s)
- Padmini Jayaraman
- Department of Otolaryngology, Mount Sinai School of Medicine, New York, NY 10028, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kumar A, Bharti AC, Singh SM. Effect of aspirin administration on reversal of tumor-induced suppression of myelopoiesis in T-cell lymphoma bearing host. Blood Cells Mol Dis 2012; 48:238-46. [DOI: 10.1016/j.bcmd.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
50
|
Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 2012; 22:307-18. [PMID: 22387003 DOI: 10.1016/j.semcancer.2012.02.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 01/11/2023]
Abstract
Chronic inflammation is a common factor linking various pathologies that differ in their etiology and physiology such as cancer, autoimmune diseases, and infections. At a certain stage of each of these diseases, while the chronic inflammation proceeds, some key players of the immune system become immunosuppressed as natural killer (NK) cells and T cells. The suppressive environment induced during chronic inflammation is governed by a complex processes characterized by the accumulation and activation of immune suppressor cells, pro-inflammatory cytokines, chemokines, growth and angiogenic factors, and by the activation of several inflammatory signaling pathways mediated predominantly by NFκB and STAT3 transcription factors. A substantial body of evidence supports the notion that the development of a suppressive environment during chronic inflammation limits the success of immune-based and conventional therapies, skewing the balance in favor of a developing pathology. Thus, appropriate, well-designed and fine tuned immune interventions that could resolve inflammatory responses and associated immunosuppression could enhance disease regression and reinforce successful responses to a given therapy. This review describes the interrelationship between chronic inflammation and induced immunosuppression, and explains the current evidence linking inflammation and pathological processes, as found in cancer. We further highlight potential strategies, harnessing the immunosuppressive environment in treating autoimmune diseases and facilitating transplantation. In parallel, we emphasize the use of modalities to combat chronic inflammation-induced immunosuppression in cancer, to enhance the success of immune-based therapies leading to tumor regression. In both cases, the urgent necessity of identifying biomarkers for the evaluation of host immune status is discussed, with the goal of developing optimal personalized treatments.
Collapse
Affiliation(s)
- Julia Kanterman
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|